Newer
Older

nina.marthe_ird.fr
committed
from Graph_gff import Segments, Features, get_feature_start_on_segment, get_feature_stop_on_segment,invert_seg,search_segment
global segments_on_target_genome
segments_on_target_genome={}
def get_seg_occ(seg,walk,feat,copy):
seg_in_walk=segments_on_target_genome[seg][walk]
for seg_occurence in seg_in_walk:

nina.marthe_ird.fr
committed
for feat_copy in seg_occurence[5:]:
if (feat_copy[0]==feat) & (feat_copy[1]==copy):
return seg_occurence # [chr,start,stop,strand,index,copies]

nina.marthe_ird.fr
committed
print("no occ found ???",seg,walk,feat,copy)
print(segments_on_target_genome[seg][walk])
print(Features[feat].segments_list_source)
print(Features[feat].segments_list_target)
exit()
# get the start position of the features on the linear target genome, using their coordinates on the graph and the coordinantes of the segments on the genome

nina.marthe_ird.fr
committed
def get_feature_start_on_target_genome(start_seg,feat_id,walk,copy_id):
seg_start_pos=get_seg_occ(start_seg,walk,feat_id,copy_id)[1]

nina.marthe_ird.fr
committed
feat_start_pos=get_feature_start_on_segment(start_seg,feat_id)
return seg_start_pos+feat_start_pos-1
# get the stop position of the features on the linear target genome, using their coordinates on the graph and the coordinantes of the segments on the genome

nina.marthe_ird.fr
committed
def get_feature_stop_on_target_genome(stop_seg,feat_id,walk,copy_id):
seg_start_pos=get_seg_occ(stop_seg,walk,feat_id,copy_id)[1]
feat_stop_pos=get_feature_stop_on_segment(stop_seg,feat_id)
return seg_start_pos+feat_stop_pos-1
# get the start position of the features on the linear target genome for inverted features

nina.marthe_ird.fr
committed
def get_feature_start_on_target_genome_inv(start_seg,feat_id,walk,copy_id):
seg_end_pos=get_seg_occ(start_seg,walk,feat_id,copy_id)[2]

nina.marthe_ird.fr
committed
feat_start_pos=get_feature_start_on_segment(start_seg,feat_id)
return seg_end_pos-feat_start_pos+1
# get the stop position of the features on the linear target genome for inverted features

nina.marthe_ird.fr
committed
def get_feature_stop_on_target_genome_inv(stop_seg,feat_id,walk,copy_id):
seg_end_pos=get_seg_occ(stop_seg,walk,feat_id,copy_id)[2]

nina.marthe_ird.fr
committed
feat_stop_pos=get_feature_stop_on_segment(stop_seg,feat_id)
return seg_end_pos-feat_stop_pos+1
# functions to get the gff with one line per feature
# check if the length of the feature on the target genome passes the filter max_diff
def right_size(size,max_diff,feat):
if max_diff==0:
return True
return not ((size>Features[feat].size*max_diff) or (size<Features[feat].size/max_diff))
# generates the line for the gff of the target genome

nina.marthe_ird.fr
committed
def create_line_target_gff(first_seg,last_seg,feature_id,size_diff,inversion,walk,cov,id,copy_id):
[chr,strand,feature]=[get_seg_occ(first_seg,walk,feature_id,copy_id)[0],Features[feature_id].strand,Features[feature_id]]

nina.marthe_ird.fr
committed
annotation=f'{feature.annot};Size_diff={size_diff};coverage={cov};sequence_ID={id}' # Nb_variants={var_count};

nina.marthe_ird.fr
committed
start=get_feature_start_on_target_genome_inv(last_seg,feature_id,walk,copy_id)
stop=get_feature_stop_on_target_genome_inv(first_seg,feature_id,walk,copy_id)

nina.marthe_ird.fr
committed
strand=invert_strand(strand)
else:

nina.marthe_ird.fr
committed
start=get_feature_start_on_target_genome(first_seg,feature_id,walk,copy_id)
stop=get_feature_stop_on_target_genome(last_seg,feature_id,walk,copy_id)

nina.marthe_ird.fr
committed

nina.marthe_ird.fr
committed
if start>stop:
temp=start
start=stop
stop=temp

nina.marthe_ird.fr
committed
output_line=f'{chr}\tGrAnnoT\t{feature.type}\t{start}\t{stop}\t.\t{strand}\t.\t{annotation}\n'

nina.marthe_ird.fr
committed
# functions to get the alignment for the transfered genes

nina.marthe_ird.fr
committed

nina.marthe_ird.fr
committed
def segment_aln(type,seg_seq,seg_a,seg_b,first,feature_id,last):

nina.marthe_ird.fr
committed
match type:
case "identity":

nina.marthe_ird.fr
committed
if first:
feature=Features[feature_id]

nina.marthe_ird.fr
committed
seq_aln=get_segment_sequence(seg_seq,seg_a)[feature.pos_start-1:]

nina.marthe_ird.fr
committed
elif last:
feature=Features[feature_id]

nina.marthe_ird.fr
committed
seq_aln=get_segment_sequence(seg_seq,seg_a)[:feature.pos_stop]

nina.marthe_ird.fr
committed
else:

nina.marthe_ird.fr
committed
seq_aln=get_segment_sequence(seg_seq,seg_a)

nina.marthe_ird.fr
committed
line_a=seq_aln
line_b=seq_aln
len_aln=len(seq_aln)
line_c=len_aln*"*"
case "substitution":

nina.marthe_ird.fr
committed
seq_aln_a=get_segment_sequence(seg_seq,seg_a)
seq_aln_b=get_segment_sequence(seg_seq,seg_b)

nina.marthe_ird.fr
committed
len_a=len(seq_aln_a)
len_b=len(seq_aln_b)
if len_a>len_b:
diff_len=len_a-len_b
line_a=seq_aln_a
line_b=seq_aln_b+diff_len*"-"
line_c=len_a*" "
else:
diff_len=len_b-len_a
line_a=seq_aln_a+diff_len*"-"
line_b=seq_aln_b
line_c=len_b*" "
case "insertion":

nina.marthe_ird.fr
committed
seq_aln_b=get_segment_sequence(seg_seq,seg_b)

nina.marthe_ird.fr
committed
len_b=len(seq_aln_b)
line_a=len_b*"-"
line_b=seq_aln_b
line_c=len_b*" "
case "deletion":

nina.marthe_ird.fr
committed
if first:
feature=Features[feature_id]

nina.marthe_ird.fr
committed
seq_aln_a=get_segment_sequence(seg_seq,seg_a)[feature.pos_start-1:]

nina.marthe_ird.fr
committed
else:

nina.marthe_ird.fr
committed
seq_aln_a=get_segment_sequence(seg_seq,seg_a)

nina.marthe_ird.fr
committed
len_a=len(seq_aln_a)
line_a=seq_aln_a
line_b=len_a*"-"
line_c=len_a*" "
case "end_deletion":
seq_aln_a=""

nina.marthe_ird.fr
committed
for segment in seg_a[:-1]:

nina.marthe_ird.fr
committed
seq_aln_a+=get_segment_sequence(seg_seq,segment)

nina.marthe_ird.fr
committed
feature=Features[feature_id]

nina.marthe_ird.fr
committed
seq_aln_a+=get_segment_sequence(seg_seq,seg_a[-1])[0:feature.pos_stop] # for the last segment, only take the part that the feature is on

nina.marthe_ird.fr
committed
len_a=len(seq_aln_a)
line_a=seq_aln_a
line_b=len_a*"-"
line_c=len_a*" "

nina.marthe_ird.fr
committed
return [line_a,line_b,line_c,False] # check the orientation of the segment later

nina.marthe_ird.fr
committed

nina.marthe_ird.fr
committed
def parse_aln_lines(line_a,line_b,line_c,feature_id):
if (len(line_a)!=len(line_b)) or (len(line_b)!=len(line_c)):

nina.marthe_ird.fr
committed
print("line lengths differ in alignment")

nina.marthe_ird.fr
committed
len_to_parse=len(line_a)
len_parsed=0

nina.marthe_ird.fr
committed
aln_line=""

nina.marthe_ird.fr
committed
nb_res_a=0
nb_res_b=0
while len_parsed<len_to_parse:
len_header=len(feature_id)+11
headers=[feature_id+"_source ",feature_id+"_target ",len_header*" "]
add_a=line_a[len_parsed:len_parsed+60]
add_b=line_b[len_parsed:len_parsed+60]
add_c=line_c[len_parsed:len_parsed+60]
nb_res_a+=len(add_a)-add_a.count("-")
nb_res_b+=len(add_b)-add_b.count("-")

nina.marthe_ird.fr
committed
aln_line+=f'{headers[0]}{add_a} {nb_res_a}\n'
aln_line+=f'{headers[1]}{add_b} {nb_res_b}\n'
aln_line+=f'{headers[2]}{add_c}\n\n'

nina.marthe_ird.fr
committed
len_parsed+=60

nina.marthe_ird.fr
committed
aln_line+="\n"

nina.marthe_ird.fr
committed

nina.marthe_ird.fr
committed
return aln_line

nina.marthe_ird.fr
committed

nina.marthe_ird.fr
committed
def create_line_aln(feature_path_source_genome,feature_path_target_genome,seg_seq,feature_id):

nina.marthe_ird.fr
committed
line_a=""
line_b=""
line_c=""
[i,j]=[0,0]

nina.marthe_ird.fr
committed
first=True # when writing the first part of the feature, dont take the whole segment, only the part that the feature is on
last=False # same for the last part of the feature

nina.marthe_ird.fr
committed
while (i<len(feature_path_source_genome)) and (j<len(feature_path_target_genome)):

nina.marthe_ird.fr
committed
if i==len(feature_path_source_genome)-1:
last=True
if feature_path_source_genome[i] != feature_path_target_genome[j]: # if there is a difference between the two paths
if feature_path_target_genome[j] not in feature_path_source_genome: # if the segment in target genome is absent in source genome

nina.marthe_ird.fr
committed
if feature_path_source_genome[i] not in feature_path_target_genome: # if the segment in source genome is absent is target genome : substitution
[add_a,add_b,add_c,first]=segment_aln("substitution",seg_seq,feature_path_source_genome[i],feature_path_target_genome[j],first,feature_id,last)

nina.marthe_ird.fr
committed
line_a+=add_a;line_b+=add_b;line_c+=add_c
i+=1;j+=1

nina.marthe_ird.fr
committed
else: # target genome segment not in source_genome, but source_genome segment in target genome : insertion
[add_a,add_b,add_c,first]=segment_aln("insertion",seg_seq,"",feature_path_target_genome[j],first,feature_id,last)

nina.marthe_ird.fr
committed
line_a+=add_a;line_b+=add_b;line_c+=add_c
j+=1

nina.marthe_ird.fr
committed
elif feature_path_source_genome[i] not in feature_path_target_genome: # source_genome segment not in target genome, but target genome segment in source_genome : deletion
[add_a,add_b,add_c,first]=segment_aln("deletion",seg_seq,feature_path_source_genome[i],"",first,feature_id,last)

nina.marthe_ird.fr
committed
line_a+=add_a;line_b+=add_b;line_c+=add_c
i+=1
else : # if both segments are present in the other genome but not at the same position. weird case never found yet

nina.marthe_ird.fr
committed
[add_a,add_b,add_c,first]=segment_aln("substitution",seg_seq,feature_path_source_genome[i],feature_path_target_genome[j],first,feature_id,last)

nina.marthe_ird.fr
committed
line_a+=add_a;line_b+=add_b;line_c+=add_c
i+=1;j+=1

nina.marthe_ird.fr
committed
else: # segment present in both, no variation.
[add_a,add_b,add_c,first]=segment_aln("identity",seg_seq,feature_path_source_genome[i],feature_path_target_genome[j],first,feature_id,last)

nina.marthe_ird.fr
committed
line_a+=add_a;line_b+=add_b;line_c+=add_c
i+=1;j+=1
if i<=len(feature_path_source_genome)-1: # if we didn't reach the length of the segment list for the first genome, the end is missing for the second genome

nina.marthe_ird.fr
committed
[add_a,add_b,add_c,first]=segment_aln("end_deletion",seg_seq,feature_path_source_genome[i:],"",first,feature_id,last)

nina.marthe_ird.fr
committed
line_a+=add_a;line_b+=add_b;line_c+=add_c

nina.marthe_ird.fr
committed
return parse_aln_lines(line_a,line_b,line_c,feature_id)

nina.marthe_ird.fr
committed
# stats about missing segments and feature type, not used, will change.

nina.marthe_ird.fr
committed
def stats_feature_missing_segment(feature_missing_segments,first_seg,last_seg,list_seg,feature_id,walk):
# [feature_missing_first,feature_missing_middle,feature_missing_last,feature_missing_all,feature_missing_total,feature_total,feature_ok]
feature_missing_segments[5].append(feature_id)
if first_seg=='' : # no segment of the feature is in the genome, the feature is missing entirely

nina.marthe_ird.fr
committed
elif first_seg != list_seg[0]: # the first segment is missing

nina.marthe_ird.fr
committed
elif last_seg!=list_seg[-1]: # the last segment is missing
feature_missing_segments[2].append(feature_id)
# go through all the segments, check if some are missing in the middle of the feature
elif (len(list_seg)!=1) and (feature_id not in feature_missing_segments[3]): # to access the second to last element

nina.marthe_ird.fr
committed
if (segment not in segments_on_target_genome) or (walk not in segments_on_target_genome[segment]):
feature_missing_segments[1].append(feature_id)
break
# go through the segments, to see if one is missing anywhere on the feature
for segment in list_seg:

nina.marthe_ird.fr
committed
if (segment not in segments_on_target_genome) or (walk not in segments_on_target_genome[segment]):
if feature_id not in feature_missing_segments[4]:
feature_missing_segments[4].append(feature_id)
break
# if the feature doesnt have a missing segment, it is complete. ADD THE PATH CHECK FOR INSERTIONS !!
if feature_id not in feature_missing_segments[4]:
feature_missing_segments[6].append(feature_id)
def get_annot_features(list_features):
list_annot_features=[]
for feature in list_features:
list_annot_features.append(Features[feature].note)
return list_annot_features
def count_hypput_total(list_annot_first):
total=len(list_annot_first)
count_hypput=0
for annot in list_annot_first:
if ("hypothetical" in annot) or ("putative" in annot):
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
count_hypput+=1
return [count_hypput,total]
# print stats on the transfer : number of feature that have segments in different positions missing.
def stats_features(feature_missing_segments):
# [feature_missing_first,feature_missing_middle,feature_missing_last,feature_missing_all,feature_missing_total,feature_total,feature_ok]
list_annot_first=get_annot_features(feature_missing_segments[0])
[hyp_put,total]=count_hypput_total(list_annot_first)
print("\nthe first segment is missing for", total,"features, including",round(100*(hyp_put)/total,2),"% hypothetical or putative.")
list_annot_middle=get_annot_features(feature_missing_segments[1])
[hyp_put,total]=count_hypput_total(list_annot_middle)
print("a middle segment is missing for", total,"features, including",round(100*(hyp_put)/total,2),"% hypothetical or putative.")
list_annot_last=get_annot_features(feature_missing_segments[2])
[hyp_put,total]=count_hypput_total(list_annot_last)
print("the last segment is missing for", total,"features, including",round(100*(hyp_put)/total,2),"% hypothetical or putative.")
list_annot_all=get_annot_features(feature_missing_segments[3])
[hyp_put,total]=count_hypput_total(list_annot_all)
print(total,"features are entirely missing, including",round(100*(hyp_put)/total,2),"% hypothetical or putative.")
list_annot_total=get_annot_features(feature_missing_segments[4])
[hyp_put,total]=count_hypput_total(list_annot_total)
print("there is at least one segment missing for", total,"features, including",round(100*(hyp_put)/total,2),"% hypothetical or putative.")
list_annot_ok=get_annot_features(feature_missing_segments[6])
[hyp_put,total]=count_hypput_total(list_annot_ok)
print(total ,"features are entirely present in the new genome, including",round(100*(hyp_put)/total,2),"% hypothetical or putative.")
list_annot_features=get_annot_features(feature_missing_segments[5])
[hyp_put,total]=count_hypput_total(list_annot_features)
print("there is", total,"features in total, including",round(100*(hyp_put)/total,2),"% hypothetical or putative.")
# functions to generate the different gffs
# appends a dictionnary that associates a segments with its position on all the walks it's on (start stop and index in the segmnet list)

nina.marthe_ird.fr
committed
def get_segments_positions_on_genome(pos_seg): # add to the dict the info about the segments.
with open(pos_seg,'r') as bed:
line=bed.readline()
seg_count=0
file_name='.'.join(pos_seg.split('/')[-1].split('.')[0:-1]) # split by '.' to get the filename without the extention, then join by '.' in case there is a '.' in the filename
while line:
line=line.split()
[seg,chrom,start,stop,strand,index]=[line[3],line[0],int(line[1])+1,int(line[2]),line[3][0:1],seg_count] # +1 in the start to convert the bed 0-based coordinate to a 1-based system
# check if segment present twice on the same walk ???
#segments_on_target_genome[seg]=[chrom,start,stop,strand,index,file_name]
if seg not in segments_on_target_genome:
segments_on_target_genome[seg]={} # dict of walks->segment_info; you get the info about the segment for each walk
if file_name not in segments_on_target_genome[seg]:
segments_on_target_genome[seg][file_name]=list()
segments_on_target_genome[seg][file_name].append([chrom,start,stop,strand,index])
seg_count+=1
line=bed.readline()
# look for the segment on either strand of the target genome

nina.marthe_ird.fr
committed
def search_seg_on_target_genome(segment):
inverted_segment=invert_seg(segment)
if segment in segments_on_target_genome:
#if inverted_segment in segments_on_target_genome:
# print(segment," found in both orientations")
return segment
elif inverted_segment in segments_on_target_genome:
#print("inverted seg found *****")
return inverted_segment
else:
return False
# look for a segment on a walk, in either orientations
def search_seg_on_walk(segment,walk): # for now just print the first found, look for several later...

nina.marthe_ird.fr
committed
inverted_segment=invert_seg(segment)
if segment in segments_on_target_genome:
if walk in segments_on_target_genome[segment]:
return segment
elif inverted_segment in segments_on_target_genome:
if walk in segments_on_target_genome[inverted_segment]:
return inverted_segment
else:
return False
# generates a dictionnary that associaces the segments to their sequence : s5->AGGCTAA

nina.marthe_ird.fr
committed
def get_segments_sequence(segments_file,segments_list):
with open(segments_file,'r') as file_segments:
line=file_segments.readline()
seg_seq={}
while line:
line=line.split()
seg_id='s'+line[1]
if seg_id in segments_list:
seg_seq[seg_id]=line[2]
line=file_segments.readline()

nina.marthe_ird.fr
committed
return seg_seq
# generates a dictionnary that associates a walk_name to a list of segments : chr10->[>s1,>s2,>s4]

nina.marthe_ird.fr
committed
def get_paths(walks_file,target_genome):
with open(walks_file,'r') as file_walks:
paths={}
line=file_walks.readline()
while line:
line=line.split()
seq_name=line[1]+"_"+line[3]
if target_genome in seq_name: # get the walk of the genome
path=line[6].split(',')[1:]
list_segments=[]
for segment in path:
if segment[0:1]=='>':
list_segments.append('>s'+segment[1:])
elif segment[0:1]=='<':
list_segments.append('<s'+segment[1:])
paths[seq_name]=list_segments
line=file_walks.readline()
# get the first and last segment of the list that is in the target genome (possibly several pairs)
def get_first_last_seg(list_seg):

nina.marthe_ird.fr
committed
list_first_last_segs=[]

nina.marthe_ird.fr
committed
[first_seg_found,last_seg_found,walk_found]=['','','']

nina.marthe_ird.fr
committed
list_walks=get_walks_feature_cross(list_seg) # get all the walks where there is a segment of the feature
for walk in list_walks: # find the first and last seg for each walk
for segment in list_seg: # look for first_seg
seg_found=search_seg_on_walk(segment,walk)
if seg_found:
first_seg_found=seg_found
break
if first_seg_found!='': # look for last_seg
for segment in reversed(list_seg):
last_seg_found=search_seg_on_walk(segment,walk)
if last_seg_found:

nina.marthe_ird.fr
committed
walk_found=walk
break

nina.marthe_ird.fr
committed
list_first_last_segs.append([first_seg_found,last_seg_found,walk_found])
[first_seg_found,last_seg_found,walk_found]=['','','']
# return all the match
return list_first_last_segs
# functions to get the detail of the variations in the features
# find all the walks that contain a segment of the feature (list_seg is the walk of the feature on the source genome)

nina.marthe_ird.fr
committed
def get_walks_feature_cross(list_seg):
list_walks=list()
for segment in list_seg:
seg_found=search_seg_on_target_genome(segment)
if seg_found: # if the segment or the reverse complement is on the target genome
for walk in segments_on_target_genome[seg_found]:
if walk not in list_walks:
list_walks.append(walk)
return list_walks

nina.marthe_ird.fr
committed
# returns a list of feature's child, and their childs' childs, etc.
def get_child_list(feature_id):
feature=Features[feature_id]
list_childs=[]
for child in feature.childs:
list_childs.append(child) # add the child to the list
list_childs+=get_child_list(child) # add the child's childs to the list
return list_childs
# add the paths of the feature on the target genome in the object Feature

nina.marthe_ird.fr
committed
def add_target_genome_paths(feature_id,target_genome_paths):

nina.marthe_ird.fr
committed
feature=Features[feature_id]
list_seg=feature.segments_list_source

nina.marthe_ird.fr
committed
list_first_last_segs=get_first_last_seg(list_seg)
for match in list_first_last_segs: # for each walk that has the feature

nina.marthe_ird.fr
committed
[first_seg,last_seg,walk_name]=match
# get the first and last segments of all the copies on this walk
first_last_segs_list=find_gene_copies(list_seg,walk_name,feature_id)

nina.marthe_ird.fr
committed
copy_number=0
for first_seg,last_seg in first_last_segs_list: # get the feature path for all the copies
copy_number+=1
copy_id="copy_"+str(copy_number) # get the copy that corresponds to this pair of first_seg,last_seg

nina.marthe_ird.fr
committed
feature_target_path=get_feature_path(target_genome_paths[walk_name],first_seg,last_seg,walk_name,copy_id,feature_id)
feature_path=[walk_name,copy_id,feature_target_path] # informations about the occurence of the feature

nina.marthe_ird.fr
committed
feature.segments_list_target.append(feature_path)

nina.marthe_ird.fr
committed
# add the feat_copy to all the segments !!!
# get the pos start of the first and last segments (existing because done in find_gene_copies)

nina.marthe_ird.fr
committed
# then look for segs that are between.
walk_start=get_seg_occ(feature_target_path[0],walk_name,feature_id,copy_id)[1]
walk_stop=get_seg_occ(feature_target_path[-1],walk_name,feature_id,copy_id)[2]
feat_copy=(feature_id,copy_id)
for seg in feature_target_path[1:-1]: # the first and last segs are already done in find_gene_copies

nina.marthe_ird.fr
committed
for segment in segments_on_target_genome[seg][walk_name]: # find the right occurence
if walk_start <= segment[1] <= walk_stop:
segment.append(feat_copy) # annotate the segment : feature_id, copy_id

nina.marthe_ird.fr
committed
break
# add the paths of the gene's child features
add_childs_paths(feature_id,feature_target_path,walk_name,copy_id,target_genome_paths)
if len(list_first_last_segs)==0: # the latter steps expect this list to not be empty. ALSO DO IT FOR THE CHILDS ?
feature.segments_list_target.append(['','',[]])

nina.marthe_ird.fr
committed
def add_childs_paths(feature_id,feature_target_path,walk_name,copy_id,target_genome_paths):
childs_list=get_child_list(feature_id)
for child_id in childs_list:
child=Features[child_id]
# find child path in parent's path
[child_first_seg,child_last_seg]=['','']
for seg in child.segments_list_source:
if seg in feature_target_path: # parent path
child_first_seg=seg
break
elif invert_seg(seg) in feature_target_path:
child_first_seg=invert_seg(seg)
break

nina.marthe_ird.fr
committed
if child_first_seg!='': # the child feature may be absent in this occurence of the parent
for seg in reversed(child.segments_list_source):
if seg in feature_target_path: # parent path
child_last_seg=seg
break
elif invert_seg(seg) in feature_target_path:
child_last_seg=invert_seg(seg)
break
# get the path of the child feature
child_path=get_feature_path(target_genome_paths[walk_name],child_first_seg,child_last_seg,walk_name,copy_id,feature_id)
feat_copy=(child_id,copy_id)

nina.marthe_ird.fr
committed
feature_path=[walk_name,copy_id]
feature_path.append(child_path)
child.segments_list_target.append(feature_path)
for segment_id in child_path: # annotate the segments with info about the occurence of the child feature
segment=get_seg_occ(segment_id,walk_name,feature_id,copy_id)
segment.append(feat_copy)
# find all the copies of the segments from the source list in the target genome
def find_all_seg(list_seg_source,walk_name):
index=0
list_seg_target=[] # contains list of info for each seg : [seg_id,seg_strand,start_pos,index_on_source_walk]
list_seg_source_unstranded=[] # contains the path in the source genome, but with the strand separated from the segment_id : [s24,>]
for seg in list_seg_source:
list_seg_source_unstranded.append([seg[1:],seg[0]]) # seg_id,seg_strand : [s24,>]
seg_inverted=invert_seg(seg)
# look for all the segment copies in the target genome walk, in both orientations
if (seg in segments_on_target_genome) and (walk_name in segments_on_target_genome[seg]): # if the segment is in the target genome on the right walk (chr,ctg)
for copy in segments_on_target_genome[seg][walk_name]: # take all its copies
seg_info=[seg[1:],seg[0],int(copy[1]),index] # [s24,>,584425,4]
list_seg_target.append(seg_info)
if (seg_inverted in segments_on_target_genome) and (walk_name in segments_on_target_genome[seg_inverted]) : # same but with the segment inverted
for copy in segments_on_target_genome[seg_inverted][walk_name]:
seg_info=[seg_inverted[1:],seg_inverted[0],int(copy[1]),index]
list_seg_target.append(seg_info)
index+=1
list_seg_target.sort(key=sort_seg_info) # order the list of segments by start position
return [list_seg_target,list_seg_source_unstranded]
def find_gene_copies(list_seg_source,walk_name,feature_id):
# find all copies of all segments from the gene in the target genome (in both orientations)
[list_seg_target,list_seg_source_unstranded]=find_all_seg(list_seg_source,walk_name)
# find each copy of the gene in the ordered list of segments
[first_segs_list,last_segs_list]=detect_copies(list_seg_target,list_seg_source_unstranded,walk_name,feature_id)
# join the first and last seg lists
first_last_segs_list=[]
index=0
for first_seg in first_segs_list:
last_seg=last_segs_list[index]
pair=(first_seg,last_seg)
first_last_segs_list.append(pair)
index+=1
return first_last_segs_list # return a list of pairs (first_seg,last_seg)
# called by find_gene_copies
def detect_copies(list_seg_target,list_seg_source_unstranded,walk_name,feature_id):
# prepare the variables for the first iteration of the for loop
[old_id,old_strand,old_start,old_index]=list_seg_target[0]
[first_segs_list,last_segs_list]=[[],[]]
old_seg_id=old_strand+old_id
first_segs_list.append(old_seg_id)
copy_number=1
copy_id="copy_"+str(copy_number)
feat_copy=(feature_id,copy_id)
for segment in segments_on_target_genome[old_seg_id][walk_name]: # look for the first seg to add the occurence info

nina.marthe_ird.fr
committed
if segment[1]==old_start:
copy_id="copy_"+str(copy_number)
feat_copy=(feature_id,copy_id)
segment.append(feat_copy)
break
# adjust old_index for the first iteration of the loop
first_inversion=(old_strand!=list_seg_source_unstranded[old_index][1])
if first_inversion:
old_index+=1
else:
old_index-=1
for seg in list_seg_target: # find and annotate (with feat_copy) all the first and last segments of the feature copies
[new_id,new_strand,new_start,new_index]=seg
new_seg_id=new_strand+new_id
inversion=(seg[1]!=list_seg_source_unstranded[new_index][1]) # inversion if this segment's strand is not the same as in the source walk
if inversion :
if not((old_strand==new_strand) and (old_index>new_index)): # not (if the index decreases and the strand stays the same, it is the same gene copy)

nina.marthe_ird.fr
committed
last_segs_list.append(old_seg_id)
add_occurence_info_seg(old_seg_id,walk_name,old_start,feat_copy) # add info for the last seg of the previous copy
copy_number+=1
copy_id="copy_"+str(copy_number)
feat_copy=(feature_id,copy_id) # new feature copy, change the info
first_segs_list.append(new_seg_id)
add_occurence_info_seg(new_seg_id,walk_name,new_start,feat_copy) # add info for the first seg of the new copy
else:
if not((old_strand==new_strand) and (old_index<new_index)): # not (if the index increases and the strand stays the same, it is the same gene copy)

nina.marthe_ird.fr
committed
last_segs_list.append(old_seg_id)
add_occurence_info_seg(old_seg_id,walk_name,old_start,feat_copy) # add info for the last seg of the previous copy
copy_number+=1
copy_id="copy_"+str(copy_number)
feat_copy=(feature_id,copy_id) # new feature copy, change the info
first_segs_list.append(new_seg_id)
add_occurence_info_seg(new_seg_id,walk_name,new_start,feat_copy) # add info for the first seg of the new copy
[old_strand,old_index,old_seg_id,old_start]=[new_strand,new_index,new_seg_id,new_start]
# add the last seg info
last_segs_list.append(old_seg_id)
add_occurence_info_seg(old_seg_id,walk_name,new_start,feat_copy) # add info for the last seg of the last copy
return [first_segs_list,last_segs_list]

nina.marthe_ird.fr
committed
def add_occurence_info_seg(target_seg_id,walk_name,target_start,feat_copy):
for segment in segments_on_target_genome[target_seg_id][walk_name]: # look for the right occurence of the segment
if segment[1]==target_start:
segment.append(feat_copy) # add seg info
break
def sort_seg_info(seg_info):
return seg_info[2]

nina.marthe_ird.fr
committed
def get_feature_path(target_genome_path,first_seg,last_seg,walk_name,copy_id,feature_id):
# look for first_seg and last_seg that has the right copy_id for this feature
first_seg_index=get_seg_occ(first_seg,walk_name,feature_id,copy_id)[4]
last_seg_index=get_seg_occ(last_seg,walk_name,feature_id,copy_id)[4]
first_index=min(first_seg_index,last_seg_index)
last_index=max(first_seg_index,last_seg_index)
feature_path_target_genome=target_genome_path[first_index:last_index+1]
return feature_path_target_genome

nina.marthe_ird.fr
committed
def count_variations(feature_id,target_list):
feature=Features[feature_id]
if len(target_list)!=0:
source_list=feature.segments_list_source

nina.marthe_ird.fr
committed
inversion=detect_feature_inversion(source_list,target_list)

nina.marthe_ird.fr
committed
target_list=invert_segment_list(target_list)
target_dict=dict.fromkeys(target_list,"")
source_dict=dict.fromkeys(source_list,"") # convert list into dict to search segments in dict quicker.
var_count=0
for segment in source_dict:
if segment not in target_dict:
var_count+=1
for segment in target_dict:
if segment not in source_dict:
var_count+=1
# this counts the substitutions twice, as insertion+deletion.
return var_count

nina.marthe_ird.fr
committed
def get_id_cov(feature_id,seg_size,target_list): # seg_size has unoriented segments : s25

nina.marthe_ird.fr
committed
feature=Features[feature_id]
source_list=feature.segments_list_source
inversion=detect_feature_inversion(source_list,target_list)
if inversion:
target_list=invert_segment_list(target_list)

nina.marthe_ird.fr
committed
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
[match,subs,inser,delet]=[0,0,0,0]
[i,j]=[0,0]
first=True # when writing the first part of the feature, dont take the whole segment, only the part that the feature is on
last=False # same for the last part of the feature # for id and ins.
while (i<len(source_list)) and (j<len(target_list)):
if i==len(source_list)-1:
last=True
if source_list[i] != target_list[j]: # if there is a difference between the two paths
if target_list[j] not in source_list: # if the segment in target genome is absent in source genome
if source_list[i] not in target_list: # if the segment in source genome is absent is target genome : substitution
add=segment_id_cov("substitution",seg_size,source_list[i],target_list[j],first,feature,last)
match+=add[0];subs+=add[1];inser+=add[2];delet+=add[3];first=add[4]
i+=1;j+=1
else: # target genome segment not in source_genome, but source_genome segment in target genome : insertion
add=segment_id_cov("insertion",seg_size,source_list[i],target_list[j],first,feature,last)
match+=add[0];subs+=add[1];inser+=add[2];delet+=add[3];first=add[4]
j+=1
elif source_list[i] not in target_list: # source_genome segment not in target genome, but target genome segment in source_genome : deletion
add=segment_id_cov("deletion",seg_size,source_list[i],target_list[j],first,feature,last)
match+=add[0];subs+=add[1];inser+=add[2];delet+=add[3];first=add[4]
i+=1
else : # if both segments are present in the other genome but not at the same position. weird case never found yet
add=segment_id_cov("substitution",seg_size,source_list[i],target_list[j],first,feature,last)
match+=add[0];subs+=add[1];inser+=add[2];delet+=add[3];first=add[4]
i+=1;j+=1
else: # segment present in both, no variation.
add=segment_id_cov("identity",seg_size,source_list[i],target_list[j],first,feature,last)
match+=add[0];subs+=add[1];inser+=add[2];delet+=add[3];first=add[4]
i+=1;j+=1
if i<=len(source_list)-1: # if we didn't reach the length of the segment list for the first genome, the end is missing for the second genome
add=segment_id_cov("end_deletion",seg_size,source_list[i:],'',first,feature,last)
match+=add[0];subs+=add[1];inser+=add[2];delet+=add[3];first=add[4]
cov=round((match+subs)/(match+subs+delet),3)
id=round(match/(match+subs+inser+delet),3)

nina.marthe_ird.fr
committed
#var_count=count_variations(feature_id,target_list)

nina.marthe_ird.fr
committed
return [cov,id]

nina.marthe_ird.fr
committed
# computes the cov/id calculation for a segment pair

nina.marthe_ird.fr
committed
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
def segment_id_cov(type,seg_size,seg_a,seg_b,first,feature,last):
[match,subs,inser,delet]=[0,0,0,0]
match type:
case "identity":
if first:
match+=seg_size[seg_a[1:]]-feature.pos_start+1
elif last:
match+=feature.pos_stop
else:
match+=seg_size[seg_a[1:]]
case "substitution":
if seg_size[seg_b[1:]]!=seg_size[seg_a[1:]]: # substitution can be between segments of different size
if seg_size[seg_b[1:]]>seg_size[seg_a[1:]]:
subs+=seg_size[seg_a[1:]]
inser+=seg_size[seg_b[1:]]-seg_size[seg_a[1:]]
elif seg_size[seg_b[1:]]<seg_size[seg_a[1:]]:
subs+=seg_size[seg_b[1:]]
delet+=seg_size[seg_a[1:]]-seg_size[seg_b[1:]]
else:
subs+=seg_size[seg_a[1:]]
case "insertion":
inser+=seg_size[seg_b[1:]]
case "deletion":
if first:
delet+=seg_size[seg_a[1:]]-feature.pos_start+1
else:
delet+=seg_size[seg_a[1:]]
case "end_deletion":
for seg in seg_a[:-1]:
delet+=seg_size[seg[1:]]
delet+=feature.pos_stop
return [match,subs,inser,delet,False] # check the orientation of the segment later

nina.marthe_ird.fr
committed
def invert_strand(strand):

nina.marthe_ird.fr
committed
return "-"

nina.marthe_ird.fr
committed
case ">":
return "<"

nina.marthe_ird.fr
committed
return ">"
# outputs the nucleotide sequence of a list of segments, corresponding to the end of a feature
def get_sequence_list_seg(list_seg,i,feature,seg_seq):
for k in range(i,len(list_seg)):
if k==len(list_seg)-1:
del_sequence+=get_segment_sequence(seg_seq,list_seg[k])[0:feature.pos_stop]
del_sequence+=get_segment_sequence(seg_seq,list_seg[k])
return del_sequence
def get_segment_sequence(seg_seq,segment):

nina.marthe_ird.fr
committed
if segment[0]==">":
return seg_seq[segment[1:]]
else:
return reverse_complement(seg_seq[segment[1:]])
def reverse_complement(sequence):
sequence_rc=""
for char in sequence:
sequence_rc+=complement(char)
return sequence_rc[::-1]
def complement(nucl):
match nucl:
case "A":
return "T"
case "C":
return "G"
case "G":
return "C"
case "T":
return "A"
return nucl
# stores information about a feature and its current variation
class Variation:
def __init__(self,feature_id,feature_type,chr,start_new,stop_new,inversion,size_diff,size_new):
self.feature_id=feature_id
self.feature_type=feature_type
self.chr=chr
self.start_new=start_new
self.stop_new=stop_new
self.inversion=inversion
self.size_diff=size_diff
self.size_new=size_new
self.type=''
self.last_seg_in_target=''
self.seg_ref=list()
self.seg_alt=list()
# initiate a Variation object with the information on the feature it is on

nina.marthe_ird.fr
committed
def create_var(feature_id,first_seg,last_seg,walk,copy_id,feature_target_path):
feature=Features[feature_id]
# get feature paths on the original genome and on the target genome

nina.marthe_ird.fr
committed
feature_path_target_genome=feature_target_path

nina.marthe_ird.fr
committed
feature_path_source_genome=feature.segments_list_source

nina.marthe_ird.fr
committed
inversion=detect_feature_inversion(feature_path_source_genome,feature_path_target_genome)

nina.marthe_ird.fr
committed
feature_path_target_genome=invert_segment_list(feature_path_target_genome)

nina.marthe_ird.fr
committed
stop_new_genome=get_feature_start_on_target_genome_inv(last_seg,feature_id,walk,copy_id)
start_new_genome=get_feature_stop_on_target_genome_inv(first_seg,feature_id,walk,copy_id)

nina.marthe_ird.fr
committed
else:

nina.marthe_ird.fr
committed
start_new_genome=get_feature_start_on_target_genome(first_seg,feature_id,walk,copy_id)
stop_new_genome=get_feature_stop_on_target_genome(last_seg,feature_id,walk,copy_id)

nina.marthe_ird.fr
committed
size_new_genome=stop_new_genome-start_new_genome+1

nina.marthe_ird.fr
committed
size_diff=str(size_new_genome-feature.size)

nina.marthe_ird.fr
committed
sequence_name=get_seg_occ(first_seg,walk,feature_id,copy_id)[0]
variation=Variation(feature_id,feature.type,sequence_name,start_new_genome,stop_new_genome,inversion,size_diff,size_new_genome)
return(variation,feature_path_source_genome,feature_path_target_genome)
# reset the informations of the variation, but keep the information about the feature
def reset_var(variation):
variation.type='' # make type enumerate
variation.size_var=0
variation.start_var=''

nina.marthe_ird.fr
committed
variation.start_var_index=0
variation.ref=''
variation.alt=''
# find the position of a substitution on the source and the target sequence

nina.marthe_ird.fr
committed
def get_old_new_pos_substitution(feat_start,variation,start_feat_seg_target,feat,walk,copy_id):

nina.marthe_ird.fr
committed
seg_pos=search_segment(variation.start_var)
pos_old=str(int(Segments[seg_pos].start)-int(feat_start))
var_start_seg=variation.start_on_target
start_feat_seg_target=invert_seg(start_feat_seg_target)

nina.marthe_ird.fr
committed
var_start_seg=invert_seg(var_start_seg)

nina.marthe_ird.fr
committed
end_var=get_seg_occ(var_start_seg,walk,feat,copy_id)[2]
start_feat=get_feature_start_on_target_genome_inv(start_feat_seg_target,feat,walk,copy_id)

nina.marthe_ird.fr
committed
pos_new=str(start_feat-end_var)
else:

nina.marthe_ird.fr
committed
start_var=get_seg_occ(var_start_seg,walk,feat,copy_id)[1]
start_feat=get_feature_start_on_target_genome(start_feat_seg_target,feat,walk,copy_id)

nina.marthe_ird.fr
committed
pos_new=str(start_var-start_feat)
return [pos_old,pos_new] # pos_old and pos_new are the base before the change
# find the position of an insertion on the source and the target sequence

nina.marthe_ird.fr
committed
def get_old_new_pos_insertion(variation,feat_start,start_feat_seg_target,feat,walk,copy_id):

nina.marthe_ird.fr
committed
seg_pos=search_segment(variation.start_var) # start_var is the segment AFTER the insertion

nina.marthe_ird.fr
committed
pos_old=str(int(Segments[seg_pos].start)-int(feat_start))
start_var_seg=variation.start_var
start_feat_seg_target=invert_seg(start_feat_seg_target)

nina.marthe_ird.fr
committed
start_var_seg=invert_seg(start_var_seg)

nina.marthe_ird.fr
committed
end_var=get_seg_occ(start_var_seg,walk,feat,copy_id)[2]+len(variation.alt) # start_var_seg is the segment AFTER the insertion
start_feat=get_feature_start_on_target_genome_inv(start_feat_seg_target,feat,walk,copy_id)

nina.marthe_ird.fr
committed
pos_new=str(start_feat-end_var)
else:

nina.marthe_ird.fr
committed
start_var=get_seg_occ(start_var_seg,walk,feat,copy_id)[1]-len(variation.alt) # start_var_seg is the segment AFTER the insertion
start_feat=get_feature_start_on_target_genome(start_feat_seg_target,feat,walk,copy_id)

nina.marthe_ird.fr
committed
pos_new=str(start_var-start_feat)
return [pos_old,pos_new] # pos_old and pos_new are the base before the change
# find the position of a deletion on the source and the target sequence

nina.marthe_ird.fr
committed
def get_old_new_pos_deletion(variation,feat_start,start_feat_seg_target,feat,walk,copy_id):

nina.marthe_ird.fr
committed
i=variation.start_var_index

nina.marthe_ird.fr
committed
seg_pos=search_segment(variation.start_var)

nina.marthe_ird.fr
committed
pos_old=int(Segments[seg_pos].start)-int(feat_start)+Features[feat].pos_start-1

nina.marthe_ird.fr
committed
pos_old=int(Segments[seg_pos].start)-int(feat_start)

nina.marthe_ird.fr
committed
if pos_old<0:
pos_old=0

nina.marthe_ird.fr
committed
print("error with variation position",variation.inversion,"***")
if variation.last_seg_in_target=="": # deletion of the beggining of the feature, so no segment placed in the new genome yet.

nina.marthe_ird.fr
committed
pos_new=0

nina.marthe_ird.fr
committed
start_var_seg=variation.last_seg_in_target
start_feat_seg_target=invert_seg(start_feat_seg_target)

nina.marthe_ird.fr
committed
start_var_seg=invert_seg(start_var_seg)

nina.marthe_ird.fr
committed
start_var=get_seg_occ(start_var_seg,walk,feat,copy_id)[1]-1
start_feat=get_feature_start_on_target_genome_inv(start_feat_seg_target,feat,walk,copy_id)

nina.marthe_ird.fr
committed
pos_new=str(start_feat-start_var)
else:

nina.marthe_ird.fr
committed
start_var=get_seg_occ(start_var_seg,walk,feat,copy_id)[2]+1
start_feat=get_feature_start_on_target_genome(start_feat_seg_target,feat,walk,copy_id)

nina.marthe_ird.fr
committed
pos_new=str(start_var-start_feat)
return [pos_old,pos_new] # pos_old and pos_new are the base before the change
# change the variation information, but keep the feature information (the variation is on the feature)
def init_new_var(variation,type,feature_path_source_genome,feature_path_target_genome,i,j,seg_seq,feature):
variation.type=type

nina.marthe_ird.fr
committed
variation.start_var=feature_path_source_genome[i]

nina.marthe_ird.fr
committed
variation.start_var_index=i
if type=="substitution":

nina.marthe_ird.fr
committed
variation.start_on_target=feature_path_target_genome[j]
variation.ref=get_segment_sequence(seg_seq,feature_path_source_genome[i])
variation.alt=get_segment_sequence(seg_seq,feature_path_target_genome[j])
variation.seg_ref.append(feature_path_source_genome[i])
variation.seg_alt.append(feature_path_target_genome[j])
elif type=="insertion":
variation.ref="-"
variation.alt=get_segment_sequence(seg_seq,feature_path_target_genome[j])
variation.seg_alt.append(feature_path_target_genome[j])
elif type=="deletion":
if i==0: # if the deletion is at the start of the feature, the deletion doesnt always start at the start at the first segment :
#use pos_start, position of the feature on its first segment
variation.ref=get_segment_sequence(seg_seq,feature_path_source_genome[i])[feature.pos_start-1:]
variation.seg_ref.append(feature_path_source_genome[i])
else: # else, the deletion will always start at the start of the first segment.
variation.ref=get_segment_sequence(seg_seq,feature_path_source_genome[i])
variation.seg_ref.append(feature_path_source_genome[i])
variation.alt="-"
def continue_var(variation,seg_seq,feature_path_source_genome,feature_path_target_genome,i,j,genome_to_continue):
if variation.type=="substitution":
if genome_to_continue==0: # genome_to_continue allows to choose if the substitution continues for the original or the target genome, or both.
variation.ref+=get_segment_sequence(seg_seq,feature_path_source_genome[i])
variation.alt+=get_segment_sequence(seg_seq,feature_path_target_genome[j])
variation.seg_ref.append(feature_path_source_genome[i])
variation.seg_alt.append(feature_path_target_genome[j])
elif genome_to_continue==1: # deletion
variation.ref+=get_segment_sequence(seg_seq,feature_path_source_genome[i])
variation.seg_ref.append(feature_path_source_genome[i])
elif genome_to_continue==2: # insertion
variation.alt+=get_segment_sequence(seg_seq,feature_path_target_genome[j])
variation.seg_alt.append(feature_path_target_genome[j])
elif variation.type=="insertion":
variation.alt+=get_segment_sequence(seg_seq,feature_path_target_genome[j])
variation.seg_alt.append(feature_path_target_genome[j])
elif variation.type=="deletion":
variation.ref+=get_segment_sequence(seg_seq,feature_path_source_genome[i])
variation.seg_ref.append(feature_path_source_genome[i])
# gives the list of segments from dict1 that are in dict2

nina.marthe_ird.fr
committed
def get_common_segments(dict1,dict2):
list_common=[]
for segment in dict1:
if segment in dict2:
list_common.append(segment)
return list_common
# check if common segments in the two dict have the same strand
def compare_strand(dict1,dict2): # dict1 and dict2 : [seg_id]->[seg_strand]
seg_common=get_common_segments(dict1,dict2)
# for each segment in common, check if the strand is the same
same_strand_count=0
for segment in seg_common:

nina.marthe_ird.fr
committed
if dict1[segment]==dict2[segment]:

nina.marthe_ird.fr
committed
return [len(seg_common),same_strand_count]
# check if the two dict have their segments in the inverted order

nina.marthe_ird.fr
committed
def detect_segment_order_inversion(dict1,dict2):
list_1_common=get_common_segments(dict1,dict2)
list_2_common=get_common_segments(dict2,dict1) # same segments, different orders
list_2_common_reversed=list(reversed(list_2_common))

nina.marthe_ird.fr
committed
[cpt,i]=[0,0]
while i<len(list_1_common):
if list_2_common_reversed[i]==list_1_common[i]:
return (cpt>len(list_1_common)*0.9) # if more than 90% of the segments are on the same position when the lists are reversed, there is an inversion.
# check if the two dict have the same segments but in different orientation

nina.marthe_ird.fr
committed
def detect_orient_inversion(dict1,dict2):
[seg_common_count,same_strand_count]=compare_strand(dict1,dict2)

nina.marthe_ird.fr
committed
if same_strand_count>=seg_common_count*0.9: # if more than 90% of segments shared have the same strand, no inversion
return [False,dict1,dict2]

nina.marthe_ird.fr
committed
return [True,dict1,dict2]
# takes two lists of segments for two genes, check if the first list is an inversion of the second one (if the segments in common are on the opposite strand)
def detect_feature_inversion(list_1,list_2):

nina.marthe_ird.fr
committed
# convert list into dict with unstranded segment id as key and strand as value
strand1=[seg[0] for seg in list_1]
id1=[seg[1:] for seg in list_1]
dict1 = {id1[i]: strand1[i] for i in range(len(strand1))}
strand2=[seg[0] for seg in list_2]
id2=[seg[1:] for seg in list_2]
dict2 = {id2[i]: strand2[i] for i in range(len(strand2))}
# check if we have an inversion of the orientation of the segments

nina.marthe_ird.fr
committed
[strand_inversion,dict1,dict2]=detect_orient_inversion(dict1,dict2)
# check if we have an inversion of the order of the segments

nina.marthe_ird.fr
committed
segment_order_inversion=detect_segment_order_inversion(dict1,dict2)

nina.marthe_ird.fr
committed
# if there we have both inversions, the gene is in an inverted region
if segment_order_inversion and strand_inversion:
else :
# invert all the segments in a list (change the orientation)
def invert_segment_list(seg_list):
list_inverted=list()
for seg in seg_list:

nina.marthe_ird.fr
committed
list_inverted.append(invert_seg(seg))
return list(reversed(list_inverted))