Newer
Older
# RNAja
[](https://www.python.org/downloads)
[](https://snakemake.readthedocs.io)
[](https://sylabs.io/docs/)
RNAja is a pipeline written in snakemake, allowing to analyse RNAseq data, perform differential expression analysis using several mappers and counters. RNAja is the only pipeline able to compare method effects over DE genes.

* Aurore Comte (IRD), Christine Tranchant (IRD), Julie Orjuela (IRD)
Some parts of RNAja code and documentation were inspired or came from the pipelines below.
- Culebront (Julie Orjuela *et al.*) https://github.com/SouthGreenPlatform/culebrONT
- sRNAmake (Sebastien Cunnac *et al.*) https://github.com/Aucomte/sRNAmake
- BulkRNA (Camille Cohen) https://github.com/CamilleCohen/ProjetTuteur-_BulkRNA
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
RNAja uses SnakEcdysis package https://snakecdysis.readthedocs.io/en/latest/package.html to perform installation and execution in local and cluster mode developed by Sébastien Ravel (CIRAD).
## 1. Install dependencies and clone RNAja
Check dependencies for iKISS : Python >= 3.10.12 and Snakemake >= 7.32.4
Here, you can install RNAja from the gitlab source code such as :
``` bash
git clone git@forge.ird.fr:phim/rnaja-pipeline.git
cd rnaja-pipeline
python3 -m pip install .
```
Don't forget to export RNAja into the $PATH environment path by
``` bash
export PATH=/home/$USER/.local/bin/:$PATH`
```
### 1.1 Installing in local mode
```bash
RNAja install_local --help
RNAja install_local
```
### 1.2 Installing in cluster mode
Install RNAja in cluster mode using **singularity** container from rnaja_utilities https://itrop.ird.fr/RNAja_utilities/
```bash
RNAja install_cluster --help
RNAja install_cluster --scheduler slurm --env singularity
```
Please run command line 'RNAja edit_cluster_config' before the first run of RNAja see https://forge.ird.fr/phim/rnaja-pipeline/README.md and configure by default threads and memory resources.
## 2. Running a datatest
Running test with a datatest from RNAja_utilities in a repertory TEST
```bash
RNAja test_install --help
RNAja test_install -d TEST
```
### 2.1 Running your data in LOCAL mode
launching suggested command line done by RNAja, in LOCAL mode:
```bash
RNAja run_local --help
RNAja run_local -t 8 -c TEST/data_test_config.yaml --singularity-args "--bind $HOME"
```
In local mode, it's possible to allocate threads to some rules using `--set-threads` snakemake argument such as
```
RNAja run_local -t 8 -c TEST/data_test_config.yaml --set-threads hisat2_index=4 hisat2_map_paired=2
```
### 2.2 Running your data in CLUSTER mode
Now you can launch suggested command line done by RNAja in `cluster` mode BUT before you need to configurate cluster parameters running command line 'RNAja edit_cluster_config' before the first run and modify threads, ram, node and computer resources.
RNAja does a copy of `cluster_config.yaml` file into your home `"/home/$USER/.config/rnaja_pipeline/cluster_config.yaml"`
```bash
RNAja run_cluster --help
RNAja edit_cluster_config
```
If singularity was selected in installation of RNAja, it could be needed to give argument `--singularity-args \"--bind $HOME\"` to Snakemake, by using :
```bash
RNAja run_cluster --help
RNAja run_cluster -c TEST/data_test_config.yaml --singularity-args "--bind $HOME"
# here a example adapted to @IFB HPC
#RNAja run_cluster -c TEST/data_test_config.yaml --singularity-args "--bind /shared:/shared"
#you can also use snakemake parameters as
#RNAja run_cluster -c TEST/data_test_config.yaml --singularity-args "--bind $HOME" --rerun-incomplete --nolock
```
**Important Note** : In i-Trop cluster, run RNAja using ONLY a node, data has to be in "/scratch" of chosen node. Use `nodelist : nodeX` parameter inside of `cluster_config.yaml`̀ file.
-----------------------
## Acknowledgements
Thanks to Ndomassi Tando (i-Trop IRD) by administration support.
The authors acknowledge the IRD i-Trop HPC <https://bioinfo.ird.fr/> (South Green Platform <http://www.southgreen.fr>) at IRD Montpellier for providing HPC resources that have contributed to this work.
Thanks to Alexis Dereeper for his help and the development of diffexDB <https://bioinfo-web.mpl.ird.fr/cgi-bin2/microarray/public/diffexdb.cgi>.
Licenced under MIT https://opensource.org/license/mit/.
Intellectual property belongs to IRD and authors.