Newer
Older
function [error] = corTsgLinear(hMainFig, dateMin, dateMax)
% Correct the TSG salinity time series with the Water sample.
% Use a linear fit to the water sample/tsg difference
%
% Input
% hMainFig ..... Handle to the main GUI
% dateMin ...... the correction is applied between dateMin and date Max
% dateMax ...... the correction is applied between dateMin and date Max
%
% Output
% Error ........ 1 everything OK
% ........ -1 dateMax <= date Min
% Get application data
% --------------------
tsg = getappdata( hMainFig, 'tsg_data');
% Get PROBABLY_GOOD, PROBABLY_BAD and VALUE_CHANGED codes
% -------------------------------------------------------
PROBABLY_GOOD = get(tsg.qc.hash, 'PROBABLY_GOOD', 'code');
PROBABLY_BAD = get(tsg.qc.hash, 'PROBABLY_BAD', 'code');
VALUE_CHANGED = get(tsg.qc.hash, 'VALUE_CHANGED', 'code');
if dateMax > dateMin
% intialisation
% -------------
if isempty( tsg.SSPS_ADJUSTED )
msgbox( 'Variable SSPS_ADJUSTED should be initialise in updateTsgStruct',...
'Function ''corTsgLinear''',...
'warn', 'modal');
% Find samples within TIME_WINDOWS with Good and probably Good QC
% ---------------------------------------------------------------
ind = find( tsg.DAYD_SPL >= dateMin & tsg.DAYD_SPL <= dateMax &...
tsg.SSPS_SPL_QC <= PROBABLY_GOOD);
if ~isempty(ind)
% detect NaN in sample.SSPS_DIF due to bad QC code for tsg.SSPS
% -------------------------------------------------------------
ind2 = find(~isnan(tsg.SSPS_SPL_DIF(ind)));
% Compute linear fit of the TSG/SAMPLE difference
% -----------------------------------------------
if ~isempty(tsg.SSPS_SPL_DIF(ind(ind2)))
% Linear fit applied to the difference tsg-sample
% -----------------------------------------------
X = tsg.DAYD_SPL(ind(ind2));
Y = tsg.SSPS_SPL_DIF(ind(ind2));
[p, S, mu] = polyfit( X, Y, 1);
% The correction is applied to the TSG between dateMin and dateMax using
% a linear interpolation only on measurements with GOOD and
% PROBABLY_GOOD QC
% ----------------------------------------------------------------------
dtTsg = find( tsg.DAYD >= dateMin & tsg.DAYD <= dateMax &...
tsg.SSPS_QC <= PROBABLY_GOOD);
[tsg.SSPS_ADJUSTED(dtTsg), tsg.SSPS_ADJUSTED_ERROR(dtTsg)] =...
polyval( p, tsg.DAYD(dtTsg), S, mu);
tsg.SSPS_ADJUSTED(dtTsg) = tsg.SSPS(dtTsg) + tsg.SSPS_ADJUSTED(dtTsg);
% VALUE_CHANGED code
% ------------------
tsg.SSPS_ADJUSTED_QC(dtTsg) = VALUE_CHANGED;
end
% Update the QC sample Code
% -------------------------
updateSampleQC( hMainFig );
% Update tsg application data
% ---------------------------
setappdata( hMainFig, 'tsg_data', tsg);
% everything OK
% -------------
error = 1;
else
% DateMax <= DateMin
% ------------------
error = -1;