Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
O
Oceano2python
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
US191
Oceano2python
Commits
94b79fa7
Commit
94b79fa7
authored
6 years ago
by
f-nivert
Browse files
Options
Downloads
Patches
Plain Diff
Add of 2 example of plot with python (from model output)
parent
8afef4ec
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
example/hoff_muller_diagram.py
+69
-0
69 additions, 0 deletions
example/hoff_muller_diagram.py
example/various_modelisation_plot.py
+300
-0
300 additions, 0 deletions
example/various_modelisation_plot.py
with
369 additions
and
0 deletions
example/hoff_muller_diagram.py
0 → 100644
+
69
−
0
View file @
94b79fa7
import
netCDF4
as
nc
from
netCDF4
import
Dataset
import
numpy
as
np
import
matplotlib.pyplot
as
plt
import
matplotlib.dates
as
dplt
from
pylab
import
*
import
os
,
sys
mask
=
Dataset
(
'
/ccc/scratch/cont005/legos/nivertfl/VALIDATION_F01/INPUT_SAISON/HOFF-MULLER/total.nc
'
,
mode
=
'
r
'
)
trop
=
Dataset
(
'
/ccc/scratch/cont005/legos/nivertfl/VALIDATION_F01/INPUT_SAISON/HOFF-MULLER/sst_tropflux_1d_2000-regrid.nc
'
,
mode
=
'
r
'
)
mask1
=
mask
.
variables
[
'
votemper
'
][:,
0
,:,:]
trop1
=
trop
.
variables
[
'
sst
'
][:,:,:]
zbla
=
np
.
zeros
(
shape
=
(
301
,
1
))
zblo
=
np
.
zeros
(
shape
=
(
301
,
1
))
zbla2
=
np
.
zeros
(
shape
=
(
301
,
366
))
zblo2
=
np
.
zeros
(
shape
=
(
301
,
366
))
time
=
mask
.
variables
[
'
time_counter
'
][:]
lon
=
mask
.
variables
[
'
nav_lon
'
][
0
,:]
mask1
[
mask1
==
0
]
=
np
.
NaN
for
y
in
range
(
0
,
365
):
for
x
in
range
(
0
,
300
):
result1
=
np
.
nanmean
(
mask1
[
y
,
78
:
86
,
x
])
zbla
[
x
,:]
=
result1
zbla3
=
np
.
squeeze
(
zbla
)
zbla2
[:,
y
]
=
zbla3
zbla2
=
transpose
(
zbla2
)
for
y
in
range
(
0
,
365
):
for
x
in
range
(
0
,
300
):
result2
=
np
.
nanmean
(
trop1
[
y
,
78
:
86
,
x
])
zblo
[
x
,:]
=
result2
zblo3
=
np
.
squeeze
(
zblo
)
zblo2
[:,
y
]
=
zblo3
zblo2
=
transpose
(
zblo2
)
plt
.
clf
()
units
=
mask
.
variables
[
'
time_counter
'
].
units
from
datetime
import
datetime
buf
=
mask
.
variables
[
'
time_centered
'
][:];
time
=
list
()
time
.
extend
(
buf
.
tolist
())
dates
=
nc
.
num2date
(
time
,
units
,
'
gregorian
'
).
tolist
()
nt
=
len
(
dates
)
im1
=
plt
.
figure
(
figsize
=
(
6
,
18
))
im1
=
plt
.
contourf
(
lon
,
dates
,
zbla2
,
np
.
linspace
(
23
,
30
,
21
),
extend
=
'
both
'
,
cmap
=
cm
.
RdBu_r
)
plt
.
colorbar
(
im1
,
orientation
=
'
horizontal
'
)
im1
=
plt
.
title
(
"
Modele annee 2000
"
)
plt
.
savefig
(
'
modele2000.png
'
)
plt
.
clf
()
im2
=
plt
.
figure
(
figsize
=
(
6
,
18
))
im2
=
plt
.
contourf
(
lon
,
dates
,
zblo2
,
np
.
linspace
(
23
,
30
,
21
),
extend
=
'
both
'
,
cmap
=
cm
.
RdBu_r
)
plt
.
colorbar
(
im2
,
orientation
=
'
horizontal
'
)
im2
=
plt
.
title
(
"
TropFlux annee 2000
"
)
plt
.
savefig
(
'
obs2000.png
'
)
This diff is collapsed.
Click to expand it.
example/various_modelisation_plot.py
0 → 100644
+
300
−
0
View file @
94b79fa7
from
netCDF4
import
Dataset
import
numpy
as
np
import
matplotlib.pyplot
as
plt
from
pylab
import
*
file1
=
'
/ccc/scratch/cont005/legos/nivertfl/TEST_VALIDATION_TROPFLUX/MOYENNE-SAISON/grid_T_saison.nc
'
file2
=
'
/ccc/scratch/cont005/legos/nivertfl/TEST_VALIDATION_TROPFLUX/MOYENNE-SAISON/grid_U_saison.nc
'
file3
=
'
/ccc/scratch/cont005/legos/nivertfl/TEST_VALIDATION_TROPFLUX/MOYENNE-SAISON/grid_V_saison.nc
'
file4
=
'
/ccc/scratch/cont005/legos/nivertfl/TEST_VALIDATION_TROPFLUX/MOYENNE-SAISON/MYWRF3D_regrid-saison.nc
'
trop1
=
'
/ccc/scratch/cont005/legos/nivertfl/TEST_VALIDATION_TROPFLUX/MOYENNE-SAISON/sst_tropflux_1d_2000-regrid-saison.nc
'
trop2
=
'
/ccc/scratch/cont005/legos/nivertfl/TEST_VALIDATION_TROPFLUX/MOYENNE-SAISON/taux_tropflux_1d_2000-regrid-saison.nc
'
trop3
=
'
/ccc/scratch/cont005/legos/nivertfl/TEST_VALIDATION_TROPFLUX/MOYENNE-SAISON/tauy_tropflux_1d_2000-regrid-saison.nc
'
trop4
=
'
/ccc/scratch/cont005/legos/nivertfl/TEST_VALIDATION_TROPFLUX/MOYENNE-SAISON/swr_tropflux_1d_2000-regrid-saison.nc
'
trop5
=
'
/ccc/scratch/cont005/legos/nivertfl/TEST_VALIDATION_TROPFLUX/MOYENNE-SAISON/lwr_tropflux_1d_2000-regrid-saison.nc
'
pluie1
=
'
/ccc/scratch/cont005/legos/nivertfl/TEST_VALIDATION_TROPFLUX/MOYENNE-SAISON/precip-2000-regrid-saison.nc
'
meshmask
=
'
/ccc/scratch/cont005/legos/nivertfl/TEST_VALIDATION_TROPFLUX/MOYENNE-SAISON/mesh_mask.nc
'
mask
=
Dataset
(
file1
,
mode
=
'
r
'
)
masku
=
Dataset
(
file2
,
mode
=
'
r
'
)
maskv
=
Dataset
(
file3
,
mode
=
'
r
'
)
wrf
=
Dataset
(
file4
,
mode
=
'
r
'
)
pluie
=
Dataset
(
pluie1
,
mode
=
'
r
'
)
meshmask1
=
Dataset
(
meshmask
,
mode
=
'
r
'
)
tropsst
=
Dataset
(
trop1
,
mode
=
'
r
'
)
troptaux
=
Dataset
(
trop2
,
mode
=
'
r
'
)
troptauy
=
Dataset
(
trop3
,
mode
=
'
r
'
)
tropswr
=
Dataset
(
trop4
,
mode
=
'
r
'
)
troplwr
=
Dataset
(
trop5
,
mode
=
'
r
'
)
lat
=
mask
.
variables
[
'
nav_lat
'
][:]
lon
=
mask
.
variables
[
'
nav_lon
'
][:]
lat1
=
mask
.
variables
[
'
nav_lat
'
][:,
0
]
meshmask2
=
meshmask1
.
variables
[
'
tmask
'
][:,
0
,:,:]
mask1
=
mask
.
variables
[
'
votemper
'
][:,
0
,:,:]
mask11
=
tropsst
.
variables
[
'
sst
'
][:,:,:]
vari2
=
mask
.
variables
[
'
qsr
'
][:,:,:]
vari22
=
tropswr
.
variables
[
'
swr
'
][:,:,:]
vari31
=
wrf
.
variables
[
'
RAIN
'
][:,:,:]
vari3
=
vari31
[:,:,:]
*
40
*
24
vari33
=
pluie
.
variables
[
'
precipitation
'
][:,:,:]
vari4
=
masku
.
variables
[
'
utau
'
][:,:,:]
vari44
=
troptaux
.
variables
[
'
taux
'
][:,:,:]
vari51
=
wrf
.
variables
[
'
GLW
'
][:,:,:]
vari5
=
vari51
[:,:,:]
*
meshmask2
[:,:,:]
vari555
=
troplwr
.
variables
[
'
lwr
'
][:,:,:]
mask112
=
mask11
[:,:,:]
+
273.15
vari55
=
vari555
[:,:,:]
+
5.67e-8
*
(
mask112
[:,:,:])
*
(
mask112
[:,:,:])
*
(
mask112
[:,:,:])
*
(
mask112
[:,:,:])
vari6
=
maskv
.
variables
[
'
vtau
'
][:,:,:]
vari6
[
vari6
==
0
]
=
np
.
NaN
vari66
=
troptauy
.
variables
[
'
tauy
'
][:,:,:]
list1
=
[
'
JFM
'
,
'
AMJ
'
,
'
JAS
'
,
'
OND
'
]
'''
Difference modele
'''
for
x
in
range
(
0
,
4
):
print
"
We
'
re on time %d
"
%
(
x
)
plt
.
clf
()
result1
=
mask1
[
x
,:,:]
-
mask11
[
x
,:,:]
result2
=
vari2
[
x
,:,:]
-
vari22
[
x
,:,:]
result3
=
vari3
[
x
,:,:]
-
vari33
[
x
,:,:]
result4
=
vari4
[
x
,:,:]
-
vari44
[
x
,:,:]
result5
=
vari5
[
x
,:,:]
-
vari55
[
x
,:,:]
result6
=
vari6
[
x
,:,:]
-
vari66
[
x
,:,:]
fig
,
cs
=
plt
.
subplots
(
3
,
2
,
figsize
=
(
9
,
6
))
fig
.
subplots_adjust
(
left
=
0.125
,
bottom
=
0.1
,
right
=
0.9
,
top
=
0.9
,
wspace
=
0.3
,
hspace
=
0.3
)
im1
=
cs
[
0
,
0
].
contourf
(
lon
,
lat
,
result1
,
np
.
linspace
(
-
2.5
,
2.5
,
21
),
extend
=
'
both
'
,
cmap
=
cm
.
RdBu_r
)
cs
[
0
,
0
].
set_title
(
'
Difference VOTEMPER MODELE - OBS Saison
'
+
list1
[
x
],
fontsize
=
10
)
fig
.
colorbar
(
im1
,
ax
=
cs
[
0
,
0
],
orientation
=
'
horizontal
'
)
im2
=
cs
[
0
,
1
].
contourf
(
lon
,
lat
,
result2
,
np
.
linspace
(
-
100
,
100
,
21
),
extend
=
'
both
'
,
cmap
=
cm
.
RdBu_r
)
cs
[
0
,
1
].
set_title
(
'
Difference QSR MODELE - OBS Saison
'
+
list1
[
x
],
fontsize
=
10
)
fig
.
colorbar
(
im2
,
ax
=
cs
[
0
,
1
],
orientation
=
'
horizontal
'
)
im3
=
cs
[
1
,
0
].
contourf
(
lon
,
lat
,
result3
,
np
.
linspace
(
-
16
,
16
,
21
),
extend
=
'
both
'
,
cmap
=
cm
.
RdBu_r
)
cs
[
1
,
0
].
set_title
(
'
Difference PRECIP MODELE - OBS Saison
'
+
list1
[
x
],
fontsize
=
10
)
fig
.
colorbar
(
im3
,
ax
=
cs
[
1
,
0
],
orientation
=
'
horizontal
'
)
im4
=
cs
[
1
,
1
].
contourf
(
lon
,
lat
,
result4
,
np
.
linspace
(
-
0.1
,
0.1
,
21
),
extend
=
'
both
'
,
cmap
=
cm
.
RdBu_r
)
cs
[
1
,
1
].
set_title
(
'
Difference U TAU MODELE - OBS Saison
'
+
list1
[
x
],
fontsize
=
10
)
fig
.
colorbar
(
im4
,
ax
=
cs
[
1
,
1
],
orientation
=
'
horizontal
'
,
format
=
'
%.0e
'
)
im5
=
cs
[
2
,
0
].
contourf
(
lon
,
lat
,
result5
,
np
.
linspace
(
-
50
,
50
,
21
),
extend
=
'
both
'
,
cmap
=
cm
.
RdBu_r
)
cs
[
2
,
0
].
set_title
(
'
Difference LW MODELE - OBS Saison
'
+
list1
[
x
],
fontsize
=
10
)
fig
.
colorbar
(
im5
,
ax
=
cs
[
2
,
0
],
orientation
=
'
horizontal
'
)
im6
=
cs
[
2
,
1
].
contourf
(
lon
,
lat
,
result6
,
np
.
linspace
(
-
0.1
,
0.1
,
21
),
extend
=
'
both
'
,
cmap
=
cm
.
RdBu_r
)
cs
[
2
,
1
].
set_title
(
'
Difference V TAU MODELE - OBS Saison
'
+
list1
[
x
],
fontsize
=
10
)
fig
.
colorbar
(
im6
,
ax
=
cs
[
2
,
1
],
orientation
=
'
horizontal
'
)
plt
.
savefig
(
'
all_var_diff_saison_
'
+
list1
[
x
]
+
'
.png
'
)
'''
plot modele
'''
for
x
in
range
(
0
,
4
):
print
"
We
'
re on time %d
"
%
(
x
)
plt
.
clf
()
result1
=
mask1
[
x
,:,:]
result2
=
vari2
[
x
,:,:]
result3
=
vari3
[
x
,:,:]
result4
=
vari4
[
x
,:,:]
result5
=
vari5
[
x
,:,:]
result6
=
vari6
[
x
,:,:]
fig
,
cs
=
plt
.
subplots
(
3
,
2
,
figsize
=
(
9
,
6
))
fig
.
subplots_adjust
(
left
=
0.125
,
bottom
=
0.1
,
right
=
0.9
,
top
=
0.9
,
wspace
=
0.3
,
hspace
=
0.3
)
im1
=
cs
[
0
,
0
].
contourf
(
lon
,
lat
,
result1
,
np
.
linspace
(
20
,
30
,
21
),
extend
=
'
both
'
,
cmap
=
cm
.
jet
)
cs
[
0
,
0
].
set_title
(
'
VOTEMPER MODELE Saison
'
+
list1
[
x
],
fontsize
=
10
)
fig
.
colorbar
(
im1
,
ax
=
cs
[
0
,
0
],
orientation
=
'
horizontal
'
)
im2
=
cs
[
0
,
1
].
contourf
(
lon
,
lat
,
result2
,
np
.
linspace
(
100
,
380
,
15
),
extend
=
'
both
'
,
cmap
=
cm
.
jet
)
cs
[
0
,
1
].
set_title
(
'
QSR MODELE Saison
'
+
list1
[
x
],
fontsize
=
10
)
fig
.
colorbar
(
im2
,
ax
=
cs
[
0
,
1
],
orientation
=
'
horizontal
'
)
im3
=
cs
[
1
,
0
].
contourf
(
lon
,
lat
,
result3
,
np
.
linspace
(
0
,
20
,
21
),
extend
=
'
both
'
,
cmap
=
cm
.
jet
)
cs
[
1
,
0
].
set_title
(
'
PRECIP MODELE Saison
'
+
list1
[
x
],
fontsize
=
10
)
fig
.
colorbar
(
im3
,
ax
=
cs
[
1
,
0
],
orientation
=
'
horizontal
'
)
im4
=
cs
[
1
,
1
].
contourf
(
lon
,
lat
,
result4
,
np
.
linspace
(
-
0.13
,
0.05
,
21
),
extend
=
'
both
'
,
cmap
=
cm
.
jet
)
cs
[
1
,
1
].
set_title
(
'
U TAU MODELE Saison
'
+
list1
[
x
],
fontsize
=
10
)
fig
.
colorbar
(
im4
,
ax
=
cs
[
1
,
1
],
orientation
=
'
horizontal
'
,
format
=
'
%.0e
'
)
im5
=
cs
[
2
,
0
].
contourf
(
lon
,
lat
,
result5
,
np
.
linspace
(
300
,
460
,
21
),
extend
=
'
both
'
,
cmap
=
cm
.
jet
)
cs
[
2
,
0
].
set_title
(
'
GLW MODELE Saison
'
+
list1
[
x
],
fontsize
=
10
)
fig
.
colorbar
(
im5
,
ax
=
cs
[
2
,
0
],
orientation
=
'
horizontal
'
)
im6
=
cs
[
2
,
1
].
contourf
(
lon
,
lat
,
result6
,
np
.
linspace
(
-
0.15
,
0.13
,
21
),
extend
=
'
both
'
,
cmap
=
cm
.
jet
)
cs
[
2
,
1
].
set_title
(
'
V TAU MODELE Saison
'
+
list1
[
x
],
fontsize
=
10
)
fig
.
colorbar
(
im6
,
ax
=
cs
[
2
,
1
],
orientation
=
'
horizontal
'
)
plt
.
savefig
(
'
all_var_modele_saison_
'
+
list1
[
x
]
+
'
.png
'
)
'''
plot obs Trop et TRMM
'''
for
x
in
range
(
0
,
4
):
print
"
We
'
re on time %d
"
%
(
x
)
plt
.
clf
()
result1
=
mask11
[
x
,:,:]
result2
=
vari22
[
x
,:,:]
result3
=
vari33
[
x
,:,:]
result4
=
vari44
[
x
,:,:]
result5
=
vari55
[
x
,:,:]
result6
=
vari66
[
x
,:,:]
fig
,
cs
=
plt
.
subplots
(
3
,
2
,
figsize
=
(
9
,
6
))
fig
.
subplots_adjust
(
left
=
0.125
,
bottom
=
0.1
,
right
=
0.9
,
top
=
0.9
,
wspace
=
0.3
,
hspace
=
0.3
)
im1
=
cs
[
0
,
0
].
contourf
(
lon
,
lat
,
result1
,
np
.
linspace
(
20
,
30
,
21
),
extend
=
'
both
'
,
cmap
=
cm
.
jet
)
cs
[
0
,
0
].
set_title
(
'
VOTEMPER OBS Saison
'
+
list1
[
x
],
fontsize
=
10
)
fig
.
colorbar
(
im1
,
ax
=
cs
[
0
,
0
],
orientation
=
'
horizontal
'
)
im2
=
cs
[
0
,
1
].
contourf
(
lon
,
lat
,
result2
,
np
.
linspace
(
100
,
380
,
15
),
extend
=
'
both
'
,
cmap
=
cm
.
jet
)
cs
[
0
,
1
].
set_title
(
'
QSR OBS Saison
'
+
list1
[
x
],
fontsize
=
10
)
fig
.
colorbar
(
im2
,
ax
=
cs
[
0
,
1
],
orientation
=
'
horizontal
'
)
im3
=
cs
[
1
,
0
].
contourf
(
lon
,
lat
,
result3
,
np
.
linspace
(
0
,
20
,
21
),
extend
=
'
both
'
,
cmap
=
cm
.
jet
)
cs
[
1
,
0
].
set_title
(
'
PRECIP OBS Saison
'
+
list1
[
x
],
fontsize
=
10
)
fig
.
colorbar
(
im3
,
ax
=
cs
[
1
,
0
],
orientation
=
'
horizontal
'
)
im4
=
cs
[
1
,
1
].
contourf
(
lon
,
lat
,
result4
,
np
.
linspace
(
-
0.13
,
0.05
,
21
),
extend
=
'
both
'
,
cmap
=
cm
.
jet
)
cs
[
1
,
1
].
set_title
(
'
U TAU OBS Saison
'
+
list1
[
x
],
fontsize
=
10
)
fig
.
colorbar
(
im4
,
ax
=
cs
[
1
,
1
],
orientation
=
'
horizontal
'
,
format
=
'
%.0e
'
)
im5
=
cs
[
2
,
0
].
contourf
(
lon
,
lat
,
result5
,
np
.
linspace
(
300
,
460
,
21
),
extend
=
'
both
'
,
cmap
=
cm
.
jet
)
cs
[
2
,
0
].
set_title
(
'
LW OBS Saison
'
+
list1
[
x
],
fontsize
=
10
)
fig
.
colorbar
(
im5
,
ax
=
cs
[
2
,
0
],
orientation
=
'
horizontal
'
)
im6
=
cs
[
2
,
1
].
contourf
(
lon
,
lat
,
result6
,
np
.
linspace
(
-
0.15
,
0.13
,
21
),
extend
=
'
both
'
,
cmap
=
cm
.
jet
)
cs
[
2
,
1
].
set_title
(
'
V TAU OBS Saison
'
+
list1
[
x
],
fontsize
=
10
)
fig
.
colorbar
(
im6
,
ax
=
cs
[
2
,
1
],
orientation
=
'
horizontal
'
)
plt
.
savefig
(
'
all_var_obs_saison_
'
+
list1
[
x
]
+
'
.png
'
)
zbla
=
np
.
zeros
(
shape
=
(
165
,
1
))
zbla2
=
np
.
zeros
(
shape
=
(
165
,
1
))
zbla3
=
np
.
zeros
(
shape
=
(
165
,
1
))
zbla4
=
np
.
zeros
(
shape
=
(
165
,
1
))
zbla5
=
np
.
zeros
(
shape
=
(
165
,
1
))
zbla6
=
np
.
zeros
(
shape
=
(
165
,
1
))
zbla7
=
np
.
zeros
(
shape
=
(
165
,
1
))
zbla8
=
np
.
zeros
(
shape
=
(
165
,
1
))
zbla9
=
np
.
zeros
(
shape
=
(
165
,
1
))
zbla10
=
np
.
zeros
(
shape
=
(
165
,
1
))
zbla11
=
np
.
zeros
(
shape
=
(
165
,
1
))
zbla12
=
np
.
zeros
(
shape
=
(
165
,
1
))
mask1
[
mask1
==
0
]
=
np
.
NaN
vari2
[
vari2
==
0
]
=
np
.
NaN
vari4
[
vari4
==
0
]
=
np
.
NaN
vari5
[
vari5
==
0
]
=
np
.
NaN
'''
Coupe zonale
'''
for
y
in
range
(
0
,
4
):
print
"
We
'
re on time %d
"
%
(
y
)
for
x
in
range
(
0
,
165
):
result1
=
np
.
nanmean
(
mask1
[
y
,
x
,
80
:
160
])
result2
=
np
.
nanmean
(
mask11
[
y
,
x
,
80
:
160
])
zbla
[
x
,:]
=
result1
zbla2
[
x
,:]
=
result2
for
z
in
range
(
0
,
165
):
result3
=
np
.
nanmean
(
vari2
[
y
,
z
,
80
:
160
])
result4
=
np
.
nanmean
(
vari22
[
y
,
z
,
80
:
160
])
zbla3
[
z
,:]
=
result3
zbla4
[
z
,:]
=
result4
for
ii
in
range
(
0
,
165
):
result5
=
np
.
nanmean
(
vari3
[
y
,
ii
,
80
:
160
])
result6
=
np
.
nanmean
(
vari33
[
y
,
ii
,
80
:
160
])
zbla5
[
ii
,:]
=
result5
zbla6
[
ii
,:]
=
result6
for
jj
in
range
(
0
,
165
):
result7
=
np
.
nanmean
(
vari4
[
y
,
jj
,
80
:
160
])
result8
=
np
.
nanmean
(
vari44
[
y
,
jj
,
80
:
160
])
zbla7
[
jj
,:]
=
result7
zbla8
[
jj
,:]
=
result8
for
zz
in
range
(
0
,
165
):
result9
=
np
.
nanmean
(
vari5
[
y
,
zz
,
80
:
160
])
result10
=
np
.
nanmean
(
vari55
[
y
,
zz
,
80
:
160
])
zbla9
[
zz
,:]
=
result9
zbla10
[
zz
,:]
=
result10
for
hh
in
range
(
0
,
165
):
result11
=
np
.
nanmean
(
vari6
[
y
,
hh
,
80
:
160
])
result12
=
np
.
nanmean
(
vari66
[
y
,
hh
,
80
:
160
])
zbla11
[
hh
,:]
=
result11
zbla12
[
hh
,:]
=
result12
fig
,
cs
=
plt
.
subplots
(
3
,
2
,
figsize
=
(
9
,
6
))
fig
.
subplots_adjust
(
left
=
0.125
,
bottom
=
0.1
,
right
=
0.9
,
top
=
0.9
,
wspace
=
0.3
,
hspace
=
0.3
)
im1
=
cs
[
0
,
0
].
plot
(
lat1
,
zbla
)
im1
=
cs
[
0
,
0
].
plot
(
lat1
,
zbla2
)
cs
[
0
,
0
].
set_title
(
'
Comparaison SST MODELE et OBS Saison
'
+
list1
[
y
],
fontsize
=
10
)
cs
[
0
,
0
].
set_ylim
([
18
,
30
])
cs
[
0
,
0
].
set_xlim
([
-
20
,
20
])
im2
=
cs
[
0
,
1
].
plot
(
lat1
,
zbla3
)
im2
=
cs
[
0
,
1
].
plot
(
lat1
,
zbla4
)
cs
[
0
,
1
].
set_title
(
'
Comparaison QSR MODELE et OBS Saison
'
+
list1
[
y
],
fontsize
=
10
)
cs
[
0
,
1
].
set_ylim
([
100
,
380
])
cs
[
0
,
1
].
set_xlim
([
-
20
,
20
])
im3
=
cs
[
1
,
0
].
plot
(
lat1
,
zbla5
)
im3
=
cs
[
1
,
0
].
plot
(
lat1
,
zbla6
)
cs
[
1
,
0
].
set_title
(
'
Comparaison PRECIP MODELE et OBS Saison
'
+
list1
[
y
],
fontsize
=
10
)
cs
[
1
,
0
].
set_ylim
([
0
,
20
])
cs
[
1
,
0
].
set_xlim
([
-
20
,
20
])
im4
=
cs
[
1
,
1
].
plot
(
lat1
,
zbla7
)
im4
=
cs
[
1
,
1
].
plot
(
lat1
,
zbla8
)
cs
[
1
,
1
].
set_title
(
'
Comparaison U TAU MODELE et OBS Saison
'
+
list1
[
y
],
fontsize
=
10
)
cs
[
1
,
1
].
set_ylim
([
-
0.13
,
0.05
])
cs
[
1
,
1
].
set_xlim
([
-
20
,
20
])
im5
=
cs
[
2
,
0
].
plot
(
lat1
,
zbla9
)
im5
=
cs
[
2
,
0
].
plot
(
lat1
,
zbla10
)
cs
[
2
,
0
].
set_title
(
'
Comparaison LW MODELE et OBS Saison
'
+
list1
[
y
],
fontsize
=
10
)
cs
[
2
,
0
].
set_ylim
([
300
,
430
])
cs
[
2
,
0
].
set_xlim
([
-
20
,
20
])
im6
=
cs
[
2
,
1
].
plot
(
lat1
,
zbla11
)
im6
=
cs
[
2
,
1
].
plot
(
lat1
,
zbla12
)
cs
[
2
,
1
].
set_title
(
'
Comparaison V TAU MODELE et OBS Saison
'
+
list1
[
y
],
fontsize
=
10
)
cs
[
2
,
1
].
set_ylim
([
-
0.15
,
0.13
])
cs
[
2
,
1
].
set_xlim
([
-
20
,
20
])
plt
.
savefig
(
'
coupe_zonale_saison_
'
+
list1
[
y
]
+
'
.png
'
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment