Skip to content
Snippets Groups Projects
plot_ClimatologyB.m 3.71 KiB
Newer Older
function plot_ClimatologyB(hMainFig, hPlotAxes)
% Function to plot mean climatology and standard deviation
%
% Input
% -----
% hTsgGUI ............ Handel to the main user interface
% hPlotAxes .......... Handels to the 3 graphic axes
%
% Output
% ------
% none
%
% $Id$


% Read surface climatology (annual, seasonal or monthly)
% ------------------------------------------------------
read_Climatology(hMainFig);

% Get data after read_Climatology because it could be change tsg.levitus.type
% -------------------------------------------------------------------------
tsg = getappdata( hMainFig, 'tsg_data' );

% if reading error, tsg.levitus.data is empty, no action
% ------------------------------------------------------
if isempty(tsg.levitus.data)
  return
end

% get last selected climatology structure
% ---------------------------------------
s = get(findobj('Tag', 'TAG_UIMENU_CLIMATO_MAIN'), 'Userdata');

% select time dimension for climatology form saved structure s
% ------------------------------------------------------------
time_dim = s.time;

% round positive latitude and Longitude toward zero
% -------------------------------------------------
ind = find(tsg.LATX > 0);
lat(ind) = fix(tsg.LATX(ind)) + 0.5;

ind = find(tsg.LONX > 0);
lon(ind) = fix(tsg.LONX(ind)) + 0.5;

% rounds negative latitude and Longitudeto the nearest lowest integers
% ---------------------------------------------------------------------
ind = find(tsg.LATX <= 0);
lat(ind) = floor(tsg.LATX(ind)) + 0.5;

ind = find(tsg.LONX <= 0);
lon(ind) = floor(tsg.LONX(ind)) + 0.5;

% Calculates differences between adjacent elements of X.
% 0 if adajacent latitude or longitude are equal
% - 1 or -1 otherwise
% ------------------------------------------------------------
lat_diff = [diff( lat )'; 0];
lon_diff = [diff( lon )'; 0];

% Select latitude and longitude
% -----------------------------
ind  = find(abs(lat_diff) == 1 | abs(lon_diff == 1));
lat2 = lat( ind );
lon2 = lon( ind );
dayd = tsg.DAYD( ind );

% Get Climatology
%           LATX(80)  = -0.5 et LATX(81)  = 0.5
%           LONX(180) = -0.5 et LONX(181) = 0.5
% ----------------
para = {'SSTP'; 'SSPS'};

for i = 1:2

  mean = zeros(size(ind));
  std  = zeros(size(ind));
  for ii=1:length(ind)
    ilat     = find(tsg.levitus.data.WOA01_LATX == lat2(ii));
    ilon     = find(tsg.levitus.data.WOA01_LONX == lon2(ii));
    mean(ii) = tsg.levitus.data.(['WOA01_MEAN_' para{i}])(time_dim,1,ilat,ilon);
    std(ii)  = tsg.levitus.data.(['WOA01_STD_' para{i}])(time_dim,1,ilat,ilon);
  end

  % get handle of axe when SSPS is plotted
  % --------------------------------------
  hdls = findobj('-regexp','Tag', ['TAG_PLOT\d_LINE_' para{i}]);

  % get handle of axe when SSTP is plotted
  % --------------------------------------
  if strcmp( para{i}, 'SSTP' )
    hdls = findobj('-regexp','Tag', 'TAG_PLOT\d_LINE_SSJT');
    if isempty(hdls)
      hdls = findobj('-regexp','Tag', 'TAG_PLOT\d_LINE_SSTP');
    end
  end

  if ~isempty(hdls)
    hdl_current_axes = get(hdls(1),'parent');
    axes( hdl_current_axes );

    % Plot mean salinity climatology
    % ------------------------------
    line(dayd, mean, ...
      'Tag', ['TAG_LINE_CLIMATO_MEAN_' para{i}], 'Linestyle', '-', 'Color','k');

    % Plot with 3 standard deviation
    % ------------------------------
    line(dayd,  mean + 3 * std, ...
      'Tag', ['TAG_LINE_CLIMATO_STDDEV_PLUS_' para{i}], 'Linestyle', '-', 'Color','r');
    line(dayd,  mean - 3 * std, ...
      'Tag', ['TAG_LINE_CLIMATO_STDDEV_MINUS_' para{i}], 'Linestyle', '-', 'Color','r');
  end
end


% save tsg structure
% ------------------
setappdata( hMainFig, 'tsg_data', tsg );

end