Newer
Older
import os
import time
import re
import hashlib
import numpy as np
from pathlib import Path
from processing import defaultOutputFolder
import rasterio
from qgis.PyQt.QtCore import QCoreApplication
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
QgsGeometry,
QgsCoordinateTransform,
QgsProcessingException,
QgsProcessingAlgorithm,
QgsProcessingParameterRasterLayer,
QgsProcessingParameterFolderDestination,
QgsProcessingParameterBand,
QgsProcessingParameterNumber,
QgsProcessingParameterBoolean,
QgsProcessingParameterFile,
QgsProcessingParameterString,
QgsProcessingParameterEnum,
QgsProcessingParameterExtent,
QgsProcessingParameterCrs,
QgsProcessingParameterDefinition,
)
import torch
import torch.nn as nn
from torch import Tensor
import torch.quantization
from torch.utils.data import DataLoader
import torchvision.transforms as T
import kornia.augmentation as K
import timm
from torchgeo.datasets import RasterDataset, BoundingBox,stack_samples
from torchgeo.samplers import GridGeoSampler, Units
from torchgeo.transforms import AugmentationSequential
from .utils.geo import get_mean_sd_by_band
from .utils.geo import merge_tiles
from .utils.torchgeo import NoBordersGridGeoSampler
def get_model_size(model):
torch.save(model.state_dict(), "temp.p")
size = os.path.getsize("temp.p")/1e6
os.remove('temp.p')
return size
class EncoderAlgorithm(QgsProcessingAlgorithm):
"""
"""
FEAT_OPTION= 'FEAT_OPTION'
INPUT = 'INPUT'
CKPT = 'CKPT'
BANDS = 'BANDS'
STRIDE = 'STRIDE'
SIZE = 'SIZE'
EXTENT = 'EXTENT'
QUANT = 'QUANT'
OUTPUT = 'OUTPUT'
RESOLUTION = 'RESOLUTION'
CRS = 'CRS'
CUDA = 'CUDA'
BATCH_SIZE = 'BATCH_SIZE'
CUDA_ID = 'CUDA_ID'
BACKBONE_CHOICE = 'BACKBONE_CHOICE'
paul.tresson_ird.fr
committed
BACKBONE_OPT = 'BACKBONE_OPT'
MERGE_METHOD = 'MERGE_METHOD'
WORKERS = 'WORKERS'
PAUSES = 'PAUSES'
def initAlgorithm(self, config=None):
"""
Here we define the inputs and output of the algorithm, along
with some other properties.
"""
cwd = Path(__file__).parent.absolute()
self.addParameter(
QgsProcessingParameterRasterLayer(
name=self.INPUT,
description=self.tr(
'Input raster layer or image file path'),
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
),
)
self.addParameter(
QgsProcessingParameterBand(
name=self.BANDS,
description=self.tr('Selected Bands (defaults to all bands selected)'),
defaultValue = None,
parentLayerParameterName=self.INPUT,
optional=True,
allowMultiple=True,
)
)
crs_param = QgsProcessingParameterCrs(
name=self.CRS,
description=self.tr('Target CRS (default to original CRS)'),
optional=True,
)
res_param = QgsProcessingParameterNumber(
name=self.RESOLUTION,
description=self.tr(
'Target resolution in meters (default to native resolution)'),
type=QgsProcessingParameterNumber.Double,
optional=True,
minValue=0,
maxValue=100000
)
cuda_id_param = QgsProcessingParameterNumber(
name=self.CUDA_ID,
description=self.tr(
'CUDA Device ID (choose which GPU to use, default to device 0)'),
type=QgsProcessingParameterNumber.Integer,
defaultValue=0,
minValue=0,
maxValue=9
)
nworkers_param = QgsProcessingParameterNumber(
name=self.WORKERS,
description=self.tr(
'Number of CPU workers for dataloader (0 selects all)'),
type=QgsProcessingParameterNumber.Integer,
defaultValue=0,
minValue=0,
maxValue=10
)
pauses_param = QgsProcessingParameterNumber(
name=self.PAUSES,
description=self.tr(
'Schedule pauses between batches to ease CPU usage (in seconds).'),
type=QgsProcessingParameterNumber.Integer,
defaultValue=0,
minValue=0,
maxValue=10000
)
self.addParameter(
QgsProcessingParameterExtent(
name=self.EXTENT,
description=self.tr(
'Processing extent (default to the entire image)'),
optional=True
)
)
self.addParameter(
QgsProcessingParameterNumber(
name=self.SIZE,
description=self.tr(
'Sampling size (the raster will be sampled in a square with a side of that many pixel)'),
type=QgsProcessingParameterNumber.Integer,
defaultValue = 224,
minValue=1,
maxValue=1024
)
)
self.addParameter(
QgsProcessingParameterNumber(
name=self.STRIDE,
description=self.tr(
'Stride (If smaller than the sampling size, tiles will overlap. If larger, it may cause errors.)'),
type=QgsProcessingParameterNumber.Integer,
defaultValue = 224,
minValue=1,
maxValue=1024
)
)
chkpt_param = QgsProcessingParameterFile(
name=self.CKPT,
description=self.tr(
'Pretrained checkpoint'),
# extension='pth',
fileFilter='Checkpoint Files (*.pth *.pkl);; All Files (*.*)',
optional=True,
defaultValue=None
)
self.addParameter(
QgsProcessingParameterFolderDestination(
self.OUTPUT,
self.tr(
"Output directory (choose the location that the image features will be saved)"),
defaultValue=os.path.join(cwd,'features'),
)
)
self.addParameter(
QgsProcessingParameterBoolean(
self.CUDA,
self.tr("Use GPU if CUDA is available."),
defaultValue=True
)
)
paul.tresson_ird.fr
committed
self.backbone_opt = [
'ViT base DINO',
'ViT tiny Imagenet (smallest)',
'ViT base MAE',
'SAM',
'--Empty--'
]
self.timm_backbone_opt = [
'vit_base_patch16_224.dino',
'vit_tiny_patch16_224.augreg_in21k',
'vit_base_patch16_224.mae',
'samvit_base_patch16.sa1b',
]
self.addParameter (
QgsProcessingParameterEnum(
name = self.BACKBONE_OPT,
description = self.tr(
"Pre-selected backbones if you don't know what to pick"),
defaultValue = 0,
options = self.backbone_opt,
)
)
self.addParameter (
QgsProcessingParameterString(
name = self.BACKBONE_CHOICE,
description = self.tr(
paul.tresson_ird.fr
committed
'Enter a architecture name if you want to test another backbone (see huggingface.co/timm/)'),
defaultValue = None,
optional=True,
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
)
)
self.addParameter(
QgsProcessingParameterBoolean(
self.FEAT_OPTION,
self.tr("Display features map"),
defaultValue=True
)
)
self.addParameter(
QgsProcessingParameterNumber(
name=self.BATCH_SIZE,
# large images will be sampled into patches in a grid-like fashion
description=self.tr(
'Batch size (take effect if choose to use GPU and CUDA is available)'),
type=QgsProcessingParameterNumber.Integer,
defaultValue=1,
minValue=1,
maxValue=1024
)
)
self.addParameter(
QgsProcessingParameterBoolean(
self.QUANT,
self.tr("Quantization of the model to reduce space"),
defaultValue=True
)
)
self.merge_options = ['first', 'min', 'max','average','sum', 'count', 'last']
merge_param = QgsProcessingParameterEnum(
name=self.MERGE_METHOD,
description=self.tr(
'Merge method at the end of inference.'),
options=self.merge_options,
defaultValue=0,
)
for param in (
crs_param,
res_param,
chkpt_param,
cuda_id_param,
merge_param,
nworkers_param,
pauses_param
):
param.setFlags(
param.flags() | QgsProcessingParameterDefinition.FlagAdvanced)
self.addParameter(param)
@torch.no_grad()
def processAlgorithm(self, parameters, context, feedback):
"""
Here is where the processing itself takes place.
"""
self.process_options(parameters, context, feedback)
RasterDataset.filename_glob = self.rlayer_name
RasterDataset.all_bands = [
self.rlayer.bandName(i_band) for i_band in range(1, self.rlayer.bandCount()+1)
]
# currently only support rgb bands
input_bands = [self.rlayer.bandName(i_band)
for i_band in self.selected_bands]
feedback.pushInfo(f'create dataset')
if self.crs == self.rlayer.crs():
dataset = RasterDataset(
paths=self.rlayer_dir, crs=None, res=self.res, bands=input_bands, cache=False)
else:
dataset = RasterDataset(
paths=self.rlayer_dir, crs=self.crs.toWkt(), res=self.res, bands=input_bands, cache=False)
extent_bbox = BoundingBox(minx=self.extent.xMinimum(), maxx=self.extent.xMaximum(), miny=self.extent.yMinimum(), maxy=self.extent.yMaximum(),
mint=dataset.index.bounds[4], maxt=dataset.index.bounds[5])
feedback.pushInfo(f'create model')
model = timm.create_model(
self.backbone_name,
pretrained=True,
in_chans=len(input_bands),
num_classes=0
)
feedback.pushInfo(f'model done')
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
data_config = timm.data.resolve_model_data_config(model)
_, h, w, = data_config['input_size']
if self.quantization:
feedback.pushInfo(f'before quantization : {get_model_size(model)}')
model = torch.quantization.quantize_dynamic(
model, {nn.Linear}, dtype=torch.qint8
)
feedback.pushInfo(f'after quantization : {get_model_size(model)}')
transform = AugmentationSequential(
T.ConvertImageDtype(torch.float32), # change dtype for normalize to be possible
K.Normalize(self.means,self.sds), # normalize occurs only on raster, not mask
K.Resize((h, w)), # resize to 224*224 pixels, regardless of sampling size
data_keys=["image"],
)
dataset.transforms = transform
# sampler = GridGeoSampler(
# dataset,
# size=self.size,
# stride=self.stride,
# roi=extent_bbox,
# units=Units.PIXELS
# ) # Units.CRS or Units.PIXELS
sampler = NoBordersGridGeoSampler(
dataset,
size=self.size,
stride=self.stride,
roi=extent_bbox,
units=Units.PIXELS
) # Units.CRS or Units.PIXELS
if len(sampler) == 0:
self.load_feature = False
feedback.pushWarning(f'\n !!!No available patch sample inside the chosen extent!!! \n')
if torch.cuda.is_available() and self.use_gpu:
if self.cuda_id + 1 > torch.cuda.device_count():
self.cuda_id = torch.cuda.device_count() - 1
cuda_device = f'cuda:{self.cuda_id}'
device = f'cuda:{self.cuda_id}'
else:
self.batch_size = 1
device = 'cpu'
feedback.pushInfo(f'Device id: {device}')
feedback.pushInfo(f'model to dedvice')
model.to(device=device)
feedback.pushInfo(f'Batch size: {self.batch_size}')
dataloader = DataLoader(
dataset,
batch_size=self.batch_size,
sampler=sampler,
collate_fn=stack_samples,
num_workers=self.nworkers,
)
feedback.pushInfo(f'Patch sample num: {len(sampler)}')
feedback.pushInfo(f'Total batch num: {len(dataloader)}')
feedback.pushInfo(f'\n\n{"-"*16}\nBegining inference \n{"-"*16}\n\n')
## compute parameters hash to have a unique identifier for the run
## some parameters do not change the encoding part of the algorithm
keys_to_remove = ['MERGE_METHOD', 'WORKERS', 'PAUSES']
param_encoder = {key: parameters[key] for key in parameters if key not in keys_to_remove}
param_hash = hashlib.md5(str(param_encoder).encode("utf-8")).hexdigest()
output_subdir = os.path.join(self.output_dir,param_hash)
output_subdir = Path(output_subdir)
output_subdir.mkdir(parents=True, exist_ok=True)
self.output_subdir = output_subdir
feedback.pushInfo(f'output_subdir: {output_subdir}')
last_batch_done = self.get_last_batch_done()
if last_batch_done >= 0:
feedback.pushInfo(f"\n\n {'-'*8} \n Resuming at batch number {last_batch_done}\n {'-'*8} \n\n")
bboxes = [] # keep track of bboxes to have coordinates at the end
elapsed_time_list = []
total = 100 / len(dataloader) if len(dataloader) else 0
for current, sample in enumerate(dataloader):
if current <= last_batch_done:
continue
start_time = time.time()
# Stop the algorithm if cancel button has been clicked
if feedback.isCanceled():
self.load_feature = False
feedback.pushWarning(
self.tr("\n !!!Processing is canceled by user!!! \n"))
break
feedback.pushInfo(f'\n{"-"*8}\nBatch no. {current} loaded')
images = sample['image'].to(device)
if len(images.shape) > 4:
images = images.squeeze(1)
feedback.pushInfo(f'Batch shape {images.shape}')
features = model.forward_features(images)
features = features[:,1:,:] # take only patch tokens
if current <= last_batch_done + 1:
n_patches = int(np.sqrt(features.shape[1]))
features = features.view(features.shape[0],n_patches,n_patches,features.shape[-1])
features = features.detach().cpu().numpy()
feedback.pushInfo(f'Features shape {features.shape}')
self.save_features(features,sample['bbox'], current)
feedback.pushInfo(f'Features saved')
bboxes.extend(sample['bbox'])
if self.pauses != 0:
time.sleep(self.pauses)
end_time = time.time()
# get the execution time of encoder, ms
elapsed_time = (end_time - start_time)
elapsed_time_list.append(elapsed_time)
time_spent = sum(elapsed_time_list)
time_remain = (time_spent / (current + 1)) * \
(len(dataloader) - current - 1)
# TODO: show gpu usage info
# if torch.cuda.is_available() and self.use_gpu:
# gpu_mem_used = torch.cuda.max_memory_reserved(self.sam_model.device) / (1024 ** 3)
# # gpu_mem_free = torch.cuda.mem_get_info(self.sam_model.device)[0] / (1024 ** 3)
# gpu_mem_total = torch.cuda.mem_get_info(self.sam_model.device)[1] / (1024 ** 3)
# feedback.pushInfo(
# f'GPU memory usage: {gpu_mem_used:.2f}GB / {gpu_mem_total:.2f}GB')
# feedback.pushInfo(str(torch.cuda.memory_summary(self.sam_model.device)))
feedback.pushInfo(f"Encoder executed with {elapsed_time:.3f}s")
feedback.pushInfo(f"Time spent: {time_spent:.3f}s")
if time_remain <= 60:
feedback.pushInfo(f"Estimated time remaining: {time_remain:.3f}s \n {'-'*8}")
else:
time_remain_m, time_remain_s = divmod(int(time_remain), 60)
time_remain_h, time_remain_m = divmod(time_remain_m, 60)
feedback.pushInfo(f"Estimated time remaining: {time_remain_h:d}h:{time_remain_m:02d}m:{time_remain_s:02d}s \n" )
# Update the progress bar
feedback.setProgress(int((current+1) * total))
all_tiles = [os.path.join(self.output_subdir,f) for f in os.listdir(self.output_subdir) if f.endswith('.tif')]
dst_path = Path(os.path.join(self.output_subdir,'merged.tiff'))
feedback.pushInfo(f"\n\n{'-'*8}\n Merging tiles \n{'-'*8}\n" )
merge_tiles(
tiles = all_tiles,
dst_path = dst_path,
method = self.merge_method,
)
parameters['OUTPUT_RASTER']=dst_path
return {"Output feature path": self.output_subdir, 'Patch samples saved': self.iPatch, 'OUTPUT_RASTER':dst_path}
def get_last_batch_done(self):
## get largest batch_number achieved
## files are saved with the pattern '{batch_number}_{image_id_within_batch}.tif'
# Regular expression pattern to extract numbers
pattern = re.compile(r'^(\d+)_\d+\.tif$')
# Initialize a set to store unique first numbers
batch_numbers = set()
# Iterate over all files in the directory
for filename in os.listdir(self.output_subdir):
# Match the filename pattern
match = pattern.match(filename)
if match:
# Extract the batch number
batch_number = int(match.group(1))
# Add to the set of batch numbers
batch_numbers.add(batch_number)
# Find the maximum value of the batch numbers
if batch_numbers:
return max(batch_numbers)
else:
return -1
def save_features(
self,
feature: np.ndarray,
bboxes: BoundingBox,
nbatch: int,
):
# iterate over batch_size dimension
for idx in range(feature.shape[0]):
_, height, width, channels = feature.shape
bbox = bboxes[idx]
rio_transform = rasterio.transform.from_bounds(bbox.minx, bbox.miny, bbox.maxx, bbox.maxy, width, height) # west, south, east, north, width, height
feature_path = os.path.join(self.output_subdir, f"{nbatch}_{idx}.tif")
with rasterio.open(
feature_path,
mode="w",
driver="GTiff",
height=height,
width=width,
count=channels,
dtype='float32',
crs=self.crs.toWkt(),
transform=rio_transform
) as ds:
ds.write(np.transpose(feature[idx, ...], (2, 0, 1)))
tags = {
"model_type": self.backbone_name,
}
ds.update_tags(**tags)
self.iPatch += 1
return
def process_options(self,parameters, context, feedback):
self.iPatch = 0
self.feature_dir = ""
self.FEAT_OPTION = self.parameterAsBoolean(
parameters, self.FEAT_OPTION, context)
feedback.pushInfo(
f'PARAMETERS :\n{parameters}')
feedback.pushInfo(
f'CONTEXT :\n{context}')
feedback.pushInfo(
f'FEEDBACK :\n{feedback}')
rlayer = self.parameterAsRasterLayer(
parameters, self.INPUT, context)
if rlayer is None:
raise QgsProcessingException(
self.invalidRasterError(parameters, self.INPUT))
self.selected_bands = self.parameterAsInts(
parameters, self.BANDS, context)
if len(self.selected_bands) == 0:
self.selected_bands = list(range(1, rlayer.bandCount()+1))
if max(self.selected_bands) > rlayer.bandCount():
raise QgsProcessingException(
self.tr("The chosen bands exceed the largest band number!")
)
ckpt_path = self.parameterAsFile(
parameters, self.CKPT, context)
paul.tresson_ird.fr
committed
## Use the given backbone name is any, use preselected models otherwise.
input_name = self.parameterAsString(
parameters, self.BACKBONE_CHOICE, context)
paul.tresson_ird.fr
committed
if input_name:
self.backbone_name = input_name
else:
backbone_idx = self.parameterAsEnum(
parameters, self.BACKBONE_OPT, context)
self.backbone_name = self.timm_backbone_opt[backbone_idx]
feedback.pushInfo(f'self.backbone_name:{self.backbone_name}')
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
self.stride = self.parameterAsInt(
parameters, self.STRIDE, context)
self.size = self.parameterAsInt(
parameters, self.SIZE, context)
res = self.parameterAsDouble(
parameters, self.RESOLUTION, context)
crs = self.parameterAsCrs(
parameters, self.CRS, context)
extent = self.parameterAsExtent(
parameters, self.EXTENT, context)
self.quantization = self.parameterAsBoolean(
parameters, self.QUANT, context)
self.use_gpu = self.parameterAsBoolean(
parameters, self.CUDA, context)
self.batch_size = self.parameterAsInt(
parameters, self.BATCH_SIZE, context)
self.output_dir = self.parameterAsString(
parameters, self.OUTPUT, context)
self.cuda_id = self.parameterAsInt(
parameters, self.CUDA_ID, context)
self.pauses = self.parameterAsInt(
parameters, self.PAUSES, context)
self.nworkers = self.parameterAsInt(
parameters, self.WORKERS, context)
merge_method_idx = self.parameterAsEnum(
parameters, self.MERGE_METHOD, context)
self.merge_method = self.merge_options[merge_method_idx]
rlayer_data_provider = rlayer.dataProvider()
# handle crs
if crs is None or not crs.isValid():
crs = rlayer.crs()
feedback.pushInfo(
f'Layer CRS unit is {crs.mapUnits()}') # 0 for meters, 6 for degrees, 9 for unknown
feedback.pushInfo(
f'whether the CRS is a geographic CRS (using lat/lon coordinates) {crs.isGeographic()}')
if crs.mapUnits() == Qgis.DistanceUnit.Degrees:
crs = self.estimate_utm_crs(rlayer.extent())
# target crs should use meters as units
if crs.mapUnits() != Qgis.DistanceUnit.Meters:
feedback.pushInfo(
f'Layer CRS unit is {crs.mapUnits()}')
feedback.pushInfo(
f'whether the CRS is a geographic CRS (using lat/lon coordinates) {crs.isGeographic()}')
raise QgsProcessingException(
self.tr("Only support CRS with the units as meters")
)
# 0 for meters, 6 for degrees, 9 for unknown
UNIT_METERS = 0
UNIT_DEGREES = 6
if rlayer.crs().mapUnits() == UNIT_DEGREES: # Qgis.DistanceUnit.Degrees:
layer_units = 'degrees'
else:
layer_units = 'meters'
# if res is not provided, get res info from rlayer
if np.isnan(res) or res == 0:
res = rlayer.rasterUnitsPerPixelX() # rasterUnitsPerPixelY() is negative
target_units = layer_units
else:
# when given res in meters by users, convert crs to utm if the original crs unit is degree
if crs.mapUnits() != UNIT_METERS: # Qgis.DistanceUnit.Meters:
if rlayer.crs().mapUnits() == UNIT_DEGREES: # Qgis.DistanceUnit.Degrees:
# estimate utm crs based on layer extent
crs = self.estimate_utm_crs(rlayer.extent())
else:
raise QgsProcessingException(
f"Resampling of image with the CRS of {crs.authid()} in meters is not supported.")
target_units = 'meters'
# else:
# res = (rlayer_extent.xMaximum() -
# rlayer_extent.xMinimum()) / rlayer.width()
self.res = res
# handle extent
if extent.isNull():
extent = rlayer.extent() # QgsProcessingUtils.combineLayerExtents(layers, crs, context)
extent_crs = rlayer.crs()
else:
if extent.isEmpty():
raise QgsProcessingException(
self.tr("The extent for processing can not be empty!"))
extent_crs = self.parameterAsExtentCrs(
parameters, self.EXTENT, context)
# if extent crs != target crs, convert it to target crs
if extent_crs != crs:
transform = QgsCoordinateTransform(
extent_crs, crs, context.transformContext())
# extent = transform.transformBoundingBox(extent)
# to ensure coverage of the transformed extent
# convert extent to polygon, transform polygon, then get boundingBox of the new polygon
extent_polygon = QgsGeometry.fromRect(extent)
extent_polygon.transform(transform)
extent = extent_polygon.boundingBox()
extent_crs = crs
# check intersects between extent and rlayer_extent
if rlayer.crs() != crs:
transform = QgsCoordinateTransform(
rlayer.crs(), crs, context.transformContext())
rlayer_extent = transform.transformBoundingBox(
rlayer.extent())
else:
rlayer_extent = rlayer.extent()
if not rlayer_extent.intersects(extent):
raise QgsProcessingException(
self.tr("The extent for processing is not intersected with the input image!"))
feedback.pushInfo(f'backbne type : {self.backbone_name}')
img_width_in_extent = round(
(extent.xMaximum() - extent.xMinimum())/self.res)
img_height_in_extent = round(
(extent.yMaximum() - extent.yMinimum())/self.res)
# Send some information to the user
feedback.pushInfo(
f'Layer path: {rlayer_data_provider.dataSourceUri()}')
# feedback.pushInfo(
# f'Layer band scale: {rlayer_data_provider.bandScale(self.selected_bands[0])}')
feedback.pushInfo(f'Layer name: {rlayer.name()}')
if rlayer.crs().authid():
feedback.pushInfo(f'Layer CRS: {rlayer.crs().authid()}')
else:
feedback.pushInfo(
f'Layer CRS in WKT format: {rlayer.crs().toWkt()}')
feedback.pushInfo(
f'Layer pixel size: {rlayer.rasterUnitsPerPixelX()}, {rlayer.rasterUnitsPerPixelY()} {layer_units}')
feedback.pushInfo(f'Bands selected: {self.selected_bands}')
if crs.authid():
feedback.pushInfo(f'Target CRS: {crs.authid()}')
else:
feedback.pushInfo(f'Target CRS in WKT format: {crs.toWkt()}')
# feedback.pushInfo('Band number is {}'.format(rlayer.bandCount()))
# feedback.pushInfo('Band name is {}'.format(rlayer.bandName(1)))
feedback.pushInfo(f'Target resolution: {self.res} {target_units}')
# feedback.pushInfo('Layer display band name is {}'.format(
# rlayer.dataProvider().displayBandName(1)))
feedback.pushInfo(
(f'Processing extent: minx:{extent.xMinimum():.6f}, maxx:{extent.xMaximum():.6f},'
f'miny:{extent.yMinimum():.6f}, maxy:{extent.yMaximum():.6f}'))
feedback.pushInfo(
(f'Processing image size: (width {img_width_in_extent}, '
f'height {img_height_in_extent})'))
# feedback.pushInfo(
# f'SAM Image Size: {self.sam_model.image_encoder.img_size}')
self.rlayer_path = rlayer.dataProvider().dataSourceUri()
self.rlayer_dir = os.path.dirname(self.rlayer_path)
self.rlayer_name = os.path.basename(self.rlayer_path)
# get mean and sd of dataset from raster metadata
means, sds = get_mean_sd_by_band(self.rlayer_path)
# subset with selected_bands
feedback.pushInfo(f'Selected bands: {self.selected_bands}')
self.means = [means[i-1] for i in self.selected_bands]
self.sds = [sds[i-1] for i in self.selected_bands]
feedback.pushInfo(f'Means for normalization: {self.means}')
feedback.pushInfo(f'Std. dev. for normalization: {self.sds}')
## passing parameters to self once everything has been processed
self.extent = extent
self.rlayer = rlayer
self.crs = crs
# used to handle any thread-sensitive cleanup which is required by the algorithm.
def postProcessAlgorithm(self, context, feedback) -> Dict[str, Any]:
return {}
def tr(self, string):
"""
Returns a translatable string with the self.tr() function.
"""
return QCoreApplication.translate('Processing', string)
def createInstance(self):
return EncoderAlgorithm()
def name(self):
"""
Returns the algorithm name, used for identifying the algorithm. This
string should be fixed for the algorithm, and must not be localised.
The name should be unique within each provider. Names should contain
lowercase alphanumeric characters only and no spaces or other
formatting characters.
"""
return 'encoder'
def displayName(self):
"""
Returns the translated algorithm name, which should be used for any
user-visible display of the algorithm name.
"""
return self.tr('Image Encoder')
def group(self):
"""
Returns the name of the group this algorithm belongs to. This string
should be localised.
"""
return self.tr('')
def groupId(self):
"""
Returns the unique ID of the group this algorithm belongs to. This
string should be fixed for the algorithm, and must not be localised.
The group id should be unique within each provider. Group id should
contain lowercase alphanumeric characters only and no spaces or other
formatting characters.
"""
return ''
def shortHelpString(self):
"""
Returns a localised short helper string for the algorithm. This string
should provide a basic description about what the algorithm does and the
parameters and outputs associated with it..
"""
return self.tr("Generate image features using a deep learning backbone.")
def icon(self):
return 'E'