Newer
Older

jacques.grelet_ird.fr
committed
function plot_Climatology(hMainFig, hPlotAxes)
% Function to plot mean climatology and standard deviation
%
% Input
% -----
% hTsgGUI ............ Handel to the main user interface
% hPlotAxes .......... Handels to the 3 graphic axes
%
% Output
% ------
% none
%
% $Id$
% Get data
% -----------------------
tsg = getappdata( hMainFig, 'tsg_data' );
% Get line handles
% ----------------
hLine1 = get( hPlotAxes(1), 'UserData');
hLine2 = get( hPlotAxes(2), 'UserData');
% Read surface climatology (annual, seasonal or monthly)
% ------------------------------------------------------
read_Climatology(hMainFig, tsg.levitus.type);

jacques.grelet_ird.fr
committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
% select time dimension for climatology
dim_time = tsg.levitus.time;
% round positive latitude and Longitude toward zero
% -------------------------------------------------
ind = find(tsg.LATX > 0);
lat(ind) = fix(tsg.LATX(ind)) + 0.5;
ind = find(tsg.LONX > 0);
lon(ind) = fix(tsg.LONX(ind)) + 0.5;
% rounds negative latitude and Longitudeto the nearest lowest integers
% ---------------------------------------------------------------------
ind = find(tsg.LATX <= 0);
lat(ind) = floor(tsg.LATX(ind)) + 0.5;
ind = find(tsg.LONX <= 0);
lon(ind) = floor(tsg.LONX(ind)) + 0.5;
% Calculates differences between adjacent elements of X.
% 0 if adajacent latitude or longitude are equal
% - 1 or -1 otherwise
% ------------------------------------------------------------
lat_diff = [diff( lat )'; 0];
lon_diff = [diff( lon )'; 0];
% Select latitude and longitude
% -----------------------------
ind = find(abs(lat_diff) == 1 | abs(lon_diff == 1));
lat2 = lat( ind );
lon2 = lon( ind );
dayd = tsg.DAYD( ind );
ssjt = tsg.SSJT( ind );
ssps = tsg.SSPS( ind );
% Get Climatology
% LATX(80) = -0.5 et LATX(81) = 0.5
% LONX(180) = -0.5 et LONX(181) = 0.5
% ----------------
axes( hPlotAxes(1) );
mean_sstp = zeros(size(ind));
mean_ssps = zeros(size(ind));
std_sstp = zeros(size(ind));
std_ssps = zeros(size(ind));
for ii=1:length(ind)
ilat = find(tsg.levitus.data.WOA01_LATX == lat2(ii));
ilon = find(tsg.levitus.data.WOA01_LONX == lon2(ii));
mean_sstp(ii) = tsg.levitus.data.WOA01_MEAN_SSTP(dim_time,1,ilat,ilon);
mean_ssps(ii) = tsg.levitus.data.WOA01_MEAN_SSPS(dim_time,1,ilat,ilon);
std_sstp(ii) = tsg.levitus.data.WOA01_STD_SSTP(dim_time,1,ilat,ilon);
std_ssps(ii) = tsg.levitus.data.WOA01_STD_SSPS(dim_time,1,ilat,ilon);
end
% Plot mean salinity climatology
% ------------------------------
hLine1.meanClim = line( ...
dayd, mean_ssps,'Linestyle', '-', 'Color','k');
% Plot with 3 standard deviation
% ------------------------------
hLine1.stdClimPlus = line( ...
dayd, mean_ssps + 3 * std_ssps ,'Linestyle', '-', 'Color','r');
hLine1.stdClimMinus = line( ...
dayd, mean_ssps - 3 * std_ssps ,'Linestyle', '-', 'Color','r');
% Plot mean temperature climatology
% ---------------------------------
axes( hPlotAxes(2));
hLine2.meanClim = line( ...
dayd, mean_sstp,'Linestyle', '-', 'Color','k');
hLine2.stdClimPlus = line( ...
dayd, mean_sstp + 3 * std_sstp ,'Linestyle', '-', 'Color','r');
hLine2.stdClimMinus = line( ...
dayd, mean_sstp - 3 * std_sstp ,'Linestyle', '-', 'Color','r');
% Store the handle of the bucketline
% ----------------------------------
set( hPlotAxes(1), 'UserData', hLine1 );
set( hPlotAxes(2), 'UserData', hLine2 );
% save tsg structure
% ------------------
setappdata( hMainFig, 'tsg_data', tsg );