Newer
Older
paul.tresson_ird.fr
committed
import logging
import sys
import re
import numpy as np
from pathlib import Path
import rasterio
from qgis.PyQt.QtCore import QCoreApplication
QgsGeometry,
QgsCoordinateTransform,
QgsProcessingException,
QgsProcessingAlgorithm,
QgsProcessingParameterRasterLayer,
QgsProcessingParameterFolderDestination,
QgsProcessingParameterBand,
QgsProcessingParameterNumber,
QgsProcessingParameterBoolean,
QgsProcessingParameterFile,
QgsProcessingParameterString,
QgsProcessingParameterEnum,
QgsProcessingParameterExtent,
QgsProcessingParameterCrs,
QgsProcessingParameterDefinition,
)
import torch
import torch.nn as nn
from torch import Tensor
import torch.quantization
from torch.utils.data import DataLoader
import torchvision.transforms as T
import kornia.augmentation as K
import timm
paul.tresson_ird.fr
committed
# from torchgeo.datasets import RasterDataset, BoundingBox,stack_samples
# from torchgeo.samplers import GridGeoSampler, Units
# from torchgeo.transforms import AugmentationSequential
## from .utils.torchgeo import NoBordersGridGeoSampler
# from .utils.trchg import NoBordersGridGeoSampler
from .utils.geo import get_mean_sd_by_band
from .utils.geo import merge_tiles
from .utils.misc import (QGISLogHandler,
get_dir_size,
get_model_size,
remove_files,
check_disk_space,
get_unique_filename,
save_parameters_to_json,
compute_md5_hash,
from .utils.trch import quantize_model
from .utils.algo import IAMAPAlgorithm
paul.tresson_ird.fr
committed
from .tg.datasets import RasterDataset
from .tg.utils import stack_samples, BoundingBox
from .tg.samplers import NoBordersGridGeoSampler, Units
from .tg.transforms import AugmentationSequential
paul.tresson_ird.fr
committed
class EncoderAlgorithm(IAMAPAlgorithm):
"""
"""
FEAT_OPTION= 'FEAT_OPTION'
INPUT = 'INPUT'
CKPT = 'CKPT'
BANDS = 'BANDS'
STRIDE = 'STRIDE'
SIZE = 'SIZE'
EXTENT = 'EXTENT'
QUANT = 'QUANT'
OUTPUT = 'OUTPUT'
RESOLUTION = 'RESOLUTION'
CRS = 'CRS'
CUDA = 'CUDA'
BATCH_SIZE = 'BATCH_SIZE'
CUDA_ID = 'CUDA_ID'
BACKBONE_CHOICE = 'BACKBONE_CHOICE'
paul.tresson_ird.fr
committed
BACKBONE_OPT = 'BACKBONE_OPT'
MERGE_METHOD = 'MERGE_METHOD'
WORKERS = 'WORKERS'
PAUSES = 'PAUSES'
REMOVE_TEMP_FILES = 'REMOVE_TEMP_FILES'
TEMP_FILES_CLEANUP_FREQ = 'TEMP_FILES_CLEANUP_FREQ'
JSON_PARAM = 'JSON_PARAM'
OUT_DTYPE = 'OUT_DTYPE'
def initAlgorithm(self, config=None):
"""
Here we define the inputs and output of the algorithm, along
with some other properties.
"""
cwd = Path(__file__).parent.absolute()
tmp_wd = os.path.join(tempfile.gettempdir(), "iamap_features")
self.addParameter(
QgsProcessingParameterRasterLayer(
name=self.INPUT,
description=self.tr(
'Input raster layer or image file path'),
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
),
)
self.addParameter(
QgsProcessingParameterBand(
name=self.BANDS,
description=self.tr('Selected Bands (defaults to all bands selected)'),
defaultValue = None,
parentLayerParameterName=self.INPUT,
optional=True,
allowMultiple=True,
)
)
crs_param = QgsProcessingParameterCrs(
name=self.CRS,
description=self.tr('Target CRS (default to original CRS)'),
optional=True,
)
res_param = QgsProcessingParameterNumber(
name=self.RESOLUTION,
description=self.tr(
'Target resolution in meters (default to native resolution)'),
type=QgsProcessingParameterNumber.Double,
optional=True,
minValue=0,
maxValue=100000
)
cuda_id_param = QgsProcessingParameterNumber(
name=self.CUDA_ID,
description=self.tr(
'CUDA Device ID (choose which GPU to use, default to device 0)'),
type=QgsProcessingParameterNumber.Integer,
defaultValue=0,
minValue=0,
maxValue=9
)
nworkers_param = QgsProcessingParameterNumber(
name=self.WORKERS,
description=self.tr(
'Number of CPU workers for dataloader (0 selects all)'),
type=QgsProcessingParameterNumber.Integer,
defaultValue=0,
minValue=0,
maxValue=10
)
pauses_param = QgsProcessingParameterNumber(
name=self.PAUSES,
description=self.tr(
'Schedule pauses between batches to ease CPU usage (in seconds).'),
type=QgsProcessingParameterNumber.Integer,
defaultValue=0,
minValue=0,
maxValue=10000
)
tmp_files_cleanup_frq = QgsProcessingParameterNumber(
name=self.TEMP_FILES_CLEANUP_FREQ,
description=self.tr(
'Frequencie at which temporary files should be cleaned up (zero means no cleanup).'),
type=QgsProcessingParameterNumber.Integer,
defaultValue=1000,
minValue=1,
maxValue=10000
)
remove_tmp_files = QgsProcessingParameterBoolean(
name=self.REMOVE_TEMP_FILES,
description=self.tr(
'Remove temporary files after encoding. If you want to test different merging options, it may be better to keep the tiles.'),
defaultValue=True,
)
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
self.addParameter(
QgsProcessingParameterExtent(
name=self.EXTENT,
description=self.tr(
'Processing extent (default to the entire image)'),
optional=True
)
)
self.addParameter(
QgsProcessingParameterNumber(
name=self.SIZE,
description=self.tr(
'Sampling size (the raster will be sampled in a square with a side of that many pixel)'),
type=QgsProcessingParameterNumber.Integer,
defaultValue = 224,
minValue=1,
maxValue=1024
)
)
self.addParameter(
QgsProcessingParameterNumber(
name=self.STRIDE,
description=self.tr(
'Stride (If smaller than the sampling size, tiles will overlap. If larger, it may cause errors.)'),
type=QgsProcessingParameterNumber.Integer,
defaultValue = 224,
minValue=1,
maxValue=1024
)
)
chkpt_param = QgsProcessingParameterFile(
name=self.CKPT,
description=self.tr(
'Pretrained checkpoint'),
# extension='pth',
fileFilter='Checkpoint Files (*.pth *.pkl);; All Files (*.*)',
optional=True,
defaultValue=None
)
self.addParameter(
QgsProcessingParameterFolderDestination(
self.OUTPUT,
self.tr(
"Output directory (choose the location that the image features will be saved)"),
)
)
self.addParameter(
QgsProcessingParameterBoolean(
self.CUDA,
self.tr("Use GPU if CUDA is available."),
defaultValue=True
)
)
paul.tresson_ird.fr
committed
self.backbone_opt = [
'ViT base DINO',
'ViT tiny Imagenet (smallest)',
'ViT base MAE',
paul.tresson_ird.fr
committed
'SAM',
paul.tresson_ird.fr
committed
'--Empty--'
]
self.timm_backbone_opt = [
'vit_base_patch16_224.dino',
'vit_tiny_patch16_224.augreg_in21k',
'vit_base_patch16_224.mae',
paul.tresson_ird.fr
committed
'samvit_base_patch16.sa1b',
paul.tresson_ird.fr
committed
]
self.addParameter (
QgsProcessingParameterEnum(
name = self.BACKBONE_OPT,
description = self.tr(
"Pre-selected backbones if you don't know what to pick"),
defaultValue = 0,
options = self.backbone_opt,
)
)
self.addParameter (
QgsProcessingParameterString(
name = self.BACKBONE_CHOICE,
description = self.tr(
paul.tresson_ird.fr
committed
'Enter a architecture name if you want to test another backbone (see huggingface.co/timm/)'),
defaultValue = None,
optional=True,
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
)
)
self.addParameter(
QgsProcessingParameterBoolean(
self.FEAT_OPTION,
self.tr("Display features map"),
defaultValue=True
)
)
self.addParameter(
QgsProcessingParameterNumber(
name=self.BATCH_SIZE,
# large images will be sampled into patches in a grid-like fashion
description=self.tr(
'Batch size (take effect if choose to use GPU and CUDA is available)'),
type=QgsProcessingParameterNumber.Integer,
defaultValue=1,
minValue=1,
maxValue=1024
)
)
self.addParameter(
QgsProcessingParameterBoolean(
self.QUANT,
self.tr("Quantization of the model to reduce space"),
)
)
self.merge_options = ['first', 'min', 'max','average','sum', 'count', 'last']
merge_param = QgsProcessingParameterEnum(
name=self.MERGE_METHOD,
description=self.tr(
'Merge method at the end of inference.'),
options=self.merge_options,
defaultValue=0,
)
self.out_dtype_opt = ['float32', 'int8']
dtype_param = QgsProcessingParameterEnum(
name=self.OUT_DTYPE,
description=self.tr(
'Data type of exported features (int8 saves space)'),
options=self.out_dtype_opt,
defaultValue=0,
)
json_param = QgsProcessingParameterFile(
name=self.JSON_PARAM,
description=self.tr(
'Pass parameters as json file'),
# extension='pth',
fileFilter='JSON Files (*.json)',
optional=True,
defaultValue=None
)
for param in (
crs_param,
res_param,
dtype_param,
chkpt_param,
cuda_id_param,
merge_param,
nworkers_param,
remove_tmp_files,
tmp_files_cleanup_frq,
):
param.setFlags(
param.flags() | QgsProcessingParameterDefinition.FlagAdvanced)
self.addParameter(param)
@torch.no_grad()
def processAlgorithm(self, parameters, context, feedback):
"""
Here is where the processing itself takes place.
"""
parameters = self.load_parameters_as_json(feedback, parameters)
self.process_options(parameters, context, feedback)
## compute parameters hash to have a unique identifier for the run
## some parameters do not change the encoding part of the algorithm
keys_to_remove = ['MERGE_METHOD', 'WORKERS', 'PAUSES']
subdir_hash = compute_md5_hash(parameters, keys_to_remove=keys_to_remove)
output_subdir = os.path.join(self.output_dir,subdir_hash)
output_subdir = Path(output_subdir)
output_subdir.mkdir(parents=True, exist_ok=True)
self.output_subdir = output_subdir
feedback.pushInfo(f'output_subdir: {output_subdir}')
feedback.pushInfo(f'saving parameters to json file')
save_parameters_to_json(parameters, self.output_subdir)
feedback.pushInfo(f'logging parameters to csv')
log_parameters_to_csv(parameters,self.output_dir)
RasterDataset.filename_glob = self.rlayer_name
RasterDataset.all_bands = [
self.rlayer.bandName(i_band) for i_band in range(1, self.rlayer.bandCount()+1)
]
# currently only support rgb bands
input_bands = [self.rlayer.bandName(i_band)
for i_band in self.selected_bands]
feedback.pushInfo(f'create dataset')
if self.crs == self.rlayer.crs():
dataset = RasterDataset(
paths=self.rlayer_dir, crs=None, res=self.res, bands=input_bands, cache=False)
else:
dataset = RasterDataset(
paths=self.rlayer_dir, crs=self.crs.toWkt(), res=self.res, bands=input_bands, cache=False)
extent_bbox = BoundingBox(minx=self.extent.xMinimum(), maxx=self.extent.xMaximum(), miny=self.extent.yMinimum(), maxy=self.extent.yMaximum(),
mint=dataset.index.bounds[4], maxt=dataset.index.bounds[5])
if feedback.isCanceled():
feedback.pushWarning(
self.tr("\n !!!Processing is canceled by user!!! \n"))
return
paul.tresson_ird.fr
committed
### Custom logging to have more feedback during model loading
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger()
# Attach the QGIS log handler
logger.addHandler(QGISLogHandler(feedback))
# Log a message
logger.info("Starting model loading...")
# Load the model
feedback.pushInfo(f'creating model')
model = timm.create_model(
self.backbone_name,
pretrained=True,
in_chans=len(input_bands),
paul.tresson_ird.fr
committed
num_classes=0,
paul.tresson_ird.fr
committed
logger.info("Model loaded succesfully !")
logger.handlers.clear()
if feedback.isCanceled():
feedback.pushWarning(
self.tr("\n !!!Processing is canceled by user!!! \n"))
return
feedback.pushInfo(f'model done')
data_config = timm.data.resolve_model_data_config(model)
_, h, w, = data_config['input_size']
if self.quantization:
try :
feedback.pushInfo(f'before quantization : {get_model_size(model)}')
feedback.pushInfo(f'after quantization : {get_model_size(model)}')
except :
feedback.pushInfo(f'quantization impossible, using original model.')
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
transform = AugmentationSequential(
T.ConvertImageDtype(torch.float32), # change dtype for normalize to be possible
K.Normalize(self.means,self.sds), # normalize occurs only on raster, not mask
K.Resize((h, w)), # resize to 224*224 pixels, regardless of sampling size
data_keys=["image"],
)
dataset.transforms = transform
# sampler = GridGeoSampler(
# dataset,
# size=self.size,
# stride=self.stride,
# roi=extent_bbox,
# units=Units.PIXELS
# ) # Units.CRS or Units.PIXELS
sampler = NoBordersGridGeoSampler(
dataset,
size=self.size,
stride=self.stride,
roi=extent_bbox,
units=Units.PIXELS
) # Units.CRS or Units.PIXELS
if len(sampler) == 0:
self.load_feature = False
feedback.pushWarning(f'\n !!!No available patch sample inside the chosen extent!!! \n')
if torch.cuda.is_available() and self.use_gpu:
if self.cuda_id + 1 > torch.cuda.device_count():
self.cuda_id = torch.cuda.device_count() - 1
cuda_device = f'cuda:{self.cuda_id}'
device = f'cuda:{self.cuda_id}'
else:
self.batch_size = 1
device = 'cpu'
feedback.pushInfo(f'Device id: {device}')
feedback.pushInfo(f'model to dedvice')
model.to(device=device)
feedback.pushInfo(f'Batch size: {self.batch_size}')
dataloader = DataLoader(
dataset,
batch_size=self.batch_size,
sampler=sampler,
collate_fn=stack_samples,
num_workers=self.nworkers,
)
feedback.pushInfo(f'Patch sample num: {len(sampler)}')
feedback.pushInfo(f'Total batch num: {len(dataloader)}')
feedback.pushInfo(f'\n\n{"-"*16}\nBegining inference \n{"-"*16}\n\n')
last_batch_done = self.get_last_batch_done()
if last_batch_done >= 0:
feedback.pushInfo(f"\n\n {'-'*8} \n Resuming at batch number {last_batch_done}\n {'-'*8} \n\n")
bboxes = [] # keep track of bboxes to have coordinates at the end
elapsed_time_list = []
total = 100 / len(dataloader) if len(dataloader) else 0
## will update if process is canceled by the user
self.all_encoding_done = True
for current, sample in enumerate(dataloader):
if current <= last_batch_done:
continue
start_time = time.time()
# Stop the algorithm if cancel button has been clicked
if feedback.isCanceled():
self.load_feature = False
feedback.pushWarning(
self.tr("\n !!!Processing is canceled by user!!! \n"))
self.all_encoding_done = False
feedback.pushInfo(f'\n{"-"*8}\nBatch no. {current} loaded')
images = sample['image'].to(device)
if len(images.shape) > 4:
images = images.squeeze(1)
feedback.pushInfo(f'Batch shape {images.shape}')
features = model.forward_features(images)
features = features[:,1:,:] # take only patch tokens
if current <= last_batch_done + 1:
n_patches = int(np.sqrt(features.shape[1]))
features = features.view(features.shape[0],n_patches,n_patches,features.shape[-1])
features = features.detach().cpu().numpy()
feedback.pushInfo(f'Features shape {features.shape}')
self.save_features(features,sample['bbox'], current,dtype=self.out_dtype)
feedback.pushInfo(f'Features saved')
if current <= last_batch_done + 1:
total_space, total_used_space, free_space = check_disk_space(self.output_subdir)
used_outputsubdir = get_dir_size(str(self.output_subdir))
to_use = ((len(dataloader) / (current+1)) - 1) * used_outputsubdir
if to_use >= free_space:
feedback.pushWarning(
self.tr(f"\n !!! only {free_space} GB disk space remaining, canceling !!! \n"))
break
bboxes.extend(sample['bbox'])
if self.pauses != 0:
time.sleep(self.pauses)
end_time = time.time()
# get the execution time of encoder, ms
elapsed_time = (end_time - start_time)
elapsed_time_list.append(elapsed_time)
time_spent = sum(elapsed_time_list)
time_remain = (time_spent / (current + 1)) * (len(dataloader) - current - 1)
# TODO: show gpu usage info
# if torch.cuda.is_available() and self.use_gpu:
# gpu_mem_used = torch.cuda.max_memory_reserved(self.sam_model.device) / (1024 ** 3)
# # gpu_mem_free = torch.cuda.mem_get_info(self.sam_model.device)[0] / (1024 ** 3)
# gpu_mem_total = torch.cuda.mem_get_info(self.sam_model.device)[1] / (1024 ** 3)
# feedback.pushInfo(
# f'GPU memory usage: {gpu_mem_used:.2f}GB / {gpu_mem_total:.2f}GB')
# feedback.pushInfo(str(torch.cuda.memory_summary(self.sam_model.device)))
feedback.pushInfo(f"Encoder executed with {elapsed_time:.3f}s")
feedback.pushInfo(f"Time spent: {time_spent:.3f}s")
if time_remain <= 60:
feedback.pushInfo(f"Estimated time remaining: {time_remain:.3f}s \n {'-'*8}")
else:
time_remain_m, time_remain_s = divmod(int(time_remain), 60)
time_remain_h, time_remain_m = divmod(time_remain_m, 60)
feedback.pushInfo(f"Estimated time remaining: {time_remain_h:d}h:{time_remain_m:02d}m:{time_remain_s:02d}s \n" )
if ((current + 1) % self.cleanup_frq == 0) and self.remove_tmp_files:
## not the cleanest way to do for now
## but avoids to refactor all
self.all_encoding_done = False
feedback.pushInfo('Cleaning temporary files...')
all_tiles = [os.path.join(self.output_subdir,f) for f in os.listdir(self.output_subdir) if f.endswith('_tmp.tif')]
all_tiles = [f for f in all_tiles if not f.startswith('merged')]
dst_path = Path(os.path.join(self.output_subdir,'merged_tmp.tif'))
merge_tiles(
tiles = all_tiles,
dst_path = dst_path,
method = self.merge_method,
dtype= self.out_dtype,
)
self.remove_temp_files()
self.all_encoding_done = True
# Update the progress bar
feedback.setProgress(int((current+1) * total))
feedback.pushInfo(f"\n\n{'-'*8}\n Merging tiles \n{'-'*8}\n" )
all_tiles = [os.path.join(self.output_subdir,f) for f in os.listdir(self.output_subdir) if f.endswith('_tmp.tif')]
rlayer_name, ext = os.path.splitext(self.rlayer_name)
if not self.all_encoding_done :
dst_path = Path(os.path.join(self.output_subdir,'merged_tmp.tif'))
layer_name = f'{rlayer_name} features tmp'
# dst_path = Path(os.path.join(self.output_subdir,'merged.tif'))
## update filename if a merged.tif file allready exists
dst_path, layer_name = get_unique_filename(self.output_subdir, f'merged.tif', f'{rlayer_name} features')
dst_path = Path(dst_path)
merge_tiles(
tiles = all_tiles,
dst_path = dst_path,
method = self.merge_method,
)
if self.remove_tmp_files:
self.remove_temp_files()
parameters['OUTPUT_RASTER']=dst_path
return {"Output feature path": self.output_subdir, 'Patch samples saved': self.iPatch, 'OUTPUT_RASTER':dst_path, 'OUTPUT_LAYER_NAME':layer_name}
def load_parameters_as_json(self, feedback, parameters):
parameters['JSON_PARAM'] = str(parameters['JSON_PARAM'])
json_param = parameters['JSON_PARAM']
print(json_param)
if json_param != 'NULL':
with open(json_param) as json_file:
parameters = json.load(json_file)
feedback.pushInfo(f'Loading previous parameters from {json_param}')
parameters.pop('JSON_PARAM',None)
else:
parameters.pop('JSON_PARAM',None)
return parameters
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
def remove_temp_files(self):
"""
cleaning up temp tiles
keep last tiles and merged tiles in case of resume
"""
last_batch_done = self.get_last_batch_done()
if not self.all_encoding_done:
tiles_to_remove = [
os.path.join(self.output_subdir, f)
for f in os.listdir(self.output_subdir)
if f.endswith('_tmp.tif') and not f.startswith(str(last_batch_done))
]
tiles_to_remove = [
f for f in tiles_to_remove
if not f.endswith('merged_tmp.tif')
]
## else cleanup all temp files
else :
tiles_to_remove = [os.path.join(self.output_subdir, f)
for f in os.listdir(self.output_subdir)
if f.endswith('_tmp.tif')]
remove_files(tiles_to_remove)
return
def get_last_batch_done(self):
## get largest batch_number achieved
## files are saved with the pattern '{batch_number}_{image_id_within_batch}_tmp.tif'
# Regular expression pattern to extract numbers
# pattern = re.compile(r'^(\d+)_\d+\.tif$')
pattern = re.compile(r'^(\d+)_\d+_tmp\.tif$')
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
# Initialize a set to store unique first numbers
batch_numbers = set()
# Iterate over all files in the directory
for filename in os.listdir(self.output_subdir):
# Match the filename pattern
match = pattern.match(filename)
if match:
# Extract the batch number
batch_number = int(match.group(1))
# Add to the set of batch numbers
batch_numbers.add(batch_number)
# Find the maximum value of the batch numbers
if batch_numbers:
return max(batch_numbers)
else:
return -1
def save_features(
self,
feature: np.ndarray,
bboxes: BoundingBox,
nbatch: int,
dtype: str = 'float32'
paul.tresson_ird.fr
committed
if dtype == 'int8':
feature = (feature * 127).astype(np.int8)
# iterate over batch_size dimension
for idx in range(feature.shape[0]):
_, height, width, channels = feature.shape
bbox = bboxes[idx]
rio_transform = rasterio.transform.from_bounds(bbox.minx, bbox.miny, bbox.maxx, bbox.maxy, width, height) # west, south, east, north, width, height
feature_path = os.path.join(self.output_subdir, f"{nbatch}_{idx}_tmp.tif")
with rasterio.open(
feature_path,
mode="w",
driver="GTiff",
height=height,
width=width,
count=channels,
dtype=dtype,
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
crs=self.crs.toWkt(),
transform=rio_transform
) as ds:
ds.write(np.transpose(feature[idx, ...], (2, 0, 1)))
tags = {
"model_type": self.backbone_name,
}
ds.update_tags(**tags)
self.iPatch += 1
return
def process_options(self,parameters, context, feedback):
self.iPatch = 0
self.feature_dir = ""
self.FEAT_OPTION = self.parameterAsBoolean(
parameters, self.FEAT_OPTION, context)
feedback.pushInfo(
f'PARAMETERS :\n{parameters}')
feedback.pushInfo(
f'CONTEXT :\n{context}')
feedback.pushInfo(
f'FEEDBACK :\n{feedback}')
self.process_geo_parameters(parameters, context, feedback)
ckpt_path = self.parameterAsFile(
parameters, self.CKPT, context)
paul.tresson_ird.fr
committed
## Use the given backbone name is any, use preselected models otherwise.
input_name = self.parameterAsString(
parameters, self.BACKBONE_CHOICE, context)
paul.tresson_ird.fr
committed
if input_name:
self.backbone_name = input_name
else:
backbone_idx = self.parameterAsEnum(
parameters, self.BACKBONE_OPT, context)
self.backbone_name = self.timm_backbone_opt[backbone_idx]
feedback.pushInfo(f'self.backbone_name:{self.backbone_name}')
dtype_idx = self.parameterAsEnum(
parameters, self.OUT_DTYPE, context)
self.out_dtype = self.out_dtype_opt[dtype_idx]
self.stride = self.parameterAsInt(
parameters, self.STRIDE, context)
self.size = self.parameterAsInt(
parameters, self.SIZE, context)
self.quantization = self.parameterAsBoolean(
parameters, self.QUANT, context)
self.use_gpu = self.parameterAsBoolean(
parameters, self.CUDA, context)
self.batch_size = self.parameterAsInt(
parameters, self.BATCH_SIZE, context)
self.output_dir = self.parameterAsString(
parameters, self.OUTPUT, context)
self.cuda_id = self.parameterAsInt(
parameters, self.CUDA_ID, context)
self.pauses = self.parameterAsInt(
parameters, self.PAUSES, context)
self.cleanup_frq = self.parameterAsInt(
parameters, self.TEMP_FILES_CLEANUP_FREQ, context)
self.nworkers = self.parameterAsInt(
parameters, self.WORKERS, context)
merge_method_idx = self.parameterAsEnum(
parameters, self.MERGE_METHOD, context)
self.merge_method = self.merge_options[merge_method_idx]
self.remove_tmp_files = self.parameterAsBoolean(
parameters, self.REMOVE_TEMP_FILES, context)
# get mean and sd of dataset from raster metadata
feedback.pushInfo(f'Computing means and sds for normalization')
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
means, sds = get_mean_sd_by_band(self.rlayer_path)
# subset with selected_bands
feedback.pushInfo(f'Selected bands: {self.selected_bands}')
self.means = [means[i-1] for i in self.selected_bands]
self.sds = [sds[i-1] for i in self.selected_bands]
feedback.pushInfo(f'Means for normalization: {self.means}')
feedback.pushInfo(f'Std. dev. for normalization: {self.sds}')
# used to handle any thread-sensitive cleanup which is required by the algorithm.
def postProcessAlgorithm(self, context, feedback) -> Dict[str, Any]:
return {}
def tr(self, string):
"""
Returns a translatable string with the self.tr() function.
"""
return QCoreApplication.translate('Processing', string)
def createInstance(self):
return EncoderAlgorithm()
def name(self):
"""
Returns the algorithm name, used for identifying the algorithm. This
string should be fixed for the algorithm, and must not be localised.
The name should be unique within each provider. Names should contain
lowercase alphanumeric characters only and no spaces or other
formatting characters.
"""
return 'encoder'
def displayName(self):
"""
Returns the translated algorithm name, which should be used for any
user-visible display of the algorithm name.
"""
return self.tr('Image Encoder')
def group(self):
"""
Returns the name of the group this algorithm belongs to. This string
should be localised.
"""
return self.tr('')
def groupId(self):
"""
Returns the unique ID of the group this algorithm belongs to. This
string should be fixed for the algorithm, and must not be localised.
The group id should be unique within each provider. Group id should
contain lowercase alphanumeric characters only and no spaces or other
formatting characters.
"""
return ''
def shortHelpString(self):
"""
Returns a localised short helper string for the algorithm. This string
should provide a basic description about what the algorithm does and the
parameters and outputs associated with it..
"""
return self.tr("Generate image features using a deep learning backbone.")
def icon(self):
return 'E'