Newer
Older
Jeremy Auclair
committed
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import xarray as xr\n",
"from dask.distributed import Client\n",
Jeremy Auclair
committed
"import dask.array as da\n",
"import numpy as np\n",
"from typing import List, Tuple, Union\n",
"import warnings\n",
Jeremy Auclair
committed
"import pandas as pd\n",
"import netCDF4 as nc\n",
"from parameters.params_samir_class import samir_parameters\n",
Jeremy Auclair
committed
"from config.config import config\n",
"from time import time"
Jeremy Auclair
committed
"execution_count": 2,
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
"metadata": {},
"outputs": [],
"source": [
"\n",
"\n",
"def rasterize_samir_parameters(csv_param_file: str, empty_dataset: xr.Dataset, land_cover_raster: str, chunk_size: dict) -> Tuple[xr.Dataset, dict]:\n",
" \"\"\"\n",
" Creates a raster `xarray` dataset from the csv parameter file, the land cover raster and an empty dataset\n",
" that contains the right structure (emptied ndvi dataset for example). For each parameter, the function loops\n",
" on land cover classes to fill the raster.\n",
"\n",
" ## Arguments\n",
" 1. csv_param_file: `str`\n",
" path to csv paramter file\n",
" 2. empty_dataset: `xr.Dataset`\n",
" empty dataset that contains the right structure (emptied ndvi dataset for example).\n",
" 3. land_cover_raster: `str`\n",
" path to land cover netcdf raster\n",
" 4. chunk_size: `dict`\n",
" chunk_size for dask computation\n",
"\n",
" ## Returns\n",
" 1. parameter_dataset: `xr.Dataset`\n",
" the dataset containing all the rasterized Parameters\n",
" 2. scale_factor: `dict`\n",
" dictionnary containing the scale factors for each parameter\n",
" \"\"\"\n",
" \n",
" # Load samir params into an object\n",
" table_param = samir_parameters(csv_param_file)\n",
" \n",
" # Set general variables\n",
" class_count = table_param.table.shape[1] - 2 # remove dtype and default columns\n",
" \n",
" # Open land cover raster\n",
" land_cover = xr.open_dataarray(land_cover_raster, chunks = chunk_size)\n",
" \n",
" # Create dataset\n",
" parameter_dataset = empty_dataset.copy(deep = True)\n",
" \n",
" # Create dictionnary containing the scale factors\n",
" scale_factor = {}\n",
" \n",
" # Loop on samir parameters and create \n",
" for parameter in table_param.table.index[1:]:\n",
" \n",
" # Create new variable and set attributes\n",
" parameter_dataset[parameter] = land_cover.copy(deep = True).astype('f4')\n",
" parameter_dataset[parameter].attrs['name'] = parameter\n",
" parameter_dataset[parameter].attrs['description'] = 'cf SAMIR Doc for detail'\n",
" parameter_dataset[parameter].attrs['scale factor'] = str(table_param.table.loc[table_param.table.index == parameter]['scale_factor'].values[0])\n",
" \n",
" # Assigne value in dictionnary\n",
" scale_factor[parameter] = 1/int(table_param.table.loc[table_param.table.index == parameter]['scale_factor'].values[0])\n",
" \n",
" # Loop on classes to set parameter values for each class\n",
" for class_val, class_name in zip(range(1, class_count + 1), table_param.table.columns[2:]):\n",
" \n",
" # Parameter values are multiplied by the scale factor in order to store all values as int16 types\n",
" # These values are then rounded to make sure there isn't any decimal point issues when casting the values to int16\n",
" parameter_dataset[parameter].values = np.where(parameter_dataset[parameter].values == class_val, round(table_param.table.loc[table_param.table.index == parameter][class_name].values[0]*table_param.table.loc[table_param.table.index == parameter]['scale_factor'].values[0]), parameter_dataset[parameter].values).astype('f4')\n",
" \n",
" # Return dataset converted to 'int16' data type to reduce memory usage\n",
" # and scale_factor dictionnary for later conversion\n",
" return parameter_dataset, scale_factor\n",
"\n",
"\n",
"def setup_time_loop(calculation_variables_t1: List[str], calculation_variables_t2: List[str], empty_dataset: xr.Dataset) -> Tuple[xr.Dataset, xr.Dataset]:\n",
" \"\"\"\n",
" Creates two temporary `xarray Datasets` that will be used in the SAMIR time loop.\n",
" `variables_t1` corresponds to the variables for the previous day and `variables_t2`\n",
" corresponds to the variables for the current day. After each loop, `variables_t1`\n",
" takes the value of `variables_t2` for the corresponding variables.\n",
"\n",
" ## Arguments\n",
" 1. calculation_variables_t1: `List[str]`\n",
" list of strings containing the variable names\n",
" for the previous day dataset\n",
" 2. calculation_variables_t2: `List[str]`\n",
" list of strings containing the variable names\n",
" for the current day dataset\n",
" 3. empty_dataset: `xr.Dataset`\n",
" empty dataset that contains the right structure\n",
"\n",
" ## Returns\n",
" 1. variables_t1: `xr.Dataset`\n",
" output dataset for previous day\n",
" 2. variables_t2: `xr.Dataset`\n",
" output dataset for current day\n",
" \"\"\"\n",
" \n",
" # Create new dataset\n",
" variables_t1 = empty_dataset.copy(deep = True)\n",
" \n",
" # Create empty DataArray for each variable\n",
" for variable in calculation_variables_t1:\n",
" \n",
" # Assign new empty DataArray\n",
" variables_t1[variable] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype = 'float32'))\n",
" variables_t1[variable].attrs['name'] = variable # set name in attributes\n",
" \n",
" # Create new dataset\n",
" variables_t2 = empty_dataset.copy(deep = True)\n",
" \n",
" # Create empty DataArray for each variable\n",
" for variable in calculation_variables_t2:\n",
" \n",
" # Assign new empty DataArray\n",
" variables_t2[variable] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype = 'float32'))\n",
" variables_t2[variable].attrs['name'] = variable # set name in attributes\n",
" \n",
" return variables_t1, variables_t2\n",
"\n",
"\n",
"def prepare_outputs(empty_dataset: xr.Dataset, additional_outputs: List[str] = None) -> xr.Dataset:\n",
" \"\"\"\n",
" Creates the `xarray Dataset` containing the outputs of the SAMIR model that will be saved.\n",
" Additional variables can be saved by adding their names to the `additional_outputs` list.\n",
"\n",
" ## Arguments\n",
" 1. empty_dataset: `xr.Dataset`\n",
" empty dataset that contains the right structure\n",
" 2. additional_outputs: `List[str]`\n",
" list of additional variable names to be saved\n",
"\n",
" ## Returns\n",
" 1. model_outputs: `xr.Dataset`\n",
" model outputs to be saved\n",
" \"\"\"\n",
" \n",
" # Evaporation and Transpiraion\n",
" model_outputs = empty_dataset.copy(deep = True)\n",
" \n",
" model_outputs['E'] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype = 'int16'))\n",
" model_outputs['E'].attrs['units'] = 'mm'\n",
" model_outputs['E'].attrs['standard_name'] = 'Evaporation'\n",
" model_outputs['E'].attrs['description'] = 'Accumulated daily evaporation in milimeters'\n",
" model_outputs['E'].attrs['scale factor'] = '1000'\n",
" \n",
" model_outputs['Tr'] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype = 'int16'))\n",
" model_outputs['Tr'].attrs['units'] = 'mm'\n",
" model_outputs['Tr'].attrs['standard_name'] = 'Transpiration'\n",
" model_outputs['Tr'].attrs['description'] = 'Accumulated daily plant transpiration in milimeters'\n",
" model_outputs['Tr'].attrs['scale factor'] = '1000'\n",
" \n",
" # Soil Water Content\n",
" model_outputs['SWCe'] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype = 'int16'))\n",
" model_outputs['SWCe'].attrs['units'] = 'mm'\n",
" model_outputs['SWCe'].attrs['standard_name'] = 'Soil Water Content of the evaporative zone'\n",
" model_outputs['SWCe'].attrs['description'] = 'Soil water content of the evaporative zone in milimeters'\n",
" model_outputs['SWCe'].attrs['scale factor'] = '1000'\n",
" \n",
" model_outputs['SWCr'] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype = 'int16'))\n",
" model_outputs['SWCr'].attrs['units'] = 'mm'\n",
" model_outputs['SWCr'].attrs['standard_name'] = 'Soil Water Content of the root zone'\n",
" model_outputs['SWCr'].attrs['description'] = 'Soil water content of the root zone in milimeters'\n",
" model_outputs['SWCr'].attrs['scale factor'] = '1000'\n",
" \n",
" # Irrigation\n",
" model_outputs['Irr'] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype = 'int16'))\n",
" model_outputs['Irr'].attrs['units'] = 'mm'\n",
" model_outputs['Irr'].attrs['standard_name'] = 'Irrigation'\n",
" model_outputs['Irr'].attrs['description'] = 'Simulated daily irrigation in milimeters'\n",
" model_outputs['Irr'].attrs['scale factor'] = '1000'\n",
" \n",
" # Deep Percolation\n",
" model_outputs['DP'] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype = 'int16'))\n",
" model_outputs['DP'].attrs['units'] = 'mm'\n",
" model_outputs['DP'].attrs['standard_name'] = 'Deep Percolation'\n",
" model_outputs['DP'].attrs['description'] = 'Simulated daily Deep Percolation in milimeters'\n",
" model_outputs['DP'].attrs['scale factor'] = '1000'\n",
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
" \n",
" if additional_outputs:\n",
" for var in additional_outputs:\n",
" model_outputs[var] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype = 'int16'))\n",
" \n",
" return model_outputs\n",
"\n",
"\n",
"def xr_maximum(ds: xr.DataArray, value: Union[xr.DataArray, float, int]) -> xr.DataArray:\n",
" \"\"\"\n",
" Equivalent of `numpy.maximum(ds, value)` for xarray DataArrays\n",
"\n",
" ## Arguments\n",
" 1. ds: `xr.DataArray`\n",
" datarray to compare\n",
" 2. value: `Union[xr.DataArray, float, int]`\n",
" value (scalar or dataarray) to compare\n",
"\n",
" ## Returns\n",
" 1. output: `xr.DataArray`\n",
" resulting dataarray with maximum value element-wise\n",
" \"\"\"\n",
" return xr.where(ds <= value, value, ds, keep_attrs = True)\n",
"\n",
"\n",
"def xr_minimum(ds: xr.DataArray, value: Union[xr.DataArray, float, int]) -> xr.DataArray:\n",
" \"\"\"\n",
" Equivalent of `numpy.minimum(ds, value)` for xarray DataArrays\n",
"\n",
" ## Arguments\n",
" 1. ds: `xr.DataArray`\n",
" datarray to compare\n",
" 2. value: `Union[xr.DataArray, float, int]`\n",
" value (scalar or dataarray) to compare\n",
"\n",
" ## Returns\n",
" 1. output: `xr.DataArray`\n",
" resulting dataarray with minimum value element-wise\n",
" \"\"\"\n",
" return xr.where(ds >= value, value, ds, keep_attrs = True)\n",
"\n",
"\n",
Jeremy Auclair
committed
"def calculate_diff_re(TAW: np.ndarray, Dr: np.ndarray, Zr: np.ndarray, RUE: np.ndarray, De: np.ndarray, FCov: np.ndarray, Ze_: np.ndarray, DiffE_: np.ndarray, scale_dict: dict) -> np.ndarray:\n",
" \"\"\"\n",
" Calculates the diffusion between the top soil layer and the root layer.\n",
"\n",
" ## Arguments\n",
Jeremy Auclair
committed
" 1. TAW: `np.ndarray`\n",
Jeremy Auclair
committed
" 2. Dr: `np.ndarray`\n",
Jeremy Auclair
committed
" 3. Zr: `np.ndarray`\n",
Jeremy Auclair
committed
" 4. RUE: `np.ndarray`\n",
Jeremy Auclair
committed
" 5. De: `np.ndarray`\n",
Jeremy Auclair
committed
" 6. FCov: `np.ndarray`\n",
Jeremy Auclair
committed
" 7. Ze_: `np.ndarray`\n",
" height of evaporative layer (paramter)\n",
Jeremy Auclair
committed
" 8. DiffE_: `np.ndarray`\n",
" diffusion coefficient between evaporative\n",
" and root layers (unitless, parameter)\n",
" 9. scale_dict: `dict`\n",
" dictionnary containing the scale factors for\n",
" the rasterized parameters\n",
"\n",
" ## Returns\n",
Jeremy Auclair
committed
" 1. diff_re: `np.ndarray`\n",
" the diffusion between the top soil layer and\n",
" the root layer\n",
" \"\"\"\n",
" \n",
" # Temporary variables to make calculation easier to read\n",
" tmp1 = (((TAW - Dr) / Zr - (RUE - De) / (scale_dict['Ze'] * Ze_)) / FCov) * (scale_dict['DiffE'] * DiffE_)\n",
" tmp2 = ((TAW * scale_dict['Ze'] * Ze_) - (RUE - De - Dr) * Zr) / (Zr + scale_dict['Ze'] * Ze_) - Dr\n",
" \n",
" # Calculate diffusion according to SAMIR equation\n",
Jeremy Auclair
committed
" diff_re = np.where(tmp1 < 0, np.maximum(tmp1, tmp2), np.minimum(tmp1, tmp2))\n",
"\n",
" # Return zero values where the 'DiffE' parameter is equal to 0\n",
Jeremy Auclair
committed
" return np.where(DiffE_ == 0, 0, diff_re)\n",
Jeremy Auclair
committed
"def calculate_diff_dr(TAW: np.ndarray, TDW: np.ndarray, Dr: np.ndarray, Zr: np.ndarray, Dd: np.ndarray, FCov: np.ndarray, Zsoil_: np.ndarray, DiffR_: np.ndarray, scale_dict: dict) -> np.ndarray:\n",
" \"\"\"\n",
" Calculates the diffusion between the root layer and the deep layer.\n",
"\n",
" ## Arguments\n",
Jeremy Auclair
committed
" 1. TAW: `np.ndarray`\n",
Jeremy Auclair
committed
" 2. TDW: `np.ndarray`\n",
Jeremy Auclair
committed
" 3. Dr: `np.ndarray`\n",
Jeremy Auclair
committed
" 4. Zr: `np.ndarray`\n",
Jeremy Auclair
committed
" 5. Dd: `np.ndarray`\n",
Jeremy Auclair
committed
" 6. FCov: `np.ndarray`\n",
Jeremy Auclair
committed
" 7. Zsoil_: `np.ndarray`\n",
Jeremy Auclair
committed
" 8. DiffR_: `np.ndarray`\n",
" Diffusion coefficient between root\n",
" and deep layers (unitless, parameter)\n",
" 9. scale_dict: `dict`\n",
" dictionnary containing the scale factors for\n",
" the rasterized parameters\n",
"\n",
" ## Returns\n",
Jeremy Auclair
committed
" 1. diff_dr: `np.ndarray`\n",
" the diffusion between the root layer and the\n",
" deep layer\n",
" \"\"\"\n",
" \n",
" # Temporary variables to make calculation easier to read\n",
" tmp1 = (((TDW - Dd) / (scale_dict['Zsoil'] * Zsoil_ - Zr) - (TAW - Dr) / Zr) / FCov) * scale_dict['DiffR'] * DiffR_\n",
" tmp2 = (TDW *Zr - (TAW - Dr - Dd) * (scale_dict['Zsoil'] * Zsoil_ - Zr)) / (scale_dict['Zsoil'] * Zsoil_) - Dd\n",
" \n",
" # Calculate diffusion according to SAMIR equation\n",
Jeremy Auclair
committed
" diff_dr = np.where(tmp1 < 0, np.maximum(tmp1, tmp2), np.minimum(tmp1, tmp2))\n",
" \n",
" # Return zero values where the 'DiffR' parameter is equal to 0\n",
Jeremy Auclair
committed
" return np.where(DiffR_ == 0, 0, diff_dr)\n",
Jeremy Auclair
committed
"def calculate_W(TEW: np.ndarray, Dei: np.ndarray, Dep: np.ndarray, fewi: np.ndarray, fewp: np.ndarray) -> np.ndarray:\n",
" \"\"\"\n",
" Calculate W, the weighting factor to split the energy available\n",
" for evaporation depending on the difference in water availability\n",
" in the two evaporation components, ensuring that the larger and\n",
" the wetter, the more the evaporation occurs from that component\n",
"\n",
" ## Arguments\n",
Jeremy Auclair
committed
" 1. TEW: `np.ndarray`\n",
Jeremy Auclair
committed
" 2. Dei: `np.ndarray`\n",
" depletion of the evaporative layer\n",
" (irrigation part)\n",
Jeremy Auclair
committed
" 3. Dep: `np.ndarray`\n",
" depletion of the evaporative layer\n",
" (precipitation part)\n",
Jeremy Auclair
committed
" 4. fewi: `np.ndarray`\n",
" soil fraction which is wetted by irrigation\n",
" and exposed to evaporation\n",
Jeremy Auclair
committed
" 5. fewp: `np.ndarray`\n",
" soil fraction which is wetted by precipitation\n",
" and exposed to evaporation\n",
"\n",
" ## Returns\n",
Jeremy Auclair
committed
" 1. W: `np.ndarray`\n",
" weighting factor W\n",
" \"\"\"\n",
" \n",
" # Temporary variables to make calculation easier to read\n",
" tmp = fewi * (TEW - Dei)\n",
" \n",
" # Calculate the weighting factor to split the energy available for evaporation\n",
" W = 1 / (1 + (fewp * (TEW - Dep) / tmp ))\n",
"\n",
" # Return W \n",
Jeremy Auclair
committed
" return np.where(tmp > 0, W, 0)\n",
Jeremy Auclair
committed
"def calculate_Kr(TEW: np.ndarray, De: np.ndarray, REW_: np.ndarray, scale_dict: dict) -> np.ndarray:\n",
" \"\"\"\n",
" calculates of the reduction coefficient for evaporation dependent \n",
" on the amount of water in the soil using the FAO-56 method\n",
"\n",
" ## Arguments\n",
Jeremy Auclair
committed
" 1. TEW: `np.ndarray`\n",
Jeremy Auclair
committed
" 2. De: `np.ndarray`\n",
Jeremy Auclair
committed
" 3. REW_: `np.ndarray`\n",
" readily evaporable water\n",
" 4. scale_dict: `dict`\n",
" dictionnary containing the scale factors for\n",
" the rasterized parameters\n",
"\n",
" ## Returns\n",
Jeremy Auclair
committed
" 1. Kr: `np.ndarray`\n",
" Kr coefficient\n",
" \"\"\"\n",
" \n",
" # Formula for calculating Kr\n",
" Kr = (TEW - De) / (TEW - scale_dict['REW'] * REW_)\n",
" \n",
" # Return Kr\n",
Jeremy Auclair
committed
" return np.maximum(0, np.minimum(Kr, 1))\n",
Jeremy Auclair
committed
"def update_Dr(TAW: np.ndarray, TDW: np.ndarray, Zr: np.ndarray, TAW0: np.ndarray, TDW0: np.ndarray, Dr0: np.ndarray, Dd0: np.ndarray, Zr0: np.ndarray) -> np.ndarray:\n",
" \"\"\"\n",
" Return the updated depletion for the root layer\n",
"\n",
" ## Arguments\n",
Jeremy Auclair
committed
" 1. TAW: `np.ndarray`\n",
" water capacity of root layer for current day\n",
Jeremy Auclair
committed
" 2. TDW: `np.ndarray`\n",
" water capacity of deep layer for current day\n",
Jeremy Auclair
committed
" 3. Zr: `np.ndarray`\n",
Jeremy Auclair
committed
" 4. TAW0: `np.ndarray`\n",
" water capacity of root layer for previous day\n",
Jeremy Auclair
committed
" 5. TDW0: `np.ndarray`\n",
" water capacity of deep layer for previous day\n",
Jeremy Auclair
committed
" 6. Dr0: `np.ndarray`\n",
" depletion of the root layer for previous day\n",
Jeremy Auclair
committed
" 7. Dd0: `np.ndarray`\n",
" depletion of the deep laye for previous day\n",
Jeremy Auclair
committed
" 8. Zr0: `np.ndarray`\n",
" root layer height for previous day\n",
"\n",
" ## Returns\n",
Jeremy Auclair
committed
" 1. output: `np.ndarray`\n",
" updated depletion for the root layer\n",
" \"\"\"\n",
" \n",
" # Temporary variables to make calculation easier to read\n",
Jeremy Auclair
committed
" tmp1 = np.maximum(Dr0 + Dd0 * (TAW - TAW0) / TDW0, 0)\n",
" tmp2 = np.minimum(Dr0 + Dd0 * (TAW - TAW0) / TDW0, TDW)\n",
Jeremy Auclair
committed
" return np.where(Zr > Zr0, tmp1, tmp2)\n",
Jeremy Auclair
committed
"def update_Dd(TAW: np.ndarray, TDW: np.ndarray, Zr: np.ndarray, TAW0: np.ndarray, TDW0: np.ndarray, Dd0: np.ndarray, Zr0: np.ndarray) -> np.ndarray:\n",
" \"\"\"\n",
" Return the updated depletion for the deep layer\n",
"\n",
" ## Arguments\n",
Jeremy Auclair
committed
" 1. TAW: `np.ndarray`\n",
" water capacity of root layer for current day\n",
Jeremy Auclair
committed
" 2. TDW: `np.ndarray`\n",
" water capacity of deep layer for current day\n",
Jeremy Auclair
committed
" 3. TAW0: `np.ndarray`\n",
" water capacity of root layer for previous day\n",
Jeremy Auclair
committed
" 5. TDW0: `np.ndarray`\n",
" water capacity of deep layer for previous day\n",
Jeremy Auclair
committed
" 6. Dd0: `np.ndarray`\n",
" depletion of the deep laye for previous day\n",
Jeremy Auclair
committed
" 7. Zr0: `np.ndarray`\n",
" root layer height for previous day\n",
"\n",
" ## Returns\n",
Jeremy Auclair
committed
" 1. output: `np.ndarray`\n",
" updated depletion for the deep layer\n",
" \"\"\"\n",
" \n",
" # Temporary variables to make calculation easier to read\n",
Jeremy Auclair
committed
" tmp1 = np.maximum(Dd0 - Dd0 * (TAW - TAW0) / TDW0, 0)\n",
" tmp2 = np.minimum(Dd0 - Dd0 * (TAW - TAW0) / TDW0, TDW)\n",
Jeremy Auclair
committed
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
" return np.where(Zr > Zr0, tmp1, tmp2)\n",
"\n",
"\n",
"def format_duration(timedelta: float) -> None:\n",
" \"\"\"\n",
" Print formatted timedelta in human readable format\n",
" (days, hours, minutes, seconds, microseconds, milliseconds, nanoseconds).\n",
"\n",
" ## Arguments\n",
" timedelta: `float`\n",
" time value in seconds to format\n",
"\n",
" ## Returns\n",
" `None`\n",
" \"\"\"\n",
" \n",
" if timedelta < 0.9e-6:\n",
" print(round(timedelta*1e9, 1), 'ns')\n",
" elif timedelta < 0.9e-3:\n",
" print(round(timedelta*1e6, 1), 'µs')\n",
" elif timedelta < 0.9:\n",
" print(round(timedelta*1e3, 1), 'ms')\n",
" elif timedelta < 60:\n",
" print(round(timedelta, 1), 's')\n",
" elif timedelta < 3.6e3:\n",
" print(round(timedelta//60), 'm', round(timedelta%60, 1), 's')\n",
" elif timedelta < 24*3.6e3:\n",
" print(round((timedelta/3.6e3)//1), 'h', round((timedelta/3.6e3)%1*60//1), 'm', round((timedelta/3.6e3)%1*60%1*60, 1), 's' ) \n",
" elif timedelta < 48*3.6e3:\n",
" print(round((timedelta/(24*3.6e3))//1), 'day,', round(((timedelta/(24*3.6e3))%1*24)//1), 'h,', round((timedelta/(24*3.6e3))%1*24%1*60//1), 'm,', round((timedelta/(24*3.6e3))%1*24%1*60%1*60, 1), 's')\n",
" else:\n",
" print(round((timedelta/(24*3.6e3))//1), 'days,', round(((timedelta/(24*3.6e3))%1*24)//1), 'h,', round((timedelta/(24*3.6e3))%1*24%1*60//1), 'm,', round((timedelta/(24*3.6e3))%1*24%1*60%1*60, 1), 's')\n",
" \n",
" return None\n",
Jeremy Auclair
committed
"def run_samir(json_config_file: str, csv_param_file: str, ndvi_cube_path: str, precip_cube_path: str, ET0_cube_path: str, soil_params_path: str, land_cover_path: str, chunk_size: dict, save_path: str, max_GB: int = 2) -> None:\n",
" \n",
" # warnings.simplefilter(\"error\", category = RuntimeWarning())\n",
" warnings.filterwarnings(\"ignore\", message=\"invalid value encountered in cast\")\n",
" warnings.filterwarnings(\"ignore\", message=\"invalid value encountered in divide\")\n",
Jeremy Auclair
committed
" np.errstate(all = 'ignore')\n",
" \n",
" #============ General parameters ============#\n",
" config_params = config(json_config_file)\n",
" calculation_variables_t2 = ['diff_rei', 'diff_rep', 'diff_dr' , 'Dd', 'De', 'Dei', 'Dep', 'Dr', 'FCov', 'Irrig', 'Kcb', 'Kei', 'Kep', 'Ks', 'Kti', 'Ktp', 'RUE', 'TAW', 'TDW', 'TEW', 'Tei', 'Tep', 'W', 'Zr', 'fewi', 'fewp']\n",
" calculation_variables_t1 = ['Dr', 'Dd', 'TAW', 'TDW', 'Zr']\n",
" \n",
" #============ Manage inputs ============#\n",
" # NDVI\n",
Jeremy Auclair
committed
" ndvi_cube = xr.open_dataset(ndvi_cube_path, chunks = chunk_size).astype('u1')\n",
Jeremy Auclair
committed
" ## Open geotiff cubes and rename variables and coordinates\n",
" prec_cube = xr.open_dataset(precip_cube_path, chunks = chunk_size).astype('u2').rename({'band': 'time', 'band_data': 'prec'})\n",
" ET0_cube = xr.open_dataset(ET0_cube_path, chunks = chunk_size).astype('u2').rename({'band': 'time', 'band_data': 'ET0'})\n",
" \n",
" ## Reset times values \n",
" prec_cube['time'] = pd.date_range(start = config_params.start_date, end = config_params.end_date, freq = 'D')\n",
" ET0_cube['time'] = pd.date_range(start = config_params.start_date, end = config_params.end_date, freq = 'D')\n",
" \n",
" ## Remove unwanted attributes\n",
" del prec_cube.prec.attrs['AREA_OR_POINT'], ET0_cube.ET0.attrs['AREA_OR_POINT']\n",
" \n",
" # Soil\n",
" soil_params = xr.open_dataset(soil_params_path, chunks = chunk_size).astype('f4')\n",
" \n",
" # SAMIR Parameters\n",
" param_dataset, scale_factor = rasterize_samir_parameters(csv_param_file, ndvi_cube.drop_vars(['ndvi', 'time']), land_cover_path, chunk_size = chunk_size)\n",
" \n",
" # SAMIR Variables\n",
" variables_t1, variables_t2 = setup_time_loop(calculation_variables_t1, calculation_variables_t2, ndvi_cube.drop_vars(['ndvi', 'time']))\n",
Jeremy Auclair
committed
" # # Manage loading of data based on disk size of inputs\n",
" # if ndvi_cube.nbytes < max_GB * (1024)**3:\n",
" # ndvi_cube.load()\n",
Jeremy Auclair
committed
" # if weather_cube.nbytes < max_GB * (1024)**3:\n",
" # weather_cube.load()\n",
"\n",
" #============ Prepare outputs ============#\n",
" model_outputs = prepare_outputs(ndvi_cube.drop_vars(['ndvi']))\n",
" \n",
Jeremy Auclair
committed
" # Create encoding dictionnary\n",
" for variable in list(model_outputs.keys()):\n",
" # Write encoding dict\n",
" encoding_dict = {}\n",
" encod = {}\n",
" encod['dtype'] = 'i2'\n",
" encoding_dict[variable] = encod\n",
" \n",
" # Save empty output\n",
" model_outputs.to_netcdf(save_path, encoding = encoding_dict)\n",
" model_outputs.close()\n",
" \n",
" #============ Prepare time iterations ============#\n",
" dates = ndvi_cube.time.values\n",
" \n",
" #============ Create aliases for better readability ============#\n",
" \n",
" # Variables for current day\n",
Jeremy Auclair
committed
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
" # var = da.from_array(dataarray, chunks = (5, 5))\n",
" diff_rei = variables_t2.diff_rei.to_numpy()\n",
" diff_rep = variables_t2.diff_rep.to_numpy()\n",
" diff_dr = variables_t2.diff_dr.to_numpy()\n",
" Dd = variables_t2.Dd.to_numpy()\n",
" De = variables_t2.De.to_numpy()\n",
" Dei = variables_t2.Dei.to_numpy()\n",
" Dep = variables_t2.Dep.to_numpy()\n",
" Dr = variables_t2.Dr.to_numpy()\n",
" FCov = variables_t2.FCov.to_numpy()\n",
" Irrig = variables_t2.Irrig.to_numpy()\n",
" Kcb = variables_t2.Kcb.to_numpy()\n",
" Kei = variables_t2.Kei.to_numpy()\n",
" Kep = variables_t2.Kep.to_numpy()\n",
" Ks = variables_t2.Ks.to_numpy()\n",
" Kti = variables_t2.Kti.to_numpy()\n",
" Ktp = variables_t2.Ktp.to_numpy()\n",
" RUE = variables_t2.RUE.to_numpy()\n",
" TAW = variables_t2.TAW.to_numpy()\n",
" TDW = variables_t2.TDW.to_numpy()\n",
" TEW = variables_t2.TEW.to_numpy()\n",
" Tei = variables_t2.Tei.to_numpy()\n",
" Tep = variables_t2.Tep.to_numpy()\n",
" Zr = variables_t2.Zr.to_numpy()\n",
" W = variables_t2.W.to_numpy()\n",
" fewi = variables_t2.fewi.to_numpy()\n",
" fewp = variables_t2.fewp.to_numpy()\n",
" \n",
" # Variables for previous day\n",
Jeremy Auclair
committed
" TAW0 = variables_t1.TAW.to_numpy()\n",
" TDW0 = variables_t1.TDW.to_numpy()\n",
" Dr0 = variables_t1.Dr.to_numpy()\n",
" Dd0 = variables_t1.Dd.to_numpy()\n",
" Zr0 = variables_t1.Zr.to_numpy()\n",
" \n",
" # Parameters\n",
" # Parameters have an underscore (_) behind their name for recognition \n",
Jeremy Auclair
committed
" DiffE_ = param_dataset.DiffE.to_numpy()\n",
" DiffR_ = param_dataset.DiffR.to_numpy()\n",
" FW_ = param_dataset.FW.to_numpy()\n",
" Fc_stop_ = param_dataset.Fc_stop.to_numpy()\n",
" FmaxFC_ = param_dataset.FmaxFC.to_numpy()\n",
" Foffset_ = param_dataset.Foffset.to_numpy()\n",
" Fslope_ = param_dataset.Fslope.to_numpy()\n",
" Init_RU_ = param_dataset.Init_RU.to_numpy()\n",
" Irrig_auto_ = param_dataset.Irrig_auto.to_numpy()\n",
" Kcmax_ = param_dataset.Kcmax.to_numpy()\n",
" KmaxKcb_ = param_dataset.KmaxKcb.to_numpy()\n",
" Koffset_ = param_dataset.Koffset.to_numpy()\n",
" Kslope_ = param_dataset.Kslope.to_numpy()\n",
" Lame_max_ = param_dataset.Lame_max.to_numpy()\n",
" REW_ = param_dataset.REW.to_numpy()\n",
" Ze_ = param_dataset.Ze.to_numpy()\n",
" Zsoil_ = param_dataset.Zsoil.to_numpy()\n",
" maxZr_ = param_dataset.maxZr.to_numpy()\n",
" minZr_ = param_dataset.minZr.to_numpy()\n",
" p_ = param_dataset.p.to_numpy()\n",
" \n",
" # scale factors\n",
" # Scale factors have the following name scheme : s_ + parameter_name\n",
" s_DiffE = scale_factor['DiffE']\n",
" s_DiffR = scale_factor['DiffR']\n",
" s_FW = scale_factor['FW']\n",
" s_Fc_stop = scale_factor['Fc_stop']\n",
" s_FmaxFC = scale_factor['FmaxFC']\n",
" s_Foffset = scale_factor['Foffset']\n",
" s_Fslope = scale_factor['Fslope']\n",
" s_Init_RU = scale_factor['Init_RU']\n",
" # s_Irrig_auto = scale_factor['Irrig_auto']\n",
" s_Kcmax = scale_factor['Kcmax']\n",
" s_KmaxKcb = scale_factor['KmaxKcb']\n",
" s_Koffset = scale_factor['Koffset']\n",
" s_Kslope = scale_factor['Kslope']\n",
" s_Lame_max = scale_factor['Lame_max']\n",
" s_REW = scale_factor['REW']\n",
" s_Ze = scale_factor['Ze']\n",
" s_Zsoil = scale_factor['Zsoil']\n",
" s_maxZr = scale_factor['maxZr']\n",
" s_minZr = scale_factor['minZr']\n",
" s_p = scale_factor['p']\n",
" \n",
Jeremy Auclair
committed
" # input data\n",
" ndvi = ndvi_cube.ndvi.sel({'time': dates[0]}).to_numpy() / 255\n",
" prec = prec_cube.prec.sel({'time': dates[0]}).to_numpy() / 1000\n",
" ET0 = ET0_cube.ET0.sel({'time': dates[0]}).to_numpy() / 1000\n",
"\n",
" #============ First day initialization ============#\n",
" # Fraction cover\n",
Jeremy Auclair
committed
" FCov = s_Fslope * Fslope_ * ndvi + s_Foffset * Foffset_\n",
" FCov = np.minimum(np.maximum(FCov, 0), s_Fc_stop * Fc_stop_)\n",
" \n",
" # Root depth upate\n",
" Zr = s_minZr * minZr_ + (FCov / (s_FmaxFC * FmaxFC_)) * s_maxZr * (maxZr_ - minZr_)\n",
" \n",
" # Water capacities\n",
Jeremy Auclair
committed
" TEW = (soil_params.FC.values - soil_params.WP.values/2) * s_Ze * Ze_\n",
" RUE = (soil_params.FC.values - soil_params.WP.values) * s_Ze * Ze_\n",
" TAW = (soil_params.FC.values - soil_params.WP.values) * Zr\n",
" TDW = (soil_params.FC.values - soil_params.WP.values) * (s_Zsoil * Zsoil_ - Zr) # Zd = Zsoil - Zr\n",
" \n",
" # Depletions\n",
" Dei = RUE * (1 - s_Init_RU * Init_RU_)\n",
" Dep = RUE * (1 - s_Init_RU * Init_RU_)\n",
" Dr = TAW * (1 - s_Init_RU * Init_RU_)\n",
" Dd = TDW * (1 - s_Init_RU * Init_RU_)\n",
" \n",
Jeremy Auclair
committed
" # Irrigation TODO : find correct method for irrigation\n",
" Irrig = np.minimum(np.maximum(Dr - prec, 0), s_Lame_max * Lame_max_) * Irrig_auto_\n",
" Irrig = np.where(Dr > TAW * s_p * p_, Irrig, 0)\n",
Jeremy Auclair
committed
" Kcb = np.minimum(s_Kslope * Kslope_ * ndvi + s_Koffset * Koffset_, s_KmaxKcb * KmaxKcb_)\n",
Jeremy Auclair
committed
" # Update depletions with rainfall and/or irrigation\n",
" \n",
" ## DP \n",
" # Variable directly written since not used later\n",
" # Dimensions of output dataset : (x, y, time)\n",
" outputs = nc.Dataset(save_path, mode='r+')\n",
" outputs.variables['DP'][:,:,0] = np.round(- np.minimum(Dd + np.minimum(Dr - prec - Irrig, 0), 0) * 1000).astype('int16')\n",
" outputs.close()\n",
"\n",
" # model_outputs.DP.loc[{'time': dates[0]}] = - np.minimum(Dd + np.minimum(Dr - prec - Irrig, 0), 0)\n",
Jeremy Auclair
committed
" Dei = np.minimum(np.maximum(Dei - prec - Irrig / (s_FW * FW_ / 100), 0), TEW)\n",
" Dep = np.minimum(np.maximum(Dep - prec, 0), TEW)\n",
Jeremy Auclair
committed
" fewi = np.minimum(1 - FCov, (s_FW * FW_ / 100))\n",
Jeremy Auclair
committed
" De = np.divide((Dei * fewi + Dep * fewp), (fewi + fewp))\n",
" De = np.where(np.isfinite(De), De, Dei * (s_FW * FW_ / 100) + Dep * (1 - (s_FW * FW_ / 100)))\n",
Jeremy Auclair
committed
" Dr = np.minimum(np.maximum(Dr - prec - Irrig, 0), TAW)\n",
Jeremy Auclair
committed
" Dd = np.minimum(np.maximum(Dd + np.minimum(Dr - prec - Irrig, 0), 0), TDW)\n",
" \n",
" # Diffusion coefficients\n",
" diff_rei = calculate_diff_re(TAW, Dr, Zr, RUE, Dei, FCov, Ze_, DiffE_, scale_factor)\n",
" diff_rep = calculate_diff_re(TAW, Dr, Zr, RUE, Dep, FCov, Ze_, DiffE_, scale_factor)\n",
" diff_dr = calculate_diff_dr(TAW, TDW, Dr, Zr, Dd, FCov, Zsoil_, DiffR_, scale_factor) \n",
" \n",
" # Weighing factor W\n",
" W = calculate_W(TEW, Dei, Dep, fewi, fewp)\n",
" \n",
Jeremy Auclair
committed
" # Write outputs\n",
" # Variables directly written since not used later\n",
" outputs = nc.Dataset(save_path, mode='r+')\n",
" # Soil water content of evaporative layer\n",
" outputs.variables['SWCe'][:,:,0] = np.round((1 - De/TEW) * 1000).astype('int16')\n",
" # Soil water content of root layer\n",
" outputs.variables['SWCe'][:,:,0] = np.round((1 - Dr/TAW) * 1000).astype('int16')\n",
" outputs.close()\n",
" \n",
" \n",
" # model_outputs.SWCe.loc[{'time': dates[0]}] = 1 - De/TEW\n",
" # model_outputs.SWCr.loc[{'time': dates[0]}] = 1 - Dr/TAW\n",
" \n",
" # Water Stress coefficient\n",
Jeremy Auclair
committed
" Ks = np.minimum((TAW - Dr) / (TAW * (1 - s_p * p_)), 1)\n",
" \n",
" # Reduction coefficient for evaporation\n",
Jeremy Auclair
committed
" Kei = np.minimum(W * calculate_Kr(TEW, Dei, REW_, scale_factor) * (s_Kcmax * Kcmax_ - Kcb), fewi * s_Kcmax * Kcmax_)\n",
" Kep = np.minimum((1 - W) * calculate_Kr(TEW, Dep, REW_, scale_factor) * (s_Kcmax * Kcmax_ - Kcb), fewp * s_Kcmax * Kcmax_)\n",
" \n",
" # Prepare coefficients for evapotranspiration\n",
Jeremy Auclair
committed
" Kti = np.minimum(((s_Ze * Ze_ / Zr)**6) * (1 - Dei / TEW) / np.maximum(1 - Dr / TAW, 0.001), 1)\n",
" Ktp = np.minimum(((s_Ze * Ze_ / Zr)**6) * (1 - Dep / TEW) / np.maximum(1 - Dr / TAW, 0.001), 1)\n",
" Tei = Kti * Ks * Kcb * ET0\n",
" Tep = Ktp * Ks * Kcb * ET0\n",
Jeremy Auclair
committed
" Dei = np.where(fewi > 0, np.minimum(np.maximum(Dei + ET0 * Kei / fewi + Tei - diff_rei, 0), TEW), np.minimum(np.maximum(Dei + Tei - diff_rei, 0), TEW))\n",
" Dep = np.where(fewp > 0, np.minimum(np.maximum(Dep + ET0 * Kep / fewp + Tep - diff_rep, 0), TEW), np.minimum(np.maximum(Dep + Tep - diff_rep, 0), TEW))\n",
" \n",
" De = (Dei * fewi + Dep * fewp) / (fewi + fewp)\n",
Jeremy Auclair
committed
" De = np.where(np.isfinite(De), De, Dei * (s_FW * FW_ / 100) + Dep * (1 - (s_FW * FW_ / 100)))\n",
Jeremy Auclair
committed
" E = np.maximum((Kei + Kep) * ET0, 0)\n",
Jeremy Auclair
committed
" Tr = Kcb * Ks * ET0\n",
" \n",
" # Irrigation\n",
" # model_outputs.Irr.loc[{'time': dates[0]}] = Irrig\n",
" \n",
" # Write outputs\n",
" outputs = nc.Dataset(save_path, mode='r+')\n",
" # Evaporation\n",
" outputs.variables['E'][:,:,0] = np.round(E * 1000).astype('int16')\n",
" # Transpiration\n",
" outputs.variables['Tr'][:,:,0] = np.round(Tr * 1000).astype('int16')\n",
" # Irrigation\n",
" outputs.variables['Irr'][:,:,0] = np.round(Irrig * 1000).astype('int16')\n",
" outputs.close()\n",
" \n",
" # Potential evapotranspiration and evaporative fraction ??\n",
" \n",
" # Update depletions (root and deep zones) at the end of the day\n",
Jeremy Auclair
committed
" Dr = np.minimum(np.maximum(Dr + E + Tr - diff_dr, 0), TAW)\n",
" Dd = np.minimum(np.maximum(Dd + diff_dr, 0), TDW)\n",
" del E, Tr\n",
Jeremy Auclair
committed
" # Update previous day values\n",
" TAW0 = TAW\n",
" TDW0 = TDW\n",
" Dr0 = Dr\n",
" Dd0 = Dd\n",
" Zr0 = Zr\n",
Jeremy Auclair
committed
" print('day 1/', len(dates), ' ', end = '\\r')\n",
" \n",
" # # Update variable_t1 values\n",
" # for variable in calculation_variables_t1:\n",
" # variables_t1[variable] = variables_t2[variable].copy(deep = True)\n",
" \n",
" #============ Time loop ============#\n",
" for i in range(1, len(dates)):\n",
" \n",
Jeremy Auclair
committed
" # Reset input aliases\n",
" # input data\n",
" ndvi = (ndvi_cube.ndvi.sel({'time': dates[i]}).to_numpy() / 255)\n",
" prec = prec_cube.prec.sel({'time': dates[i]}).to_numpy() / 1000\n",
" ET0 = ET0_cube.ET0.sel({'time': dates[i]}).to_numpy() / 1000\n",
" ET0_previous = ET0_cube.ET0.sel({'time': dates[i-1]}).to_numpy() / 1000\n",
" \n",
" # Update variables\n",
" ## Fraction cover\n",
Jeremy Auclair
committed
" FCov = s_Fslope * Fslope_ * ndvi + s_Foffset * Foffset_\n",
" FCov = np.minimum(np.maximum(FCov, 0), s_Fc_stop * Fc_stop_)\n",
" \n",
" ## Root depth upate\n",
" Zr = s_minZr * minZr_ + (FCov / (s_FmaxFC * FmaxFC_)) * s_maxZr * (maxZr_ - minZr_)\n",
" \n",
" # Water capacities\n",
Jeremy Auclair
committed
" TAW = (soil_params.FC.values - soil_params.WP.values) * Zr\n",
" TDW = (soil_params.FC.values - soil_params.WP.values) * (s_Zsoil * Zsoil_ - Zr)\n",
" \n",
" # Update depletions\n",
" Dr = update_Dr(TAW, TDW, Zr, TAW0, TDW0, Dr0, Dd0, Zr0)\n",
" Dd = update_Dd(TAW, TDW, Zr, TAW0, TDW0, Dd0, Zr0)\n",
" \n",
" # Update param p\n",
Jeremy Auclair
committed
" p_ = (np.minimum(np.maximum(s_p * p_ + 0.04 * (5 - ET0_previous), 0.1), 0.8) * (1 / s_p)).round(0).astype('i2')\n",
" \n",
" # Irrigation ==============!!!!!\n",
Jeremy Auclair
committed
" Irrig = np.minimum(np.maximum(Dr - prec, 0), s_Lame_max * Lame_max_) * Irrig_auto_\n",
" Irrig = np.where(Dr > TAW * s_p * p_, Irrig, 0)\n",
Jeremy Auclair
committed
" Kcb = np.minimum(s_Kslope * Kslope_ * ndvi + s_Koffset * Koffset_, s_KmaxKcb * KmaxKcb_)\n",
" \n",
" # # Write outputs\n",
" # model_outputs.Irr.loc[{'time': dates[i]}] = Irrig\n",
" \n",
" # Update depletions with rainfall and/or irrigation \n",
Jeremy Auclair
committed
" \n",
" # Write outputs\n",
" # Variable directly written since not used later\n",
" outputs = nc.Dataset(save_path, mode='r+')\n",
" ## DP (Deep percolation)\n",
" outputs.variables['DP'][:,:,i] = np.round(-np.minimum(Dd + np.minimum(Dr - prec - Irrig, 0), 0) * 1000).astype('int16')\n",
" outputs.close()\n",
" \n",
" # model_outputs.DP.loc[{'time': dates[i]}] = -np.minimum(Dd + np.minimum(Dr - prec - Irrig, 0), 0)\n",
Jeremy Auclair
committed
" Dei = np.minimum(np.maximum(Dei - prec - Irrig / (s_FW * FW_ / 100), 0), TEW)\n",
" Dep = np.minimum(np.maximum(Dep - prec, 0), TEW)\n",
Jeremy Auclair
committed
" fewi = np.minimum(1 - FCov, (s_FW * FW_ / 100))\n",
" fewp = 1 - FCov - fewi\n",
" \n",
" De = (Dei * fewi + Dep * fewp) / (fewi + fewp)\n",
Jeremy Auclair
committed
" De = np.where(np.isfinite(De), De, Dei * (s_FW * FW_ / 100) + Dep * (1 - (s_FW * FW_ / 100)))\n",
Jeremy Auclair
committed
" Dr = np.minimum(np.maximum(Dr - prec - Irrig, 0), TAW)\n",
Jeremy Auclair
committed
" Dd = np.minimum(np.maximum(Dd + np.minimum(Dr - prec - Irrig, 0), 0), TDW)\n",
" \n",
" # Diffusion coefficients\n",
" diff_rei = calculate_diff_re(TAW, Dr, Zr, RUE, Dei, FCov, Ze_, DiffE_, scale_factor)\n",
" diff_rep = calculate_diff_re(TAW, Dr, Zr, RUE, Dep, FCov, Ze_, DiffE_, scale_factor)\n",
" diff_dr = calculate_diff_dr(TAW, TDW, Dr, Zr, Dd, FCov, Zsoil_, DiffR_, scale_factor) \n",
" \n",
" # Weighing factor W\n",
" W = calculate_W(TEW, Dei, Dep, fewi, fewp)\n",
" \n",
Jeremy Auclair
committed
" # Write outputs\n",
" # Variables directly written since not used later\n",
" outputs = nc.Dataset(save_path, mode='r+')\n",
" # Soil water content of evaporative layer\n",
" outputs.variables['SWCe'][:,:,i] = np.round((1 - De/TEW) * 1000).astype('int16')\n",
" # Soil water content of root layer\n",
" outputs.variables['SWCe'][:,:,i] = np.round((1 - Dr/TAW) * 1000).astype('int16')\n",
" outputs.close()\n",
" \n",
" \n",
" # model_outputs.SWCe.loc[{'time': dates[i]}] = 1 - De/TEW\n",
" # model_outputs.SWCr.loc[{'time': dates[i]}] = 1 - Dr/TAW\n",
" \n",
" # Water Stress coefficient\n",
Jeremy Auclair
committed
" Ks = np.minimum((TAW - Dr) / (TAW * (1 - s_p * p_)), 1)\n",
" \n",
" # Reduction coefficient for evaporation\n",
Jeremy Auclair
committed
" Kei = np.minimum(W * calculate_Kr(TEW, Dei, REW_, scale_factor) * (s_Kcmax * Kcmax_ - Kcb), fewi * s_Kcmax * Kcmax_)\n",
" Kep = np.minimum((1 - W) * calculate_Kr(TEW, Dei, REW_, scale_factor) * (s_Kcmax * Kcmax_ - Kcb), fewp * s_Kcmax * Kcmax_)\n",
" \n",
" # Prepare coefficients for evapotranspiration\n",
Jeremy Auclair
committed
" Kti = np.minimum(((s_Ze * Ze_ / Zr)**6) * (1 - Dei / TEW) / np.maximum(1 - Dr / TAW, 0.001), 1)\n",
" Ktp = np.minimum(((s_Ze * Ze_ / Zr)**6) * (1 - Dep / TEW) / np.maximum(1 - Dr / TAW, 0.001), 1)\n",
" Tei = Kti * Ks * Kcb * ET0\n",
" Tep = Ktp * Ks * Kcb * ET0\n",
Jeremy Auclair
committed
" Dei = np.where(fewi > 0, np.minimum(np.maximum(Dei + ET0 * Kei / fewi + Tei - diff_rei, 0), TEW), np.minimum(np.maximum(Dei + Tei - diff_rei, 0), TEW))\n",
" Dep = np.where(fewp > 0, np.minimum(np.maximum(Dep + ET0 * Kep / fewp + Tep - diff_rep, 0), TEW), np.minimum(np.maximum(Dep + Tep - diff_rep, 0), TEW))\n",
" \n",
" De = (Dei * fewi + Dep * fewp) / (fewi + fewp)\n",
Jeremy Auclair
committed
" De = np.where(np.isfinite(De), De, Dei * (s_FW * FW_ / 100) + Dep * (1 - (s_FW * FW_ / 100)))\n",
Jeremy Auclair
committed
" E = np.maximum((Kei + Kep) * ET0, 0)\n",
Jeremy Auclair
committed
" Tr = Kcb * Ks * ET0\n",
" \n",
" # Write outputs\n",
" outputs = nc.Dataset(save_path, mode='r+')\n",
" # Evaporation\n",
" outputs.variables['E'][:,:,i] = np.round(E * 1000).astype('int16')\n",
" # Transpiration\n",
" outputs.variables['Tr'][:,:,i] = np.round(Tr * 1000).astype('int16')\n",
" # Irrigation\n",
" outputs.variables['Irr'][:,:,i] = np.round(Irrig * 1000).astype('int16')\n",
" outputs.close()\n",
" \n",
" # Potential evapotranspiration and evaporative fraction ??\n",
" \n",
" # Update depletions (root and deep zones) at the end of the day\n",
Jeremy Auclair
committed
" Dr = np.minimum(np.maximum(Dr + E + Tr - diff_dr, 0), TAW)\n",
" Dd = np.minimum(np.maximum(Dd + diff_dr, 0), TDW)\n",
" del E, Tr\n",
" \n",
" # Update previous day values\n",
" TAW0 = TAW\n",
" TDW0 = TDW\n",
" Dr0 = Dr\n",
" Dd0 = Dd\n",
" Zr0 = Zr\n",
Jeremy Auclair
committed
" # # Update variable_t1 values\n",
" # for variable in calculation_variables_t1:\n",
" # variables_t1[variable] = variables_t2[variable].copy(deep = True)\n",
" \n",
" print('day ', i+1, '/', len(dates), ' ', end = '\\r')\n",
" \n",
" # Scale the model_outputs variable to save in int16 format\n",
Jeremy Auclair
committed
" # model_outputs = model_outputs * 1000\n",
" \n",
" # Save model outputs to netcdf\n",
Jeremy Auclair
committed
" # model_outputs.to_netcdf(save_path, encoding = encoding_dict)\n",
" \n",
" return None"
]
},
{
"cell_type": "code",
Jeremy Auclair
committed
"execution_count": 3,
Jeremy Auclair
committed
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
" <div style=\"width: 24px; height: 24px; background-color: #e1e1e1; border: 3px solid #9D9D9D; border-radius: 5px; position: absolute;\"> </div>\n",
" <div style=\"margin-left: 48px;\">\n",
" <h3 style=\"margin-bottom: 0px;\">Client</h3>\n",
" <p style=\"color: #9D9D9D; margin-bottom: 0px;\">Client-12fdf235-2ac5-11ee-813b-00155de7557f</p>\n",
Jeremy Auclair
committed
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
" <table style=\"width: 100%; text-align: left;\">\n",
"\n",
" <tr>\n",
" \n",
" <td style=\"text-align: left;\"><strong>Connection method:</strong> Cluster object</td>\n",
" <td style=\"text-align: left;\"><strong>Cluster type:</strong> distributed.LocalCluster</td>\n",
" \n",
" </tr>\n",
"\n",
" \n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Dashboard: </strong> <a href=\"http://127.0.0.1:8787/status\" target=\"_blank\">http://127.0.0.1:8787/status</a>\n",
" </td>\n",
" <td style=\"text-align: left;\"></td>\n",
" </tr>\n",
" \n",
"\n",
" </table>\n",
"\n",
" \n",
"\n",
" \n",
" <details>\n",
" <summary style=\"margin-bottom: 20px;\"><h3 style=\"display: inline;\">Cluster Info</h3></summary>\n",
" <div class=\"jp-RenderedHTMLCommon jp-RenderedHTML jp-mod-trusted jp-OutputArea-output\">\n",
" <div style=\"width: 24px; height: 24px; background-color: #e1e1e1; border: 3px solid #9D9D9D; border-radius: 5px; position: absolute;\">\n",
" </div>\n",
" <div style=\"margin-left: 48px;\">\n",
" <h3 style=\"margin-bottom: 0px; margin-top: 0px;\">LocalCluster</h3>\n",
" <p style=\"color: #9D9D9D; margin-bottom: 0px;\">5eed1b10</p>\n",
Jeremy Auclair
committed
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
" <table style=\"width: 100%; text-align: left;\">\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Dashboard:</strong> <a href=\"http://127.0.0.1:8787/status\" target=\"_blank\">http://127.0.0.1:8787/status</a>\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Workers:</strong> 4\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Total threads:</strong> 8\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Total memory:</strong> 23.47 GiB\n",
" </td>\n",
" </tr>\n",
" \n",
" <tr>\n",
" <td style=\"text-align: left;\"><strong>Status:</strong> running</td>\n",
" <td style=\"text-align: left;\"><strong>Using processes:</strong> True</td>\n",
"</tr>\n",
"\n",
" \n",
" </table>\n",
"\n",
" <details>\n",
" <summary style=\"margin-bottom: 20px;\">\n",
" <h3 style=\"display: inline;\">Scheduler Info</h3>\n",
" </summary>\n",