Newer
Older
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Build a validation ndvi and weather dataset"
]
},
Jeremy Auclair
committed
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import xarray as xr\n",
Jeremy Auclair
committed
"import pandas as pd\n",
"import numpy as np\n",
"\n",
"data_path = '/mnt/e/DATA/DEV_inputs_test'\n",
"\n",
"size = 10\n",
"\n",
"# Original sets\n",
"ndvi_path = data_path + os.sep + 'ndvi_' + str(size) + '.nc'\n",
"rain_path = data_path + os.sep + 'rain_' + str(size) + '.tif'\n",
"ET0_path = data_path + os.sep + 'ET0_' + str(size) + '.tif'\n",
"\n",
"# Validation sets\n",
"val_ndvi_path = data_path + os.sep + 'xls_NDVI_' + str(size) + '.nc'\n",
"rain_path = data_path + os.sep + 'xls_Rain_' + str(size) + '.tif'\n",
"val_ET0_path = data_path + os.sep + 'xls_ET0_' + str(size) + '.tif'\n",
"val_outputs = data_path + os.sep + 'xls_outputs_' + str(size) + '.nc'\n",
"\n",
"# Modspa excel file\n",
"xls_file_path = '/home/auclairj/GIT/modspa-pixel/SAMIR_xls/SAMIRpixel_Reference_Simonneaux2012.xls'"
Jeremy Auclair
committed
"execution_count": 2,
"# Get input data\n",
"modspa_excel = pd.read_excel(xls_file_path, sheet_name=0, header=10, index_col=0)\n",
"modspa_excel = modspa_excel.loc[:, ~modspa_excel.columns.str.contains('^Unnamed')]\n",
"\n",
"# Dates\n",
"\n",
"# Open empty dataset to get structure and reindex with correct dates\n",
"empty_dataset = xr.open_dataset(ndvi_path)\n",
"empty_dataset = empty_dataset.reindex(time = dates)\n",
"\n",
"# Transpose dimensions\n",
"empty_dataset = empty_dataset.transpose('time', 'y', 'x')\n",
"\n",
"# Get the numpy array for 'ndvi'\n",
"zero_values = empty_dataset['ndvi'].values\n",
"\n",
"# Transpose the numpy array for 'ndvi'\n",
"zero_values = zero_values.transpose([0,2,1])\n",
"empty_dataset['ndvi'] = empty_dataset.ndvi.transpose('time', 'y', 'x')\n",
"\n",
"# Assign the transposed numpy array back to 'ndvi'\n",
"empty_dataset.ndvi.values = zero_values\n",
"\n",
"# Drop ndvi to get empty dataset\n",
"empty_dataset = empty_dataset.drop_vars('ndvi')\n",
"\n",
"# Datasets\n",
"ndvi_val = empty_dataset.copy(deep = True)\n",
"rain_val = empty_dataset.copy(deep = True)\n",
"ET0_val = empty_dataset.copy(deep = True)\n",
"outputs_val = empty_dataset.copy(deep = True)\n",
"\n",
"# Inputs\n",
"ndvi_val['NDVI'] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype = 'uint8'))\n",
"rain_val['Rain'] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype = 'uint16'))\n",
"ET0_val['ET0'] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype = 'uint16'))\n",
"\n",
"# Outputs\n",
" outputs_val[var] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype = 'int16'))\n",
"\n",
"for x in ndvi_val.coords['x'].values:\n",
" for y in ndvi_val.coords['y'].values:\n",
" # Inputs\n",
" ndvi_val['NDVI'].loc[{'x' : x, 'y' : y}] = np.round(modspa_excel['NDVI'].values * 255)\n",
" rain_val['Rain'].loc[{'x' : x, 'y' : y}] = np.round(modspa_excel['Rain'].values * 1000)\n",
" ET0_val['ET0'].loc[{'x' : x, 'y' : y}] = np.round(modspa_excel['ET0'].values * 1000)\n",
"\n",
" # Outputs\n",
" for var in list(outputs_val.keys()):\n",
" outputs_val[var].loc[{'x' : x, 'y' : y}] = np.round(modspa_excel[var].values * 100)\n",
Jeremy Auclair
committed
"# Add precip\n",
"outputs_val['Rain'] = rain_val['Rain'].copy(deep = True) / 10\n",
Jeremy Auclair
committed
"\n",
"# Reorganize dimension order\n",
"ndvi_val = ndvi_val.transpose('time', 'y', 'x')\n",
"rain_val = rain_val.transpose('time', 'y', 'x')\n",
"ET0_val = ET0_val.transpose('time', 'y', 'x')\n",
"\n",
"# Save datasets\n",
"# Inputs\n",
"ndvi_val.to_netcdf(val_ndvi_path, encoding = {\"NDVI\": {\"dtype\": \"u1\", \"_FillValue\": 0}})\n",
"rain_val.Rain.rio.to_raster(rain_path, dtype = 'uint16')\n",
"ET0_val.ET0.rio.to_raster(val_ET0_path, dtype = 'uint16')\n",
"\n",
"# Create encoding dictionnary\n",
"for variable in list(outputs_val.keys()):\n",
" # Write encoding dict\n",
" encoding_dict = {}\n",
" encod = {}\n",
" encod['dtype'] = 'i2'\n",
" encoding_dict[variable] = encod\n",
"\n",
"# Outputs\n",
"outputs_val.to_netcdf(val_outputs, encoding = encoding_dict)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Compare `modspa-pixel` and `modspa-excel` outputs"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABIQAAAKsCAYAAACd/WZXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC+1UlEQVR4nOzdd3hUZf7//9dMeiMEQoBAaIZepYeOa10E/Ky6YEEQ24pl7eCurKCroNhWdxVUFEHdte5XLKyCK4iICkvoID0GSOghpE0myf37Y34ZcjKTkEgq5/m4rlwk5z7lnvuceTN55RSHMcYIAAAAAAAAtuGs7Q4AAAAAAACgZhEIAQAAAAAA2AyBEAAAAAAAgM0QCAEAAAAAANgMgRAAAAAAAIDNEAgBAAAAAADYDIEQAAAAAACAzRAIAQAAAAAA2AyBEAAAAAAAgM0QCAEAYBOPPPKIoqKi9Mgjj5xx3u+//15XXnmlunbtqtDQULVv316zZs2SMeZXzQcAAIC6xWH4xAYAQJ3w3HPP6YknntDx48f9tjscDjVo0EANGzZUfHy8+vXrp6SkJI0ZM0bh4eFnXH9kZKSys7MVGRmpU6dOlTnfBx98oIkTJ2rNmjXq0qWLpk6dqjlz5kiS3nzzTU2aNKlS8wEAAKDuIRACAKCO+eyzzzR69Gjvz2PHjtXvfvc7ud1unTx5Uj///LNWr16tTZs2SZIaNmyoG2+8UX/5y1/UsGHDMtf7wAMPaO7cubrjjjv01FNP+Z3n+PHjatu2rfr376+lS5dKkgoLC3XppZdq+fLl+uKLL3TRRRdVeD4AAADUTQRCAADUQQ0bNtTJkyclST///LM6dOjgM8+PP/6oBx98UCtXrpQkJSQkaNGiRRo+fPiv3u6zzz6rBx54QBMmTNDChQu9040xysrKUlRUVKXmAwAAQN3EPYQAAKiDoqOjvd8HBwf7nWfAgAFavny57rvvPklSamqqLrvsMn377be/ervffPONJMnptH5EcDgclpCnovMBAACgbiIQAgCgDnI4HBWaz+l06tlnn9XNN98sScrNzdUVV1yhY8eO/artpqamVul8AAAAqJsIhAAAOAe88MILio+PlySdOHFCM2fOLHPen3/+ucy27OzsCm2vovMBAACgbiIQAgDgHBAREaGHHnrI+/OiRYtUUFDg/TktLU3PP/+8+vbtq06dOlmW/c9//qPExEQlJiYqJSVFkvTxxx97pyUmJmrlypUVnq+knJwczZo1S4MGDdJ5552nqKgo9enTR88++6zy8/N9XsfJkyc1d+5c9evXTy6XS+np6bryyisVFRWlfv366cSJE5b5lyxZojFjxqhnz56KiIhQ69atdfPNN2vv3r0+63a5XPrggw90+eWXa8aMGZKk//3vfxo9erSio6MVGxurKVOmKDc3t8xxzs7O1pw5czRgwAB16NBBrVu31sCBAzVv3jy5XC6/y1R2DCqisLBQb731li699FJ1795dzZo1U7NmzTR27Fh9/vnnZS6zZMkSjR8/3ntG2c6dO3XttdcqNjZW0dHRuvbaa3/V2WUZGRmaO3euBgwYoO+++06StGDBAiUlJSkyMlLx8fF69NFHVfLWlZ9//rkuueQSNWrUSA0bNtQNN9zgvW+WP9u2bdPkyZPVp08fNWrUSHFxcRo7dqyWL19e5jKrVq3SNddco+7du6t169Zq1KiR98bn/uzfv1+zZ89W586dtXPnThljNHfuXHXv3l2hoaHq3Lmz3nvvvUqPDwAAdZIBAAB1TuvWrY0kI8ns3bu3Qsvs3bvXu4wks3LlSmOMMf/4xz/MqFGjTGBgoLftTNudOHFihfpX3nwpKSmmc+fO5uWXXzYFBQXGGGO2b99uOnXqZCSZwYMHm1OnThljjElOTjbjx483ISEh3j4ePHjQdOzY0dLv999/3xhjTFFRkbn99tvN6NGjTXp6ujHGmNzcXHP77bcbSSYyMtJ8++233r787W9/M+3atfOuZ+rUqebNN980ISEhJiEhwQQFBXnbJk2a5Pf1bN682Zx33nnmlltuMYcPHzbGGJOVlWW6dOliJJk+ffqYzMzMXz0GFXXgwAHTr18/06pVK7Nq1Srv9P/85z8mPj7eSDLjx483ubm53ra3337b9OjRw/sax40bZ5YsWWKioqJMixYtTFhYmLdtxIgRFe5LRkaGufbaa01oaKh3+aVLl5prr73WSDItW7Y04eHh3rann37a5OfnmxtvvNGEhISY1q1bm+DgYG/72LFj/W5n4cKFplu3bmbdunXGGM/+X7BggXE6nUaSefbZZ32WmT59upFkJk+ebHJycowxxvz0008mOjraBAQEmM8++8w776FDh8zkyZMtfVm/fr0ZPXq0CQ8P946rJONwOMx///vfCo8RAAB1FYEQAAB10K8JhIwxplmzZt7l3nzzTUvbpEmTaiwQysvLM926dTMPPvigT9vixYu9/Zg+fboxxpjs7GxTVFRkbrvtNm/blVdeab755huTnp5ufvvb35r4+Hiza9cuY4wxf/3rX02bNm1Mdna2Zd35+fmmadOmRpJp166dcbvd3rajR496w6VevXqZESNGmJ07dxpjjDlx4oTp37+/kWQCAgK8gU+xffv2mWbNmpkJEyb4vJ4XXnjB2+eSwURlx6AisrOzvcFOyTCo2NatW73hTOm+ulwu7/HRuXNn069fP7N27VpjjCdMGz16tLdPxcHLmbjdbnPy5Enz/PPPe5ft2bOnuf/++83+/fuNMcbk5OSYIUOGGEkmLi7OXHnllWbGjBneICwnJ8eMHTvWu/yePXss2/j2229NYGCg2bRpk8/2f/e733n32Y4dOyzjULy+5cuXW5aZOnWqkWT69evns76//e1v3uX69etnZsyY4Q2Tli9f7j1+xowZU6HxAQCgLuOSMQAAziFNmzb1fn/48GFLW0JCQo3146WXXtLmzZt14403+rRddNFFCgoKkiS99dZbkqTw8HA5HA717dvXO9+FF16oESNGqGnTpvr888914MABnXfeeTp48KAee+wx/f73v1d4eLhl3UFBQbr44oslSXv27LFcwta4cWPv+EREROjLL79UYmKiJKlhw4aaNm2aJM+lVf/73/8s67377rt19OhRPfXUUz6v5+qrr1ZkZKT3dfzaMaiI5557Ths3blRSUpIGDRrk0965c2fvU+cWLVrkfRqc5Hla3XnnnSdJcrvdWrZsmfr06SNJCg0Ntdx36scff6xQfwIDA9WgQQNddtll3mljx47VM888oxYtWkiSwsLCvH06fPiwEhMT9eijj3rHLCwsTI8++qh3+dWrV1u2MWXKFPXu3VvdunXz2f6oUaMkefbZ22+/7Z1e8qbnpS+Ba9++vSRp69atPuvr0qWL9/tJkybp0UcfVVhYmCRp+PDh+u1vfyup4uMDAEBdFljbHQAAAFWn+JdXSSoqKrK0lX5EfHV6/fXXJUn/93//57e9YcOGKioqksvlUmFhoQICAiR5AoZiF110kd9lFy5cqPz8fC1cuFCffPKJT3tOTo4aN24sSUpPT7e0Fa8/MTFRwcHBlraOHTt6vz969Kj3+927d2vx4sXq37+/mjdv7rO9+Ph4bdy4UWlpaZaQ5teOQXleffVVSdL5559f5jw33XSTnnzySUnSa6+9ppEjR3rbil9/ixYt1KBBA8tyZb3+iggJCfF+37ZtW5/24uBNks89rEq379+/3/v9Dz/8oM2bN6tBgwZ+l3O73d59XTL4+c1vfqNp06apoKDAGxoVKx7nnJwcn/WVPP5KhkPFiseosuMDAEBdRCAEAMA55MiRI97vY2Nja6UPhw8f9j7JbPPmzZZfsiujrIDk22+/lSQ9/vjj3psjV4WSZ/eUvCH3f/7zH0n+g45ibdu2tbRX1RiUlJKS4j3zpfjsG3/atWunZs2aKT09Xd9//32F11/W668KUVFRFW4veVPv4n09evRoyxlAZxIQEKBZs2ZZpu3atUuvv/66d3+aEje4rqjiMSosLKz0sgAA1DVcMgYAwDmisLDQckaMvzMcakLJy3Wq4/H0xeuvjnX7U/zEMofDUeFlqmMMSu7bMz2drF27dj7L1Bclg5qq2NcrVqzQmDFjNGfOHE2cOFH33HPP2XYRAIBzAmcIAQBwjli9erX3F+fo6Gj179+/VvpR8vHrv/zyi7p3714t6//ll1+qdL1lKX4U+oEDByq8THWMQclL/s50yVLxGTelL4urb85mXx8+fFg33nijNm3apMWLF6tXr16SuP8PAADFOEMIAIBzxPvvv+/9ftKkSVVymdKvERMT4/2+5E2Ny/LDDz/8qvVXZN1r1qw568t7ire3du1anTp1qlLLSFU3BiVvCr5x48Zy5y0OUlq3bn3G9dZlxeO4adMmn5tDl7Zv3z7vGVHHjh1TUlKSvvjiC/3zn//0hkEAAOA0AiEAAM4BW7du1dy5cyVJjRo10p///Oda60tiYqL35tYvvvii5WyZ0l5++WWtXbu2UusvPtsmOTlZX3/9dZnzpaam6s9//nOFbtZcnuIwITc3V/PmzStzvvz8fN17772SqmcMmjVr5r0McM2aNcrMzCxz3n379kny3Fy5Pive1263Wy+88EKZ8xUUFGjy5MneEPSvf/2r9uzZo7i4OA0ePLgmugoAQL1DIAQAQD2Xmpqqq666Sm63W8HBwfrXv/6lJk2a+MxXkZvoFs9zpnnLmy8oKMj7ZKfdu3d7Q5LSli5dqqeeesrvY9nLU/KpXbfccosOHTrkM09GRoauuOIK3XrrrZVatz+jRo3yPiL90Ucf1apVq3zmKQ4kRowYIan6xuDuu++WJOXl5endd9/1O8/evXu1b98+BQQE6I477qjQeuuqyy67zPsEszlz5mjlypU+8xQVFekPf/iDunTp4r2RenlB4Z49e7zfu93uKu4xAAD1B4EQAAB1UMlLk8q75Omjjz7SwIEDtW3bNjVp0kRffPFFmY9rL7nOsi59Kr5fTkZGRrn9O9N8f/7znxUUFCRJeuWVVzRq1CgtW7ZMKSkp+uGHH3Tvvffq8ssv17PPPquIiAjvciWfMFW8jdIuu+wy7/2R9u7dqz59+uj111/Xzp07tXXrVs2fP1/nn3++4uPjddVVV1mWLe9MnaysLO/3Jcc8Ojrae8ZVTk6OLrjgAt1///1asWKF1q9fr/fee09Dhw6VMUZjx4496zEoz8033+wNnR577DG/4//MM89I8oRX7du3P+vXXxElb/pcVFTk056Xl+f93t9+LbntkiFN48aNddddd0ny9P3iiy/WjBkztHHjRu3evVuffvqphg8frq+++kqPP/64d7nip4EdPnzYe+acJH366aeWp5UlJycrKyvLe0+m8sandD950hgAoN4zAACgTtm2bZuR5P2aOXOm2blzp9m6datZs2aN+fDDD8306dNNly5djCQTEhJi/vjHP5ojR46Uuc7MzEzTo0cP7zpff/11n3mWLFnibY+JiTG7d+/2u66Kzjd//nzjdDotr6X4KyAgwDz//POW+Y8ePWouuugi7zz33XefKSgo8LvuvXv3mjZt2vhdtyQzYsQIk5mZaVnm2LFjJiAgwEgyw4cP91nnokWLvMtPmzbN0lZYWGgmTZpU5vYuvPBCk52dfdZjUBEnTpwwI0eONJLM4MGDza5du4wxxuTn55tnnnnGOJ1OM23aNFNUVGRZzu12myZNmhhJpm3btj7tK1eu9PZt/PjxlerTzJkzvcveeOONprCw0GccSu6brKwsb1tRUZF59dVXve1Dhgwxubm53va8vDxz6aWXljn2LVu2NFu2bLFs7+mnn7bM07RpU9OoUSMzbNgw8/3333unR0ZGmsaNG5uff/7ZGGPMCy+84G178803fV7nb37zG2/79u3bKzVGAADUNQRCAADUEe+//74ZNWqUiY6OLvOX35CQENOkSRPTu3dvM2nSJPPWW2+ZkydPlrveYcOGmeDgYJ91xcXFme3bt5v/9//+nzcoKP3VrFkz8+677xpjTIXnK+mnn34yV111lYmLizOBgYGmWbNmZty4cWbNmjWW+f72t795w5qSXxEREWbKlCl+X9eJEyfMww8/bDp27GhCQ0NNZGSkGTRokHn11Vd9gqT58+eb7t27W9Y9evRos2TJEmOMMffdd59p0KCBZZxvuukmk5aWZlnPP//5TzN06FATFRVlQkNDTb9+/cy8efN8ApBfMwaVUVhYaN566y0zcuRI06hRI9OuXTvTpUsXM2HCBPPTTz/5zP///t//M4MGDbK8/uHDh3v32ezZs03z5s29bU6n04wfP95s27at3H4kJyebhg0b+uy36Oho884775jdu3ebuLg4v8fxI488YowxJiYmxqc9NDTUTJ8+3budgoIC88orr5gBAwaYyMhIExISYrp06WIeeeQRc+LECZ9+FRQUmBkzZphWrVqZsLAw07NnT/Piiy96j4spU6aY8PBw06tXL/PNN9+YU6dOmTvuuMNERER4+9CwYUNzxx13mEOHDplNmzaZMWPGWPp43nnnmWefffbX7kIAAGqdw5gK3FAAAAAAAAAA5wzuIQQAAAAAAGAzBEIAAAAAAAA2QyAEAAAAAABgMwRCAAAAAAAANkMgBAAAAAAAYDMEQgAAAAAAADYTWNsdqA1FRUU6ePCgoqKi5HA4ars7AAAAAAAAVcIYo1OnTik+Pl5OZ9nnAdkyEDp48KASEhJquxsAAAAAAADVIjU1VS1btiyz3ZaBUFRUlCTP4DRo0KCWewMAAAAAAFA1MjMzlZCQ4M0+ymLLQKj4MrEGDRoQCAEAAAAAgHPOmW6Rw02lAQAAAAAAbIZACAAAAAAAwGYIhAAAAAAAAGyGQAgAAAAAAMBmCIQAAAAAAABshkAIAAAAAADAZgiEAAAAAAAAbIZACAAAAAAAwGYIhAAAAAAAAGyGQAgAAAAAAMBmCIQAAAAAAABshkAIAAAAAADAZgiEAAAAAAAAbIZACAAAAAAAwGYIhAAAAAAAAGyGQAgAAAAAAMBmCIQAAAAAAABspl4FQrt379YNN9yg888/X4MGDVLv3r312muv1Xa3AAAAAAAA6pXA2u5ARa1fv17Dhw/XmDFj9NNPPykoKEirVq3SJZdcojVr1ujVV1+t7S4CAAAAAADUC/XiDKGTJ09qzJgxCgwM1Msvv6ygoCBJ0uDBg/Xggw/qtdde04IFC2q3kwAAAAAAAPVEvQiE5s6dq9TUVF111VWKioqytE2ePFmS9Mgjj8jtdtdG9wAAAAAAAOqVehEIvf7665KkESNG+LQlJCSoXbt2OnDggJYtW1bDPQMAAAAAAKh/6vw9hI4cOaJdu3ZJkrp06eJ3nm7dumnPnj366quvdNlll9Vk9wAAQA1oM+3zGt3evtmjanR7AACgbHwOqB51PhDasmWL9/sWLVr4nSc+Pl6StHnz5hrpEwAAAICK4Rc5AKib6nwgdPz4ce/3pe8fVKxBgwaSpMOHD/ttd7lccrlc3p8zMzMlSadOnZLD4fBODwwMVFhYmIqKipSdne2znuLt5+TkqLCw0NIWGhqqoKAg5efnW7YlSQEBAQoPD5cxRllZWT7rjYiIkNPpVG5urgoKCixtISEhCg4OltvtVl5enqXN6XQqIiLC+1pKCw8PV0BAgPLy8nzurxQcHKyQkBAVFBQoNzfX0uZwOBQZGSlJysrKkjHG0h4WFqbAwEC5XC7l5+db2oKCghQaGqrCwkLl5OT49Kl4DLOzs1VUVGRpK28Mz7RvIiMj5XA4/O6b8saweN9I/sewvH1T3hhe+rfvdCDL8/oSopxyOizNSs8ukqtQigl1qEGwtfFUvtHxPKNgp9Q80npVpzHSL6c8642PdCjI6dBndw3xthfvm6oew+J9U94Yns3x7W8MSx7f/o7Dihzf/o7D3774nVL//zFsEelUYKkLZw/lFCmvQIoOcahhiHXfZLuNjuYaBTml+EjfK25TMj3rbRbhUEiAdd/U1Rpx3p//o8ahDkWWOg4zXUYnXEahAVLTCOtrLSyS9v//x3fLSKcCSo9hdpHyCqWYEIcalBrDL+8bWedrxOUvfedtcxUapWd7jr3WDXz3+cGsIrmLpNgwhyKCrK81w2V00mUUGig1DbcuW1AkHcgq0r7Zo8o9vitbZ0vWb39jWJ9rROnxdxcZHczyjFurKKccpepsWlaR8oukRqEORZU+vvONTuQZhQRIzUod30VG3hpR1hgmPvJlldSIko7mFinbLUUFS41CTy/72V1DyhzD4mN1/6kiFRopLtyhsEDrek/kGWXmG4UHSk1KHYf5hUZp///x3aqBU6WG0Ht8Nw51aPn9Qy1tdfFzxICnvlVOgdQg2KGYUOuryS0wOpxjFOCQWkb57ptfMotkJDUNdyi01BgezyvSqXwpIkiKDfO/byRrnS3eN2dbI6Qzf474ttS+qYs1IjJIynJ7/m0cZn2teQVGh3KMHPIch6UVH99NwhwKLz2GeUYn/Rzfp06d8vs5omR9r4oacabPEd89YN03/K7hUZd/1zjv4c+rrEZIZ/4c8c20S8rcN0OeWVklNaIiv2sUf2aty58jqrJGSGf+HFFYWPirfteo6Bj6O76rskb4e8/6U+cDoZIDHBwc7HeekJAQSfI7aJI0a9YszZw502f6hg0bvEVOkuLi4tS5c2e5XC6tW7fOZ/7hw4dLkrZv3+4zwJ06dVLTpk0tl7gVi4mJUY8ePVRYWOh3vUlJSQoODtbu3bt17NgxS1u7du2UkJCgjIwMbd261dIWGRmpPn36SJKSk5N9imnfvn0VERGhlJQUpaenW9qK772UlZWlDRs2WNqCg4OVlJQkSdq0aZPPgdqzZ081bNhQBw4cUGpqqqWtWbNm6tixo/Ly8nxeq8Ph0LBhwyR5xrD0f1hdunRRkyZNdOjQIe3Zs8fS1rhxY3Xr1k0FBQV+x3Dw4MEKDAzUG1+sVvcm1sN64RaXvv7FrUHxgbqtZ6ilbdeJQj3+g+c/qbcui/RZ74MrsnU4x+i2HiEa1CLI0ta6dWu1adNGmZmZ2rRpk6XtuYsaacCAAZKk77//3qeI9OrVS9HR0dq1a5cOHDhgaYuPj1f79u116tQpn9caEBCgIUM8BXvNmjXKycmxzNO1a1fFxsYqPT1de/futSz7U1qB/rE+TzGhDr0wMkKl3fRllgqKpGn9w9S5cYCl7Y1NeVqxv0DDWwZqcnfrGG47VqjZP+Uq0CnNv8R3DAcOHKiQkBDt2bNHR48etbS1bdtWrVq1UkZGhuVsQMnzIaNfv36SpPXr1/sUvd69eysqKkqpqak6ePCgpa1FixZKTExUVlaW1q9fb2l7amS0Bg0aJEn68ccfff7T6d69uxo1aqR9+/YpJSXF0lZcI3Jzc/XTTz/5vNbiGrFu3Tqf/VdXa8S+2aP0888/l1kjMjIyyq0Rq1evLrNG7Nmzx6dGpKSklFkj3EVGN3/pqeMzB4WpTbT1OPx7cq7WpBfqkjZBurZziKUt+VCBXliXp6hg6e+/8T0Ob1uapbwC6YG+oT41IjExUS1atNDx48e1fft2PTY43NsWFRWl3r17S5JWrFjhs97+/fsrLCxM27Zt8/mjRHGNOH78uE+NCA0N9daIjRs3llkjUlNTy6wRpd//krVGbN261edDSnk1IjY2Vl27dpXb7fZ7HA4dOlQOh0M7duzQyZMnLW0dOnRQ8+bNdfToUe3YscPSFh0drV69eskY43e9Fa0RJfeLZK0R3333XZk1YufOnWXWiJMnT/rUiKCgIG+N2Lx5s98asW/2qCqpESUV14gDBw5YasS6devKrBHFY1JcIzZv3lxmjThy5Ei5NeLbb78t83PEzz//7LPvyvsccTyvSPd+4zn2nh8Zbgm4JGnWj7nafrxQV3cI1uXnWT/brUh1643NLrWIdOrJodZ9Xlwj9s0e5fdzxIo/9leTJk2Umppa5ueI/Px8rV69WqUVf47YuHGjTpw4YWkrrhGHDh3S9u3bvdPXrVtnqRH+9k1V1IgzfY4ovW/qYo1YOqW3mjdvrrS0tDJrRFFRkVauXOmz3uIasWXLljJrxNGjRy2fI9atW+f3c0TJOlIVNeJMnyNKjxO/a3jU5d81ts28qMpqhHTmzxEul0thYWHat2+fT4345MYuVVIjKvK7RvG/dflzxO4nL6uyGiGd+XNETk7Or/pdoyKfIxo1aqS0tLQyP0dURY0oKxspzWFKv7PrmI8++khXXXWVJM8bxl8o9PDDD2v27Nnq3r27Nm7c6NPu7wyhhIQE7d+/33t2kURqX6wup/ZnSpwHPPZFlab25f1l76v7LyhzDCt6dkt1//W/5F/CctxGR3J/3V9Hj+UWVegvexv/PMxnvXXtDKG6ktqXRI3w/DXdyHMcSlLzCIeCS51BcSSnqMr++l/y7K3aOIuwrtSIkur6GULUiLpbI37z9FJL29mcRZiVb3Qsz/9ZVsU1Yt/sUef8mcbUiNOoER71uUacS79rUCOoEVL9qBGZmZlq2bKlTp48ack8SqvzgdCqVau8KeWxY8fUqFEjn3nuuusu/f3vf9eFF16opUuX+rSXlpmZqejo6DMODuqfmrxGvT5cn841+6gvOFaB+ov3LwAAdUtFM486/9j5zp07e+/zk5aW5nee4uldu3atsX4BAAAAAADUV3X+HkKNGjVSjx49tGHDBm3dutVv6FN8PeDIkSNrunsAgCrAX/yB+ov3LwAA9VOdP0NIksaPHy9Jfm8idejQIe3YsUONGjXSxRdfXNNdAwAAAAAAqHfqRSB06623qkmTJnrvvfd8btr05ptvqqioSPfff7/CwsJqqYcAAAAAAAD1R70IhBo1aqRFixbp1KlTuvPOO713+V6zZo1mzZql3/72t5o6dWot9xIAAAAAAKB+qPP3ECp2ySWX6IcfftATTzyhgQMHKjw8XNnZ2Xrsscd05513KiAgoLa7CAAAAAAAUC/Um0BIknr06KH33nuvtrsBAAAAAABQr9WLS8YAAAAAAABQdQiEAAAAAAAAbIZACAAAAAAAwGYIhAAAAAAAAGyGQAgAAAAAAMBmCIQAAAAAAABshkAIAAAAAADAZgiEAAAAAAAAbIZACAAAAAAAwGYIhAAAAAAAAGyGQAgAAAAAAMBmCIQAAAAAAABshkAIAAAAAADAZgiEAAAAAAAAbIZACAAAAAAAwGYIhAAAAAAAAGyGQAgAAAAAAMBmCIQAAAAAAABshkAIAAAAAADAZgiEAAAAAAAAbIZACAAAAAAAwGYIhAAAAAAAAGyGQAgAAAAAAMBmCIQAAAAAAABshkAIAAAAAADAZgiEAAAAAAAAbIZACAAAAAAAwGYIhAAAAAAAAGyGQAgAAAAAAMBmCIQAAAAAAABshkAIAAAAAADAZgJruwMAqs++2aNquwsAAAAAgDqIM4QAAAAAAABshkAIAAAAAADAZgiEAAAAAAAAbIZACAAAAAAAwGYIhAAAAAAAAGyGQAgAAAAAAMBmCIQAAAAAAABshkAIAAAAAADAZgiEAAAAAAAAbIZACAAAAAAAwGYIhAAAAAAAAGyGQAgAAAAAAMBmCIQAAAAAAABshkAIAAAAAADAZgiEAAAAAAAAbIZACAAAAAAAwGYIhAAAAAAAAGyGQAgAAAAAAMBmCIQAAAAAAABshkAIAAAAAADAZgiEAAAAAAAAbIZACAAAAAAAwGYIhAAAAAAAAGyGQAgAAAAAAMBm6n0gVFhYqE8++aS2uwEAAAAAAFBv1KtAaNCgQXI4HJavwMBAffDBB7XdNQAAAAAAgHqj3gRCq1at0urVq32mO51OTZkypRZ6BAAAAAAAUD8F1nYHKmrOnDl67rnndOONN1qmBwcHKzw8vJZ6BQAAAAAAUP/Ui0Box44d+vHHH/XPf/5TYWFhtd0dAAAAAACAeq1eXDL27LPPyu12a8qUKXrjjTd08ODB2u4SAAAAAABAvVXnA6HDhw9r4cKFOnbsmBYsWKCbbrpJCQkJuuKKK7R///7a7h4AAAAAAEC9U+cDIafTqVdffVVz5szRVVddpYiICBUVFemTTz5Rz549tW3bttruIgAAAAAAQL1S5+8hFBsbqwkTJnh/zsjI0FNPPaU5c+bo+PHjGjVqlLZv367g4OAy1+FyueRyubw/Z2ZmSpJOnTolh8PhnR4YGKiwsDAVFRUpOzvbZz1RUVGSpJycHBUWFlraQkNDFRQUpPz8fMu2JCkgIEDh4eEyxigrK8tnvREREXI6ncrNzVVBQYGlLSQkRMHBwXK73crLy7O0OZ1ORUREeF9LaeHh4QoICFBeXp7cbrelLTg4WCEhISooKFBubq6lzeFwKDIyUpKUlZUlY4ylPSwsTIGBgXK5XMrPz7e0BQUFKTQ0VIWFhcrJyfHpU/EYZmdnq6ioyNJW3hiead9ERkbK4XCoabhDoYEOS9vxvCKdypcigqTYMGsG6io0Ss/2vL7WDXzz0YNZRXIXSbFhDkUEWdfrcrnKHMOS+8bfGBbvm8qOYcl9428Mi/fN2Yxhece3v+OwKo7vsxnD8o7vsxlDf/uGGuFRn2uEv31T3hgW7xvJ/xiWt2/KG0NqxGnUCA9qhAc1woMacRo1woMa4UGN8KBGnEaN8Ch9fPs73vyp84FQaQ0bNtSsWbM0bNgwjR07Vnv37tWiRYt00003lbnMrFmzNHPmTJ/pGzZs8B4EkhQXF6fOnTvL5XJp3bp1PvMPHz5ckrR9+3afAe7UqZOaNm2qI0eOaNeuXZa2mJgY9ejRQ4WFhX7Xm5SUpODgYO3evVvHjh2ztLVr104JCQnKyMjQ1q1bLW2RkZHq06ePJCk5OdnnIO7bt68iIiKUkpKi9PR0S1tCQoLatWunrKwsbdiwwdIWHByspKQkSdKmTZt8DtSePXuqYcOGOnDggFJTUy1tzZo1U8eOHZWXl+fzWh0Oh4YNGybJM4al39BdunRRkyZNdOjQIe3Zs8fS1rhxY3Xr1k0FBQV+x3Dw4MEKDAzUhC4h6t7Eelgv3OLS17+41bNJoG7rGWpp23WiUI//4CkOjw32fVrdgyuydTjH6Mr2wRrUIsjSlpaWpjZt2igzM1ObNm2ytIWGhmrAgAGSpI0bN/oUkV69eik6Olqpqak6cOCApS0+Pl7t27dXTk6Oz2sNCAjQkCFDJElbt271KUBdu3ZVbGys0tPTtXfvXktbbGysunbtKrfb7XcMhw4dKofDoR07dujkyZOWtg4dOqh58+Y6evSoduzYYWmLjo5Wr169ZIzxu96BAwcqJCREe/bs0dGjRy1tbdu2VatWrZSRkaEtW7ZY2sLDw9WvXz9J0vr1632KXu/evRUVFaXU1FSf+4q1aNFCiYmJysrK0vr16y1tQUFBGjRokCRp8+bNPv/pdO/eXY0aNVJaWppSUlIsbdQIj/pcI3bt2qUTJ05Y2hITE9WiRQsdP35c27dvt7RFRUWpd+/ekuR3vf3791dYWJj27dunw4cPW9pat25NjRA1oiRqhAc1woMa4UGNOI0a4UGN8KBGeFAjTqtMjfAXKPnjMKXf2fXIgw8+qGeeeUY33nij3njjjTLn83eGUEJCgvbv368GDRp4p5Pae9Tn1H7AY1/U2BlCX91/Aam9SO1LokZ41OUawV/2qBESNaIYNeI0aoQHNcKDGuFBjTiNGuFBjfCoDzUiMzNTLVu21MmTJy2ZR2nVHgjNnTtXt99+e6WXmzp1qmbPnl3uPJs3b1b37t11ySWX6D//+U+F152Zmano6OgzDg7qnzbTPq+xbe2bParGtgUAAAAAQEVUNPOo9kvGYmJi1LFjx0ovFxcXd8Z5EhMTJYlQBwAAAAAAoBKqPRAaN26cxo0bVy3rLj49q3PnztWyfgAAAAAAgHNRnX/sfHmWLl0qh8Ohq6++ura7AgAAAAAAUG/U+aeMzZ07VwUFBbr++uvVsGFD7/Ts7GzNmDFDf/zjH9WtW7fa6yAAAAAAAEA9U6fPEDp58qSmTJmiu+66S507d9Z7770nt9utXbt26be//a1+85vf6Nlnn63tbgIAAAAAANQrdToQio6O1ptvvqnzzz9fmZmZuuGGG9S5c2fNnDlTTzzxhP7+97/L6azTLwEAAAAAAKDOqfOXjE2cOFETJ06s7W4AAAAAAACcMzi9BgAAAAAAwGYIhAAAAAAAAGyGQAgAAAAAAMBmCIQAAAAAAABshkAIAAAAAADAZgiEAAAAAAAAbIZACAAAAAAAwGYIhAAAAAAAAGyGQAgAAAAAAMBmCIQAAAAAAABshkAIAAAAAADAZgiEAAAAAAAAbIZACAAAAAAAwGYIhAAAAAAAAGyGQAgAAAAAAMBmCIQAAAAAAABshkAIAAAAAADAZgiEAAAAAAAAbIZACAAAAAAAwGYIhAAAAAAAAGyGQAgAAAAAAMBmCIQAAAAAAABshkAIAAAAAADAZgiEAAAAAAAAbIZACAAAAAAAwGYIhAAAAAAAAGyGQAgAAAAAAMBmCIQAAAAAAABshkAIAAAAAADAZgiEAAAAAAAAbIZACAAAAAAAwGYIhAAAAAAAAGyGQAgAAAAAAMBmCIQAAAAAAABshkAIAAAAAADAZgiEAAAAAAAAbIZACAAAAAAAwGYIhAAAAAAAAGyGQAgAAAAAAMBmCIQAAAAAAABshkAIAAAAAADAZgiEAAAAAAAAbIZACAAAAAAAwGYIhAAAAAAAAGyGQAgAAAAAAMBmCIQAAAAAAABshkAIAAAAAADAZgiEAAAAAAAAbIZACAAAAAAAwGYIhAAAAAAAAGyGQAgAAAAAAMBmCIQAAAAAAABshkAIAAAAAADAZgiEAAAAAAAAbIZACAAAAAAAwGYIhAAAAAAAAGyGQAgAAAAAAMBm6kQglJycrEWLFtV2NwAAAAAAAGyhVgOhnTt3avz48erTp4++/vrrM87/0UcfaciQIRo0aJB69uypsWPHav369dXfUQAAAAAAgHNIrQRCbrdbL7zwgl577TWtWrVKxpgzLvPoo49q/Pjxmjp1qr7//nslJycrMTFRSUlJWrZsWQ30GgAAAAAA4NxQK4FQUFCQ7rnnHj399NO67rrrzjj/xx9/rMcee0yTJk3S6NGjJUlOp1NPPfWUWrZsqfHjx+vYsWPV3W0AAAAAAIBzQq3fQyg0NLTcdmOMHnnkEUnS5MmTLW2BgYGaOHGijh07pqeffrra+ggAAAAAAHAuqfVA6Ey+//57bdu2TWFhYerfv79P+/DhwyVJCxcuVFFRUU13DwAAAAAAoN6pF4GQJHXs2FEBAQE+7d26dZMkpaena9OmTTXaNwAAAAAAgPqozgdCW7ZskSS1aNHCb3tMTIzCwsIkSZs3b66xfgEAAAAAANRXgbXdgTM5fvy4JCkqKqrMeaKiopSbm6vDhw/7bXe5XHK5XN6fMzMzJUmnTp2Sw+HwTg8MDFRYWJiKioqUnZ3tdzuSlJOTo8LCQktbaGiogoKClJ+fb9mWJAUEBCg8PFzGGGVlZfmsNyIiQk6nU7m5uSooKLC0hYSEKDg4WG63W3l5eZY2p9OpiIgI72spLTw8XAEBAcrLy5Pb7ba0BQcHKyQkRAUFBcrNzbW0ORwORUZGSpKysrJ8ngIXFhamwMBAuVwu5efnW9qCgoIUGhqqwsJC5eTk+PSpeAyzs7N9LvErbwzPtG8iIyPlcDjUNNyh0ECHpe14XpFO5UsRQVJsmDUDdRUapWd7Xl/rBr756MGsIrmLpNgwhyKCrOt1uVxljmHJfeNvDIv3TWXHsOS+8TeGxfvmbMawvOPb33FYFcf32Yxhecf32Yyhv31DjfCozzXC374pbwyL943kfwzL2zfljSE14jRqhAc1woMa4UGNOI0a4UGN8KBGeFAjTqNGeJQ+vv0db/7U+UCoeICDg4PLnCckJESS/A6aJM2aNUszZ870mb5hwwbvQSBJcXFx6ty5s1wul9atW+czf/H9irZv3+4zwJ06dVLTpk115MgR7dq1y9IWExOjHj16qLCw0O96k5KSFBwcrN27d/s8La1du3ZKSEhQRkaGtm7dammLjIxUnz59JEnJyck+B3Hfvn0VERGhlJQUpaenW9oSEhLUrl07ZWVlacOGDZa24OBgJSUlSZI2bdrkc6D27NlTDRs21IEDB5Sammppa9asmTp27Ki8vDyf1+pwODRs2DBJnjEs/Ybu0qWLmjRpokOHDmnPnj2WtsaNG6tbt24qKCjwO4aDBw9WYGCgJnQJUfcm1sN64RaXvv7FrZ5NAnVbT+tNzHedKNTjP3iKw2ODw33W++CKbB3OMbqyfbAGtQiytKWlpalNmzbKzMz0uVwxNDRUAwYMkCRt3LjRp4j06tVL0dHRSk1N1YEDByxt8fHxat++vXJycnxea0BAgIYMGSJJ2rp1q08B6tq1q2JjY5Wenq69e/da2mJjY9W1a1e53W6/Yzh06FA5HA7t2LFDJ0+etLR16NBBzZs319GjR7Vjxw5LW3R0tHr16iVjjN/1Dhw4UCEhIdqzZ4+OHj1qaWvbtq1atWqljIwM79mAxcLDw9WvXz9J0vr1632KXu/evRUVFaXU1FQdPHjQ0taiRQslJiYqKytL69evt7QFBQVp0KBBkjxnFZb+T6d79+5q1KiR0tLSlJKSYmmjRnjU5xqxa9cunThxwtKWmJioFi1a6Pjx49q+fbulLSoqSr1795Ykv+vt37+/wsLCtG/fPp8/SrRu3ZoaIWpESdQID2qEBzXCgxpxGjXCgxrhQY3woEacVpkaUVY2UprDlH5n17AZM2Zo5syZmjhxohYsWODTPnr0aH322We65ppr9O677/pdR/PmzZWenq5nn31W9913n0+7vzOEEhIStH//fjVo0MA7ndTeoz6n9gMe+6LGzhD66v4LSO1Fal8SNcKjLtcI/rJHjZCoEcWoEadRIzyoER7UCA9qxGnUCA9qhEd9qBGZmZlq2bKlTp48ack8Sqt0IDR37lzdfvvtlVlEkjR16lTNnj3bZ/qZAqFbbrlFr7/+ukaPHq3Fixf7XXdUVJSysrL09ttv67rrrjtjXzIzMxUdHX3GwUH902ba5zW2rX2zR9XYtgAAAAAAqIiKZh6VvmQsJiZGHTt2rHSH4uLiKr2M5Dm1T/JcnuNPVlaWNyns2rXrr9oGAAAAAACAnVQ6EBo3bpzGjRtXHX3xa+TIkZKkn3/+WcYYy02gpdNPIWvcuLF69OhRY/0CAAAAAACor+r8Y+d79eqlTp066dSpU0pOTvZp//bbbyVJv//97+V01vmXAwAAAAAAUOtqPUEpvrlT6ZstlfSnP/1JkvTmm29aphcVFWnBggUKCwvT/fffX32dBAAAAAAAOIfUaiCUm5urpUuXSpLWrFnj907xkjRhwgRNnjxZ8+bN05IlSyRJxhhNnz5dO3bs0Lx583TeeefVWL8BAAAAAADqs0rfQ6iqXH755Vq1apUyMjIkSdu3b1d8fLw6duyoH3/80Wf++fPna+jQoZo5c6aefPJJ5eXlKS4uTsuXL9fgwYNruPcAAAAAAAD1V60FQp999lmll5k0aZImTZpU9Z0BAAAAAACwkVq/hxAAAAAAAABqFoEQAAAAAACAzRAIAQAAAAAA2AyBEAAAAAAAgM0QCAEAAAAAANgMgRAAAAAAAIDNEAgBAAAAAADYDIEQAAAAAACAzRAIAQAAAAAA2AyBEAAAAAAAgM0QCAEAAAAAANgMgRAAAAAAAIDNEAgBAAAAAADYDIEQAAAAAACAzRAIAQAAAAAA2AyBEAAAAAAAgM0QCAEAAAAAANgMgRAAAAAAAIDNEAgBAAAAAADYDIEQAAAAAACAzRAIAQAAAAAA2AyBEAAAAAAAgM0QCAEAAAAAANgMgRAAAAAAAIDNEAgBAAAAAADYDIEQAAAAAACAzRAIAQAAAAAA2AyBEAAAAAAAgM0QCAEAAAAAANgMgRAAAAAAAIDNEAgBAAAAAADYDIEQAAAAAACAzRAIAQAAAAAA2AyBEAAAAAAAgM0QCAEAAAAAANgMgRAAAAAAAIDNEAgBAAAAAADYDIEQAAAAAACAzRAIAQAAAAAA2AyBEAAAAAAAgM0QCAEAAAAAANgMgRAAAAAAAIDNEAgBAAAAAADYDIEQAAAAAACAzRAIAQAAAAAA2AyBEAAAAAAAgM0QCAEAAAAAANgMgRAAAAAAAIDNEAgBAAAAAADYDIEQAAAAAACAzRAIAQAAAAAA2AyBEAAAAAAAgM0QCAEAAAAAANgMgRAAAAAAAIDNEAgBAAAAAADYDIEQAAAAAACAzRAIAQAAAAAA2EydCISSk5O1aNGiX7384cOHtXLlyirsEQAAAAAAwLmrVgOhnTt3avz48erTp4++/vrrM87/1VdfyeFw+Hw1a9ZMzZo1q4EeAwAAAAAA1H+BtbFRt9utf/zjHzp48KBWrVolY0yFlpszZ47f6RdffLHat29flV0EAAAAAAA4Z9VKIBQUFKR77rlHkuR0OvXUU0+dcZn169dr27ZtOnLkiAIDT3fb4XAoKiqquroKAAAAAABwzqmVQKik0NDQCs33zDPP6L777lNsbGw19wgAAAAAAODcVuuBUEX88ssveu+995SSkqKMjAz95je/0ZAhQxQQEFDbXQMAAAAAAKh36sRTxs7khRdeUEFBgb777js9/vjjGjFihBISEvT666/XdtcAAAAAAADqnXpxhtDo0aPVsWNH7dixQ0uXLtWmTZuUlpamW265RevWrdPLL79c210EAAAAAACoN+pFIDRy5EiNHDnS+/OKFSt0xx13aMuWLXrllVd0/vnn65ZbbilzeZfLJZfL5f05MzNTknTq1Ck5HA7v9MDAQIWFhamoqEjZ2dk+6ym+eXVOTo4KCwstbaGhoQoKClJ+fr5lW5IUEBCg8PBwGWOUlZXls96IiAg5nU7l5uaqoKDA0hYSEqLg4GC53W7l5eVZ2pxOpyIiIryvpbTw8HAFBAQoLy9Pbrfb0hYcHKyQkBAVFBQoNzfX0uZwOBQZGSlJysrK8nkKXFhYmAIDA+VyuZSfn29pCwoKUmhoqAoLC5WTk+PTp+IxzM7OVlFRkaWtvDE8076JjIyUw+FQ03CHQgMdlrbjeUU6lS9FBEmxYdaT4lyFRunZntfXuoHvCXMHs4rkLpJiwxyKCLKu1+VylTmGJfeNvzEs3jeVHcOS+8bfGBbvm7MZw/KOb3/HYVUc32czhuUd32czhv72DTXCoz7XCH/7prwxLN43kv8xLG/flDeG1IjTqBEe1AgPaoQHNeI0aoQHNcKDGuFBjTiNGuFR+vj2d7z5Uy8CodKGDx+utWvXasyYMVq6dKmeeOIJ3XTTTXI6/V8BN2vWLM2cOdNn+oYNG7wHgSTFxcWpc+fOcrlcWrdund/tStL27dt9BrhTp05q2rSpjhw5ol27dlnaYmJi1KNHDxUWFvpdb1JSkoKDg7V7924dO3bM0tauXTslJCQoIyNDW7dutbRFRkaqT58+kqTk5GSfg7hv376KiIhQSkqK0tPTLW0JCQlq166dsrKytGHDBktbcHCwkpKSJEmbNm3yOVB79uyphg0b6sCBA0pNTbW0NWvWTB07dlReXp7Pa3U4HBo2bJgkzxiWfkN36dJFTZo00aFDh7Rnzx5LW+PGjdWtWzcVFBT4HcPBgwcrMDBQE7qEqHsT62G9cItLX//iVs8mgbqtp/Um5rtOFOrxHzzF4bHB4T7rfXBFtg7nGF3ZPliDWgRZ2tLS0tSmTRtlZmZq06ZNlrbQ0FANGDBAkrRx40afItKrVy9FR0crNTVVBw4csLTFx8erffv2ysnJ8XmtAQEBGjJkiCRp69atPgWoa9euio2NVXp6uvbu3Wtpi42NVdeuXeV2u/2O4dChQ+VwOLRjxw6dPHnS0tahQwc1b95cR48e1Y4dOyxt0dHR6tWrl4wxftc7cOBAhYSEaM+ePTp69KilrW3btmrVqpUyMjK0ZcsWS1t4eLj69esnyfOUwdJFr3fv3oqKilJqaqoOHjxoaWvRooUSExOVlZWl9evXW9qCgoI0aNAgSdLmzZt9/tPp3r27GjVqpLS0NKWkpFjaqBEe9blG7Nq1SydOnLC0JSYmqkWLFjp+/Li2b99uaYuKilLv3r0lye96+/fvr7CwMO3bt0+HDx+2tLVu3ZoaIWpESdQID2qEBzXCgxpxGjXCgxrhQY3woEacVpka4S9Q8sdhSr+za9iMGTM0c+ZMTZw4UQsWLKjUsocOHdJ5552n7OxspaSkqFWrVn7n83eGUEJCgvbv368GDRp4p5Pae9Tn1H7AY1/U2BlCX91/Aam9SO1LokZ41OUawV/2qBESNaIYNeI0aoQHNcKDGuFBjTiNGuFBjfCoDzUiMzNTLVu21MmTJy2ZR2mVDoTmzp2r22+/vTKLSJKmTp2q2bNn+0w/m0BIkq666ip99NFHWr16tQYOHFihZTIzMxUdHX3GwUH902ba5zW2rX2zR9XYtgAAAAAAqIiKZh6VvmQsJiZGHTt2rHSH4uLiKr1MRSQmJkoSwQ4AAAAAAEAFVToQGjdunMaNG1cdfflVcnJyFBoaqjZt2tR2VwAAAAAAAOoF/3dhrkeWLVum0aNHe6/NBAAAAAAAQPlq/SljxTd3Kn2zpWLbt2/Xhx9+qKFDh3rvql1s/vz5OnjwoJYsWVLt/QQAAAAAADhX1OoZQrm5uVq6dKkkac2aNX7vFP/qq69q+vTpGjFihK699lqlpqYqPz9fr776qp544gktX75crVu3rumuAwAAAAAA1Fu1Fghdfvnlio+PV3JysiTPmUDx8fEaMGCAZb6HHnpI1113nZo2baoPPvhA3bt314UXXqiMjAxt2LBBvXr1qoXeAwAAAAAA1F+1dsnYZ599VqH5mjVrprfffruaewMAAAAAAGAf9f6m0gAAAAAAAKgcAiEAAAAAAACbIRACAAAAAACwGQIhAAAAAAAAmyEQAgAAAAAAsBkCIQAAAAAAAJshEAIAAAAAALAZAiEAAAAAAACbIRACAAAAAACwGQIhAAAAAAAAmyEQAgAAAAAAsBkCIQAAAAAAAJshEAIAAAAAALAZAiEAAAAAAACbIRACAAAAAACwGQIhAAAAAAAAmyEQAgAAAAAAsBkCIQAAAAAAAJshEAIAAAAAALAZAiEAAAAAAACbIRACAAAAAACwGQIhAAAAAAAAmyEQAgAAAAAAsBkCIQAAAAAAAJshEAIAAAAAALAZAiEAAAAAAACbIRACAAAAAACwGQIhAAAAAAAAmyEQAgAAAAAAsBkCIQAAAAAAAJshEAIAAAAAALAZAiEAAAAAAACbIRACAAAAAACwGQIhAAAAAAAAmyEQAgAAAAAAsBkCIQAAAAAAAJshEAIAAAAAALAZAiEAAAAAAACbIRACAAAAAACwGQIhAAAAAAAAmyEQAgAAAAAAsBkCIQAAAAAAAJshEAIAAAAAALAZAiEAAAAAAACbIRACAAAAAACwGQIhAAAAAAAAmyEQAgAAAAAAsBkCIQAAAAAAAJshEAIAAAAAALAZAiEAAAAAAACbIRACAAAAAACwGQIhAAAAAAAAmyEQAgAAAAAAsBkCIQAAAAAAAJshEAIAAAAAALAZAiEAAAAAAACbIRACAAAAAACwGQIhAAAAAAAAm6m1QGjRokUaOHCgIiMjFR4erv79+2vhwoVlzm+M0auvvqr+/ftryJAh6t69u6677jrt3bu3BnsNAAAAAABQ/9VKIHTffffphhtu0Jo1a5SXl6fc3FytWbNGEydO1P333+93mRtvvFH333+//vGPf+i7777T2rVrVVhYqL59+2rTpk01/AoAAAAAAADqrxoPhL766iu99957Wrx4sXJzc5WTk6OVK1fq/PPPlyQ999xzWrNmjWWZ5557Tm+99ZamTZumfv36SZJCQkI0b948FRUV6aqrrlJ+fn5NvxQAAAAAAIB6qcYDoWeffVYff/yxRo8ereDgYAUHB2vIkCFasmSJGjZsKEn65JNPvPPn5OToySeflMPh0KRJkyzrio6O1pVXXqkdO3Zo/vz5NfgqAAAAAAAA6q8aDYSys7PVpEkTDRgwwKetadOmuuyyyyRJx44d807/97//rWPHjql9+/Zq0aKFz3LDhw+XJC1YsKB6Og0AAAAAAHCOqdFAKCwsTK+88kqZ7a1atZIktW7d2jvt+++/lyR16dLF7zLdunWTJP300086efJkVXUVAAAAAADgnFWjgZDT6VRUVFSZ7enp6ZKk0aNHe6dt2bJFkvyeHSRJ8fHx3u83b95cFd0EAAAAAAA4pwXWdgdK+uGHH3TRRRepa9eu3mnHjx+XpDKDpAYNGni/P3z4sN95XC6XXC6X9+fMzExJ0qlTp+RwOLzTAwMDFRYWpqKiImVnZ/usp7gPOTk5KiwstLSFhoYqKChI+fn5lm1JUkBAgMLDw2WMUVZWls96IyIi5HQ6lZubq4KCAktbSEiIgoOD5Xa7lZeXZ2lzOp2KiIjwvpbSwsPDFRAQoLy8PLndbktbcHCwQkJCVFBQoNzcXEubw+FQZGSkJCkrK0vGGEt7WFiYAgMD5XK5fG7mHRQUpNDQUBUWFionJ8enT8VjmJ2draKiIktbeWN4pn0TGRkph8OhpuEOhQY6LG3H84p0Kl+KCJJiw6wZqKvQKD3b8/paN/DNRw9mFcldJMWGORQRZF2vy+UqcwxL7ht/Y1i8byo7hiX3jb8xLN43ZzOG5R3f/o7Dqji+z2YMyzu+z2YM/e0baoRHfa4R/vZNeWNYvG8k/2NY3r4pbwypEadRIzyoER7UCA9qxGnUCA9qhAc1woMacRo1wqP08e3vePOnzgRCq1ev1r59+7R48WLL9OIBDg4O9rtcSEiI93t/gyZJs2bN0syZM32mb9iwwXsQSFJcXJw6d+4sl8uldevW+cxffL+i7du3+wxwp06d1LRpUx05ckS7du2ytMXExKhHjx4qLCz0u96kpCQFBwdr9+7dlvsnSVK7du2UkJCgjIwMbd261dIWGRmpPn36SJKSk5N9DuK+ffsqIiJCKSkp3rOviiUkJKhdu3bKysrShg0bLG3BwcFKSkqSJG3atMnnQO3Zs6caNmyoAwcOKDU11dLWrFkzdezYUXl5eT6v1eFwaNiwYZI8Y1j6Dd2lSxc1adJEhw4d0p49eyxtjRs3Vrdu3VRQUOB3DAcPHqzAwEBN6BKi7k2sh/XCLS59/YtbPZsE6raeoZa2XScK9fgPnuLw2OBwn/U+uCJbh3OMrmwfrEEtgixtaWlpatOmjTIzM7Vp0yZLW2hoqPdeWRs3bvQpIr169VJ0dLRSU1N14MABS1t8fLzat2+vnJwcn9caEBCgIUOGSJK2bt3qU4C6du2q2NhYpaena+/evZa22NhYde3aVW632+8YDh06VA6HQzt27PC5/LJDhw5q3ry5jh49qh07dljaoqOj1atXLxlj/K534MCBCgkJ0Z49e3T06FFLW9u2bdWqVStlZGR4zwYsFh4e7n2q4Pr1632KXu/evRUVFaXU1FQdPHjQ0taiRQslJiYqKytL69evt7QFBQVp0KBBkjxnFZb+T6d79+5q1KiR0tLSlJKSYmmjRnjU5xqxa9cunThxwtKWmJioFi1a6Pjx49q+fbulLSoqSr1795Ykv+vt37+/wsLCtG/fPp8/SrRu3ZoaIWpESdQID2qEBzXCgxpxGjXCgxrhQY3woEacVpkaUVY2UprDlH5n14KioiINHDhQd9xxhyZOnGhp6969uzZv3qyHH35YTz75pM+yLpdLoaGeX/I/+ugj/e53v/M7T+kzhBISErR//37LGUak9h71ObUf8NgXNXaG0Ff3X0BqL1L7kqgRHnW5RvCXPWqERI0oRo04jRrhQY3woEZ4UCNOo0Z4UCM86kONyMzMVMuWLXXy5ElL5lFapQOhuXPn6vbbb6/MIpKkqVOnavbs2X7bZsyYIbfbrSeeeMKn7aKLLtKyZct011136cUXX/RpP3bsmGJjYyVJ3333nQYPHnzGvmRmZio6OvqMg4P6p820z2tsW/tmj6qxbQEAAAAAUBEVzTwqfclYTEyMOnbsWOkOxcXF+Z3+9ttvKy0tTfPmzfPb3qVLFy1btkxpaWl+24unOxyOMp9EBgAAAAAAgNMqHQiNGzdO48aNq5KNL1myRF9++aXeeuutMucZOXKkXnzxRZ9rWosVXwvYs2dPxcTEVEm/AAAAAAAAzmU1+tj5klauXKnXXntNb7zxhpxO3258+umnkqRLLrlEMTEx2r59u44cOeIz37fffitJuuaaa6q3wwAAAAAAAOeIWgmE1q1bp9mzZ+vtt99WUJD1yU35+fmaP3++1q5dK8lz06V7771XRUVFWrhwoWXerKwsvf/++4qLi9Mtt9xSY/0HAAAAAACoz2r8sfPbt2/XJZdcouPHj/u9uVFhYaEcDoflcYrTpk3TqlWr9Pjjj2vEiBHq06eP3G637rjjDuXk5OiTTz7hcjEAAAAAAIAKqtFA6NixY7rooot09OjRcucbOXKk2rVr5/05KChIn332mf7+97/r1ltvVUREhLKystShQwf9+OOP6tatW3V3HQAAAAAA4JxR6cfOnwt47Py5i8fOAwAAAADsrKKZR63dVBoAAAAAAAC1g0AIAAAAAADAZgiEAAAAAAAAbIZACAAAAAAAwGYIhAAAAAAAAGyGQAgAAAAAAMBmCIQAAAAAAABshkAIAAAAAADAZgiEAAAAAAAAbIZACAAAAAAAwGYIhAAAAAAAAGyGQAgAAAAAAMBmCIQAAAAAAABshkAIAAAAAADAZgiEAAAAAAAAbIZACAAAAAAAwGYIhAAAAAAAAGyGQAgAAAAAAMBmCIQAAAAAAABshkAIAAAAAADAZgiEAAAAAAAAbIZACAAAAAAAwGYIhAAAAAAAAGyGQAgAAAAAAMBmCIQAAAAAAABshkAIAAAAAADAZgiEAAAAAAAAbIZACAAAAAAAwGYIhAAAAAAAAGyGQAgAAAAAAMBmCIQAAAAAAABshkAIAAAAAADAZgiEAAAAAAAAbIZACAAAAAAAwGYIhAAAAAAAAGyGQAgAAAAAAMBmCIQAAAAAAABshkAIAAAAAADAZgiEAAAAAAAAbIZACAAAAAAAwGYIhAAAAAAAAGyGQAgAAAAAAMBmCIQAAAAAAABshkAIAAAAAADAZgiEAAAAAAAAbIZACAAAAAAAwGYIhAAAAAAAAGyGQAgAAAAAAMBmCIQAAAAAAABshkAIAAAAAADAZgiEAAAAAAAAbIZACAAAAAAAwGYIhAAAAAAAAGyGQAgAAAAAAMBmCIQAAAAAAABshkAIAAAAAADAZs6JQGjPnj1KTk6u7W4AAAAAAADUC7UWCC1atEgDBw5UZGSkwsPD1b9/fy1cuLDcZV599VU5HA6fr+7du6tdu3Y11HMAAAAAAID6rVYCofvuu0833HCD1qxZo7y8POXm5mrNmjWaOHGi7r//fr/LFBUV6dlnn/XbNmHCBEVHR1dnlwEAAAAAAM4ZNR4IffXVV3rvvfe0ePFi5ebmKicnRytXrtT5558vSXruuee0Zs0an+UWL16sBg0a6MSJE5avjIwMzZ07t6ZfBgAAAAAAQL0VWNMbfPbZZ/Xxxx9rwIAB3mlDhgzRkiVL1KlTJ2VkZOiTTz5Rv379LMs988wzevjhh9WwYcMa7jEAAAAAAMC5pUYDoezsbDVp0sQSBhVr2rSpLrvsMv3zn//UsWPHLG2rV6/WqlWr1KBBA23fvl0XXnih+vXrJ4fDUVNdBwAAAAAAOGfU6CVjYWFheuWVV8psb9WqlSSpdevWlulz5syRJC1ZskR//vOfNWDAALVv316LFy+uvs4CAAAAAACco2o0EHI6nYqKiiqzPT09XZI0evRoy/Qbb7xRL7/8sqZMmaLzzjtPkrR7926NHTtWTz/9dPV1GAAAAAAA4BxU4/cQKs8PP/ygiy66SF27drVMLxkQGWP0ySef6O6771ZqaqqmTZumXr166eKLLy5zvS6XSy6Xy/tzZmamJOnUqVOWy84CAwMVFhamoqIiZWdn+6ynOMzKyclRYWGhpS00NFRBQUHKz8+3bEuSAgICFB4eLmOMsrKyfNYbEREhp9Op3NxcFRQUWNpCQkIUHBwst9utvLw8S5vT6VRERIT3tZQWHh6ugIAA5eXlye12W9qCg4MVEhKigoIC5ebmWtocDociIyMlSVlZWTLGWNrDwsIUGBgol8ul/Px8S1tQUJBCQ0NVWFionJwcnz4Vj2F2draKioosbeWN4Zn2TWRkpBwOh5qGOxQaaL2U8HhekU7lSxFBUmyYNQN1FRqlZ3teX+sGvvnowawiuYuk2DCHIoKs63W5XGWOYcl9428Mi/dNZcew5L7xN4bF++ZsxrC849vfcVgVx/fZjGF5x/fZjKG/fUON8KjPNcLfvilvDIv3jeR/DMvbN+WNITXiNGqEBzXCgxrhQY04jRrhQY3woEZ4UCNOo0Z4lD6+/R1v/tSZQGj16tXat2/fGS8DczgcuuKKKzRs2DBdcMEF2rBhgx5//PFyA6FZs2Zp5syZPtM3bNjgPQgkKS4uTp07d5bL5dK6det85h8+fLgkafv27T4D3KlTJzVt2lRHjhzRrl27LG0xMTHq0aOHCgsL/a43KSlJwcHB2r17t8/9k9q1a6eEhARlZGRo69atlrbIyEj16dNHkpScnOxzEPft21cRERFKSUnxnn1VLCEhQe3atVNWVpY2bNhgaQsODlZSUpIkadOmTT4Has+ePdWwYUMdOHBAqamplrZmzZqpY8eOysvL83mtDodDw4YNk+QZw9Jv6C5duqhJkyY6dOiQ9uzZY2lr3LixunXrpoKCAr9jOHjwYAUGBmpClxB1b2I9rBducenrX9zq2SRQt/UMtbTtOlGox3/wFIfHBof7rPfBFdk6nGN0ZftgDWoRZGlLS0tTmzZtlJmZqU2bNlnaQkNDvffK2rhxo08R6dWrl6Kjo5WamqoDBw5Y2uLj49W+fXvl5OT4vNaAgAANGTJEkrR161afAtS1a1fFxsYqPT1de/futbTFxsaqa9eucrvdfsdw6NChcjgc2rFjh06ePGlp69Chg5o3b66jR49qx44dlrbo6Gj16tVLxhi/6x04cKBCQkK0Z88eHT161NLWtm1btWrVShkZGdqyZYulLTw83Htz+fXr1/sUvd69eysqKkqpqak6ePCgpa1FixZKTExUVlaW1q9fb2kLCgrSoEGDJEmbN2/2+U+ne/fuatSokdLS0pSSkmJpo0Z41OcasWvXLp04ccLSlpiYqBYtWuj48ePavn27pS0qKkq9e/eWJL/r7d+/v8LCwrRv3z4dPnzY0ta6dWtqhKgRJVEjPKgRHtQID2rEadQID2qEBzXCgxpxWmVqhL9AyR+HKf3OrgVFRUUaOHCg7rjjDk2cOLHCy23evFk9evRQYGCgcnNzFRAQ4Hc+f2cIJSQkaP/+/WrQoIF3Oqm9R31O7Qc89kWNnSH01f0XkNqL1L4kaoRHXa4R/GWPGiFRI4pRI06jRnhQIzyoER7UiNOoER7UCI/6UCMyMzPVsmVLnTx50pJ5lFbpQGju3Lm6/fbbK7OIJGnq1KmaPXu237YZM2bI7XbriSeeqPR6+/btq//9739KS0tTs2bNKrRMZmamoqOjzzg4qH/aTPu8xra1b/aoGtsWAAAAAAAVUdHMo9KXjMXExKhjx46V7lBcXJzf6W+//bbS0tI0b968Sq9T8pyi97///Y9gBwAAAAAAoIIqHQiNGzdO48aNq5KNL1myRF9++aXeeuutX72OnJwctWrVynsqHgAAAAAAAMpXo4+dL2nlypV67bXX9MYbb8jp9O3Gp59+esZ15ObmatWqVVUWUAEAAAAAANhBrQRC69at0+zZs/X2228rKMj65Kb8/HzNnz9fa9eulST9+OOPevLJJ5WcnOyznieffFJRUVF65JFHaqTfAAAAAAAA54Iaf+z89u3bdckll+j48eN+7/tTWFgoh8PhfZziU089pX//+9+aPn267rzzTk2fPl1hYWF6/vnn9fHHH2vFihXcPwgAAAAAAKASavQMoWPHjumiiy7S0aNHVVRUpMLCQp8vSRo5cqTatWsnSZo9e7bGjBmjmJgYvfzyy+rcubPGjh2rxo0bKzk5Wa1bt67JlwAAAAAAAFDv1egZQo0bN1ZqamqllunQoYM++eSTauoRAAAAAACA/dTaTaUBAAAAAABQOwiEAAAAAAAAbIZACAAAAAAAwGYIhAAAAAAAAGyGQAgAAAAAAMBmCIQAAAAAAABshkAIAAAAAADAZgiEAAAAAAAAbIZACAAAAAAAwGYIhAAAAAAAAGyGQAgAAAAAAMBmCIQAAAAAAABshkAIAAAAAADAZgiEAAAAAAAAbIZACAAAAAAAwGYIhAAAAAAAAGyGQAgAAAAAAMBmCIQAAAAAAABshkAIAAAAAADAZgiEAAAAAAAAbIZACAAAAAAAwGYIhAAAAAAAAGyGQAgAAAAAAMBmCIQAAAAAAABshkAIAAAAAADAZgiEAAAAAAAAbIZACAAAAAAAwGYIhAAAAAAAAGyGQAgAAAAAAMBmCIQAAAAAAABshkAIAAAAAADAZgiEAAAAAAAAbIZACAAAAAAAwGYIhAAAAAAAAGyGQAgAAAAAAMBmCIQAAAAAAABshkAIAAAAAADAZgiEAAAAAAAAbIZACAAAAAAAwGYIhAAAAAAAAGyGQAgAAAAAAMBmCIQAAAAAAABshkAIAAAAAADAZgiEAAAAAAAAbIZACAAAAAAAwGYIhAAAAAAAAGyGQAgAAAAAAMBmCIQAAAAAAABshkAIAAAAAADAZgiEAAAAAAAAbIZACAAAAAAAwGYIhAAAAAAAAGyGQAgAAAAAAMBmCIQAAAAAAABshkAIAAAAAADAZgiEAAAAAAAAbIZACAAAAAAAwGYIhAAAAAAAAGym1gKhjRs36v/+7//UqFEjRUVFqV+/fvrXv/5V7jIfffSRhgwZokGDBqlnz54aO3as1q9fXzMdBgAAAAAAOEfUSiC0Zs0aDRw4UEuWLFFUVJRcLpfWrl2ra665Rn/961/9LvPoo49q/Pjxmjp1qr7//nslJycrMTFRSUlJWrZsWQ2/AgAAAAAAgPqrxgOhnJwcXXPNNXriiSd08uRJpaSk6NixY7r++uslSU899ZTcbrdlmY8//liPPfaYJk2apNGjR3s67nTqqaeeUsuWLTV+/HgdO3aspl8KAAAAAABAvVTjgdC7776rWbNm6d5771VISIgkKSoqSvPmzVNgYKCysrJ0/Phx7/zGGD3yyCOSpMmTJ1vWFRgYqIkTJ+rYsWN6+umna+5FAAAAAAAA1GM1HggNHDhQV199tc/08PBwxcTEKDY2VnFxcd7p33//vbZt26awsDD179/fZ7nhw4dLkhYuXKiioqLq6zgAAAAAAMA5osYDoW7duvmd/ssvv+jIkSOaOXOmHA6Hd/r3338vSerYsaMCAgLKXF96ero2bdpUDT0GAAAAAAA4t9SJx84XFhbqgQce0DPPPKMpU6ZY2rZs2SJJatGihd9lY2JiFBYWJknavHlz9XYUAAAAAADgHBBY2x348ccfdd999+mHH35QcHCwDh8+bLlkrPh+QlFRUWWuIyoqSrm5uTp8+LDfdpfLJZfL5f05MzNTknTq1CnL2UiBgYEKCwtTUVGRsrOz/W5H8twYu7Cw0NIWGhqqoKAg5efnW7YlSQEBAQoPD5cxRllZWT7rjYiIkNPpVG5urgoKCixtISEhCg4OltvtVl5enqXN6XQqIiLC+1pKCw8PV0BAgPLy8nxu1B0cHKyQkBAVFBQoNzfX0uZwOBQZGSlJysrKkjHG0h4WFqbAwEC5XC7l5+db2oKCghQaGqrCwkLl5OT49Kl4DLOzs30u8StvDM+0byIjI+VwONQ03KHQQIel7XhekU7lSxFBUmyYNQN1FRqlZ3teX+sGvvnowawiuYuk2DCHIoKs63W5XGWOYcl9428Mi/dNZcew5L7xN4bF++ZsxrC849vfcVgVx/fZjGF5x/fZjKG/fUON8KjPNcLfvilvDIv3jeR/DMvbN+WNITXiNGqEBzXCgxrhQY04jRrhQY3woEZ4UCNOo0Z4lD6+/R1v/tRqIPTwww9r5cqV2rp1q4qKivTOO+9o1apVWrt2rRo3bixJ3gEODg4ucz3FN6f2N2iSNGvWLM2cOdNn+oYNG7wHgSTFxcWpc+fOcrlcWrdunc/8xfcr2r59u88Ad+rUSU2bNtWRI0e0a9cuS1tMTIx69OihwsJCv+tNSkpScHCwdu/e7fO0tHbt2ikhIUEZGRnaunWrpS0yMlJ9+vSRJCUnJ/scxH379lVERIRSUlKUnp5uaUtISFC7du2UlZWlDRs2WNqCg4OVlJQkSdq0aZPPgdqzZ081bNhQBw4cUGpqqqWtWbNm6tixo/Ly8nxeq8Ph0LBhwyR5xrD0G7pLly5q0qSJDh06pD179ljaGjdurG7duqmgoMDvGA4ePFiBgYGa0CVE3ZtYD+uFW1z6+he3ejYJ1G09Qy1tu04U6vEfPMXhscHhPut9cEW2DucYXdk+WINaBFna0tLS1KZNG2VmZvpcrhgaGqoBAwZIkjZu3OhTRHr16qXo6GilpqbqwIEDlrb4+Hi1b99eOTk5Pq81ICBAQ4YMkSRt3brVpwB17dpVsbGxSk9P1969ey1tsbGx6tq1q9xut98xHDp0qBwOh3bs2KGTJ09a2jp06KDmzZvr6NGj2rFjh6UtOjpavXr1kjHG73oHDhyokJAQ7dmzR0ePHrW0tW3bVq1atVJGRob3bMBi4eHh6tevnyRp/fr1PkWvd+/eioqKUmpqqg4ePGhpa9GihRITE5WVlaX169db2oKCgjRo0CBJnrMKS/+n0717dzVq1EhpaWlKSUmxtFEjPOpzjdi1a5dOnDhhaUtMTFSLFi10/Phxbd++3dIWFRWl3r17S5Lf9fbv319hYWHat2+fzx8lWrduTY0QNaIkaoQHNcKDGuFBjTiNGuFBjfCgRnhQI06rTI0oKxspzWFKv7Nrgdvt1qJFi3TnnXcqNzdX06ZN06xZsyRJo0eP1meffaZrrrlG7777rt/lmzdvrvT0dD377LO67777fNr9nSGUkJCg/fv3q0GDBt7ppPYe9Tm1H/DYFzV2htBX919Aai9S+5KoER51uUbwlz1qhESNKEaNOI0a4UGN8KBGeFAjTqNGeFAjPOpDjcjMzFTLli118uRJS+ZRWqUDoblz5+r222+vzCKSpKlTp2r27NnlzrNw4UJNnDhR/fr1008//SRJuuWWW/T6669r9OjRWrx4sd/loqKilJWVpbffflvXXXfdGfuSmZmp6OjoMw4O6p820z6vsW3tmz2qxrYFAAAAAEBFVDTzqPQlYzExMerYsWOlO1TyvkBlufbaa3XTTTcpIyPDO61Lly6SPJfn+JOVleVNCrt27VrpfgEAAAAAANhNpQOhcePGady4cdXRFwUGBiomJsbyRLGRI0dKkn7++WcZYyw3gZZOP4WscePG6tGjR7X0CwAAAAAA4FxSJx47XywjI0NHjhzR6NGjvdN69eqlTp066dSpU0pOTvZZ5ttvv5Uk/f73v5fTWadeDgAAAAAAQJ1U4wnKoUOH9MMPP/jctEmSnnnmGXXo0EF/+MMfLNP/9Kc/SZLefPNNy/SioiItWLBAYWFhuv/++6uv0wAAAAAAAOeQGg+Err32WiUlJalfv35asmSJ3G63cnNz9cILL+jLL7/Uf//7X++d2ItNmDBBkydP1rx587RkyRJJkjFG06dP144dOzRv3jydd955Nf1SAAAAAAAA6qVK30PobN199906dOiQtmzZoquuukotW7ZU//79NWbMGP34449lXvY1f/58DR06VDNnztSTTz6pvLw8xcXFafny5Ro8eHANvwoAAAAAAID6q9KPnT8X8Nj5cxePnQcAAAAA2FlFMw/uwgwAAAAAAGAzBEIAAAAAAAA2QyAEAAAAAABgMwRCAAAAAAAANkMgBAAAAAAAYDMEQgAAAAAAADZDIAQAAAAAAGAzBEIAAAAAAAA2QyAEAAAAAABgMwRCAAAAAAAANkMgBAAAAAAAYDMEQgAAAAAAADZDIAQAAAAAAGAzBEIAAAAAAAA2QyAEAAAAAABgMwRCAAAAAAAANkMgBAAAAAAAYDMEQgAAAAAAADZDIAQAAAAAAGAzBEIAAAAAAAA2QyAEAAAAAABgMwRCAAAAAAAANkMgBAAAAAAAYDOBtd0BoCrtmz2qtrsAAAAAAECdxxlCAAAAAAAANkMgBAAAAAAAYDMEQgAAAAAAADZDIAQAAAAAAGAzBEIAAAAAAAA2QyAEAAAAAABgMwRCAAAAAAAANkMgBAAAAAAAYDMEQgAAAAAAADZDIAQAAAAAAGAzBEIAAAAAAAA2QyAEAAAAAABgMwRCAAAAAAAANkMgBAAAAAAAYDMEQgAAAAAAADZDIAQAAAAAAGAzBEIAAAAAAAA2QyAEAAAAAABgMwRCAAAAAAAANkMgBAAAAAAAYDMEQgAAAAAAADZDIAQAAAAAAGAzgbXdgdpgjJEkZWZm1nJPAAAAAAAAqk5x1lGcfZTFloHQqVOnJEkJCQm13BMAAAAAAICqd+rUKUVHR5fZ7jBniozOQUVFRTp48KCioqLkcDhquzs1KjMzUwkJCUpNTVWDBg3oRx3pR13qC/2om/2oS32hH3WzH3WpL/SjbvajLvWFftTNftSlvtCPutmPutQX+lE3+1GX+lJX+lEbjDE6deqU4uPj5XSWfacgW54h5HQ61bJly9ruRq1q0KBBnXhT0A9fdaUv9KNu9kOqO32hH3WzH1Ld6Qv9qJv9kOpOX+hH3eyHVHf6Qj/qZj+kutMX+lE3+yHVnb7UlX7UtPLODCrGTaUBAAAAAABshkAIAAAAAADAZgiEbCYkJESPPvqoQkJC6Ecd6kdd6gv9qJv9qEt9oR91sx91qS/0o272oy71hX7UzX7Upb7Qj7rZj7rUF/pRN/tRl/pSV/pRl9nyptIAAAAAAAB2xhlCAAAAAAAANkMgBAAAAAAAYDMEQgAAAAAAADZDIHQO+PHHH2u7CwAAAAAAoB4hEDoHXH755XK73bXdjXNGWlparW17xYoVGjVqlJ555hmtX7++Wrd16NAhffDBB9q/f3+1bgcAasqRI0dquwt1xtdff6077rhD//nPf2q7K6gDTp06VavLA+cKaivONQRC54Bjx45pzJgxnClURebMmaNjx45VybomT57s/Zo3b94Z5x8+fLheeOEFff311+rTp4+aNm1aJf3wZ8iQIRo/fryuueaaatvGr+F2u7V582atXr1a27dvV2Fhoa37cSYPP/xwbXfB66WXXqrtLkiSPvzww9rugldWVtZZr6OujGtdd/nll6tZs2a68sora7srkiRjjFauXKm///3vmjVrlubOnavVq1erqKioRrZ/9dVXa+7cuZo9e3aNbO9Mli9frptuukl9+/ZVx44dNXDgQN12221atmxZtWxv6tSp1bLe+urSSy+t1eXPhF+yf7233nqrtrsgSbrhhhuqbd2pqanVtu7Kqmu1tSKqc9+UlpWVpbS0NOXm5lb7tg4dOqTXX39dTz/9tBYvXqyCgoJq3+a5iMfOnwOcTqcaNGig/Px8JSQkaMKECbr++uvVpk2b2u6axX//+1+9/PLLWr16tY4dO6aoqCh1795d48eP14033qigoKAq2c7TTz+tvLy8X7VsVlaWFixYoDlz5mjixIln3Ren06n4+Hi99tpruuiiixQYGKhvv/3W77zDhg2z/Dx+/Hh98MEH1RZEtGzZUunp6XrnnXc0bty4cuc9fPiw4uLiqqUfxdLS0vTwww/r/fffl8vl8k4PCwvTFVdcob/85S/q0KFDtfahLvWjItLT09WpUydlZGTUdleUk5OjNm3a6PDhw7Xaj8LCQrVp06bOfHjs27ev1q5de1brCA8P1549e9SsWbMq6lX1WLBggRYtWqQNGzbo1KlTiomJUc+ePXX11VfrhhtuUHBwcLVuPyYmRpmZmZo2bZqeeOKJat3WmSxdulR/+MMftG/fPp+2hIQEzZw5s0r+jylP7969tWPHDv3www/q1q1bufN++eWXuuSSS6qlHwUFBbrpppv09ttvS/IEZSU5HA4NHz5c77zzjpo3b15l2w0JCVFycrK6dOlSZeusCXPnztWSJUsUHR2te+65R717966S9TZp0kQHDx78VZ+1srOzlZCQoOPHj1dJX/xp1KiRTp48qaFDh2r58uXVtp3K2L59u06cOKGkpCRJ0qZNm/T222/rgQceUJMmTWqkDydPnlRKSopOnjzp896RPGdFPvzww9qxY0eN9MefwsJCrVu3TiNGjFB2dna1bCM+Pl5r1qxRixYtqmX9lVFXamtF1MS+kTyfAZ9++mktWrTI8v9eYmKirr76at1zzz2KjY2t0m0uW7ZMv/vd7yyvq2vXrvriiy/UsmXLKt3WuY5A6BwQFxenffv2KSQkRN9++63eeecdffjhh+rZs6cmTJig3//+92rQoEGt9c8Yo7vuukuvvPKK9+eSHA6HunfvrsWLF6tVq1Znvb2xY8fqs88+K3NbJftVVtuYMWP073//+6z74nQ69dJLL+mOO+7wTnvqqac0b948paSkqGHDhrr66qvVp08f3XLLLZZl9+zZo/bt21dbIPTBBx/o7rvv1v79+xUQEFDuvP369dOaNWuqpR+S57UOHTpU6enp3v0SEBCgJk2a6MSJE3K5XAoNDdXrr7+ua6+99pzpx1//+le99957euihhzRhwgRJnuOyf//+ZzxLze1269ChQyosLKySY+Stt97Shx9+qLvvvlsXXXSRty9jx44941kubrdbO3fu1JEjR866L8uWLdMnn3yim266Sb169fL244477jhj0Ft8VtfGjRurZEzy8vK0ZcsWnX/++XI6nd6+fPfdd34/mJfuS3JysqZOnXrWfXE6nWrevLnuvvtuXX/99XXiA3FJ2dnZGj16tFasWCHJt7ZKUqdOnfThhx9W6y/nDz/8sN544w0dOnTojPNeeeWV+uijj6qlH8uWLdOoUaNUUFAgY4yaNm2qTp06qXnz5jp+/Lh27typvXv36rbbbvP+v1gdNm3apKuuukorV648Y6DfrVs3bd68uVr6MWPGDD322GOSpMaNG2vixInq3r27dzx+/vlnvfXWW3I6nVq7dq0aNmxYJdt1Op0KDw/X9ddfr4kTJ3p/qa8L2rVrJ8kTDl511VW66667JEkPPvignnvuOe97KDQ0VN99912VhEJOp1OJiYnq379/pcLZrKwsrV69WgcPHqzWM2Xr0i/ZX3zxhe677z7t3LlTbdq00e7du71tS5cu1eTJk/Xmm2/qwgsvrLY+pKena8qUKfr0008rdFbh2e6bW2+9Vf/85z81ffp0PfTQQ5I8tbxVq1Y6ePBghddTXceI0+lUaGioxo8fr1tvvVUDBw6slu1URE3X1rq+b44cOaKRI0dq27ZtZX42io2N1fvvv68RI0ZUyTYzMzPVsWNHv//f9+nTR6tXr1ZgYGCVbMsWDOq9v/71rz7TcnJyzDvvvGMuvvhiExERYa6++mrz8ccfm7y8vBrv39/+9jfjcDiMw+EwTZs2Nffee6959913zdKlS80XX3xhXnzxRTNw4EDTsWNHk52dfdbbmz9/vmnatKl56KGHzIwZM7xfU6dONYGBgWb06NFm+vTplrbir1tuucV07NjRzJkzpwpeuTEOh8OsWLHCZ/r+/fuN0+k0W7ZsKXf5+Pj4KulHWVasWGHuv/9+k56e7re9sLDQrFq1yoSEhFRrP8aMGWMcDocJDAw0d955p9m0aZMpLCz0tqekpJjp06eb6Oho8/33358z/YiJiTEOh8MMHDjQMv3222/3vmfO9OV0Os+6H8YY06BBA+N0Os2AAQMs0ydOnFijfYmJiTFOp9MkJSVZpl955ZU1Pia9evUyTqfTXHvttZbp559/vnE6nRX+OlsOh8NceOGF5sILLzSRkZHmN7/5jVmwYIHJyso663VXhbvvvts79t27dzcvvfSSWb58ufn555/N6tWrzVtvvWWGDh1qYmNjTWpqarX25cknnzQvvvhiufNkZmaaRo0aVVsf+vfvbxwOh2nRooX58MMPTUFBgc88X3/9tenSpYtZsGBBtfVj27Zt5ptvvjFXXXWV+de//mVWrFjh8/X111+bJ554osreM/4kJCQYp9Npxo8fb3Jzc/3OU1hYaO69915z1113Vdl2HQ6Huemmm8zNN99s2rRpYxITE82MGTPM7t27q2wbZ9O3hx56yHJs/Pe//zVOp9M0bNjQfPXVVyYrK8s8/fTT5je/+U2VbbMydavkV1XW1bJs3LjRdOjQwRw6dOiM83bt2rXa+vHNN9+YwMBAb01r27atzzwLFiww4eHhZuvWrdXWj0suucQ4HA4TEBBgmjVrZtq0aePzFR8fb4KDg6tk3zRt2tQ4HA4zbNgwy/QHHnigxv/v9Sc+Pt4kJyebN9980wwfPtz06NHDvPjii+bEiRPVts2y1HRtrev7ZsKECd7tXH755ebTTz81+/btMy6Xy6SlpZkVK1aYCRMmmKioqCp7z/z97383DofDXHHFFeadd94xS5cuNa+99prp2bOncTqd5q233qqS7dgFgZANpKammieffNJ06tTJNGjQwFx//fVm8eLFJj8/v0a236lTJ+N0Os0VV1xR7i8wf/rTn8zjjz9+1ttLS0szDz/8sM/0hx56yMydO/eMyz/00EPmX//611n3wxjPB7Dk5GS/bd27dz/j8v3796+Sfvhz4YUXmiZNmpjo6Oga+aW2PFFRUcbpdJ5x3FeuXGkuvfTSc6YfX375pbnjjjvM2rVrLdNXrVplevfubZKTk82+ffv8fu3cudO8//77Jigo6Kz7YYwxb7zxhhk1apT5/PPPLdO/+uor06FDB/Pvf//bLF++3O/X0qVLzdNPP10lx8nMmTNN165dzfz58y3TP/roIxMfH2+ef/55s2DBAr9fr732mpkyZUqVBkIOh8NcffXVlulz5swxTqfT9OzZ04wYMcLv1+DBg02TJk2qpC/t2rXzfp+Tk2MWLVpkLrzwQtOgQQNz3XXXmf/85z+mqKjorLfzazVt2tQ4nU5z//33lzvf888/byZNmlRt/fjjH/9orr76atO1a1fTqVMnM3LkSJ+voUOHVtl+KUtYWJhxOp1mw4YN5c534MABM3jw4Grrx+WXX16jwWVZIiMjTURExBn/4FNUVOQTjp+Nzp07W37+9ttvzc0332yio6PN4MGDzdy5c2vll0ljjGnRooXlZ5fLZTp27GicTqd57bXXLG19+vSpkm0Whwvx8fF+w4Wyvpo3b14jnwPqSoA5YsQI07p1a/Pkk0+ab775xgwZMsRnnsLCQhMREWGuueaaautHaGioufLKK82RI0fKne/UqVPmggsuOOvtbdy40cyZM8fs3bvXMn3Dhg1m2LBh5b5X3G63+emnn0x4ePhZ96MsP/74o+XnPXv2mEcffdR07tzZTJgwwXz77bfVtu3Sarq21vV9U/yHvOeee67c+T744ANz5ZVXVsk2f/vb35o77rjDZ7rL5TIDBgwwv/vd76pkO3ZBIGQjbrfbPPjgg96kuGHDhmbSpEnmiy++qNbthoWFmbCwMJOZmVnufIWFheaiiy6qkm2mpaX5TBs0aFCFlv3xxx9N7969q6QfDoejzF8KRo4cecblR4wYUSX98OfNN9+sE39ZMMaYZs2amebNm1do3tJ/ITkX+2GMMQ8++GCF5quqY7UshYWF5p577qnQvBUJOX8tl8tlpkyZUqF5O3bsWCXbzMnJMWvWrDFut9sy/cCBA+b3v//9GZfPzs42sbGxZ92PJUuW+J1eHPZ37NjRNG/e3Nx9991m1apVZ729yoqOjjbR0dE+4+RPRevwr/H444/XiZrWsWNH06ZNmwrNW5H/B36tpUuXGofDYSIjI8v8Zb9Vq1YmJCSkWsfjoosuMq1atarQvGWNx6/5ZW/9+vV+p+fm5pp3333XXHzxxSY8PNyMGTPGvPPOOzV6xl3p11l87PoLf3r06FEl24yMjDT79+//Vcvu3LnTREREVEk/ylJXAsymTZuagwcPen8u65hs27atiYuLq7Z+tGnTxqxZs6ZC85b1h8eqMnPmzArN169fv2rtR1m++eYbM3ToUNOpUyfz3HPPVXvQW1dqqzF1Y980bty4wp91hg4dWiXbbNWqVZlXNyxfvrzaPxufawiEbGDXrl1m2rRpplmzZpbTfx0Oh+nfv795+eWXq3X7Xbp0qfCH4wsvvLDa+lHRIvTll1+asLCwKtlmXQ6EXC6XadeunVm5cmWZZ6Hs2bPHfPDBByYwMLDa+mGMMffee69p3LhxheYtaz8+9NBD50w/jDEVvryz9F+MqsPhw4crNN/q1aurtR87d+6s0Hwff/xxtfbDGFPhswhvvPHGau6Jx/fff2/+8Ic/mJiYGNOqVStz3333+fxFtbr87ne/8znjoSxl1bSqOCvzyJEjJjIy0jz++ONlnkX2xhtvmDvvvLNaP6S//PLLJjw8vMzLo4oVFhaWGZBVVVA0dOjQM9aSAwcOVOsv+8nJySYqKsrs2rWr3PkOHz5shg8f7retZ8+eVd8x47l8e/bs2aZz584mPDzc/O53vzPvv/++ycnJqZbtFRs2bJj53//+Z4wxZvHixSYkJMQEBwf7/GK/ZcsWExwcXCXbPNszjqv7l/268kt26Uv0/L0Xs7KyTGhoaLVeTv+Xv/zFvPfeexWa9+eff662flTGmWpeVXO5XObtt982w4cPt1zaOHHixGrfdkVra3WembN582bz9NNPm3Xr1p1x3urcN5MmTTLNmjWr0Lxl1fjnn3++Utss77JRt9ttOnXqVO7y33zzTaW2d64jEDoHLFy40Geay+Uy7777rhk5cqRPCBQfH2+mTp1qtm3bViP9W7BggQkMDDQHDhw447zdunWrtn6MGDHijEWzoKDAjBw5ssr+6lNeIFSRsKeqThUvy3PPPWdycnJMenq63/tcFKvOoM4Yz5kYSUlJ5oMPPih3vhUrVpjrrrvOb1tCQsI504+Stm3bZrlf0caNG81DDz1U4ZCmKuXm5ppffvnF0peXXnrJuFyuGu9LyXs7bd682Xz66ac13gd/srKyKnSmTHXYuHGjueWWWyz3Cmnbtq2ZOnVqtW53z549Ji4u7ox/pd67d2+ZZ4F26dKlSvpy9913V2i+8847r0q2V5Z77rnHPProo+XO88orr5i//OUvPtMzMzNNTExMpba3bNkyv9PLel+sWLHCXHbZZWbcuHHmz3/+c4XP4Pk1Dh8+bN555x1zySWXmG3btpmUlBSfrx07dpjRo0eb+fPnW6bv3LnTvP3229X2R4mioiKzePFiM3r0aMv7JjIy0kyYMKFatmmM56y/kJAQ7+WWgYGB5u233/a2FxQUmA8//NB7/6WqcLaBfXUH/sbUjV+yr7zySnPy5Envz/4+q02bNs04HA7ToUOHautHbm6uGTt2bJlnQZR08803V1s//vCHP9Ta/2klzZo1y/v95s2bzR//+EfTuHFj7+83sbGxZurUqVX+R7KSlxxPnDjR+3mnop85pk+fXqX9Kan4cs7qvPS4Io4ePWoSExPNf//733Ln27BhgxkzZozftsr+n3yms439XepZEmcQWfGUsXNAp06dtH37dknS1q1b9dprr2nRokU6ceKE927vQUFBuvzyyzV58mRddtll3ifmVKWcnJwy21566SUtW7ZMs2fPLvNRnf/+97+1cOFC/e9//6vyvknSkiVLNGHCBO/jfiMjI71txhh9+umnevLJJ7VmzRpNmDBBCxYsOOttOp1OffXVV36fRHHBBRfov//9b5nLbt26Vf369auWx0QuX75c8+bN07Jly7yPkXU4HGratKl++9vfatKkSRo8eHCVb7cs//znP7Vx40YtXLhQ119/vSIiInzmcblcmj9/vq6++mrLMZSfn6+1a9dq6dKlZ/0EhbrSD6luPOWk2Lp16zRt2jR9/fXXPn1588039dRTT+n9999Xjx49qrUfqampevzxx7V48WJFRUVp586dkjzv3xkzZui///2v/vWvf9XYU7i+//57LV68WG63W88++6wkKSUlRTfddJOuueYa3XTTTdXeh5ycHP3rX//Sa6+9pp9++knS6ad8xcfH67rrrtPEiROr9elemzZt0o8//qhXX31Vjz32mMLDw33mcblc+stf/qJx48ZZnpiUn5+vn376SdOnT6+S901ubq7CwsLKnef7779X69atq+04mTFjhr799lutXbtWnTt3LrOO/PTTT0pKSrI8CSU/P9/7qOvKjIfT6dTkyZP1/PPPKyoqqkLLGGP073//W7fddpuOHz9ebU+gmTJliubNm3fW66nK/qWkpGj+/Pl68803vU/pKX7fDBgwQDfccIPGjx+vmJiYKttmaevWrdPHH3+s/Px8XX/99Zb6+cgjj3ifNGmM0dy5c896e0888YT+/Oc/n/V6qtNnn32myy+//Izz/eUvf/E+ua6qLV26VI899pheeeUVdevWzfJZ7ciRI5oxY4Z3fzz22GPVNqY33HCDfvnlF+3Zs0eJiYllzpeRkaENGzZU69O94uLidMMNN2jy5Mnq1KlTtWznTCIiInTbbbdp1apVWrt2rSTPe2PAgAGaMmWKfv/73yskJKTKt+t0OjVy5Eg999xz6tmzZ5Wv/2x06NBBKSkp+vLLL8/49K6NGzdW22e0ZcuWacOGDXr11Vd1zz33lPl/3jPPPKNrrrnG+5RF6fRngPnz51fqGO7evbuSk5PLfJLY8OHDvU8+Ld2P5cuXa8yYMXK5XBXe3jmvtpIoVB2Hw2GuueYa06dPH5+zgbp27Wqee+65M96Uriqcd955v/oJFsVfjzzySLX28ZlnnjFOp9OEhISY8847zwwePNh06tTJREREeMetWbNmVfYknLN5qkd1XCfvcrnM+PHjfY6T0vfWcDqd5tZbb62x03+L98uZvsoaz6q6J0hd6UddecqJMZ6/6ERERJTblzlz5pjGjRtX6xOk9u3b573stax+PPDAA6Zt27bVfv+AgoICy/uodF8yMzNN3759q+yvtv7u4bRmzRpz6623ep8OV7x/QkJCzLhx48ySJUssZ1FVpwceeOCs61x132ehpJtuusns2LGj2ta/cOHCCt/LqKrucVS8TJs2bczXX39dqWXfe++9ah3/VatW1fh4GGN87vPldrvNBx98YC6++GITEBBged80b968Rs+crowzXfpQUaGhoWe80XldVlhYWCOXSBvjuXwlMDDQtGrVysTExJghQ4aYzp07e5/o5XA4zKWXXlqtD2e54IIL6sQ90a644gqzceNG8/LLL5ukpCQzaNAg8/rrr9f4Uy6LX6fD4TARERHm5ptvrtClUmcrODjYHD9+vNq382t88803plWrVhV6QnOvXr2qrR8zZsw4q8/Ov+YzQF37/aq+4wyhc4DT6ZTD4fD+dSswMFDGGDVv3lwzZ87U1VdfbTkbprrcd999euGFF3718i1bttTatWsVFxdXdZ3yY8WKFfrTn/6k1atXW6Y7HA5deuml+sc//qE2bdpUybacZ3kmlsPhqLK/+hhjdMkll+jrr7+2nEHQtWtXxcbGKisrS+np6Vq/fr3cbrccDofGjh2rjz/+uEq2X5709HQlJCSod+/e6tSpU6XGraioSJs3b9b69evPeqzqSj9GjhypvXv36rbbblNSUpKmT5+ulStX+myvQYMGGjNmjN59992z2l55Ro0ape+++07jx49XUlKS5s2b5/PecblcatiwoSZMmKBXX321WvpxzTXX6MMPP9QFF1ygpKQkff7551qzZo1lnlOnTik2NlZ33nmn94yd6jBr1izvX4VbtWqlsLAwbdu2zTLPpk2b1LNnT+/ZZmejRYsW2r9/vzIyMvTPf/5Tr732mjZu3Cjp9FkNvXr10o033qjrrrtOjRo1OqvtVdbGjRvVq1cvhYSEKC4urtLvm0OHDsntdlf4fXPVVVd5z2ysrKysLCUnJ2v27Nm6//77f9U6ziQnJ0fNmjXT5MmT1bNnz0qPx4YNG/TSSy9Vqo6EhITI7XZL8vy/cfvtt+vpp5/2e7ZWacYYxcbGes9IqQ4dOnTQv/71L51//vlyOBwVXs4Yow0bNmjIkCH6/9q787Co6u8P4O877CCKyaKACSriBqaSpKmBC6KilluuuOK+JZraL0opNyRTv1qJu7knphmauGea5pqCYm7hioqKgCCLnN8fPkyMMwMzc+8wVzyv55nnyZn7mXsaZu7c+dzPOSczM1OvfTo6OuLWrVu4du0a1q5dizVr1iA1NVXlXCkkJASDBg1Chw4dYGZmptfz6+rjjz/G5s2bDRobHx+P9u3bS3IeoFAoYGdnh9GjR2Ps2LGltpJSk5o1a6p8hh0cHBAUFFTsSqiMjAyEhIRg+fLl8PLyMnqMp06dQlRUFPbt24e0tDQAL1/DBg0aICwsDMOGDTPKavtC0dHR+OuvvxAUFAQLCwuN2xQUFOD27dtYtGgRHj58aJQ4Hjx4oHJenpiYiGXLluHnn39G69atMWTIkFJZUa5QKODk5ITw8HAMGzYMDg4ORt8nAPj6+iq/bw1x4sQJ+Pv7SxjRf7Kzs3Hp0iUsW7YMAwcORJUqVdS2yc/Px/HjxzFgwADld4TUClexubu7w9PTU+/vvCtXruD+/ft6r4oVQ8rfV2UBTwiVAYUfitq1a2PIkCHo378/iAjr1q3DmjVrcP36dXTp0gUDBgxA27Zt9ToZ08eRI0cwf/58rFu3TuNyQbnIzs5Geno68vLy8Pfff+Pp06coX748GjVqBFdXV0n3pVAo0LJlSzRt2hTW1tY6jysoKEBKSgq2bNmCJ0+eSBLLvHnzMGXKFABAcHAwIiMj4efnp7ZdRkYGNm3ahIiICDx8+BCzZs1SjjOm4OBgbN++Xa/XqdCLFy/g6emJmzdvlok4KleujLNnzyq/3LWlF1avXh3Pnj3D/fv3Re2vpFgOHjyIOnXqlBhLbm4ubt++bbQ4tmzZgpYtWxYbh6enJwRBwPXr140SB/Dyx21AQACmT58OV1dXBAYG4uDBgxpjrl69Oo4dOyZqfwqFAlWrVkVKSgry8/OVP2gdHBzQp08fDBkyBA0bNhS1D7EaNmyIuLg4g46hDx48gLe3t87HuqFDh2LlypUaHyt6caQ477//vtokq5QGDhyIFStWGDzJ0KBBA/z99986bx8YGIgRI0Zg9OjRePz4MQRBQI0aNbBq1Sqdfqw1atQIZ86cMShWXaxbt07UxOi4ceOwaNEivcYoFApYWFggPz8fwH+Tp25ubhg/fjxCQ0ONfgEKAJydnZGSkqL3D5gLFy4gMDBQ7/RBbczMzBAQEIAHDx7g8uXLaNeuHYYNG4aOHTsadWJDk+joaHz66aewtbXF9OnTMX78eK2THkVdvXoVo0aNQnx8fClE+Z9Hjx4hNzcXb731llHSkjRJSEhAbm6uSoqtNlFRUfj0009LIar/5ObmIjY2Fl999RWICIMHD8bgwYNRqVIlo+zPyckJSUlJRnt+bbSlHunK398fJ06ckDCi/3zwwQf4448/dN7emBMgLVq0QFxcHMqXL6/32OzsbHh4eOh1LmtlZYVevXrBw8NDr+NXdnY2zp49i3379vGEUFGlviaJSU4QBJVihK86ffo0jRs3jpycnMjV1ZUmTZpklGXDL168oNjYWMmfVwoHDx6kXr16kaOjo3KpoJmZGbm6utLQoUPpjz/+MMp+q1SpIiptIyoqSpI4srKyqGLFiqRQKHR+zpSUFPLy8qIKFSpQWlqaJHEU59q1a6LGx8fHi45Bn44NxoxDLl1OiF52wykplpycHLKzs5OsG44m7733XolxvHjxgipUqGD01+TV4ofaOkK5u7tL0r2p6FJ5QRDIx8eH6tWrR+XKlaPQ0FC9U4SM4bfffhM1vmjB0JLs2LGDGjduTLt27aJDhw4pb2vXriVHR0f65ptvaP/+/SqPFd7WrVtHjRs3LrH4pVjajvu6Fh3Xt2h84Xvw7t271KFDB+V7xszMjMLDw0ss1CtVVzNdlFZB+KKfGwsLC+rUqRN17NiRLCwsqGXLlrRixQpKT083yr5fjWPRokV6jTl16hQ5OTlJmg7UqVMn5X8nJSVReHg4OTk5kZubG0VERFBycrIk+9HFtGnTyNbWlo4cOaL32Dlz5lBcXJwRotJNQUFBqaWuyUFGRobafampqbR48WLy9/dXfi9ZWFgYtbh1SU0LjEXMsfHatWtG7eAYGxsri7RCopdp7GKsWbNGr+1HjBghan/Vq1cXNb6s4QmhMsDHx0en7bKzs2no0KHKCZEGDRrQ/PnzdepgIAVNXaweP35cYitaMUxdM+ezzz4TNb5odykxVq9eTYIg6N0SPSkpiSwtLWnFihWSxKGNXLpYyKVjg1y6nBARde7cWaVOgqaTowULFpAgCOTh4WG0OEJCQlT+rSmO9evXKzspGlOHDh1KjOXixYskCALZ29uL3p8gCGRra0sjRoygU6dOKe8/deoUjR07lhwdHalq1ao0depUo9eUKklpdKLLzMykmTNnqt3ft29fOnHiRInjf/jhB4qMjJQsHm2OHj1KU6ZMoYkTJyrv+/fff6l169a0fPlySff16nswJiaG7O3tld9xderUob/++kvn8VK7efMmhYWFkYuLC9WsWVN5f0FBAX3xxRfUvHlzun37tqT7LKwJOGfOHJXznJSUFPrmm2/I19eXbG1tqVevXrRr1y6j1dwqrO2lrRPcqw4ePKhSG0yqH3KaLlbk5ubShg0bKCAggMzNzSk4OJi2bdtWbNdRKQQHB9P8+fMNGvvw4UMaOXKkJHHUqFGDKlasqLx5enrS8OHDix2Tnp5OLVu2NGodMn0Z8/NbeB6bnZ1Nmzdvpk6dOqnUUmrYsCEtWLCgVDuf3r17l9avX09z586lb7/9lnbu3Klx4koK1tbW5OnpqffNzc1NWavMWF68eEENGjQotn5jQUEBnTx50ugXygqVVmfc4trG69I9+ZtvvpE0ntcdTwiVASW1c79y5QpNmzaN3Nzc1CZG7O3taeDAgUaN78WLFxQaGkpmZmYUHR2t9tj//d//0bRp0ySfECgoKKC2bduq/P+6ublRUFAQ9enThzp37kxNmjQhS0tL5UnXRx99JGkMcjFo0CBydXU16DUeOnSoWnFOqQmCQC4uLjR58mSTFvX08vIiS0vLYr9oChmzOGd8fDw1b96cLly4QESqJ3sPHjygUaNGKT/LX3/9tdHiICLauHEjdevWTVmYvmgseXl5FBUVRRYWFqRQKGjSpElGi+O7776jsWPHKienXj0B3rJli7I4fFhYmNHiICIaPXq0yqrCV2NJS0ujJk2akEKhkORE3dramq5cuaL18dzcXNq2bRt9+OGHZGVlRY0bN6ZFixaVSjOBQqdPn1Yeb1+98rZy5Ury9vY2ekHbktrMFjpz5oxRrw6WdtFxIs0/CK9fv04tW7ZUfr9ZWFjQ//3f/2n8HjDmD0pTFYQvX748paamFrvNmTNnaMKECeTs7EyVK1emiRMnSr4SQRAEMjc3J3t7+xInLLdv3042NjbK18rb25vMzMwkjUebpKQkmjhxIjk6OlLlypVp6tSpolfuauPj4yPqApxU52rz5s1TFimeN2+ezkWir1y5Qm3btpUkBiLS+D5NTk4u8Xb16lXasmWLUVfn2tvbU5s2bcje3l55TKtcuTKFh4fT+fPnjbZfTbKzs2n48OHKc46itwoVKtCsWbOooKBA0n2aoiC+PlavXq3TdsZeERMXF0fe3t4azwHi4+PJ3d2d9u7da7T9myoTpKzgCaEyICEhQe2+rKwsWrNmDbVs2VJtEsjCwoJCQkJo06ZNlJWVZfT4vvvuO+W+x48fr3GbSZMmUdu2bSW9KhUVFaXcb/v27bUuZ0xPT6eYmBhycXEhhUJBc+bMkSwGufDx8aHJkycbNHbPnj3k7e0tcUSq5NLFQi4dG4jk0eWk0IQJE8jGxoZatmxJVapUoX79+lH79u3JyclJ5SqhMdMvXrx4QV27diVXV1cKDQ0lT09P+vzzz2nkyJHk6+urjMPDw8Poqx7v3btHnp6eFB4eTgcOHKCmTZvStWvX6MSJEzR//nxyc3MjQRDIzMxMkhOgjh076rTdxYsXacCAAcqTUEtLS+rUqRP99NNPomMojlw60fn7++u03YYNG4x6tXTWrFnK16JatWoau0SdP3+eBEGgH3/8UZJ9apvQKSgooOjoaLKxsVG+Lxo0aEDnzp3TabwUevXqRebm5hQUFERffvkl+fn5qW2Tnp5OlpaWKqupxBo2bFiJ2xQUFNCuXbuoc+fOKiuGfXx8aN68eZLEUb9+fcrJyaHo6GiqVKmS1onRlStXkoWFhfI8benSpURE1KRJE0ni0FVOTg6tX7+eGjZsSGZmZtS2bVvasmWLpBftPvjgA1HjO3fuLEkcckhda9euHSkUCrVukrVq1ZJFx6SiExsNGjQgGxsbmjFjhtG7eb4qNzeXAgICVC5oN2zYkJo3b07e3t5Urlw5EgSB+vbtK+l+K1euTAMHDtT71qNHD2X3ZSmIuTC7Z88eo75HDh48SGZmZsWeAxirM66pM0HKCp4QKgOK/jA9fvw4DRs2jCpUqKD24WjUqBEtXLiwVK8aExE1bNiQunbtWuwy5LS0NDIzM9OrjkRxXoeaOaXJxcWFtm7datDYe/fukYODg8QRqbp//77KvxMSEmj8+PH09ttv06BBg0ptZj8rK4tOnz5NI0aMoOPHj2u8Inft2jVav349mZubGz2ekydPUo8ePahixYrKz7GZmRk1atSIvv/++1JrK05EtG3bNuWql6JftI6OjjRlyhTKzMw0+gliQUEBzZ8/n1xdXdW+8C0sLOjjjz+mu3fvGjWGQklJSdSoUSO1E47C18fe3l6yH/vFyczMpOXLl1PTpk3VjvlmZmbUunVro6d8dujQgcqXL0/Dhg2jVatWqdV7IiJ6/vw5WVtbG3X1Vo8ePWjlypXFbnP79m3y9PQ06tVSLy8vCgsLU67e1ZTySfTyuNy0aVNJ9tmiRYtiH09MTKTGjRurTBZGRkYqjyHaYpSCi4sLHT58WPlvbZNPHh4eGn9IGMP169fp888/p6pVq6p9bhwcHGjIkCE6p3iVpGhq1JIlS8jZ2ZmSkpJUtomKilLGUK5cOdqzZ4/yMV1XAEglMTGRhg4dStbW1irH2JLeY/oQO8nVuHFjSeKQQ+qah4cHCYJA7dq1U7l/+vTpyvejh4eHxpubmxuZm5sb9ce+jY0NTZ8+XTmZn5ycTOHh4eTm5kZjx44ttXpKhanpISEhdPToUbWVQLm5ubR582aqWbMmrV+/XrL9ijk2Pn/+nJycnCSJw8nJyaBzvgsXLlClSpWM+h4JCAigatWq0axZs+jgwYMaV+u+ePGC7OzsqHfv3pLtlzNBpMMTQmWAQqGgbt26KZfqFf1guLu706effkqJiYkmi0/Xq7bOzs4qtQXEkHvNnNJmaWlpcD2i/Pz8Upn80CQnJ4c2bNhAderUodq1a1NUVFSJKQBiFF1RV1pX5AIDA5W3AQMGaK21kpqaSnfv3i2xOKyxPX78mE6dOkXHjh1TS2PStBJCallZWXTnzh06efIkbd26lTZs2EB79+6lx48fG33fryooKKC4uDgaP348hYSEUFBQEPXt21fydC1NE0tHjhyhQYMGUbly5dSO+w0aNKDo6OhSmxxzcXFRueqn7Qd/YV0FY0lKSqJy5cpR9+7dac+ePXTr1i3Ky8ujlJQUOn78OH3yySfk4OBACoWCPv/8c6PFUdpFx4l0++zl5eXRF198oVyFolAo6N1336XExESjrhAyVUH4uXPnqvw7OzubfvzxRwoMDFTW9ij8zFhaWlKXLl1o69atkta70iQyMpLc3NyUP6SnTJmijKVixYqS1Q7U12+//aZcrVL0tQkICJC88LeXl5fB32UZGRnk7u4uSRxySF27e/cu/fTTT2oXVK5cuaJWr06Te/fuUYUKFUTHoY22emsZGRn07bffkpeXF/Xs2bPYGmVSaNiwoU51OW/evClpOp/YidBXG3MYSi7F6TVxcXFROd8o7hzA2dlZsv1yJoh0eEKoDCj8oBddRjlgwADat2+f5Lm0hni1Y5ImaWlpZG5uLtnJoNxr5pQ2QRBE1e8wZn46kXy6WJiiY4MgCNSqVSu1FA5TkOuSZLnlhu/bt49GjRolurOWrgonGO7cuUNz5szROPlfWP/E2HV6NJFLJzoiot9//1150qfpVrjSwZjLxku76DgRkbm5udpKS21OnjxJderUUR7HrK2tqVKlSpLEoYmpCsK7u7tTZmYmHTt2jEaMGKGcDCz6uXn33Xdp0aJFRr3QoMnYsWPJ09OTQkNDlbE4OTkZtZOSpgYez58/p5iYGKpbt67Ka2NhYUG9e/dWKWIvpVatWtGqVasMGrt48WLJGj/IJXVNmyVLlui0XVBQkFHj0OTixYs0depUcnd3V753jHnuXL16dZ1/00j5ehi7ZIKuBEEexek1MUVnXM4EkRZPCJUBhScTgYGBtHHjxlKpC6SPXr16lVh4bsqUKSQIgmTL+OVeM6e0CYJAs2bN0qlI4au3uLg4oxfFk0sXC1N0bLC0tDTJ6hZNDF2SfP78eaMsSZZrbnjhSYjYHxO6Kvyx+OqqBltbW+rdu7dROyTpQi6d6AqlpqbSZ599RjVr1lR5r9SqVYuioqKMXnertIuOE718j3Tt2lXn1S3Pnz+nCRMmlMqPBVMVhNeUyikIAr399ts0bdq0UuvI17VrV4339+7dWxmTs7Oz1vOkXr16SRJH0dSXlJQUioiIUNaBK3x9ypcvTxMnTlTpFGgM8+fPJycnp2KL5WuSlJRElSpVounTp0sSh1xS18SIj4/X+3XUx9GjR5X//fDhQ1q4cCE1btxY5X3TpEkT+uGHH4xaR1DXSZ6CggJJu68qFAq6fPmyZM9nKEGQb3F6U3TG5UwQafGEUBmgUChoy5Ytpg5Dq7///ptq1KhBv/76q9pjaWlp9Mknnyi/WCIiIiTZp9xr5pS2V0+MDbkZk5y6WJR2xwYfHx9R448fPy5JHETyWpIs59zwhg0bkp2dnbILXHGkWEVUdBVoYV2gVatWGfXkWx9y6USnSWZmJt25c6fYlsRSr6oq7aLjRC+v0NasWZOqVatGQ4cOpeTkZJ3GHTx4kDw8PIx6jDdVQfiik4GFdYF06SApNVdXV40rG/Ly8qhdu3ZkY2OjdXIqMzOTypcvL0kc9vb2tGjRIurRowdZWVmpTZJFR0er/KgzpvT0dHJycqLKlSvTjh07dBrzyy+/kIuLC9nY2NC9e/ckiUMuqWti/P7772r1h6TUpEkTWrhwIYWEhKhcqHNxcaHw8HCNjW2MoU2bNvTo0aMSt5s0aRK9++67ku238NxjwYIF9M8//0j2vPqSc3F6U3TG5UwQafGEUBlgzC8CqWzYsIEsLCyoRo0a1LFjR+rXrx8FBASQra2t8sulefPmkl3hf11r5hiLrmlQxk6PKim+0uxiIZf0KLH55VJ+yctpSbKcc8PPnz9PtWrV0ilFp169eqL3V/iDdsaMGXT79m3Rz2cMcuhEZyhj1M8xVdHxgoICun37tl4dGtPT02nMmDGSx1KUKQrCC8LLbjdr1qwxaWcZQRDIx8eH+vXrR4MGDVK59ejRgxQKBXXq1EntsZ49e1K1atUkTU9+dbVUo0aNaP369ZJ2eNXV1q1blase33nnHZo9ezbt27ePEhMT6dq1a3Tu3DmKi4ujGTNmKCcOpT7GyyV1TZsDBw5QaGgoBQUFUatWrVRqDgYGBtL7779P5cuXl2zSUJOiFyQsLCyoc+fOtH37dkm7zunihx9+ID8/P/rzzz/VHsvIyKCNGzcqVy4tW7ZMsv1Onz5deZsxY4bRa4xpI/fi9KXdGZczQaQlEBGBsVJw+vRpREREYP/+/cjLy1Pe7+TkhFGjRmHatGnIysqCg4OD6H0pFAqcO3cOvr6+Bo23srJCTk6O6DjkQqFQICwsDH5+frC0tNR5XH5+Pq5cuYJFixYhKyvLaPHZ2tpiypQpGDJkCNzd3XHz5k0sWrQImzZtQteuXTFx4kR4eHhIuk9nZ2ekpKRAoVDoNS4hIQEBAQF48uQJXrx4ITqOVq1a4cCBAwaNvX79Onx9fZGZmSk6DuDl+8TMzAw2NjbYt28fmjRponXbHTt2oHfv3sjJyQERoVatWrh69Sry8/NFx5GdnQ03Nzc8ffoUc+bMweTJk0scc//+fbRo0QIPHjxAcnIyKlSoIDoObZKSkpCSkoIlS5age/fuqFKlito2+fn5OH78OCIiIkS/T2xtbfH333/Dy8tL1PMY288//4w5c+bg1KlTKHpqUalSJQwZMgQRERHIy8uT5BgvpcDAQBw8eFDy5yUi7N69G/Hx8bh27Rpyc3Ph5OQEf39/9O7dG46OjpLvU86ys7Px5MkT3L17F8nJycrXo3HjxqhYsaLk+6tQoQKuXLkCZ2dnyZ9bHwqFAoIgGDSWiCAIgiTfNUW/6zp06IBJkyYhICBA9POKERMTg7Fjx5b4vVF4PBk+fDi+//57yfb/7bffYvbs2Th27Bhq1qyp87jLly/j/fffx9ixY/Hll19KFk9R27dvR7du3aDLz7SOHTti586dRolDoVDAy8sLw4YNQ//+/U32eXrx4gWCg4Nx4MABVK5cGW+//TYA4OHDh/j3339BLxc54MMPP8S2bdtMEmNp+uqrr7B06VL88ccf8PDwwNSpUzFv3jwQERwcHBAXF4emTZuWakynTp1CVFQU9u3bh7S0NAAv3z8NGjRAWFgYhg0bpvc5tzaVK1fGkiVL0K1bN73HpqSkoE6dOnjy5IkksZQJJpqIYm+wjIwMOn/+PB09elRt+aVUXYrkXjOntInN2e3Tp49EkWhmii4WckmPsra2Jk9PT71vbm5uyqurUpHLkmS554aHhISUarrll19+KT7oUmTqTnT6knqFUGkXHZczUxaEl3KVgBiF3xdOTk5a24drujk6OkrewKBZs2ZGLVxtiOPHj6s0j9B0q1y5MsXExEi+b7mkrmnSuHFjCg4OptjYWDp06BBNmzaNvv32Wzp06BAdOnSIDh48SN9//73WGlVSGTJkiCwa1BC9rH02atQoZap40ZudnR1FRESYZLWbqZiiOL1cOuNyJoi0eEKISUouaThyr5lT2r799ltR47dt2yZNIHoyZhcLuaRHySmdTy5LkuWeG753717l/7+2H3Nvv/22sk6HsSQkJNCuXbto06ZNtH///lKpbyCXY7yUpJ4QKu2i43Ik14Lw+qhbt64kz2Nra6t2HNXVhQsXyNbWVpI4nJycZNd0pKjjx4/TjBkzqFevXhQUFERdu3alcePG0bZt24watxxS1zSpUaOGynfgkydPaOTIkWrbLV26lDZt2mTUWOQmJSWFNmzYQHPmzKF58+bRtm3bynzXKLkUpxcEeXTGFQR5d09+3XDKGJOUoWk4Fy5cQGBgoGRpOGKXJEq1RJvp5tixY2jWrBkAIDU1FRs2bMDatWtx9uxZAC+Xi7/77rsYPHgw+vTpA3t7e9H7lEt6VJUqVRAcHKz3uGfPnuHMmTO4ceOG0d6rplqS7Ovri+DgYERFRek9Nj4+HuPGjUNSUpLkcRXVsmVL7N27F1ZWVlq3uXv3Lry8vPDs2TPJ9puVlYWoqCjExMTg/v37ao/XqFEDAwcOxOTJk2FhYSHZfgvJ5RgvJTFpm5o0atQI//zzD44fP4769esXu+2ePXvQrl07yfYtB0SEdu3aYf/+/cp0F1dXV9SrVw+Ojo7IzMxESkoKzp07h7y8PAiCgC5dusgmzePFixf48ssvMXv2bEneq/7+/jhx4oTJxheKjY01KL3CGG7evKlM+ZEDU6euaRIcHIzffvtN5b7hw4dj/PjxqFu3rvK+c+fOYfTo0Th69KhR48nOzsbhw4eRkZGBHj16AHh5XI+OjsbUqVNRp04do+7/Tefm5obbt2+rpZ/m5+cjJCQEv//+O06fPq3x7/Ds2TO4urri6dOnouOwsrJCSkqKUdJ89aFQKDBz5kz07dtX77EJCQno1KmT7M5FTIknhJikFAoFFi5ciLFjx+o85vTp02jfvj1SU1MlzZWXc80cpsrf3x99+/bF3r17ER8fj/z8fBARnJ2d0a9fPwwaNAj16tWTdJ8+Pj44ffo0/ve//2H27Nk4cOCAxppTq1atwvDhw5Gfnw9zc3MsXrwYw4YNk+wkXUz9kpycHFStWhUPHjwQHYc248aNw6+//ooWLVrgxx9/BAA4OjoiPj4e77zzjlH2+Trkhv/6668ICQkpcbsvvvgCkZGRAIDz588bXNcMAP79918EBQXh2rVrxdaVEAQB9evXx/bt2+Hp6Wnw/jSRyzFeSlJPCF24cAHdu3fHkSNHSqy3Ub9+fSQkJEi2bzmYN28epkyZAuDlj9rIyEj4+fmpbZeRkYFNmzYhIiICDx8+xKxZs5TjTOHRo0dYsWIFFi9ejDt37gCAJO/V+/fvw8XFxeDxt27dQtWqVUXHoU1GRgZu376N9PR0ODk5wdXVFdbW1kbbHwC4u7vj1q1bBtdWMoYTJ05g/Pjx+Ouvv7Ru4+LigsjISISFhRk9nqCgIIwcORJ169aFra0tqlatioSEBPTs2RPbt29HrVq1AAAzZszAvHnzJKslqMkPP/yAzz77DE+fPkW1atVw/fp15WMXLlxA+/btMWvWLISGhkqyv0WLFmm8f9y4cVrHpKWlYfbs2Zg7d64kMciNQqFA/fr10aBBA7WLPZmZmYiNjUXHjh3VatM9e/YMJ06cwK1btyQ5nvn6+uL8+fMGjz9x4gT8/f1FxyGmNlshuZ2LmJRpFiaxskouaThyr5nDVJmii4Vc0qNatGgharzYLmVFyWVJclnNDReTmvT06VNlxyFBEKhSpUrUp08fmjVrFsXExND8+fPp008/JX9/fzIzMyNBEKhu3bqSL6OXyzFeSlKnjF26dIkOHjxI3bt3p02bNtHhw4fVbvv376eZM2fK8vUQIysrS5kyFxUVpdOYlJQU8vLyogoVKpgk7ePPP/+k/v37k42NjUp6W1n727xq1apV9N5775G5ublKuryFhQW1adOG1q9fb7R9C4JAQ4YMoTt37hhtH4YyVeraq3bu3Kl8H9rb2ytbrg8cOJAsLS2pYcOG5O3tTQqFgtzc3IwWx9atW1VSPT09PTXGam5urrEDmCG6deumfD+6urpSVFQUXbx4scRxX3/9Nc2ePVuSGORGTCkMKY9ncumMK6dyC2UBTwgxSQmCQObm5mRvb08nTpwodtvt27ernIB5e3uTmZmZJHG8rjVz3lSCIFCtWrUoOjpap1bexhAZGUlubm5048YNIiKaMmWK8r1ZsWJFgycoSiKn1peurq4ai0fm5eVRu3btyMbGRutJWWZmpmStb8tqbnhAQIDBYwcPHkyCIJC1tTXNnTu32EKNSUlJ1Lp1a+WPLinJ5RgvJaknhEq76LicyL0gfKHs7Gxavnw5NWrUSK3OUb169ah58+Zl7m9T6PHjx/T+++/rVN+pXbt2lJqaKnkMhfsxNzenoKAg+vHHH+nZs2eS76ckycnJpb5PfRQ2ePD19VXW2crMzKT33ntP5e81b948o8XQpEkTaty4MW3YsIGuX7+u9XusQoUK1LlzZ0n2OX/+fBIEgT766CPKyMjQa2xwcLBRi32bilyK04v5vrx27RrZ2dlJEocgCDRs2DCKiYmh1atX63xbvnw5TZkyhWxsbCSJo6zglDEmKbmk4bDXy9ChQ7Fs2TKTLx83RXqUmZkZLl26pFz+bUpyWZJcVnPDDU1NunfvHjw8PGBtbY2dO3eiZcuWJY558eIFPvroI+zevRtXrlyBh4eHARGrK4vHeKlTxvbt24egoCDY2dlpbS1fUFCA+/fvIy8vT5bvVUMNHjwYe/bsQXJyMszNzfUaGxYWhvT0dGzevNlI0QFXr17Fd999h9WrV+Pp06fK1EsnJycMGjQIQ4cOVbYf9/LywpUrV4wWiynk5ubC398f58+fBxFBoVDA398f9evXV6nvdOTIEaSkpEAQBDRr1gz79+/XK/2+JBUqVEBiYiIEQcDevXuxbt06nDp1Cl26dEH//v3RunXrUjkfkGPqmi7y8/OxY8cO3LhxA35+fnj69Cm6dOlilH25ubnh0qVLKF++PADtx8vq1asjLS0Njx8/Fr3PQYMG4dq1azh06JDe9er++OMP/Pnnn5g8ebLoOOTEzs4OZ86cgbe3t95jExIS4O/vL0k9QxsbG1SpUkXvcbm5uUhJSQERSfKd5+3tjcuXLxs8vm/fvli/fr3oOMoMk05HsTJHLmk4jJVELulRgiCQm5sbLViwoFS6RJUUixyWJJfVLoGGXlmLjo4mQRBo3bp1eo1LS0sjJycnSbvhlMVjvNQrhIhepoKW1G73zp07knWQkgsfHx+aPHmyQWP37NljlBWTBQUF9PPPP1Pbtm2V3aQKj/FNmzalunXrUm5urto4XduQv04+/fRT5fF15MiRlJKSonXb+Ph4qlu3LikUCoP/ptqMGjVK7b6bN2/SzJkzydvbm9zc3Gjy5Ml05swZSff7Kjmnrumjdu3aRnvutm3bqvxb0/EyNTWVLCwsJFt14efnp/XcqyQFBQVG7zRqCmJTrcpaqhZngkiLVwgxozJVlyL2eirNLhZy6dgwY8YM5X8LgoCpU6dKeiVWH4VF+ipVqgQ7Ozudx2VmZuLRo0eSFoUXQ46FiwHDV6J0794dV69exblz5/Qe+8UXX+D06dOIi4vTe6wuysIxXuoVQoBpio7LgZwKwj948ADLli1DTEwMbt++DeBll6iKFSuiX79+CAsLQ/369UUV9n+dpKWlwd3dHfn5+VizZg0+/vjjEsdkZWWhVatWOH/+PG7cuCGqOLY+jh07hrVr12LLli1wdHREr1690KNHD/j4+Ei6n8LvGjMzM7Rq1Qr9+/dH165dYWtrK+l+jCk6OhpTpkwx2nde7969MX/+fOWqEE2fl0GDBmHNmjXw8fHB33//LXqfTZo0Kba4d0m6du0qm66FUpFLcXo5d8ZlhtNvPS9jeirsHtKqVatSTcNhr59Xu1gUTgj5+Phg0qRJaNu2raRdLO7du4cGDRpoTI8qX748cnJyMGXKFK3pUVJ19Pjyyy8leR4p2NjYiF6SLBWxXQLLkvPnz2PgwIEGje3YsSPWrl0rbUBFmOIYv2PHDgwZMgTTp0/HmDFjRD+fMa6L6TIZBEA5GQQAEyZMkHxiqrQ9efIErq6uBo11cnKS7Ljaq1cvbN++HXl5ecq/b4sWLRAWFoYePXrAyspKue3rli5kqA0bNiArKwvR0dE6TQYBgK2tLX7++WfUqlULP/30kySfN100a9YMzZo1w8KFCxEREYGvv/4aM2fOhLe3t3JySIoLRPb29iqpa6tXr8aYMWNKPXWt0IULFxAbG4uUlBRUrVoVoaGhWn/E5+bmYsyYMVi+fLlRY5w4cSKCgoIwe/ZstG3bVmVfZ8+eRUREBHbv3g1BEDB8+HBJ9il2Qk6Ki3VyI3YyVqpOhbVr18aqVasMGlvYGZfJkAlXJ7EySC5pOOz1YoouFnJJj5ITuSxJLqtdAg1NTapUqRLt2rXLoLFPnjyhcuXKGTRWEzkc4318fEgQBFq8eLHK/bdu3TLo+c6dOyc6JimIKTouF3IpCH/48GHq3bs3WVtbk6WlJS1atEjrtsZIGZSjPn36UM2aNQ0a+8knn1CXLl2kDagYGRkZ9MMPP1Djxo3Vil+7urrqXbRcG7mkrhERrVy5Uq3jW/ny5TU2tEhOTiY/Pz/l6+Lu7i56/3fv3qXw8HA6e/as2mM//fQT2dvbk5WVFdnY2JC7uzvZ2dmp/F3CwsJEx1DI19dX1Hix5xBMOzl1xmXS4QkhJim5dClirxdTdLGQS8cGOSmunoQubt68KUkcZTU33NAfnmZmZiV29CppvFTkcIy3tbWltWvXqt2vz+sbGxsrOg6plYWJCUEQaNasWZScnKz3LS4uTvLjampqKs2bN49q1apFnp6eNHPmTLp7967KNmXhdddFnTp16IsvvjBo7OHDh6lGjRqSxbJ3716N9x87dowGDRpE5cqVU5lssLa2po8//ph+++03evHihWRxlOTo0aM0fPhwqlixInl5eVFERITBtW2Kc+vWLbKzs9NYc6VmzZqUn5+v3Hb37t1UqVIl5evToUMHevjwoegYOnfuTAqFgkaPHq3x8Zs3b9LkyZOpQYMGVK5cObK0tCQ3Nzfq2rUr7d69W/T+i6pdu7bBNRXPnDkj6XuVqZJTZ1wmHa4hxCQlly5F7PViii4WcunYwN4chtaqUSgUOHPmjMHpV5aWlsjNzTVorKZYTH2MDw4Oxm+//aZ2vz61YBo1aoQzZ86IikNqxqhlVNoK65CJYaxzgIMHDyImJga//PILWrdujWHDhqFDhw5o06bNa/+668LZ2RkrVqxAp06d9B6bmpqKGjVqSJaK4+vri/PnzwN4mWa4du1aLF++HBcvXgTwXxpnw4YNMXjwYPTt2xcODg6S7NsQOTk5iIiIQHR0NARBkDx1bfr06YiMjET37t0xduxYVK5cGdevX8f8+fOxb98+xMXFITg4GF988QVmzZqFgoICWFhYYNasWQgPD5fg//Bl57f33nsPGzduxFtvvaW8f8yYMVi8eLFOz5GVlSVJ/aURI0bg4cOHiI2N1Xtsx44d8dZbbynTl5m05NQZl0mHawgxySUmJiIxMVHr49qKmxLRG5PLz1TVq1dPORmkzaNHj3D79m29WxlrU79+fYMmgwrH1q9fX5I4GNPFrFmzdK5LU9TFixcl/4Ft6mN89erVsWjRIrRt21al+HlOTg5u3bpVbE2g3NxcHD9+HAkJCaLjYJqJuc5ozHOAwMBABAYGIjU1FStXrsTEiRMxYsQI2NjY4NmzZ2qF9GfPno1p06YZLZ7SlpaWBmdnZ4PGVqpUSdILIImJifjss8/wzz//YNeuXcjJyQGgWvR7yJAhJi+ynpmZifXr12PZsmU4e/YsBEEAESEpKQlLly7Fs2fPMHfuXNH7OXDgADp16oQtW7Yo7/Py8kLbtm3RokULxMbGYsGCBdi7dy+ICJ6enti0aRPeffdd0fsuVK1aNezevVutqUPhJJ0ugoKC8Mcff4iOpV+/fmjZsiUmTpyIb775RqfjQkFBASZOnIjffvsNP//8s+gYmGZEhFatWmHy5Mno0KEDvLy8TB0SkwCvEGKSkkuXIvZ6MUUXC7l0bGBvDjErhOSy6kIOx/hHjx7hgw8+wKVLl0Q9j9y+a8rKCiGxBeGzsrKMGKGq/fv3IyYmBnv37kXHjh0RGhqKVq1aITc3FzVq1MDdu3dLLRZjUygUOHv2LBo0aGDQeCsrK+XEjRSxFB7Tiv4McXd3x9KlS9G+fXtJ9lOSffv2oU2bNmr3//nnn1i2bBl++uknZGVlKWO0srJCly5dMGjQILRt21Z0R8xCLi4u2LRpEwIDA9Ue27lzJ7p06aKcjOrZsydiYmJKvIimr549e2LJkiVwcnJSuV/X41JGRgY8PDzw6NEjSeLp1q0btm/fjkaNGiEiIgIdO3aEmZmZ2nb5+fn45ZdfMHfuXJw6dQqNGjXCyZMnJYmBqZNTZ1wmHV4hxCQlpy5F7PVhii4WcunYwORLTt2s5LLqQg7H+EqVKuHkyZP47rvvsHXrVly+fBkZGRl6TfDwalTj8PLywtKlSw0ef+vWLQmjKVnr1q3RunVrPHz4ECtXrsSIESNw9+5dWFtbIz09vVRjKQ0rVqxA9+7d9R6XmJiI/Px8SWMpXA3Up08fDBo0CAUFBVizZg369++PcuXKoW/fvggNDTV4Ja8uJk6cKIvUtadPn2pd7VN4TmRtbY0FCxYgLCxMbZvExETUq1dPVAwjRoyAp6cn6tWrpzLZf+7cObRq1arYsbm5ubh06RLS0tJExVDUqlWrcOXKFZw+fRofffQRbG1t8c4776BKlSqwtrZGRkYG7ty5gwsXLiA3NxdEBAcHB2zevFmyGJg6OXXGZRIq1YpFrMyTS5ciJk9y6mLBWEnk0s3K3NycNmzYQP/88w/9+++/Ot+uXr1Ku3fvJldXV4P2q4mcj/G6dOnKzc2lo0ePkrW1tdHiMFRZKG78uheELygooK1bt1KtWrXKXOMAMZ01C29SxvL1119Tdna22mO5ubkUGxtLXbp0IUtLS2rSpAktXryYUlNTJdt/IYVCQdOmTaNu3bqRjY2NSkezt956i8aNGyeqa56uLCwsin28Ro0alJCQoPVxqY6r+/fvV37vGXKT+jPz+PFj6tSpk8rza+r6KggC1ahRQ2tDA8ZY8ThljEmK03BYcbp06YJff/0VI0eO1Fik8NatW/jf//6H+Ph4XLt2Dbm5uXBycoK/vz/CwsIQHBxsgqjZm8rOzg4//PAD+vfvr3K/Pqk927ZtQ9euXUXF0bhxY5w+fdrg8cOHDxe1aqMoORzj7927h2+++Qb9+vVTKbStT1FpPz8/nDp1SlQcUisLKWNlxcOHD1G9enVkZGSYOhTJiE1vkjKlv3bt2khKSipxu9TUVEybNg0rV66EhYUF2rdvj9DQUISEhKgVtTeEXFLXFAoFEhISULduXY2Pf/DBBzh8+LDa/Xl5efjzzz/Rrl07ZGdnSxbP5cuXcfnyZaSnp2PmzJmYOnVqsdvn5ubi5MmTWLFihVFScXfv3o1Fixbh8OHDeP78ucpjPj4+GDhwIEaOHAlra2vJ983Ym4AnhBhjpUZOXSwYK4lculkpFAoEBAQAAN5++23ExMTolbN/4cIF+Pj4iIpBTrRNLD9//lznHwTp6emS1+AQiyeEpFU0zcWQz83evXvRtm1bY4RmEmZmZvj6668Nru/02WefSdLhEwDOnDmDRo0aaX08IyMDGzduxMqVK5X1YAp/rgiCgJCQEOzYsUN0HIWTZJpS1zZu3FhqqWtyqhP3Kn2+77y8vHDlyhXR+xw8eLDyv5s1a4ahQ4cCeNk44N9//8Xjx49Rrlw5uLm5qZxLMsYMwzWEGGOlRk5dLBgriZy6WQmCgPnz5xtUELYsTQYBwKFDh9CmTRtERkaq3D9p0iSdJ5al6lbI5OvQoUMIDAw0+HNTliaDAKBu3boGd01r3bo1Tpw4IVks1apV03j/77//jhUrViA2Nla54qXwOFuvXj3069cPffr0kXQl+VdffYXw8HCVyWQ/Pz/Mnz8fO3fuxNq1a+Hr64t33nkHoaGh6NWrFypVqiTZ/guJuT5vzJpo48eP13nbr776SpJ9rl69Gh4eHli+fDk++OAD5f1WVlZGnZhj7E3FK4QYY6VGbl0sGCuOXLpZWVlZISUlBRUrVhT1PGWFr68vzp07pzaxrM+V7ObNm4ueWJa66Lg+8bOS8edGldjVG4cPH1b5cS5GkyZN8NdffwF4mQK6evVqrFq1CteuXQPw3+SIs7Mz+vTpg9DQUJX0UKnIJXXNwsICXbt2Rc2aNfVavZWVlYUTJ07gyJEjsuuaKIZCocDSpUtVCmh37twZ+/fvV6aMNWjQAL6+vli9erWJomSs7OBLZIyxUiO3LhaMFUcu3ay8vb1F/ag9ceJEmergWLt2bTx69EhtYlnX1zojI0P0JB8ARERE4PHjx2r7vX37Ntzd3fV+vgULFoiOif2HPzeq7ty5g7S0NIO7ZEk1GQS8/M6fNGkSLly4gAMHDqCgoEA5CWRtbY1OnTphwIABaNeuncZW41LZsGFDsY9rSl3Lzc3Fjh078Msvv0iWuvbhhx8a3B2LiODp6Sk6BrmpU6eOyr9/+eUXHDt2DM2bN8eWLVsM6pbHGNOMVwgxxkrVgQMHMGHCBINTaaQsbMmYIXRZyZGXl4eTJ0+idevWoot9aisoqit/f39J0z1M7cCBA+jcubPGieWSVhEUnVgWexyRS9Fxphl/blQpFArUrVsXffv2hbOzs0ErW0JDQyWLpWgxZ0EQ0KJFC/Tv3x89evQotfpejx490pj+Vdqpa5s2bUKvXr0MHr9gwQJMmDBBkljkQKFQ4MyZMxqP556enrhx40bpB8VYGcYrhBhjpapVq1Y4f/68qC4WjJUGbd2sdGFhYYFmzZqhXr16ouMQc4X8+vXrSExMFB2DnLRq1Qq//PILJkyYoLxqX+jQoUM6PYcUK7cKf8C+Sp/rbF9//TVPCBkJf27UXbx4EatXr4aLi0uJr09iYqIyPVsQBLWaXWIREWrUqIEhQ4agb9++Jukw2759e1mkromZDAJQpiaDCmnriqet/hRjzHC8QogxZnKm6GLBWEnk0s3KxsYGVapU0Xtcbm4uUlJSQERldlWdKdsjjxo1CrVr11YrOt6rVy9s3rxZp6LjgwcPRm5urqg4mGb8uVFlZmaGvXv3lpieDQCRkZGIjIxEQUEB7O3tsW7dOnTq1EmyWBQKBebOnYvw8HCtP/xLg6WlJcaNG2fy1DWmSqFQ4Ny5c/D19VV7TJcVmGUt3ZMxY+MJIcaYyW3fvh0ffvihTtuKXVrNmK4qVKiA9957Dxs3blRpbTtmzBidu1llZWXB1tZWVBxifzC9KWmWpT2xLJei40wz/tyo8vb2xuXLl4vdJi0tDf369cPu3btBRKhZsyZ27NihVs9FrDp16khSx0ssuaSuMVXFTQjpcpz38/PDqVOnjBUeY2UOp4wxxkxO18kgQPzSasZ0Va1aNezevVvth6U+qSRBQUGiu1m5uLggODhY73HPnj3DmTNn3ph6C6XdHlkuRceZZvy5UbVz585iHz9z5gy6d++O5ORkEBGCgoKwadMmg4tQF0efyaB79+7h9u3b8PDwUCskLwU5pK4xdSkpKRonhIo7Zubk5ODQoUO4cOGCMUNjrMzhFUKMMcaYBj179sSSJUvUfoToWjQ4IyMDHh4eyjochhLTjjwnJwdVq1bFgwcPRMVQ1hw9ehTvv/++UZ67tIuOM834c6O75cuXY9y4ccjJyQERITw8HHPnzjVaOtfZs2dx//59pKSk4P79+7h//z5SU1Oxdu1a5TZXr17FyJEjlcdaQRDQvn17LFu2DJUrV5YkDrmkrjFVRVduGaosre5jzNh4hRBjjDGmwYgRI+Dp6amxm1VJdTiKdrMSS8yJrZWVleTpHmXBgAEDcPXqVVHPIZei40wz/tyULCcnB6NGjcLq1atBRLC2tkZMTAz69etn1P1OmjRJWQD+/fffx5gxY9CuXTvl4//88w+aN2+OR48eKWv6EBHi4uIQEBCAU6dOoVy5cqLj8Pb2xuTJk0U/D5OemPUKvPKSMf3wCiHGGGNMiwMHDmDChAlISEgwaLwUdUhq166NpKQkUc9Rlly4cAHx8fHo2bOnMr2DiDB79mzk5+cXOzYvLw/nzp3Drl27RP9d5FJ0nGnGn5vi3bhxA926dcPff/8NIoKbmxt+/vln+Pn5GX3fixcvxoQJE7Bw4UKMHj1a5bHc3Fw0btwYiYmJEAQBzs7O+PTTT+Ht7Y3Tp08jKioK4eHhmD59utHjLMrYqWvsPwqFAgEBAXj33Xf1qsGXlZWFP//8E0ePHuUVQozpgSeEGGOMsRKYspuVmZkZLl26hFq1aol6nrKicuXKePjwIVq0aKHSZr59+/aIj48HoP3qsiAIyuKxYv8ucik6zjTjz412v/76K0JDQ/H06VMQEZo2bYpt27bBxcWlVPbfr18/1K9fX+NxdPr06YiMjIQgCKhSpQqOHTuGt99+W/l4fHw8PvnkE71quWkjl9Q1psrDwwP//vuvQWMLCgrg4eGBmzdvShsUY2UYp4wxxhhjJfD29oa3tzcAYMWKFRgwYECJY8LCwgyuYVIUEaFVq1aYPHkyOnToAC8vL9HP+Trr1KkTNm7ciKCgIJX7+/Tpg+PHj2PAgAGoWLGixrGFK4R2794tOg65FB1nmvHnRh0R4fPPP8fcuXNRUFAAABg8eDC+//57WFhYFDs2JSVFsgmQf/75B6tWrVK7/8aNG4iKigLwcuJl/fr1KpNBwMvPjFTXsuWSusZUhYaGGjxWoVCgT58+EkbDWNnHE0KMMcaYHkq7m9WXX34J4GVL6I0bN2Lq1KmwtLQU/byvq2XLlmHZsmVq93ft2hVHjhzBggULSnwOT09P0XHUrl0bjx49Uksf0bV+RUZGhixab5dV/LlRlZqait69e+PAgQMgIpibm2P+/PkYM2aMTuOnTp2K1atXSxKLra2txgmosWPH4vnz5xAEAcOGDcMHH3ygcXy1atUkieOjjz7C4cOHtaaudevWDampqRAEAS4uLmqpa9HR0aWeuvYmiIyMFDV+zpw5EkXC2JuBU8YYY4wxIzFmNyum7vTp06hbty7S09Ph6OgIMzMzjdstWbJE7Qegvg4cOIDOnTtrLDpeUpHpokXHudYFKw1Vq1bF3bt3QURwdHTETz/9pHXC5VXHjx9HUFAQ0tPTJYnF29sbly5dUlldt3r1agwePBiCIMDBwQFXr17VutKvTZs22Ldvn+g45JK6xhhjpsQTQowxxpiR1KxZU3Q3K1ayQ4cOYenSpdi3bx8eP34MAMqr+h06dMDAgQONMjEnh6LjjOmisJU3EcHBwQEODg4ljiEiPHnyBBkZGQCka+Xdvn171K5dG/PmzYO5uTlWr16N0aNHIzs7G4Ig4H//+x9GjRqlceyuXbsQHx+v00rAkjRp0gRHjx5VW61048YN1KtXD8+fP4dCocD+/fs1Tp7VrVsXFy9eFB0HY4yZEk8IMcYYYxrIpZsV0y43NxcDBgzAli1bAGguJl2YwjV06FAsXLhQ5w5g+jBl0XHGdKFQKNCyZUtMnz5d57TGgoICpKWlYf/+/fj+++8le68eO3YMAQEBMDc3h42NDdLS0gC8/Py2a9dOa42vO3fuoFmzZpg3bx569uwpOo6AgACVwvSFQkJCsGvXLgiCgOHDh+O7777TOL59+/aS1CNjjDFT4gkhxhhjTAO5dLNimhX+eNy/f7/y7+Dq6op69erB0dERmZmZSElJwblz55CXlwdBENClSxds27bNqHEFBgbqXEzcy8sLV65cMWo8jAFAxYoVkZycjPLlyxs0vnXr1ti/f79k8fz6668YPXo0bt26BQAwNzfH4MGDsXDhQlhZWaltHx8fjyFDhuDOnTsYMGCAxqLU+pJL6hpjjJkSF5VmjDHGNJBLNyumWXR0tPLHWHBwMCIjI+Hn56e2XUZGBjZt2oSIiAjs2LEDc+fOxZQpU4wWV2kXHWdMF6NGjTJ4Mgh42Y1MSiEhIQgJCcGlS5eQkZEBLy8vrcfTMWPG4OLFi+jYsaNKx0exqlevjvDwcLXUtUJfffWV1ph27dqF+vXrSxIHY4yZEq8QYowxxvTw7NkzfPLJJ4iJiSlxW09PT9y4caMUonqzZGdnw83NDU+fPsWcOXMwefLkEsfcv38fLVq0wIMHD5CcnIwKFSqUQqTF46LjjJmOXFLXGGPMlBQlb8IYY4yxQnZ2dhg+fDiys7Nx//79YlPCJk2aVIqRvTm2bNmCtLQ0TJo0SafJIABwcXHBzp07kZ2djdjYWCNHqJsBAwaYOgTG3ljNmjXDtm3b4OTkhCdPnoCIYGZmhmHDhmH79u0ax8THx+O9997DrVu3eAUoY6xM4BVCjDHGmI5M1c2KqRo8eDD27NmD5ORkmJvrl/0eFhaG9PR0bN68WVQMXHScsbJDn9S1WrVqKVPXOnToUMqRMsaYtHhCiDHGGCuBXLpZsZd8fX0RHByMqKgovcfGx8dj3LhxSEpKEhUDFx1njDHG2OuOi0ozxhhjxSAihISE6NzNavny5Xj48KHRu1m9yR48eAB/f3+Dxvr6+uL+/fuiY+Ci44wxxhh73fEKIcYYY6wY8+bNU3al0rWb1cOHDzFr1iyjdrN6k1lZWeHQoUNo2rSp3mNfvHgBa2tr5OXlGSEyLjrOGGOMsdcHTwgxxhhjWpSVblZljUKhwLlz5+Dr62vQeCsrK+Tk5Egc1X9Onz6NunXrIj09HY6OjjAzM9O43ZIlS1TaXDPGGGOMlSZOGWOMMca0KOxmNXnyZL27Wfn6+iI2NhaDBw82cpRvpri4ODg4OOg9LiEhocSiz4bSt+g4TwYxxhhjzJR4hRBjjDGmhRy6WTF1CoVCWcTbUFIWc+ai44wxxhh7HfEKIcYYY0yLU6dOoW/fvnpPBgFAjx49MG7cOCNExQDtHbx0IXYy6dU4uOg4Y4wxxl5HPCHEGGOMaSGHblZMs7CwMPj5+cHS0lLnMfn5+bhy5QoWLVokWRzR0dHYt28fAN2Lju/YsQNz587louOMMcYYMylOGWOMMca0kHM3qzeZt7c3Ll++bPD4vn37Yv369aLj4KLjjDHGGHudKUwdAGOMMSZXeXl5sLOzM2ismZkZFAr+mjWGkSNHihrfvXt3SeIoLDo+adIkvYuOZ2dnIzY2VpI4GGOMMcYMwSuEGGOMMS0UCgVmzpyJvn376j02ISEBnTp1krR4MZMXLjrOGGOMsdcZTwgxxhhjWsitmxWTF19fXwQHByMqKkrvsfHx8Rg3bhySkpKMEBljjDHGWMm4qDRjjDFWDLl0s2Lyw0XHGWOMMfY64wkhxhhjrBhy6WbF5OfJkydwdXU1aKyTkxMyMzMljogxxhhjTHc8IcQYY4xp4eXlhaVLlxo8/tatWxJGw+SGi44zxhhj7HXGE0KMMcaYFnLpZsXkKy4uDg4ODnqPS0hIQH5+vvQBMcYYY4zpiItKM8YYY4wZgIuOM8YYY+x1xiuEGGOMMcYMxEXHGWOMMfa64gkhxhhjjDEDcdFxxhhjjL2ueEKIMcYYY8wAXHScMcYYY68zbm/BGGOMMWYALjrOGGOMsdcZF5VmjDHGGGOMMcYYe8PwCiHGGGOMMcYYY4yxNwxPCDHGGGOMMcYYY4y9YXhCiDHGGGOMMcYYY+wNwxNCjDHGGGOMMcYYY28YnhBijDHGGGOMMcYYe8PwhBBjjDHGGGOMMcbYG4YnhBhjjDHGGGOMMcbeMDwhxBhjjDHGGGOMMfaG+X9sWeAUwtCqiwAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 1400x700 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import os\n",
"import xarray as xr\n",
"import matplotlib.pyplot as plt\n",
"from matplotlib import rcParams\n",
"import matplotlib.dates as mdates\n",
"\n",
"# Settings for plots\n",
"plt.style.use('default')\n",
"rcParams['mathtext.fontset'] = 'stix'\n",
"rcParams['font.family'] = 'STIXGeneral'\n",
"rcParams.update({'font.size': 18})\n",
"# Date format\n",
"date_plot_format = mdates.WeekdayLocator(interval=6)\n",
"date_format = mdates.DateFormatter('%Y-%m')\n",
"\n",
"def plot_time_series(ds1: xr.Dataset, var: str, ds2:xr.Dataset = None, label1: str = 'Dataset1', label2: str = 'Dataset2', scale_factor1: float = 1000, scale_factor2: float = 1000, unit: str = 'mm', title: str = 'variable comparison') -> None:\n",
" Plot times series of a uniform modspa dataset.\n",
" Select first pixel (upper left corner) and plot\n",
" its value over time.\n",
" 1. ds1: `xr.Dataset`\n",
" first dataset to plot\n",
" 2. var: `str`\n",
" name of variable to plot\n",
" 3. ds2: `xr.Dataset` `default = None`\n",
" second dataset to plot, optional\n",
" 4. label1: `str` `default = 'Dataset1'`\n",
" label for first dataset\n",
" 5. label2: `str` `default = 'Dataset2'`\n",
" label for second dataset, optional\n",
" 6. scale_factor1: `float` `default = 1000`\n",
" scale factor for first dataset to\n",
" divide the time series in order to\n",
" plot the correct variable values\n",
" 7. scale_factor2: `float` `default = 1000`\n",
" scale factor for second dataset to\n",
" divide the time series in order to\n",
" plot the correct variable values\n",
" 8. unit: `str` `default = 'mm'`\n",
" unit of value\n",
" 9. title: `str` `default = 'variable comparison'`\n",
" title of plot\n",
" `None`\n",
" plt.figure(figsize = (14,7))\n",
" plt.grid(color='silver', linestyle='--', axis = 'both', linewidth=1)\n",
Loading
Loading full blame...