Newer
Older
paul.tresson_ird.fr
committed
import logging
import re
import numpy as np
from pathlib import Path
import rasterio
from qgis.PyQt.QtCore import QCoreApplication
from qgis.core import (
QgsProcessingParameterRasterLayer,
QgsProcessingParameterFolderDestination,
QgsProcessingParameterBand,
QgsProcessingParameterNumber,
QgsProcessingParameterBoolean,
QgsProcessingParameterFile,
QgsProcessingParameterString,
QgsProcessingParameterEnum,
QgsProcessingParameterExtent,
QgsProcessingParameterCrs,
QgsProcessingParameterDefinition,
)
import torch
import torch.quantization
from torch.utils.data import DataLoader
import torchvision.transforms as T
import kornia.augmentation as K
import timm
paul.tresson_ird.fr
committed
# from torchgeo.datasets import RasterDataset, BoundingBox,stack_samples
# from torchgeo.samplers import GridGeoSampler, Units
# from torchgeo.transforms import AugmentationSequential
## from .utils.torchgeo import NoBordersGridGeoSampler
# from .utils.trchg import NoBordersGridGeoSampler
from .utils.geo import get_mean_sd_by_band
from .utils.geo import merge_tiles
from .utils.misc import (
QGISLogHandler,
get_dir_size,
get_model_size,
remove_files,
check_disk_space,
get_unique_filename,
save_parameters_to_json,
compute_md5_hash,
log_parameters_to_csv,
)
from .utils.trch import quantize_model
from .utils.algo import IAMAPAlgorithm
paul.tresson_ird.fr
committed
from .tg.datasets import RasterDataset
from .tg.utils import stack_samples, BoundingBox
from .tg.samplers import NoBordersGridGeoSampler, Units
from .tg.transforms import AugmentationSequential
from .icons import QIcon_EncoderTool
paul.tresson_ird.fr
committed
class EncoderAlgorithm(IAMAPAlgorithm):
""" """
FEAT_OPTION = "FEAT_OPTION"
INPUT = "INPUT"
CKPT = "CKPT"
BANDS = "BANDS"
STRIDE = "STRIDE"
SIZE = "SIZE"
EXTENT = "EXTENT"
QUANT = "QUANT"
OUTPUT = "OUTPUT"
RESOLUTION = "RESOLUTION"
CRS = "CRS"
CUDA = "CUDA"
BATCH_SIZE = "BATCH_SIZE"
CUDA_ID = "CUDA_ID"
BACKBONE_CHOICE = "BACKBONE_CHOICE"
BACKBONE_OPT = "BACKBONE_OPT"
MERGE_METHOD = "MERGE_METHOD"
WORKERS = "WORKERS"
PAUSES = "PAUSES"
REMOVE_TEMP_FILES = "REMOVE_TEMP_FILES"
TEMP_FILES_CLEANUP_FREQ = "TEMP_FILES_CLEANUP_FREQ"
JSON_PARAM = "JSON_PARAM"
COMPRESS = "COMPRESS"
def initAlgorithm(self, config=None):
"""
Here we define the inputs and output of the algorithm, along
with some other properties.
"""
cwd = Path(__file__).parent.absolute()
tmp_wd = os.path.join(tempfile.gettempdir(), "iamap_features")
self.addParameter(
QgsProcessingParameterRasterLayer(
name=self.INPUT,
description=self.tr("Input raster layer or image file path"),
# defaultValue=os.path.join(cwd, "assets", "test.tif"),
),
)
self.addParameter(
QgsProcessingParameterBand(
name=self.BANDS,
description=self.tr("Selected Bands (defaults to all bands selected)"),
defaultValue=None,
parentLayerParameterName=self.INPUT,
optional=True,
allowMultiple=True,
)
)
compress_param = QgsProcessingParameterBoolean(
name=self.COMPRESS,
description=self.tr(
"Compress final result to uint16 and JP2 to save space"
),
defaultValue=False,
optional=True,
)
crs_param = QgsProcessingParameterCrs(
name=self.CRS,
description=self.tr("Target CRS (default to original CRS)"),
optional=True,
)
res_param = QgsProcessingParameterNumber(
name=self.RESOLUTION,
description=self.tr(
"Target resolution in meters (default to native resolution)"
),
type=QgsProcessingParameterNumber.Double,
optional=True,
minValue=0,
)
cuda_id_param = QgsProcessingParameterNumber(
name=self.CUDA_ID,
description=self.tr(
"CUDA Device ID (choose which GPU to use, default to device 0)"
),
type=QgsProcessingParameterNumber.Integer,
defaultValue=0,
minValue=0,
)
nworkers_param = QgsProcessingParameterNumber(
name=self.WORKERS,
description=self.tr("Number of CPU workers for dataloader (0 selects all)"),
type=QgsProcessingParameterNumber.Integer,
defaultValue=0,
minValue=0,
)
pauses_param = QgsProcessingParameterNumber(
name=self.PAUSES,
description=self.tr(
"Schedule pauses between batches to ease CPU usage (in seconds)."
),
type=QgsProcessingParameterNumber.Integer,
defaultValue=0,
minValue=0,
tmp_files_cleanup_frq = QgsProcessingParameterNumber(
name=self.TEMP_FILES_CLEANUP_FREQ,
description=self.tr(
"Frequency at which temporary files should be cleaned up (zero means no cleanup)."
type=QgsProcessingParameterNumber.Integer,
paul.tresson_ird.fr
committed
defaultValue=500,
minValue=1,
)
remove_tmp_files = QgsProcessingParameterBoolean(
name=self.REMOVE_TEMP_FILES,
description=self.tr(
"Remove temporary files after encoding. If you want to test different merging options, it may be better to keep the tiles."
),
defaultValue=True,
)
self.addParameter(
QgsProcessingParameterExtent(
name=self.EXTENT,
description=self.tr("Processing extent (default to the entire image)"),
optional=True,
)
)
self.addParameter(
QgsProcessingParameterNumber(
name=self.SIZE,
description=self.tr(
"Sampling size (the raster will be sampled in a square with a side of that many pixel)"
),
type=QgsProcessingParameterNumber.Integer,
)
)
self.addParameter(
QgsProcessingParameterNumber(
name=self.STRIDE,
description=self.tr(
"Stride (If smaller than the sampling size, tiles will overlap. If larger, it may cause errors.)"
),
type=QgsProcessingParameterNumber.Integer,
)
)
chkpt_param = QgsProcessingParameterFile(
name=self.CKPT,
description=self.tr("Pretrained checkpoint"),
# extension='pth',
fileFilter="Checkpoint Files (*.pth *.pkl);; All Files (*.*)",
optional=True,
defaultValue=None,
)
self.addParameter(
QgsProcessingParameterFolderDestination(
self.OUTPUT,
self.tr(
"Output directory (choose the location that the image features will be saved)"
),
defaultValue=tmp_wd,
)
)
self.addParameter(
QgsProcessingParameterBoolean(
self.CUDA, self.tr("Use GPU if CUDA is available."), defaultValue=True
paul.tresson_ird.fr
committed
self.backbone_opt = [
"ViT small DINO patch 8",
"ViT base DINO",
"ViT tiny Imagenet (smallest)",
"ViT base MAE",
"SAM",
"--Empty--",
]
paul.tresson_ird.fr
committed
self.timm_backbone_opt = [
"vit_base_patch16_224.dino",
"vit_tiny_patch16_224.augreg_in21k",
"vit_base_patch16_224.mae",
"samvit_base_patch16.sa1b",
]
self.addParameter(
paul.tresson_ird.fr
committed
QgsProcessingParameterEnum(
name=self.BACKBONE_OPT,
description=self.tr(
"Pre-selected backbones if you don't know what to pick"
),
defaultValue=0,
options=self.backbone_opt,
paul.tresson_ird.fr
committed
)
)
name=self.BACKBONE_CHOICE,
description=self.tr(
"Enter a architecture name if you want to test another backbone (see huggingface.co/timm/)"
),
defaultValue=None,
paul.tresson_ird.fr
committed
optional=True,
)
)
self.addParameter(
QgsProcessingParameterNumber(
name=self.BATCH_SIZE,
# large images will be sampled into patches in a grid-like fashion
description=self.tr(
"Batch size (take effect if choose to use GPU and CUDA is available)"
),
type=QgsProcessingParameterNumber.Integer,
defaultValue=1,
minValue=1,
)
)
self.addParameter(
QgsProcessingParameterBoolean(
self.QUANT,
self.tr("Quantization of the model to reduce space"),
self.merge_options = ["average", "first", "min", "max", "sum", "count", "last"]
merge_param = QgsProcessingParameterEnum(
name=self.MERGE_METHOD,
description=self.tr("Merge method at the end of inference."),
options=self.merge_options,
defaultValue=0,
)
json_param = QgsProcessingParameterFile(
name=self.JSON_PARAM,
description=self.tr("Pass parameters as json file"),
# extension='pth',
fileFilter="JSON Files (*.json)",
optional=True,
defaultValue=None,
)
crs_param,
res_param,
chkpt_param,
cuda_id_param,
merge_param,
nworkers_param,
pauses_param,
remove_tmp_files,
compress_param,
tmp_files_cleanup_frq,
json_param,
):
param.flags() | QgsProcessingParameterDefinition.FlagAdvanced
)
self.addParameter(param)
@torch.no_grad()
def processAlgorithm(self, parameters, context, feedback):
"""
Here is where the processing itself takes place.
"""
parameters = self.load_parameters_as_json(feedback, parameters)
self.process_options(parameters, context, feedback)
## compute parameters hash to have a unique identifier for the run
## some parameters do not change the encoding part of the algorithm
keys_to_remove = ["MERGE_METHOD", "WORKERS", "PAUSES"]
subdir_hash = compute_md5_hash(parameters, keys_to_remove=keys_to_remove)
output_subdir = os.path.join(self.output_dir, subdir_hash)
output_subdir = Path(output_subdir)
output_subdir.mkdir(parents=True, exist_ok=True)
self.output_subdir = output_subdir
feedback.pushInfo(f"output_subdir: {output_subdir}")
feedback.pushInfo("saving parameters to json file")
save_parameters_to_json(parameters, self.output_subdir)
feedback.pushInfo("logging parameters to csv")
log_parameters_to_csv(parameters, self.output_dir)
RasterDataset.filename_glob = self.rlayer_name
RasterDataset.all_bands = [
self.rlayer.bandName(i_band)
for i_band in range(1, self.rlayer.bandCount() + 1)
]
# currently only support rgb bands
input_bands = [self.rlayer.bandName(i_band) for i_band in self.selected_bands]
if self.crs == self.rlayer.crs():
dataset = RasterDataset(
paths=self.rlayer_dir,
crs=None,
res=self.res,
bands=input_bands,
cache=False,
)
paths=self.rlayer_dir,
crs=self.crs.toWkt(),
res=self.res,
bands=input_bands,
cache=False,
)
extent_bbox = BoundingBox(
minx=self.extent.xMinimum(),
maxx=self.extent.xMaximum(),
miny=self.extent.yMinimum(),
maxy=self.extent.yMaximum(),
mint=dataset.index.bounds[4],
maxt=dataset.index.bounds[5],
)
if feedback.isCanceled():
feedback.pushWarning(self.tr("\n !!!Processing is canceled by user!!! \n"))
paul.tresson_ird.fr
committed
### Custom logging to have more feedback during model loading
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger()
# Attach the QGIS log handler
logger.addHandler(QGISLogHandler(feedback))
# Log a message
logger.info("Starting model loading...")
# Load the model
model = timm.create_model(
self.backbone_name,
pretrained=True,
in_chans=len(input_bands),
paul.tresson_ird.fr
committed
num_classes=0,
paul.tresson_ird.fr
committed
logger.info("Model loaded succesfully !")
logger.handlers.clear()
if feedback.isCanceled():
feedback.pushWarning(self.tr("\n !!!Processing is canceled by user!!! \n"))
data_config = timm.data.resolve_model_data_config(model)
(
_,
h,
w,
) = data_config["input_size"]
if torch.cuda.is_available() and self.use_gpu:
if self.cuda_id + 1 > torch.cuda.device_count():
self.cuda_id = torch.cuda.device_count() - 1
cuda_device = f"cuda:{self.cuda_id}" # noqa: F841
device = f"cuda:{self.cuda_id}"
else:
self.batch_size = 1
feedback.pushInfo(f"Device id: {device}")
try:
feedback.pushInfo(f"before quantization : {get_model_size(model)}")
feedback.pushInfo(f"after quantization : {get_model_size(model)}")
except Exception:
feedback.pushInfo("quantization impossible, using original model.")
T.ConvertImageDtype(
torch.float32
), # change dtype for normalize to be possible
K.Normalize(
self.means, self.sds
), # normalize occurs only on raster, not mask
K.Resize((h, w)), # resize to 224*224 pixels, regardless of sampling size
data_keys=["image"],
)
dataset.transforms = transform
# sampler = GridGeoSampler(
# dataset,
# size=self.size,
# stride=self.stride,
# roi=extent_bbox,
# units=Units.PIXELS
# ) # Units.CRS or Units.PIXELS
sampler = NoBordersGridGeoSampler(
dataset,
size=self.size,
stride=self.stride,
roi=extent_bbox,
units=Units.PIXELS,
) # Units.CRS or Units.PIXELS
if len(sampler) == 0:
self.load_feature = False
feedback.pushWarning(
"\n !!!No available patch sample inside the chosen extent!!! \n"
)
feedback.pushInfo("model to dedvice")
feedback.pushInfo(f"Batch size: {self.batch_size}")
dataset,
batch_size=self.batch_size,
sampler=sampler,
collate_fn=stack_samples,
num_workers=self.nworkers,
)
feedback.pushInfo(f"Patch sample num: {len(sampler)}")
feedback.pushInfo(f"Total batch num: {len(dataloader)}")
feedback.pushInfo(f'\n\n{"-"*16}\nBegining inference \n{"-"*16}\n\n')
last_batch_done = self.get_last_batch_done()
if last_batch_done >= 0:
feedback.pushInfo(
f"\n\n {'-'*8} \n Resuming at batch number {last_batch_done}\n {'-'*8} \n\n"
)
bboxes = [] # keep track of bboxes to have coordinates at the end
elapsed_time_list = []
total = 100 / len(dataloader) if len(dataloader) else 0
## will update if process is canceled by the user
self.all_encoding_done = True
merged_files_counter = 0
for current, sample in enumerate(dataloader):
if current <= last_batch_done:
continue
start_time = time.time()
# Stop the algorithm if cancel button has been clicked
if feedback.isCanceled():
self.load_feature = False
feedback.pushWarning(
self.tr("\n !!!Processing is canceled by user!!! \n")
)
self.all_encoding_done = False
feedback.pushInfo(f'\n{"-"*8}\nBatch no. {current} loaded')
if len(images.shape) > 4:
images = images.squeeze(1)
feedback.pushInfo(f"Batch shape {images.shape}")
features = model.forward_features(images)
features = features[:, 1:, :] # take only patch tokens
n_patches = int(np.sqrt(features.shape[1]))
features = features.view(
features.shape[0], n_patches, n_patches, features.shape[-1]
)
features = features.detach().cpu().numpy()
feedback.pushInfo(f"Features shape {features.shape}")
self.save_features(features, sample["bbox"], current)
feedback.pushInfo("Features saved")
if current <= last_batch_done + 1:
total_space, total_used_space, free_space = check_disk_space(
self.output_subdir
)
used_outputsubdir = get_dir_size(str(self.output_subdir))
to_use = ((len(dataloader) / (current + 1)) - 1) * used_outputsubdir
if to_use >= free_space:
feedback.pushWarning(
self.tr(
f"\n !!! only {free_space} GB disk space remaining, canceling !!! \n"
)
)
if self.pauses != 0:
time.sleep(self.pauses)
end_time = time.time()
# get the execution time of encoder, ms
elapsed_time = end_time - start_time
elapsed_time_list.append(elapsed_time)
time_spent = sum(elapsed_time_list)
time_remain = (time_spent / (current + 1)) * (len(dataloader) - current - 1)
# TODO: show gpu usage info
# if torch.cuda.is_available() and self.use_gpu:
# gpu_mem_used = torch.cuda.max_memory_reserved(self.sam_model.device) / (1024 ** 3)
# # gpu_mem_free = torch.cuda.mem_get_info(self.sam_model.device)[0] / (1024 ** 3)
# gpu_mem_total = torch.cuda.mem_get_info(self.sam_model.device)[1] / (1024 ** 3)
# feedback.pushInfo(
# f'GPU memory usage: {gpu_mem_used:.2f}GB / {gpu_mem_total:.2f}GB')
# feedback.pushInfo(str(torch.cuda.memory_summary(self.sam_model.device)))
feedback.pushInfo(f"Encoder executed with {elapsed_time:.3f}s")
feedback.pushInfo(f"Time spent: {time_spent:.3f}s")
feedback.pushInfo(
f"Estimated time remaining: {time_remain:.3f}s \n {'-'*8}"
)
else:
time_remain_m, time_remain_s = divmod(int(time_remain), 60)
time_remain_h, time_remain_m = divmod(time_remain_m, 60)
feedback.pushInfo(
f"Estimated time remaining: {time_remain_h:d}h:{time_remain_m:02d}m:{time_remain_s:02d}s \n"
)
if ((current + 1) % self.cleanup_frq == 0) and self.remove_tmp_files:
## not the cleanest way to do for now
## but avoids to refactor all
self.all_encoding_done = False
feedback.pushInfo("Cleaning temporary files...")
all_tiles = [
os.path.join(self.output_subdir, f)
for f in os.listdir(self.output_subdir)
if f.endswith("_tmp.tif")
]
all_tiles = [f for f in all_tiles if not f.startswith("merged")]
dst_path = Path(os.path.join(self.output_subdir, f"{merged_files_counter}_merged_tmp.tif"))
merged_files_counter += 1
paul.tresson_ird.fr
committed
try:
merge_tiles(
tiles=all_tiles,
dst_path=dst_path,
method=self.merge_method,
)
self.remove_temp_files()
# overwritting merged_tmp.tif may be impossible in windows (e.g. if an antivirus is analysing the newly created data)
# then, merging and cleaning is impossible
except Exception as e :
feedback.pushWarning(f"Unable to clean temporary files ! Try to delete them latter at {self.output_subdir}")
paul.tresson_ird.fr
committed
self.all_encoding_done = True
feedback.setProgress(int((current + 1) * total))
feedback.pushInfo(f"\n\n{'-'*8}\n Merging tiles \n{'-'*8}\n")
all_tiles = [
os.path.join(self.output_subdir, f)
for f in os.listdir(self.output_subdir)
if f.endswith("_tmp.tif")
]
rlayer_name, ext = os.path.splitext(self.rlayer_name)
if not self.all_encoding_done:
dst_path = Path(os.path.join(self.output_subdir, "merged_tmp.tif"))
layer_name = f"{rlayer_name} features tmp"
# dst_path = Path(os.path.join(self.output_subdir,'merged.tif'))
## update filename if a merged.tif file allready exists
dst_path, layer_name = get_unique_filename(
self.output_subdir, "merged.tif", f"{rlayer_name} features"
)
dst_path = Path(dst_path)
tiles=all_tiles,
dst_path=dst_path,
method=self.merge_method,
)
if self.remove_tmp_files:
self.remove_temp_files()
parameters["OUTPUT_RASTER"] = dst_path
if self.compress:
dst_path = self.tiff_to_jp2(parameters, feedback)
return {
"Output feature path": self.output_subdir,
"Patch samples saved": self.iPatch,
"OUTPUT_RASTER": dst_path,
"OUTPUT_LAYER_NAME": layer_name,
}
def load_parameters_as_json(self, feedback, parameters):
parameters["JSON_PARAM"] = str(parameters["JSON_PARAM"])
json_param = parameters["JSON_PARAM"]
with open(json_param) as json_file:
parameters = json.load(json_file)
feedback.pushInfo(f"Loading previous parameters from {json_param}")
parameters.pop("JSON_PARAM", None)
def remove_temp_files(self):
"""
cleaning up temp tiles
keep last tiles and merged tiles in case of resume
"""
last_batch_done = self.get_last_batch_done()
if not self.all_encoding_done:
tiles_to_remove = [
os.path.join(self.output_subdir, f)
for f in os.listdir(self.output_subdir)
if f.endswith("_tmp.tif") and not f.startswith(str(last_batch_done))
]
f for f in tiles_to_remove if not f.endswith("merged_tmp.tif")
]
## else cleanup all temp files
else:
tiles_to_remove = [
os.path.join(self.output_subdir, f)
for f in os.listdir(self.output_subdir)
if f.endswith("_tmp.tif")
]
remove_files(tiles_to_remove)
return
def get_last_batch_done(self):
## get largest batch_number achieved
## files are saved with the pattern '{batch_number}_{image_id_within_batch}_tmp.tif'
# Regular expression pattern to extract numbers
# pattern = re.compile(r'^(\d+)_\d+\.tif$')
pattern = re.compile(r"^(\d+)_\d+_tmp\.tif$")
# Initialize a set to store unique first numbers
batch_numbers = set()
# Iterate over all files in the directory
for filename in os.listdir(self.output_subdir):
# Match the filename pattern
match = pattern.match(filename)
if match:
# Extract the batch number
batch_number = int(match.group(1))
# Add to the set of batch numbers
batch_numbers.add(batch_number)
# Find the maximum value of the batch numbers
if batch_numbers:
return max(batch_numbers)
else:
return -1
def save_features(
self,
feature: np.ndarray,
bboxes: BoundingBox,
nbatch: int,
dtype: str = "float32",
):
if dtype == "int8":
paul.tresson_ird.fr
committed
feature = (feature * 127).astype(np.int8)
# iterate over batch_size dimension
for idx in range(feature.shape[0]):
_, height, width, channels = feature.shape
bbox = bboxes[idx]
rio_transform = rasterio.transform.from_bounds(
bbox.minx, bbox.miny, bbox.maxx, bbox.maxy, width, height
) # west, south, east, north, width, height
feature_path = os.path.join(self.output_subdir, f"{nbatch}_{idx}_tmp.tif")
feature_path,
mode="w",
driver="GTiff",
height=height,
width=width,
count=channels,
dtype=dtype,
crs=self.crs.toWkt(),
transform=rio_transform,
) as ds:
ds.write(np.transpose(feature[idx, ...], (2, 0, 1)))
tags = {
"model_type": self.backbone_name,
}
ds.update_tags(**tags)
self.iPatch += 1
return
def process_options(self, parameters, context, feedback):
feedback.pushInfo(f"PARAMETERS :\n{parameters}")
feedback.pushInfo(f"CONTEXT :\n{context}")
feedback.pushInfo(f"FEEDBACK :\n{feedback}")
paul.tresson_ird.fr
committed
self.process_geo_parameters(parameters, context, feedback)
ckpt_path = self.parameterAsFile(parameters, self.CKPT, context) # noqa: F841
paul.tresson_ird.fr
committed
## Use the given backbone name is any, use preselected models otherwise.
input_name = self.parameterAsString(parameters, self.BACKBONE_CHOICE, context)
paul.tresson_ird.fr
committed
if input_name:
self.backbone_name = input_name
else:
backbone_idx = self.parameterAsEnum(parameters, self.BACKBONE_OPT, context)
paul.tresson_ird.fr
committed
self.backbone_name = self.timm_backbone_opt[backbone_idx]
feedback.pushInfo(f"self.backbone_name:{self.backbone_name}")
self.compress = self.parameterAsBoolean(parameters, self.COMPRESS, context)
self.stride = self.parameterAsInt(parameters, self.STRIDE, context)
self.size = self.parameterAsInt(parameters, self.SIZE, context)
self.quantization = self.parameterAsBoolean(parameters, self.QUANT, context)
self.use_gpu = self.parameterAsBoolean(parameters, self.CUDA, context)
self.batch_size = self.parameterAsInt(parameters, self.BATCH_SIZE, context)
self.output_dir = self.parameterAsString(parameters, self.OUTPUT, context)
self.cuda_id = self.parameterAsInt(parameters, self.CUDA_ID, context)
self.pauses = self.parameterAsInt(parameters, self.PAUSES, context)
self.cleanup_frq = self.parameterAsInt(
parameters, self.TEMP_FILES_CLEANUP_FREQ, context
)
self.nworkers = self.parameterAsInt(parameters, self.WORKERS, context)
merge_method_idx = self.parameterAsEnum(parameters, self.MERGE_METHOD, context)
self.merge_method = self.merge_options[merge_method_idx]
self.remove_tmp_files = self.parameterAsBoolean(
parameters, self.REMOVE_TEMP_FILES, context
)
# get mean and sd of dataset from raster metadata
feedback.pushInfo("Computing means and sds for normalization")
means, sds = get_mean_sd_by_band(self.rlayer_path)
# subset with selected_bands
feedback.pushInfo(f"Selected bands: {self.selected_bands}")
self.means = [means[i - 1] for i in self.selected_bands]
self.sds = [sds[i - 1] for i in self.selected_bands]
feedback.pushInfo(f"Means for normalization: {self.means}")
feedback.pushInfo(f"Std. dev. for normalization: {self.sds}")
# used to handle any thread-sensitive cleanup which is required by the algorithm.
def postProcessAlgorithm(self, context, feedback) -> Dict[str, Any]:
return {}
def tr(self, string):
"""
Returns a translatable string with the self.tr() function.
"""
return QCoreApplication.translate("Processing", string)
def createInstance(self):
return EncoderAlgorithm()
def name(self):
"""
Returns the algorithm name, used for identifying the algorithm. This
string should be fixed for the algorithm, and must not be localised.
The name should be unique within each provider. Names should contain
lowercase alphanumeric characters only and no spaces or other
formatting characters.
"""
def displayName(self):
"""
Returns the translated algorithm name, which should be used for any
user-visible display of the algorithm name.
"""
def group(self):
"""
Returns the name of the group this algorithm belongs to. This string
should be localised.
"""
def groupId(self):
"""
Returns the unique ID of the group this algorithm belongs to. This
string should be fixed for the algorithm, and must not be localised.
The group id should be unique within each provider. Group id should
contain lowercase alphanumeric characters only and no spaces or other
formatting characters.
"""
def shortHelpString(self):
"""
Returns a localised short helper string for the algorithm. This string
should provide a basic description about what the algorithm does and the
parameters and outputs associated with it..
"""
return self.tr("Generate image features using a deep learning backbone.")
def icon(self):