Newer
Older
paul.tresson_ird.fr
committed
import logging
import sys
import numpy as np
from pathlib import Path
import rasterio
from qgis.PyQt.QtCore import QCoreApplication
QgsGeometry,
QgsCoordinateTransform,
QgsProcessingException,
QgsProcessingAlgorithm,
QgsProcessingParameterRasterLayer,
QgsProcessingParameterFolderDestination,
QgsProcessingParameterBand,
QgsProcessingParameterNumber,
QgsProcessingParameterBoolean,
QgsProcessingParameterFile,
QgsProcessingParameterString,
QgsProcessingParameterEnum,
QgsProcessingParameterExtent,
QgsProcessingParameterCrs,
QgsProcessingParameterDefinition,
)
import torch
import torch.nn as nn
from torch import Tensor
import torch.quantization
from torch.utils.data import DataLoader
import torchvision.transforms as T
import kornia.augmentation as K
import timm
from torchgeo.datasets import RasterDataset, BoundingBox,stack_samples
from torchgeo.samplers import GridGeoSampler, Units
from torchgeo.transforms import AugmentationSequential
from .utils.geo import get_mean_sd_by_band
from .utils.geo import merge_tiles
from .utils.torchgeo import NoBordersGridGeoSampler
from .utils.misc import (QGISLogHandler,
get_dir_size,
get_model_size,
remove_files,
check_disk_space,
get_unique_filename,
)
paul.tresson_ird.fr
committed
class EncoderAlgorithm(QgsProcessingAlgorithm):
"""
"""
FEAT_OPTION= 'FEAT_OPTION'
INPUT = 'INPUT'
CKPT = 'CKPT'
BANDS = 'BANDS'
STRIDE = 'STRIDE'
SIZE = 'SIZE'
EXTENT = 'EXTENT'
QUANT = 'QUANT'
OUTPUT = 'OUTPUT'
RESOLUTION = 'RESOLUTION'
CRS = 'CRS'
CUDA = 'CUDA'
BATCH_SIZE = 'BATCH_SIZE'
CUDA_ID = 'CUDA_ID'
BACKBONE_CHOICE = 'BACKBONE_CHOICE'
paul.tresson_ird.fr
committed
BACKBONE_OPT = 'BACKBONE_OPT'
MERGE_METHOD = 'MERGE_METHOD'
WORKERS = 'WORKERS'
PAUSES = 'PAUSES'
REMOVE_TEMP_FILES = 'REMOVE_TEMP_FILES'
TEMP_FILES_CLEANUP_FREQ = 'TEMP_FILES_CLEANUP_FREQ'
def initAlgorithm(self, config=None):
"""
Here we define the inputs and output of the algorithm, along
with some other properties.
"""
cwd = Path(__file__).parent.absolute()
tmp_wd = os.path.join(tempfile.gettempdir(), "iamap_features")
self.addParameter(
QgsProcessingParameterRasterLayer(
name=self.INPUT,
description=self.tr(
'Input raster layer or image file path'),
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
),
)
self.addParameter(
QgsProcessingParameterBand(
name=self.BANDS,
description=self.tr('Selected Bands (defaults to all bands selected)'),
defaultValue = None,
parentLayerParameterName=self.INPUT,
optional=True,
allowMultiple=True,
)
)
crs_param = QgsProcessingParameterCrs(
name=self.CRS,
description=self.tr('Target CRS (default to original CRS)'),
optional=True,
)
res_param = QgsProcessingParameterNumber(
name=self.RESOLUTION,
description=self.tr(
'Target resolution in meters (default to native resolution)'),
type=QgsProcessingParameterNumber.Double,
optional=True,
minValue=0,
maxValue=100000
)
cuda_id_param = QgsProcessingParameterNumber(
name=self.CUDA_ID,
description=self.tr(
'CUDA Device ID (choose which GPU to use, default to device 0)'),
type=QgsProcessingParameterNumber.Integer,
defaultValue=0,
minValue=0,
maxValue=9
)
nworkers_param = QgsProcessingParameterNumber(
name=self.WORKERS,
description=self.tr(
'Number of CPU workers for dataloader (0 selects all)'),
type=QgsProcessingParameterNumber.Integer,
defaultValue=0,
minValue=0,
maxValue=10
)
pauses_param = QgsProcessingParameterNumber(
name=self.PAUSES,
description=self.tr(
'Schedule pauses between batches to ease CPU usage (in seconds).'),
type=QgsProcessingParameterNumber.Integer,
defaultValue=0,
minValue=0,
maxValue=10000
)
tmp_files_cleanup_frq = QgsProcessingParameterNumber(
name=self.TEMP_FILES_CLEANUP_FREQ,
description=self.tr(
'Frequencie at which temporary files should be cleaned up (zero means no cleanup).'),
type=QgsProcessingParameterNumber.Integer,
defaultValue=1000,
minValue=1,
maxValue=10000
)
remove_tmp_files = QgsProcessingParameterBoolean(
name=self.REMOVE_TEMP_FILES,
description=self.tr(
'Remove temporary files after encoding. If you want to test different merging options, it may be better to keep the tiles.'),
defaultValue=True,
)
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
self.addParameter(
QgsProcessingParameterExtent(
name=self.EXTENT,
description=self.tr(
'Processing extent (default to the entire image)'),
optional=True
)
)
self.addParameter(
QgsProcessingParameterNumber(
name=self.SIZE,
description=self.tr(
'Sampling size (the raster will be sampled in a square with a side of that many pixel)'),
type=QgsProcessingParameterNumber.Integer,
defaultValue = 224,
minValue=1,
maxValue=1024
)
)
self.addParameter(
QgsProcessingParameterNumber(
name=self.STRIDE,
description=self.tr(
'Stride (If smaller than the sampling size, tiles will overlap. If larger, it may cause errors.)'),
type=QgsProcessingParameterNumber.Integer,
defaultValue = 224,
minValue=1,
maxValue=1024
)
)
chkpt_param = QgsProcessingParameterFile(
name=self.CKPT,
description=self.tr(
'Pretrained checkpoint'),
# extension='pth',
fileFilter='Checkpoint Files (*.pth *.pkl);; All Files (*.*)',
optional=True,
defaultValue=None
)
self.addParameter(
QgsProcessingParameterFolderDestination(
self.OUTPUT,
self.tr(
"Output directory (choose the location that the image features will be saved)"),
)
)
self.addParameter(
QgsProcessingParameterBoolean(
self.CUDA,
self.tr("Use GPU if CUDA is available."),
defaultValue=True
)
)
paul.tresson_ird.fr
committed
self.backbone_opt = [
'ViT base DINO',
'ViT tiny Imagenet (smallest)',
'ViT base MAE',
# 'SAM',
paul.tresson_ird.fr
committed
'--Empty--'
]
self.timm_backbone_opt = [
'vit_base_patch16_224.dino',
'vit_tiny_patch16_224.augreg_in21k',
'vit_base_patch16_224.mae',
# 'samvit_base_patch16.sa1b',
paul.tresson_ird.fr
committed
]
self.addParameter (
QgsProcessingParameterEnum(
name = self.BACKBONE_OPT,
description = self.tr(
"Pre-selected backbones if you don't know what to pick"),
defaultValue = 0,
options = self.backbone_opt,
)
)
self.addParameter (
QgsProcessingParameterString(
name = self.BACKBONE_CHOICE,
description = self.tr(
paul.tresson_ird.fr
committed
'Enter a architecture name if you want to test another backbone (see huggingface.co/timm/)'),
defaultValue = None,
optional=True,
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
)
)
self.addParameter(
QgsProcessingParameterBoolean(
self.FEAT_OPTION,
self.tr("Display features map"),
defaultValue=True
)
)
self.addParameter(
QgsProcessingParameterNumber(
name=self.BATCH_SIZE,
# large images will be sampled into patches in a grid-like fashion
description=self.tr(
'Batch size (take effect if choose to use GPU and CUDA is available)'),
type=QgsProcessingParameterNumber.Integer,
defaultValue=1,
minValue=1,
maxValue=1024
)
)
self.addParameter(
QgsProcessingParameterBoolean(
self.QUANT,
self.tr("Quantization of the model to reduce space"),
defaultValue=True
)
)
self.merge_options = ['first', 'min', 'max','average','sum', 'count', 'last']
merge_param = QgsProcessingParameterEnum(
name=self.MERGE_METHOD,
description=self.tr(
'Merge method at the end of inference.'),
options=self.merge_options,
defaultValue=0,
)
for param in (
crs_param,
res_param,
chkpt_param,
cuda_id_param,
merge_param,
nworkers_param,
remove_tmp_files,
tmp_files_cleanup_frq,
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
):
param.setFlags(
param.flags() | QgsProcessingParameterDefinition.FlagAdvanced)
self.addParameter(param)
@torch.no_grad()
def processAlgorithm(self, parameters, context, feedback):
"""
Here is where the processing itself takes place.
"""
self.process_options(parameters, context, feedback)
RasterDataset.filename_glob = self.rlayer_name
RasterDataset.all_bands = [
self.rlayer.bandName(i_band) for i_band in range(1, self.rlayer.bandCount()+1)
]
# currently only support rgb bands
input_bands = [self.rlayer.bandName(i_band)
for i_band in self.selected_bands]
feedback.pushInfo(f'create dataset')
if self.crs == self.rlayer.crs():
dataset = RasterDataset(
paths=self.rlayer_dir, crs=None, res=self.res, bands=input_bands, cache=False)
else:
dataset = RasterDataset(
paths=self.rlayer_dir, crs=self.crs.toWkt(), res=self.res, bands=input_bands, cache=False)
extent_bbox = BoundingBox(minx=self.extent.xMinimum(), maxx=self.extent.xMaximum(), miny=self.extent.yMinimum(), maxy=self.extent.yMaximum(),
mint=dataset.index.bounds[4], maxt=dataset.index.bounds[5])
if feedback.isCanceled():
feedback.pushWarning(
self.tr("\n !!!Processing is canceled by user!!! \n"))
return
paul.tresson_ird.fr
committed
### Custom logging to have more feedback during model loading
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger()
# Attach the QGIS log handler
logger.addHandler(QGISLogHandler(feedback))
# Log a message
logger.info("Starting model loading...")
# Load the model
feedback.pushInfo(f'creating model')
model = timm.create_model(
self.backbone_name,
pretrained=True,
in_chans=len(input_bands),
paul.tresson_ird.fr
committed
num_classes=0,
paul.tresson_ird.fr
committed
logger.info("Model loaded succesfully !")
logger.handlers.clear()
if feedback.isCanceled():
feedback.pushWarning(
self.tr("\n !!!Processing is canceled by user!!! \n"))
return
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
feedback.pushInfo(f'model done')
data_config = timm.data.resolve_model_data_config(model)
_, h, w, = data_config['input_size']
if self.quantization:
feedback.pushInfo(f'before quantization : {get_model_size(model)}')
model = torch.quantization.quantize_dynamic(
model, {nn.Linear}, dtype=torch.qint8
)
feedback.pushInfo(f'after quantization : {get_model_size(model)}')
transform = AugmentationSequential(
T.ConvertImageDtype(torch.float32), # change dtype for normalize to be possible
K.Normalize(self.means,self.sds), # normalize occurs only on raster, not mask
K.Resize((h, w)), # resize to 224*224 pixels, regardless of sampling size
data_keys=["image"],
)
dataset.transforms = transform
# sampler = GridGeoSampler(
# dataset,
# size=self.size,
# stride=self.stride,
# roi=extent_bbox,
# units=Units.PIXELS
# ) # Units.CRS or Units.PIXELS
sampler = NoBordersGridGeoSampler(
dataset,
size=self.size,
stride=self.stride,
roi=extent_bbox,
units=Units.PIXELS
) # Units.CRS or Units.PIXELS
if len(sampler) == 0:
self.load_feature = False
feedback.pushWarning(f'\n !!!No available patch sample inside the chosen extent!!! \n')
if torch.cuda.is_available() and self.use_gpu:
if self.cuda_id + 1 > torch.cuda.device_count():
self.cuda_id = torch.cuda.device_count() - 1
cuda_device = f'cuda:{self.cuda_id}'
device = f'cuda:{self.cuda_id}'
else:
self.batch_size = 1
device = 'cpu'
feedback.pushInfo(f'Device id: {device}')
feedback.pushInfo(f'model to dedvice')
model.to(device=device)
feedback.pushInfo(f'Batch size: {self.batch_size}')
dataloader = DataLoader(
dataset,
batch_size=self.batch_size,
sampler=sampler,
collate_fn=stack_samples,
num_workers=self.nworkers,
)
feedback.pushInfo(f'Patch sample num: {len(sampler)}')
feedback.pushInfo(f'Total batch num: {len(dataloader)}')
feedback.pushInfo(f'\n\n{"-"*16}\nBegining inference \n{"-"*16}\n\n')
## compute parameters hash to have a unique identifier for the run
## some parameters do not change the encoding part of the algorithm
keys_to_remove = ['MERGE_METHOD', 'WORKERS', 'PAUSES']
param_encoder = {key: parameters[key] for key in parameters if key not in keys_to_remove}
param_hash = hashlib.md5(str(param_encoder).encode("utf-8")).hexdigest()
output_subdir = os.path.join(self.output_dir,param_hash)
output_subdir = Path(output_subdir)
output_subdir.mkdir(parents=True, exist_ok=True)
self.output_subdir = output_subdir
feedback.pushInfo(f'output_subdir: {output_subdir}')
last_batch_done = self.get_last_batch_done()
if last_batch_done >= 0:
feedback.pushInfo(f"\n\n {'-'*8} \n Resuming at batch number {last_batch_done}\n {'-'*8} \n\n")
bboxes = [] # keep track of bboxes to have coordinates at the end
elapsed_time_list = []
total = 100 / len(dataloader) if len(dataloader) else 0
## will update if process is canceled by the user
self.all_encoding_done = True
for current, sample in enumerate(dataloader):
if current <= last_batch_done:
continue
start_time = time.time()
# Stop the algorithm if cancel button has been clicked
if feedback.isCanceled():
self.load_feature = False
feedback.pushWarning(
self.tr("\n !!!Processing is canceled by user!!! \n"))
self.all_encoding_done = False
feedback.pushInfo(f'\n{"-"*8}\nBatch no. {current} loaded')
images = sample['image'].to(device)
if len(images.shape) > 4:
images = images.squeeze(1)
feedback.pushInfo(f'Batch shape {images.shape}')
features = model.forward_features(images)
features = features[:,1:,:] # take only patch tokens
if current <= last_batch_done + 1:
n_patches = int(np.sqrt(features.shape[1]))
features = features.view(features.shape[0],n_patches,n_patches,features.shape[-1])
features = features.detach().cpu().numpy()
feedback.pushInfo(f'Features shape {features.shape}')
self.save_features(features,sample['bbox'], current)
feedback.pushInfo(f'Features saved')
if current <= last_batch_done + 1:
total_space, total_used_space, free_space = check_disk_space(self.output_subdir)
print(current)
print(free_space)
print(total_used_space)
used_outputsubdir = get_dir_size(str(self.output_subdir))
print(used_outputsubdir)
to_use = ((len(dataloader) / (current+1)) - 1) * used_outputsubdir
print(to_use)
if to_use >= free_space:
feedback.pushWarning(
self.tr(f"\n !!! only {free_space} GB disk space remaining, canceling !!! \n"))
break
bboxes.extend(sample['bbox'])
if self.pauses != 0:
time.sleep(self.pauses)
end_time = time.time()
# get the execution time of encoder, ms
elapsed_time = (end_time - start_time)
elapsed_time_list.append(elapsed_time)
time_spent = sum(elapsed_time_list)
time_remain = (time_spent / (current + 1)) * (len(dataloader) - current - 1)
# TODO: show gpu usage info
# if torch.cuda.is_available() and self.use_gpu:
# gpu_mem_used = torch.cuda.max_memory_reserved(self.sam_model.device) / (1024 ** 3)
# # gpu_mem_free = torch.cuda.mem_get_info(self.sam_model.device)[0] / (1024 ** 3)
# gpu_mem_total = torch.cuda.mem_get_info(self.sam_model.device)[1] / (1024 ** 3)
# feedback.pushInfo(
# f'GPU memory usage: {gpu_mem_used:.2f}GB / {gpu_mem_total:.2f}GB')
# feedback.pushInfo(str(torch.cuda.memory_summary(self.sam_model.device)))
feedback.pushInfo(f"Encoder executed with {elapsed_time:.3f}s")
feedback.pushInfo(f"Time spent: {time_spent:.3f}s")
if time_remain <= 60:
feedback.pushInfo(f"Estimated time remaining: {time_remain:.3f}s \n {'-'*8}")
else:
time_remain_m, time_remain_s = divmod(int(time_remain), 60)
time_remain_h, time_remain_m = divmod(time_remain_m, 60)
feedback.pushInfo(f"Estimated time remaining: {time_remain_h:d}h:{time_remain_m:02d}m:{time_remain_s:02d}s \n" )
if ((current + 1) % self.cleanup_frq == 0) and self.remove_tmp_files:
## not the cleanest way to do for now
## but avoids to refactor all
self.all_encoding_done = False
feedback.pushInfo('Cleaning temporary files...')
all_tiles = [os.path.join(self.output_subdir,f) for f in os.listdir(self.output_subdir) if f.endswith('_tmp.tif')]
all_tiles = [f for f in all_tiles if not f.startswith('merged')]
dst_path = Path(os.path.join(self.output_subdir,'merged_tmp.tif'))
merge_tiles(
tiles = all_tiles,
dst_path = dst_path,
method = self.merge_method,
)
self.remove_temp_files()
self.all_encoding_done = True
# Update the progress bar
feedback.setProgress(int((current+1) * total))
feedback.pushInfo(f"\n\n{'-'*8}\n Merging tiles \n{'-'*8}\n" )
all_tiles = [os.path.join(self.output_subdir,f) for f in os.listdir(self.output_subdir) if f.endswith('_tmp.tif')]
if not self.all_encoding_done :
dst_path = Path(os.path.join(self.output_subdir,'merged_tmp.tif'))
else:
# dst_path = Path(os.path.join(self.output_subdir,'merged.tif'))
## update filename if a merged.tif file allready exists
dst_path, layer_name = get_unique_filename(self.output_subdir, 'merged.tif')
dst_path = Path(dst_path)
merge_tiles(
tiles = all_tiles,
dst_path = dst_path,
method = self.merge_method,
)
if self.remove_tmp_files:
self.remove_temp_files()
# ## cleaning up temp tiles
# ## keep last tiles and merged tiles in case of resume
# last_batch_done = self.get_last_batch_done()
# if not self.all_encoding_done:
# tiles_to_remove = [
# os.path.join(self.output_subdir, f)
# for f in os.listdir(self.output_subdir)
# if f.endswith('_tmp.tif') and not f.startswith(str(last_batch_done))
# ]
# tiles_to_remove = [
# f for f in tiles_to_remove
# if not f.endswith('merged_tmp.tif')
# ]
# ## else cleanup all temp files
# else :
# tiles_to_remove = [os.path.join(self.output_subdir, f)
# for f in os.listdir(self.output_subdir)
# if f.endswith('_tmp.tif')]
# remove_files(tiles_to_remove)
parameters['OUTPUT_RASTER']=dst_path
return {"Output feature path": self.output_subdir, 'Patch samples saved': self.iPatch, 'OUTPUT_RASTER':dst_path, 'OUTPUT_LAYER_NAME':layer_name}
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
def remove_temp_files(self):
"""
cleaning up temp tiles
keep last tiles and merged tiles in case of resume
"""
last_batch_done = self.get_last_batch_done()
if not self.all_encoding_done:
tiles_to_remove = [
os.path.join(self.output_subdir, f)
for f in os.listdir(self.output_subdir)
if f.endswith('_tmp.tif') and not f.startswith(str(last_batch_done))
]
tiles_to_remove = [
f for f in tiles_to_remove
if not f.endswith('merged_tmp.tif')
]
## else cleanup all temp files
else :
tiles_to_remove = [os.path.join(self.output_subdir, f)
for f in os.listdir(self.output_subdir)
if f.endswith('_tmp.tif')]
remove_files(tiles_to_remove)
return
def get_last_batch_done(self):
## get largest batch_number achieved
## files are saved with the pattern '{batch_number}_{image_id_within_batch}_tmp.tif'
# Regular expression pattern to extract numbers
# pattern = re.compile(r'^(\d+)_\d+\.tif$')
pattern = re.compile(r'^(\d+)_\d+_tmp\.tif$')
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
# Initialize a set to store unique first numbers
batch_numbers = set()
# Iterate over all files in the directory
for filename in os.listdir(self.output_subdir):
# Match the filename pattern
match = pattern.match(filename)
if match:
# Extract the batch number
batch_number = int(match.group(1))
# Add to the set of batch numbers
batch_numbers.add(batch_number)
# Find the maximum value of the batch numbers
if batch_numbers:
return max(batch_numbers)
else:
return -1
def save_features(
self,
feature: np.ndarray,
bboxes: BoundingBox,
nbatch: int,
):
# iterate over batch_size dimension
for idx in range(feature.shape[0]):
_, height, width, channels = feature.shape
bbox = bboxes[idx]
rio_transform = rasterio.transform.from_bounds(bbox.minx, bbox.miny, bbox.maxx, bbox.maxy, width, height) # west, south, east, north, width, height
feature_path = os.path.join(self.output_subdir, f"{nbatch}_{idx}_tmp.tif")
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
with rasterio.open(
feature_path,
mode="w",
driver="GTiff",
height=height,
width=width,
count=channels,
dtype='float32',
crs=self.crs.toWkt(),
transform=rio_transform
) as ds:
ds.write(np.transpose(feature[idx, ...], (2, 0, 1)))
tags = {
"model_type": self.backbone_name,
}
ds.update_tags(**tags)
self.iPatch += 1
return
def process_options(self,parameters, context, feedback):
self.iPatch = 0
self.feature_dir = ""
self.FEAT_OPTION = self.parameterAsBoolean(
parameters, self.FEAT_OPTION, context)
feedback.pushInfo(
f'PARAMETERS :\n{parameters}')
feedback.pushInfo(
f'CONTEXT :\n{context}')
feedback.pushInfo(
f'FEEDBACK :\n{feedback}')
rlayer = self.parameterAsRasterLayer(
parameters, self.INPUT, context)
if rlayer is None:
raise QgsProcessingException(
self.invalidRasterError(parameters, self.INPUT))
self.selected_bands = self.parameterAsInts(
parameters, self.BANDS, context)
if len(self.selected_bands) == 0:
self.selected_bands = list(range(1, rlayer.bandCount()+1))
if max(self.selected_bands) > rlayer.bandCount():
raise QgsProcessingException(
self.tr("The chosen bands exceed the largest band number!")
)
ckpt_path = self.parameterAsFile(
parameters, self.CKPT, context)
paul.tresson_ird.fr
committed
## Use the given backbone name is any, use preselected models otherwise.
input_name = self.parameterAsString(
parameters, self.BACKBONE_CHOICE, context)
paul.tresson_ird.fr
committed
if input_name:
self.backbone_name = input_name
else:
backbone_idx = self.parameterAsEnum(
parameters, self.BACKBONE_OPT, context)
self.backbone_name = self.timm_backbone_opt[backbone_idx]
feedback.pushInfo(f'self.backbone_name:{self.backbone_name}')
self.stride = self.parameterAsInt(
parameters, self.STRIDE, context)
self.size = self.parameterAsInt(
parameters, self.SIZE, context)
res = self.parameterAsDouble(
parameters, self.RESOLUTION, context)
crs = self.parameterAsCrs(
parameters, self.CRS, context)
extent = self.parameterAsExtent(
parameters, self.EXTENT, context)
self.quantization = self.parameterAsBoolean(
parameters, self.QUANT, context)
self.use_gpu = self.parameterAsBoolean(
parameters, self.CUDA, context)
self.batch_size = self.parameterAsInt(
parameters, self.BATCH_SIZE, context)
self.output_dir = self.parameterAsString(
parameters, self.OUTPUT, context)
self.cuda_id = self.parameterAsInt(
parameters, self.CUDA_ID, context)
self.pauses = self.parameterAsInt(
parameters, self.PAUSES, context)
self.cleanup_frq = self.parameterAsInt(
parameters, self.TEMP_FILES_CLEANUP_FREQ, context)
self.nworkers = self.parameterAsInt(
parameters, self.WORKERS, context)
merge_method_idx = self.parameterAsEnum(
parameters, self.MERGE_METHOD, context)
self.merge_method = self.merge_options[merge_method_idx]
self.remove_tmp_files = self.parameterAsBoolean(
parameters, self.REMOVE_TEMP_FILES, context)
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
rlayer_data_provider = rlayer.dataProvider()
# handle crs
if crs is None or not crs.isValid():
crs = rlayer.crs()
feedback.pushInfo(
f'Layer CRS unit is {crs.mapUnits()}') # 0 for meters, 6 for degrees, 9 for unknown
feedback.pushInfo(
f'whether the CRS is a geographic CRS (using lat/lon coordinates) {crs.isGeographic()}')
if crs.mapUnits() == Qgis.DistanceUnit.Degrees:
crs = self.estimate_utm_crs(rlayer.extent())
# target crs should use meters as units
if crs.mapUnits() != Qgis.DistanceUnit.Meters:
feedback.pushInfo(
f'Layer CRS unit is {crs.mapUnits()}')
feedback.pushInfo(
f'whether the CRS is a geographic CRS (using lat/lon coordinates) {crs.isGeographic()}')
raise QgsProcessingException(
self.tr("Only support CRS with the units as meters")
)
# 0 for meters, 6 for degrees, 9 for unknown
UNIT_METERS = 0
UNIT_DEGREES = 6
if rlayer.crs().mapUnits() == UNIT_DEGREES: # Qgis.DistanceUnit.Degrees:
layer_units = 'degrees'
else:
layer_units = 'meters'
# if res is not provided, get res info from rlayer
if np.isnan(res) or res == 0:
res = rlayer.rasterUnitsPerPixelX() # rasterUnitsPerPixelY() is negative
target_units = layer_units
else:
# when given res in meters by users, convert crs to utm if the original crs unit is degree
if crs.mapUnits() != UNIT_METERS: # Qgis.DistanceUnit.Meters:
if rlayer.crs().mapUnits() == UNIT_DEGREES: # Qgis.DistanceUnit.Degrees:
# estimate utm crs based on layer extent
crs = self.estimate_utm_crs(rlayer.extent())
else:
raise QgsProcessingException(
f"Resampling of image with the CRS of {crs.authid()} in meters is not supported.")
target_units = 'meters'
# else:
# res = (rlayer_extent.xMaximum() -
# rlayer_extent.xMinimum()) / rlayer.width()
self.res = res
# handle extent
if extent.isNull():
extent = rlayer.extent() # QgsProcessingUtils.combineLayerExtents(layers, crs, context)
extent_crs = rlayer.crs()
else:
if extent.isEmpty():
raise QgsProcessingException(
self.tr("The extent for processing can not be empty!"))
extent_crs = self.parameterAsExtentCrs(
parameters, self.EXTENT, context)
# if extent crs != target crs, convert it to target crs
if extent_crs != crs:
transform = QgsCoordinateTransform(
extent_crs, crs, context.transformContext())
# extent = transform.transformBoundingBox(extent)
# to ensure coverage of the transformed extent
# convert extent to polygon, transform polygon, then get boundingBox of the new polygon
extent_polygon = QgsGeometry.fromRect(extent)
extent_polygon.transform(transform)
extent = extent_polygon.boundingBox()
extent_crs = crs
# check intersects between extent and rlayer_extent
if rlayer.crs() != crs:
transform = QgsCoordinateTransform(
rlayer.crs(), crs, context.transformContext())
rlayer_extent = transform.transformBoundingBox(
rlayer.extent())
else:
rlayer_extent = rlayer.extent()
if not rlayer_extent.intersects(extent):
raise QgsProcessingException(
self.tr("The extent for processing is not intersected with the input image!"))
feedback.pushInfo(f'backbne type : {self.backbone_name}')
img_width_in_extent = round(
(extent.xMaximum() - extent.xMinimum())/self.res)
img_height_in_extent = round(
(extent.yMaximum() - extent.yMinimum())/self.res)
# Send some information to the user
feedback.pushInfo(
f'Layer path: {rlayer_data_provider.dataSourceUri()}')
# feedback.pushInfo(
# f'Layer band scale: {rlayer_data_provider.bandScale(self.selected_bands[0])}')
feedback.pushInfo(f'Layer name: {rlayer.name()}')
if rlayer.crs().authid():
feedback.pushInfo(f'Layer CRS: {rlayer.crs().authid()}')
else:
feedback.pushInfo(
f'Layer CRS in WKT format: {rlayer.crs().toWkt()}')
feedback.pushInfo(
f'Layer pixel size: {rlayer.rasterUnitsPerPixelX()}, {rlayer.rasterUnitsPerPixelY()} {layer_units}')
feedback.pushInfo(f'Bands selected: {self.selected_bands}')
if crs.authid():
feedback.pushInfo(f'Target CRS: {crs.authid()}')
else:
feedback.pushInfo(f'Target CRS in WKT format: {crs.toWkt()}')
# feedback.pushInfo('Band number is {}'.format(rlayer.bandCount()))
# feedback.pushInfo('Band name is {}'.format(rlayer.bandName(1)))
feedback.pushInfo(f'Target resolution: {self.res} {target_units}')
# feedback.pushInfo('Layer display band name is {}'.format(
# rlayer.dataProvider().displayBandName(1)))
feedback.pushInfo(
(f'Processing extent: minx:{extent.xMinimum():.6f}, maxx:{extent.xMaximum():.6f},'
f'miny:{extent.yMinimum():.6f}, maxy:{extent.yMaximum():.6f}'))
feedback.pushInfo(
(f'Processing image size: (width {img_width_in_extent}, '
f'height {img_height_in_extent})'))
# feedback.pushInfo(
# f'SAM Image Size: {self.sam_model.image_encoder.img_size}')
self.rlayer_path = rlayer.dataProvider().dataSourceUri()
self.rlayer_dir = os.path.dirname(self.rlayer_path)
self.rlayer_name = os.path.basename(self.rlayer_path)
# get mean and sd of dataset from raster metadata
means, sds = get_mean_sd_by_band(self.rlayer_path)
# subset with selected_bands
feedback.pushInfo(f'Selected bands: {self.selected_bands}')
self.means = [means[i-1] for i in self.selected_bands]
self.sds = [sds[i-1] for i in self.selected_bands]
feedback.pushInfo(f'Means for normalization: {self.means}')
feedback.pushInfo(f'Std. dev. for normalization: {self.sds}')
## passing parameters to self once everything has been processed
self.extent = extent
self.rlayer = rlayer
self.crs = crs
# used to handle any thread-sensitive cleanup which is required by the algorithm.
def postProcessAlgorithm(self, context, feedback) -> Dict[str, Any]:
return {}
def tr(self, string):
"""
Returns a translatable string with the self.tr() function.
"""
return QCoreApplication.translate('Processing', string)
def createInstance(self):
return EncoderAlgorithm()
def name(self):
"""
Returns the algorithm name, used for identifying the algorithm. This
string should be fixed for the algorithm, and must not be localised.
The name should be unique within each provider. Names should contain
lowercase alphanumeric characters only and no spaces or other
formatting characters.
"""
return 'encoder'
def displayName(self):
"""
Returns the translated algorithm name, which should be used for any
user-visible display of the algorithm name.
"""
return self.tr('Image Encoder')
def group(self):
"""
Returns the name of the group this algorithm belongs to. This string
should be localised.
"""
return self.tr('')
def groupId(self):
"""
Returns the unique ID of the group this algorithm belongs to. This
string should be fixed for the algorithm, and must not be localised.
The group id should be unique within each provider. Group id should
contain lowercase alphanumeric characters only and no spaces or other
formatting characters.
"""
return ''
def shortHelpString(self):
"""
Returns a localised short helper string for the algorithm. This string
should provide a basic description about what the algorithm does and the