Skip to content
Snippets Groups Projects
Commit 3b02eafc authored by Jeremy Auclair's avatar Jeremy Auclair
Browse files

Corrected output dataset description

parent 2d6fad17
No related branches found
No related tags found
No related merge requests found
%% Cell type:code id: tags:
``` python
import xarray as xr
from dask.distributed import Client
import dask.array as da
import os
import numpy as np
from typing import List, Tuple, Union
import warnings
import pandas as pd
import netCDF4 as nc
from parameters.params_samir_class import samir_parameters
from config.config import config
from time import time
```
%% Cell type:code id: tags:
``` python
def rasterize_samir_parameters(csv_param_file: str, empty_dataset: xr.Dataset, land_cover_raster: str, chunk_size: dict) -> Tuple[xr.Dataset, dict]:
"""
Creates a raster `xarray` dataset from the csv parameter file, the land cover raster and an empty dataset
that contains the right structure (emptied ndvi dataset for example). For each parameter, the function loops
on land cover classes to fill the raster.
## Arguments
1. csv_param_file: `str`
path to csv paramter file
2. empty_dataset: `xr.Dataset`
empty dataset that contains the right structure (emptied ndvi dataset for example).
3. land_cover_raster: `str`
path to land cover netcdf raster
4. chunk_size: `dict`
chunk_size for dask computation
## Returns
1. parameter_dataset: `xr.Dataset`
the dataset containing all the rasterized Parameters
2. scale_factor: `dict`
dictionnary containing the scale factors for each parameter
"""
# Load samir params into an object
table_param = samir_parameters(csv_param_file)
# Set general variables
class_count = table_param.table.shape[1] - 2 # remove dtype and default columns
# Open land cover raster
land_cover = xr.open_dataarray(land_cover_raster, chunks = chunk_size)
# Create dataset
parameter_dataset = empty_dataset.copy(deep = True)
# Create dictionnary containing the scale factors
scale_factor = {}
# Loop on samir parameters and create
for parameter in table_param.table.index[1:]:
# Create new variable and set attributes
parameter_dataset[parameter] = land_cover.copy(deep = True).astype('f4')
parameter_dataset[parameter].attrs['name'] = parameter
parameter_dataset[parameter].attrs['description'] = 'cf SAMIR Doc for detail'
parameter_dataset[parameter].attrs['scale factor'] = str(table_param.table.loc[table_param.table.index == parameter]['scale_factor'].values[0])
# Assigne value in dictionnary
scale_factor[parameter] = 1/int(table_param.table.loc[table_param.table.index == parameter]['scale_factor'].values[0])
# Loop on classes to set parameter values for each class
for class_val, class_name in zip(range(1, class_count + 1), table_param.table.columns[2:]):
# Parameter values are multiplied by the scale factor in order to store all values as int16 types
# These values are then rounded to make sure there isn't any decimal point issues when casting the values to int16
parameter_dataset[parameter].values = np.where(parameter_dataset[parameter].values == class_val, round(table_param.table.loc[table_param.table.index == parameter][class_name].values[0]*table_param.table.loc[table_param.table.index == parameter]['scale_factor'].values[0]), parameter_dataset[parameter].values).astype('f4')
# Return dataset converted to 'int16' data type to reduce memory usage
# and scale_factor dictionnary for later conversion
return parameter_dataset, scale_factor
def setup_time_loop(calculation_variables_t1: List[str], calculation_variables_t2: List[str], empty_dataset: xr.Dataset) -> Tuple[xr.Dataset, xr.Dataset]:
"""
Creates two temporary `xarray Datasets` that will be used in the SAMIR time loop.
`variables_t1` corresponds to the variables for the previous day and `variables_t2`
corresponds to the variables for the current day. After each loop, `variables_t1`
takes the value of `variables_t2` for the corresponding variables.
## Arguments
1. calculation_variables_t1: `List[str]`
list of strings containing the variable names
for the previous day dataset
2. calculation_variables_t2: `List[str]`
list of strings containing the variable names
for the current day dataset
3. empty_dataset: `xr.Dataset`
empty dataset that contains the right structure
## Returns
1. variables_t1: `xr.Dataset`
output dataset for previous day
2. variables_t2: `xr.Dataset`
output dataset for current day
"""
# Create new dataset
variables_t1 = empty_dataset.copy(deep = True)
# Create empty DataArray for each variable
for variable in calculation_variables_t1:
# Assign new empty DataArray
variables_t1[variable] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype = 'float32'))
variables_t1[variable].attrs['name'] = variable # set name in attributes
# Create new dataset
variables_t2 = empty_dataset.copy(deep = True)
# Create empty DataArray for each variable
for variable in calculation_variables_t2:
# Assign new empty DataArray
variables_t2[variable] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype = 'float32'))
variables_t2[variable].attrs['name'] = variable # set name in attributes
return variables_t1, variables_t2
def prepare_outputs(empty_dataset: xr.Dataset, additional_outputs: List[str] = None) -> xr.Dataset:
"""
Creates the `xarray Dataset` containing the outputs of the SAMIR model that will be saved.
Additional variables can be saved by adding their names to the `additional_outputs` list.
## Arguments
1. empty_dataset: `xr.Dataset`
empty dataset that contains the right structure
2. additional_outputs: `List[str]`
list of additional variable names to be saved
## Returns
1. model_outputs: `xr.Dataset`
model outputs to be saved
"""
# Evaporation and Transpiraion
model_outputs = empty_dataset.copy(deep = True)
model_outputs['E'] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype = 'int16'))
model_outputs['E'].attrs['units'] = 'mm'
model_outputs['E'].attrs['standard_name'] = 'Evaporation'
model_outputs['E'].attrs['description'] = 'Accumulated daily evaporation in milimeters'
model_outputs['E'].attrs['scale factor'] = '1'
model_outputs['E'].attrs['scale factor'] = '1000'
model_outputs['Tr'] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype = 'int16'))
model_outputs['Tr'].attrs['units'] = 'mm'
model_outputs['Tr'].attrs['standard_name'] = 'Transpiration'
model_outputs['Tr'].attrs['description'] = 'Accumulated daily plant transpiration in milimeters'
model_outputs['Tr'].attrs['scale factor'] = '1'
model_outputs['Tr'].attrs['scale factor'] = '1000'
# Soil Water Content
model_outputs['SWCe'] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype = 'int16'))
model_outputs['SWCe'].attrs['units'] = 'mm'
model_outputs['SWCe'].attrs['standard_name'] = 'Soil Water Content of the evaporative zone'
model_outputs['SWCe'].attrs['description'] = 'Soil water content of the evaporative zone in milimeters'
model_outputs['SWCe'].attrs['scale factor'] = '1'
model_outputs['SWCe'].attrs['scale factor'] = '1000'
model_outputs['SWCr'] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype = 'int16'))
model_outputs['SWCr'].attrs['units'] = 'mm'
model_outputs['SWCr'].attrs['standard_name'] = 'Soil Water Content of the root zone'
model_outputs['SWCr'].attrs['description'] = 'Soil water content of the root zone in milimeters'
model_outputs['SWCr'].attrs['scale factor'] = '1'
model_outputs['SWCr'].attrs['scale factor'] = '1000'
# Irrigation
model_outputs['Irr'] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype = 'int16'))
model_outputs['Irr'].attrs['units'] = 'mm'
model_outputs['Irr'].attrs['standard_name'] = 'Irrigation'
model_outputs['Irr'].attrs['description'] = 'Simulated daily irrigation in milimeters'
model_outputs['Irr'].attrs['scale factor'] = '1'
model_outputs['Irr'].attrs['scale factor'] = '1000'
# Deep Percolation
model_outputs['DP'] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype = 'int16'))
model_outputs['DP'].attrs['units'] = 'mm'
model_outputs['DP'].attrs['standard_name'] = 'Deep Percolation'
model_outputs['DP'].attrs['description'] = 'Simulated daily Deep Percolation in milimeters'
model_outputs['DP'].attrs['scale factor'] = '1'
model_outputs['DP'].attrs['scale factor'] = '1000'
if additional_outputs:
for var in additional_outputs:
model_outputs[var] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype = 'int16'))
return model_outputs
def xr_maximum(ds: xr.DataArray, value: Union[xr.DataArray, float, int]) -> xr.DataArray:
"""
Equivalent of `numpy.maximum(ds, value)` for xarray DataArrays
## Arguments
1. ds: `xr.DataArray`
datarray to compare
2. value: `Union[xr.DataArray, float, int]`
value (scalar or dataarray) to compare
## Returns
1. output: `xr.DataArray`
resulting dataarray with maximum value element-wise
"""
return xr.where(ds <= value, value, ds, keep_attrs = True)
def xr_minimum(ds: xr.DataArray, value: Union[xr.DataArray, float, int]) -> xr.DataArray:
"""
Equivalent of `numpy.minimum(ds, value)` for xarray DataArrays
## Arguments
1. ds: `xr.DataArray`
datarray to compare
2. value: `Union[xr.DataArray, float, int]`
value (scalar or dataarray) to compare
## Returns
1. output: `xr.DataArray`
resulting dataarray with minimum value element-wise
"""
return xr.where(ds >= value, value, ds, keep_attrs = True)
def calculate_diff_re(TAW: np.ndarray, Dr: np.ndarray, Zr: np.ndarray, RUE: np.ndarray, De: np.ndarray, FCov: np.ndarray, Ze_: np.ndarray, DiffE_: np.ndarray, scale_dict: dict) -> np.ndarray:
"""
Calculates the diffusion between the top soil layer and the root layer.
## Arguments
1. TAW: `np.ndarray`
water capacity of root layer
2. Dr: `np.ndarray`
depletion of root layer
3. Zr: `np.ndarray`
height of root layer
4. RUE: `np.ndarray`
total available surface water
5. De: `np.ndarray`
depletion of the evaporative layer
6. FCov: `np.ndarray`
fraction cover of plants
7. Ze_: `np.ndarray`
height of evaporative layer (paramter)
8. DiffE_: `np.ndarray`
diffusion coefficient between evaporative
and root layers (unitless, parameter)
9. scale_dict: `dict`
dictionnary containing the scale factors for
the rasterized parameters
## Returns
1. diff_re: `np.ndarray`
the diffusion between the top soil layer and
the root layer
"""
# Temporary variables to make calculation easier to read
tmp1 = (((TAW - Dr) / Zr - (RUE - De) / (scale_dict['Ze'] * Ze_)) / FCov) * (scale_dict['DiffE'] * DiffE_)
tmp2 = ((TAW * scale_dict['Ze'] * Ze_) - (RUE - De - Dr) * Zr) / (Zr + scale_dict['Ze'] * Ze_) - Dr
# Calculate diffusion according to SAMIR equation
diff_re = np.where(tmp1 < 0, np.maximum(tmp1, tmp2), np.minimum(tmp1, tmp2))
# Return zero values where the 'DiffE' parameter is equal to 0
return np.where(DiffE_ == 0, 0, diff_re)
def calculate_diff_dr(TAW: np.ndarray, TDW: np.ndarray, Dr: np.ndarray, Zr: np.ndarray, Dd: np.ndarray, FCov: np.ndarray, Zsoil_: np.ndarray, DiffR_: np.ndarray, scale_dict: dict) -> np.ndarray:
"""
Calculates the diffusion between the root layer and the deep layer.
## Arguments
1. TAW: `np.ndarray`
water capacity of root layer
2. TDW: `np.ndarray`
water capacity of deep layer
3. Dr: `np.ndarray`
depletion of root layer
4. Zr: `np.ndarray`
height of root layer
5. Dd: `np.ndarray`
depletion of deep layer
6. FCov: `np.ndarray`
fraction cover of plants
7. Zsoil_: `np.ndarray`
total height of soil (paramter)
8. DiffR_: `np.ndarray`
Diffusion coefficient between root
and deep layers (unitless, parameter)
9. scale_dict: `dict`
dictionnary containing the scale factors for
the rasterized parameters
## Returns
1. diff_dr: `np.ndarray`
the diffusion between the root layer and the
deep layer
"""
# Temporary variables to make calculation easier to read
tmp1 = (((TDW - Dd) / (scale_dict['Zsoil'] * Zsoil_ - Zr) - (TAW - Dr) / Zr) / FCov) * scale_dict['DiffR'] * DiffR_
tmp2 = (TDW *Zr - (TAW - Dr - Dd) * (scale_dict['Zsoil'] * Zsoil_ - Zr)) / (scale_dict['Zsoil'] * Zsoil_) - Dd
# Calculate diffusion according to SAMIR equation
diff_dr = np.where(tmp1 < 0, np.maximum(tmp1, tmp2), np.minimum(tmp1, tmp2))
# Return zero values where the 'DiffR' parameter is equal to 0
return np.where(DiffR_ == 0, 0, diff_dr)
def calculate_W(TEW: np.ndarray, Dei: np.ndarray, Dep: np.ndarray, fewi: np.ndarray, fewp: np.ndarray) -> np.ndarray:
"""
Calculate W, the weighting factor to split the energy available
for evaporation depending on the difference in water availability
in the two evaporation components, ensuring that the larger and
the wetter, the more the evaporation occurs from that component
## Arguments
1. TEW: `np.ndarray`
water capacity of evaporative layer
2. Dei: `np.ndarray`
depletion of the evaporative layer
(irrigation part)
3. Dep: `np.ndarray`
depletion of the evaporative layer
(precipitation part)
4. fewi: `np.ndarray`
soil fraction which is wetted by irrigation
and exposed to evaporation
5. fewp: `np.ndarray`
soil fraction which is wetted by precipitation
and exposed to evaporation
## Returns
1. W: `np.ndarray`
weighting factor W
"""
# Temporary variables to make calculation easier to read
tmp = fewi * (TEW - Dei)
# Calculate the weighting factor to split the energy available for evaporation
W = 1 / (1 + (fewp * (TEW - Dep) / tmp ))
# Return W
return np.where(tmp > 0, W, 0)
def calculate_Kr(TEW: np.ndarray, De: np.ndarray, REW_: np.ndarray, scale_dict: dict) -> np.ndarray:
"""
calculates of the reduction coefficient for evaporation dependent
on the amount of water in the soil using the FAO-56 method
## Arguments
1. TEW: `np.ndarray`
water capacity of evaporative layer
2. De: `np.ndarray`
depletion of evaporative layer
3. REW_: `np.ndarray`
readily evaporable water
4. scale_dict: `dict`
dictionnary containing the scale factors for
the rasterized parameters
## Returns
1. Kr: `np.ndarray`
Kr coefficient
"""
# Formula for calculating Kr
Kr = (TEW - De) / (TEW - scale_dict['REW'] * REW_)
# Return Kr
return np.maximum(0, np.minimum(Kr, 1))
def update_Dr(TAW: np.ndarray, TDW: np.ndarray, Zr: np.ndarray, TAW0: np.ndarray, TDW0: np.ndarray, Dr0: np.ndarray, Dd0: np.ndarray, Zr0: np.ndarray) -> np.ndarray:
"""
Return the updated depletion for the root layer
## Arguments
1. TAW: `np.ndarray`
water capacity of root layer for current day
2. TDW: `np.ndarray`
water capacity of deep layer for current day
3. Zr: `np.ndarray`
root layer height for current day
4. TAW0: `np.ndarray`
water capacity of root layer for previous day
5. TDW0: `np.ndarray`
water capacity of deep layer for previous day
6. Dr0: `np.ndarray`
depletion of the root layer for previous day
7. Dd0: `np.ndarray`
depletion of the deep laye for previous day
8. Zr0: `np.ndarray`
root layer height for previous day
## Returns
1. output: `np.ndarray`
updated depletion for the root layer
"""
# Temporary variables to make calculation easier to read
tmp1 = np.maximum(Dr0 + Dd0 * (TAW - TAW0) / TDW0, 0)
tmp2 = np.minimum(Dr0 + Dd0 * (TAW - TAW0) / TDW0, TDW)
# Return updated Dr
return np.where(Zr > Zr0, tmp1, tmp2)
def update_Dd(TAW: np.ndarray, TDW: np.ndarray, Zr: np.ndarray, TAW0: np.ndarray, TDW0: np.ndarray, Dd0: np.ndarray, Zr0: np.ndarray) -> np.ndarray:
"""
Return the updated depletion for the deep layer
## Arguments
1. TAW: `np.ndarray`
water capacity of root layer for current day
2. TDW: `np.ndarray`
water capacity of deep layer for current day
3. TAW0: `np.ndarray`
water capacity of root layer for previous day
5. TDW0: `np.ndarray`
water capacity of deep layer for previous day
6. Dd0: `np.ndarray`
depletion of the deep laye for previous day
7. Zr0: `np.ndarray`
root layer height for previous day
## Returns
1. output: `np.ndarray`
updated depletion for the deep layer
"""
# Temporary variables to make calculation easier to read
tmp1 = np.maximum(Dd0 - Dd0 * (TAW - TAW0) / TDW0, 0)
tmp2 = np.minimum(Dd0 - Dd0 * (TAW - TAW0) / TDW0, TDW)
# Return updated Dd
return np.where(Zr > Zr0, tmp1, tmp2)
def format_duration(timedelta: float) -> None:
"""
Print formatted timedelta in human readable format
(days, hours, minutes, seconds, microseconds, milliseconds, nanoseconds).
## Arguments
timedelta: `float`
time value in seconds to format
## Returns
`None`
"""
if timedelta < 0.9e-6:
print(round(timedelta*1e9, 1), 'ns')
elif timedelta < 0.9e-3:
print(round(timedelta*1e6, 1), 'µs')
elif timedelta < 0.9:
print(round(timedelta*1e3, 1), 'ms')
elif timedelta < 60:
print(round(timedelta, 1), 's')
elif timedelta < 3.6e3:
print(round(timedelta//60), 'm', round(timedelta%60, 1), 's')
elif timedelta < 24*3.6e3:
print(round((timedelta/3.6e3)//1), 'h', round((timedelta/3.6e3)%1*60//1), 'm', round((timedelta/3.6e3)%1*60%1*60, 1), 's' )
elif timedelta < 48*3.6e3:
print(round((timedelta/(24*3.6e3))//1), 'day,', round(((timedelta/(24*3.6e3))%1*24)//1), 'h,', round((timedelta/(24*3.6e3))%1*24%1*60//1), 'm,', round((timedelta/(24*3.6e3))%1*24%1*60%1*60, 1), 's')
else:
print(round((timedelta/(24*3.6e3))//1), 'days,', round(((timedelta/(24*3.6e3))%1*24)//1), 'h,', round((timedelta/(24*3.6e3))%1*24%1*60//1), 'm,', round((timedelta/(24*3.6e3))%1*24%1*60%1*60, 1), 's')
return None
def run_samir(json_config_file: str, csv_param_file: str, ndvi_cube_path: str, precip_cube_path: str, ET0_cube_path: str, soil_params_path: str, land_cover_path: str, chunk_size: dict, save_path: str, max_GB: int = 2) -> None:
# warnings.simplefilter("error", category = RuntimeWarning())
warnings.filterwarnings("ignore", message="invalid value encountered in cast")
warnings.filterwarnings("ignore", message="invalid value encountered in divide")
np.errstate(all = 'ignore')
#============ General parameters ============#
config_params = config(json_config_file)
calculation_variables_t2 = ['diff_rei', 'diff_rep', 'diff_dr' , 'Dd', 'De', 'Dei', 'Dep', 'Dr', 'FCov', 'Irrig', 'Kcb', 'Kei', 'Kep', 'Ks', 'Kti', 'Ktp', 'RUE', 'TAW', 'TDW', 'TEW', 'Tei', 'Tep', 'W', 'Zr', 'fewi', 'fewp']
calculation_variables_t1 = ['Dr', 'Dd', 'TAW', 'TDW', 'Zr']
#============ Manage inputs ============#
# NDVI
ndvi_cube = xr.open_dataset(ndvi_cube_path, chunks = chunk_size).astype('u1')
# Weather
## Open geotiff cubes and rename variables and coordinates
prec_cube = xr.open_dataset(precip_cube_path, chunks = chunk_size).astype('u2').rename({'band': 'time', 'band_data': 'prec'})
ET0_cube = xr.open_dataset(ET0_cube_path, chunks = chunk_size).astype('u2').rename({'band': 'time', 'band_data': 'ET0'})
## Reset times values
prec_cube['time'] = pd.date_range(start = config_params.start_date, end = config_params.end_date, freq = 'D')
ET0_cube['time'] = pd.date_range(start = config_params.start_date, end = config_params.end_date, freq = 'D')
## Remove unwanted attributes
del prec_cube.prec.attrs['AREA_OR_POINT'], ET0_cube.ET0.attrs['AREA_OR_POINT']
# Soil
soil_params = xr.open_dataset(soil_params_path, chunks = chunk_size).astype('f4')
# SAMIR Parameters
param_dataset, scale_factor = rasterize_samir_parameters(csv_param_file, ndvi_cube.drop_vars(['ndvi', 'time']), land_cover_path, chunk_size = chunk_size)
# SAMIR Variables
variables_t1, variables_t2 = setup_time_loop(calculation_variables_t1, calculation_variables_t2, ndvi_cube.drop_vars(['ndvi', 'time']))
# # Manage loading of data based on disk size of inputs
# if ndvi_cube.nbytes < max_GB * (1024)**3:
# ndvi_cube.load()
# if weather_cube.nbytes < max_GB * (1024)**3:
# weather_cube.load()
#============ Prepare outputs ============#
model_outputs = prepare_outputs(ndvi_cube.drop_vars(['ndvi']))
# Create encoding dictionnary
for variable in list(model_outputs.keys()):
# Write encoding dict
encoding_dict = {}
encod = {}
encod['dtype'] = 'i2'
encoding_dict[variable] = encod
# Save empty output
model_outputs.to_netcdf(save_path, encoding = encoding_dict)
model_outputs.close()
#============ Prepare time iterations ============#
dates = ndvi_cube.time.values
#============ Create aliases for better readability ============#
# Variables for current day
# var = da.from_array(dataarray, chunks = (5, 5))
diff_rei = variables_t2.diff_rei.to_numpy()
diff_rep = variables_t2.diff_rep.to_numpy()
diff_dr = variables_t2.diff_dr.to_numpy()
Dd = variables_t2.Dd.to_numpy()
De = variables_t2.De.to_numpy()
Dei = variables_t2.Dei.to_numpy()
Dep = variables_t2.Dep.to_numpy()
Dr = variables_t2.Dr.to_numpy()
FCov = variables_t2.FCov.to_numpy()
Irrig = variables_t2.Irrig.to_numpy()
Kcb = variables_t2.Kcb.to_numpy()
Kei = variables_t2.Kei.to_numpy()
Kep = variables_t2.Kep.to_numpy()
Ks = variables_t2.Ks.to_numpy()
Kti = variables_t2.Kti.to_numpy()
Ktp = variables_t2.Ktp.to_numpy()
RUE = variables_t2.RUE.to_numpy()
TAW = variables_t2.TAW.to_numpy()
TDW = variables_t2.TDW.to_numpy()
TEW = variables_t2.TEW.to_numpy()
Tei = variables_t2.Tei.to_numpy()
Tep = variables_t2.Tep.to_numpy()
Zr = variables_t2.Zr.to_numpy()
W = variables_t2.W.to_numpy()
fewi = variables_t2.fewi.to_numpy()
fewp = variables_t2.fewp.to_numpy()
# Variables for previous day
TAW0 = variables_t1.TAW.to_numpy()
TDW0 = variables_t1.TDW.to_numpy()
Dr0 = variables_t1.Dr.to_numpy()
Dd0 = variables_t1.Dd.to_numpy()
Zr0 = variables_t1.Zr.to_numpy()
# Parameters
# Parameters have an underscore (_) behind their name for recognition
DiffE_ = param_dataset.DiffE.to_numpy()
DiffR_ = param_dataset.DiffR.to_numpy()
FW_ = param_dataset.FW.to_numpy()
Fc_stop_ = param_dataset.Fc_stop.to_numpy()
FmaxFC_ = param_dataset.FmaxFC.to_numpy()
Foffset_ = param_dataset.Foffset.to_numpy()
Fslope_ = param_dataset.Fslope.to_numpy()
Init_RU_ = param_dataset.Init_RU.to_numpy()
Irrig_auto_ = param_dataset.Irrig_auto.to_numpy()
Kcmax_ = param_dataset.Kcmax.to_numpy()
KmaxKcb_ = param_dataset.KmaxKcb.to_numpy()
Koffset_ = param_dataset.Koffset.to_numpy()
Kslope_ = param_dataset.Kslope.to_numpy()
Lame_max_ = param_dataset.Lame_max.to_numpy()
REW_ = param_dataset.REW.to_numpy()
Ze_ = param_dataset.Ze.to_numpy()
Zsoil_ = param_dataset.Zsoil.to_numpy()
maxZr_ = param_dataset.maxZr.to_numpy()
minZr_ = param_dataset.minZr.to_numpy()
p_ = param_dataset.p.to_numpy()
# scale factors
# Scale factors have the following name scheme : s_ + parameter_name
s_DiffE = scale_factor['DiffE']
s_DiffR = scale_factor['DiffR']
s_FW = scale_factor['FW']
s_Fc_stop = scale_factor['Fc_stop']
s_FmaxFC = scale_factor['FmaxFC']
s_Foffset = scale_factor['Foffset']
s_Fslope = scale_factor['Fslope']
s_Init_RU = scale_factor['Init_RU']
# s_Irrig_auto = scale_factor['Irrig_auto']
s_Kcmax = scale_factor['Kcmax']
s_KmaxKcb = scale_factor['KmaxKcb']
s_Koffset = scale_factor['Koffset']
s_Kslope = scale_factor['Kslope']
s_Lame_max = scale_factor['Lame_max']
s_REW = scale_factor['REW']
s_Ze = scale_factor['Ze']
s_Zsoil = scale_factor['Zsoil']
s_maxZr = scale_factor['maxZr']
s_minZr = scale_factor['minZr']
s_p = scale_factor['p']
# input data
ndvi = ndvi_cube.ndvi.sel({'time': dates[0]}).to_numpy() / 255
prec = prec_cube.prec.sel({'time': dates[0]}).to_numpy() / 1000
ET0 = ET0_cube.ET0.sel({'time': dates[0]}).to_numpy() / 1000
#============ First day initialization ============#
# Fraction cover
FCov = s_Fslope * Fslope_ * ndvi + s_Foffset * Foffset_
FCov = np.minimum(np.maximum(FCov, 0), s_Fc_stop * Fc_stop_)
# Root depth upate
Zr = s_minZr * minZr_ + (FCov / (s_FmaxFC * FmaxFC_)) * s_maxZr * (maxZr_ - minZr_)
# Water capacities
TEW = (soil_params.FC.values - soil_params.WP.values/2) * s_Ze * Ze_
RUE = (soil_params.FC.values - soil_params.WP.values) * s_Ze * Ze_
TAW = (soil_params.FC.values - soil_params.WP.values) * Zr
TDW = (soil_params.FC.values - soil_params.WP.values) * (s_Zsoil * Zsoil_ - Zr) # Zd = Zsoil - Zr
# Depletions
Dei = RUE * (1 - s_Init_RU * Init_RU_)
Dep = RUE * (1 - s_Init_RU * Init_RU_)
Dr = TAW * (1 - s_Init_RU * Init_RU_)
Dd = TDW * (1 - s_Init_RU * Init_RU_)
# Irrigation TODO : find correct method for irrigation
Irrig = np.minimum(np.maximum(Dr - prec, 0), s_Lame_max * Lame_max_) * Irrig_auto_
Irrig = np.where(Dr > TAW * s_p * p_, Irrig, 0)
# Kcb
Kcb = np.minimum(s_Kslope * Kslope_ * ndvi + s_Koffset * Koffset_, s_KmaxKcb * KmaxKcb_)
# Update depletions with rainfall and/or irrigation
## DP
# Variable directly written since not used later
# Dimensions of output dataset : (x, y, time)
outputs = nc.Dataset(save_path, mode='r+')
outputs.variables['DP'][:,:,0] = np.round(- np.minimum(Dd + np.minimum(Dr - prec - Irrig, 0), 0) * 1000).astype('int16')
outputs.close()
# model_outputs.DP.loc[{'time': dates[0]}] = - np.minimum(Dd + np.minimum(Dr - prec - Irrig, 0), 0)
## De
Dei = np.minimum(np.maximum(Dei - prec - Irrig / (s_FW * FW_ / 100), 0), TEW)
Dep = np.minimum(np.maximum(Dep - prec, 0), TEW)
fewi = np.minimum(1 - FCov, (s_FW * FW_ / 100))
fewp = 1 - FCov - fewi
De = np.divide((Dei * fewi + Dep * fewp), (fewi + fewp))
De = np.where(np.isfinite(De), De, Dei * (s_FW * FW_ / 100) + Dep * (1 - (s_FW * FW_ / 100)))
## Dr
Dr = np.minimum(np.maximum(Dr - prec - Irrig, 0), TAW)
## Dd
Dd = np.minimum(np.maximum(Dd + np.minimum(Dr - prec - Irrig, 0), 0), TDW)
# Diffusion coefficients
diff_rei = calculate_diff_re(TAW, Dr, Zr, RUE, Dei, FCov, Ze_, DiffE_, scale_factor)
diff_rep = calculate_diff_re(TAW, Dr, Zr, RUE, Dep, FCov, Ze_, DiffE_, scale_factor)
diff_dr = calculate_diff_dr(TAW, TDW, Dr, Zr, Dd, FCov, Zsoil_, DiffR_, scale_factor)
# Weighing factor W
W = calculate_W(TEW, Dei, Dep, fewi, fewp)
# Write outputs
# Variables directly written since not used later
outputs = nc.Dataset(save_path, mode='r+')
# Soil water content of evaporative layer
outputs.variables['SWCe'][:,:,0] = np.round((1 - De/TEW) * 1000).astype('int16')
# Soil water content of root layer
outputs.variables['SWCe'][:,:,0] = np.round((1 - Dr/TAW) * 1000).astype('int16')
outputs.close()
# model_outputs.SWCe.loc[{'time': dates[0]}] = 1 - De/TEW
# model_outputs.SWCr.loc[{'time': dates[0]}] = 1 - Dr/TAW
# Water Stress coefficient
Ks = np.minimum((TAW - Dr) / (TAW * (1 - s_p * p_)), 1)
# Reduction coefficient for evaporation
Kei = np.minimum(W * calculate_Kr(TEW, Dei, REW_, scale_factor) * (s_Kcmax * Kcmax_ - Kcb), fewi * s_Kcmax * Kcmax_)
Kep = np.minimum((1 - W) * calculate_Kr(TEW, Dep, REW_, scale_factor) * (s_Kcmax * Kcmax_ - Kcb), fewp * s_Kcmax * Kcmax_)
# Prepare coefficients for evapotranspiration
Kti = np.minimum(((s_Ze * Ze_ / Zr)**6) * (1 - Dei / TEW) / np.maximum(1 - Dr / TAW, 0.001), 1)
Ktp = np.minimum(((s_Ze * Ze_ / Zr)**6) * (1 - Dep / TEW) / np.maximum(1 - Dr / TAW, 0.001), 1)
Tei = Kti * Ks * Kcb * ET0
Tep = Ktp * Ks * Kcb * ET0
# Update depletions
Dei = np.where(fewi > 0, np.minimum(np.maximum(Dei + ET0 * Kei / fewi + Tei - diff_rei, 0), TEW), np.minimum(np.maximum(Dei + Tei - diff_rei, 0), TEW))
Dep = np.where(fewp > 0, np.minimum(np.maximum(Dep + ET0 * Kep / fewp + Tep - diff_rep, 0), TEW), np.minimum(np.maximum(Dep + Tep - diff_rep, 0), TEW))
De = (Dei * fewi + Dep * fewp) / (fewi + fewp)
De = np.where(np.isfinite(De), De, Dei * (s_FW * FW_ / 100) + Dep * (1 - (s_FW * FW_ / 100)))
# Evaporation
E = np.maximum((Kei + Kep) * ET0, 0)
# Transpiration
Tr = Kcb * Ks * ET0
# Irrigation
# model_outputs.Irr.loc[{'time': dates[0]}] = Irrig
# Write outputs
outputs = nc.Dataset(save_path, mode='r+')
# Evaporation
outputs.variables['E'][:,:,0] = np.round(E * 1000).astype('int16')
# Transpiration
outputs.variables['Tr'][:,:,0] = np.round(Tr * 1000).astype('int16')
# Irrigation
outputs.variables['Irr'][:,:,0] = np.round(Irrig * 1000).astype('int16')
outputs.close()
# Potential evapotranspiration and evaporative fraction ??
# Update depletions (root and deep zones) at the end of the day
Dr = np.minimum(np.maximum(Dr + E + Tr - diff_dr, 0), TAW)
Dd = np.minimum(np.maximum(Dd + diff_dr, 0), TDW)
del E, Tr
# Update previous day values
TAW0 = TAW
TDW0 = TDW
Dr0 = Dr
Dd0 = Dd
Zr0 = Zr
print('day 1/', len(dates), ' ', end = '\r')
# # Update variable_t1 values
# for variable in calculation_variables_t1:
# variables_t1[variable] = variables_t2[variable].copy(deep = True)
#============ Time loop ============#
for i in range(1, len(dates)):
# Reset input aliases
# input data
ndvi = (ndvi_cube.ndvi.sel({'time': dates[i]}).to_numpy() / 255)
prec = prec_cube.prec.sel({'time': dates[i]}).to_numpy() / 1000
ET0 = ET0_cube.ET0.sel({'time': dates[i]}).to_numpy() / 1000
ET0_previous = ET0_cube.ET0.sel({'time': dates[i-1]}).to_numpy() / 1000
# Update variables
## Fraction cover
FCov = s_Fslope * Fslope_ * ndvi + s_Foffset * Foffset_
FCov = np.minimum(np.maximum(FCov, 0), s_Fc_stop * Fc_stop_)
## Root depth upate
Zr = s_minZr * minZr_ + (FCov / (s_FmaxFC * FmaxFC_)) * s_maxZr * (maxZr_ - minZr_)
# Water capacities
TAW = (soil_params.FC.values - soil_params.WP.values) * Zr
TDW = (soil_params.FC.values - soil_params.WP.values) * (s_Zsoil * Zsoil_ - Zr)
# Update depletions
Dr = update_Dr(TAW, TDW, Zr, TAW0, TDW0, Dr0, Dd0, Zr0)
Dd = update_Dd(TAW, TDW, Zr, TAW0, TDW0, Dd0, Zr0)
# Update param p
p_ = (np.minimum(np.maximum(s_p * p_ + 0.04 * (5 - ET0_previous), 0.1), 0.8) * (1 / s_p)).round(0).astype('i2')
# Irrigation ==============!!!!!
Irrig = np.minimum(np.maximum(Dr - prec, 0), s_Lame_max * Lame_max_) * Irrig_auto_
Irrig = np.where(Dr > TAW * s_p * p_, Irrig, 0)
# Kcb
Kcb = np.minimum(s_Kslope * Kslope_ * ndvi + s_Koffset * Koffset_, s_KmaxKcb * KmaxKcb_)
# # Write outputs
# model_outputs.Irr.loc[{'time': dates[i]}] = Irrig
# Update depletions with rainfall and/or irrigation
# Write outputs
# Variable directly written since not used later
outputs = nc.Dataset(save_path, mode='r+')
## DP (Deep percolation)
outputs.variables['DP'][:,:,i] = np.round(-np.minimum(Dd + np.minimum(Dr - prec - Irrig, 0), 0) * 1000).astype('int16')
outputs.close()
# model_outputs.DP.loc[{'time': dates[i]}] = -np.minimum(Dd + np.minimum(Dr - prec - Irrig, 0), 0)
## De
Dei = np.minimum(np.maximum(Dei - prec - Irrig / (s_FW * FW_ / 100), 0), TEW)
Dep = np.minimum(np.maximum(Dep - prec, 0), TEW)
fewi = np.minimum(1 - FCov, (s_FW * FW_ / 100))
fewp = 1 - FCov - fewi
De = (Dei * fewi + Dep * fewp) / (fewi + fewp)
De = np.where(np.isfinite(De), De, Dei * (s_FW * FW_ / 100) + Dep * (1 - (s_FW * FW_ / 100)))
## Dr
Dr = np.minimum(np.maximum(Dr - prec - Irrig, 0), TAW)
## Dd
Dd = np.minimum(np.maximum(Dd + np.minimum(Dr - prec - Irrig, 0), 0), TDW)
# Diffusion coefficients
diff_rei = calculate_diff_re(TAW, Dr, Zr, RUE, Dei, FCov, Ze_, DiffE_, scale_factor)
diff_rep = calculate_diff_re(TAW, Dr, Zr, RUE, Dep, FCov, Ze_, DiffE_, scale_factor)
diff_dr = calculate_diff_dr(TAW, TDW, Dr, Zr, Dd, FCov, Zsoil_, DiffR_, scale_factor)
# Weighing factor W
W = calculate_W(TEW, Dei, Dep, fewi, fewp)
# Write outputs
# Variables directly written since not used later
outputs = nc.Dataset(save_path, mode='r+')
# Soil water content of evaporative layer
outputs.variables['SWCe'][:,:,i] = np.round((1 - De/TEW) * 1000).astype('int16')
# Soil water content of root layer
outputs.variables['SWCe'][:,:,i] = np.round((1 - Dr/TAW) * 1000).astype('int16')
outputs.close()
# model_outputs.SWCe.loc[{'time': dates[i]}] = 1 - De/TEW
# model_outputs.SWCr.loc[{'time': dates[i]}] = 1 - Dr/TAW
# Water Stress coefficient
Ks = np.minimum((TAW - Dr) / (TAW * (1 - s_p * p_)), 1)
# Reduction coefficient for evaporation
Kei = np.minimum(W * calculate_Kr(TEW, Dei, REW_, scale_factor) * (s_Kcmax * Kcmax_ - Kcb), fewi * s_Kcmax * Kcmax_)
Kep = np.minimum((1 - W) * calculate_Kr(TEW, Dei, REW_, scale_factor) * (s_Kcmax * Kcmax_ - Kcb), fewp * s_Kcmax * Kcmax_)
# Prepare coefficients for evapotranspiration
Kti = np.minimum(((s_Ze * Ze_ / Zr)**6) * (1 - Dei / TEW) / np.maximum(1 - Dr / TAW, 0.001), 1)
Ktp = np.minimum(((s_Ze * Ze_ / Zr)**6) * (1 - Dep / TEW) / np.maximum(1 - Dr / TAW, 0.001), 1)
Tei = Kti * Ks * Kcb * ET0
Tep = Ktp * Ks * Kcb * ET0
# Update depletions
Dei = np.where(fewi > 0, np.minimum(np.maximum(Dei + ET0 * Kei / fewi + Tei - diff_rei, 0), TEW), np.minimum(np.maximum(Dei + Tei - diff_rei, 0), TEW))
Dep = np.where(fewp > 0, np.minimum(np.maximum(Dep + ET0 * Kep / fewp + Tep - diff_rep, 0), TEW), np.minimum(np.maximum(Dep + Tep - diff_rep, 0), TEW))
De = (Dei * fewi + Dep * fewp) / (fewi + fewp)
De = np.where(np.isfinite(De), De, Dei * (s_FW * FW_ / 100) + Dep * (1 - (s_FW * FW_ / 100)))
# Evaporation
E = np.maximum((Kei + Kep) * ET0, 0)
# Transpiration
Tr = Kcb * Ks * ET0
# Write outputs
outputs = nc.Dataset(save_path, mode='r+')
# Evaporation
outputs.variables['E'][:,:,i] = np.round(E * 1000).astype('int16')
# Transpiration
outputs.variables['Tr'][:,:,i] = np.round(Tr * 1000).astype('int16')
# Irrigation
outputs.variables['Irr'][:,:,i] = np.round(Irrig * 1000).astype('int16')
outputs.close()
# Potential evapotranspiration and evaporative fraction ??
# Update depletions (root and deep zones) at the end of the day
Dr = np.minimum(np.maximum(Dr + E + Tr - diff_dr, 0), TAW)
Dd = np.minimum(np.maximum(Dd + diff_dr, 0), TDW)
del E, Tr
# Update previous day values
TAW0 = TAW
TDW0 = TDW
Dr0 = Dr
Dd0 = Dd
Zr0 = Zr
# # Update variable_t1 values
# for variable in calculation_variables_t1:
# variables_t1[variable] = variables_t2[variable].copy(deep = True)
print('day ', i+1, '/', len(dates), ' ', end = '\r')
# Scale the model_outputs variable to save in int16 format
# model_outputs = model_outputs * 1000
# Save model outputs to netcdf
# model_outputs.to_netcdf(save_path, encoding = encoding_dict)
return None
```
%% Cell type:code id: tags:
``` python
client = Client(interface='lo')
client
```
%% Output
<Client: 'tcp://127.0.0.1:32951' processes=4 threads=8, memory=23.47 GiB>
<Client: 'tcp://127.0.0.1:42683' processes=4 threads=8, memory=23.47 GiB>
%% Cell type:code id: tags:
``` python
data_path = '/mnt/e/DATA/DEV_inputs_test'
size = 100
ndvi_path = data_path + os.sep + 'ndvi_' + str(size) + '.nc'
prec_path = data_path + os.sep + 'rain_' + str(size) + '.tif'
ET0_path = data_path + os.sep + 'ET0_' + str(size) + '.tif'
land_cover_path = data_path + os.sep + 'land_cover_' + str(size) + '.nc'
json_config_file = '/home/auclairj/GIT/modspa-pixel/config/config_modspa.json'
param_file = '/home/auclairj/GIT/modspa-pixel/parameters/csv_files/params_samir_test.csv'
soil_path = data_path + os.sep + 'soil_' + str(size) + '.nc'
save_path = data_path + os.sep + 'outputs_' + str(size) + '.nc'
chunk_size = {'x': 50, 'y': 50, 'time': -1}
chunk_size = {'x': 100, 'y': 100, 'time': -1}
t = time()
run_samir(json_config_file, param_file, ndvi_path, prec_path, ET0_path, soil_path, land_cover_path, chunk_size, save_path)
format_duration(time() - t)
client.close()
```
%% Output
/home/auclairj/anaconda3/envs/modspa_pixel/lib/python3.10/site-packages/dask/array/chunk.py:278: RuntimeWarning: invalid value encountered in cast
return x.astype(astype_dtype, **kwargs)
/home/auclairj/anaconda3/envs/modspa_pixel/lib/python3.10/site-packages/dask/array/chunk.py:278: RuntimeWarning: invalid value encountered in cast
return x.astype(astype_dtype, **kwargs)
day 1/ 366
/home/auclairj/anaconda3/envs/modspa_pixel/lib/python3.10/site-packages/dask/array/chunk.py:278: RuntimeWarning: invalid value encountered in cast
return x.astype(astype_dtype, **kwargs)
/home/auclairj/anaconda3/envs/modspa_pixel/lib/python3.10/site-packages/dask/array/chunk.py:278: RuntimeWarning: invalid value encountered in cast
return x.astype(astype_dtype, **kwargs)
/tmp/ipykernel_1387/2938761162.py:242: RuntimeWarning: divide by zero encountered in divide
/tmp/ipykernel_315/1894958781.py:242: RuntimeWarning: divide by zero encountered in divide
tmp1 = (((TAW - Dr) / Zr - (RUE - De) / (scale_dict['Ze'] * Ze_)) / FCov) * (scale_dict['DiffE'] * DiffE_)
/tmp/ipykernel_1387/2938761162.py:285: RuntimeWarning: divide by zero encountered in divide
/tmp/ipykernel_315/1894958781.py:285: RuntimeWarning: divide by zero encountered in divide
tmp1 = (((TDW - Dd) / (scale_dict['Zsoil'] * Zsoil_ - Zr) - (TAW - Dr) / Zr) / FCov) * scale_dict['DiffR'] * DiffR_
day 3 / 366
/home/auclairj/anaconda3/envs/modspa_pixel/lib/python3.10/site-packages/dask/array/chunk.py:278: RuntimeWarning: invalid value encountered in cast
return x.astype(astype_dtype, **kwargs)
day 366 / 366
day 59 / 366
%% Cell type:code id: tags:
``` python
print(save_path)
```
%% Output
/mnt/e/DATA/DEV_inputs_test/outputs_10.nc
%% Cell type:code id: tags:
``` python
```
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment