Newer
Older
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
This exercice aims at summarizing what was shown througout the training. It includes dealing with shapefile and epidemiological data in "almost real" conditions. The data represents the number of cases of an imaginary disease across Cambodia called R infections from 2018 to 2022. This infection spread rapidly and started during a training in Phnom Penh. Symptoms are very specific and includes installing Rstudio, loading data and using R software for spatial analysis and mapping.
In R, it exist many differents implementation solution that lead to the same results. The solution presented here just provides one implementation among thousands of possibilities.
## Create your working environment
1. Create a R project called "RGeotraining"
2. Download and unzip the training data into a directory called "data/".
[Download example data](https://e1.pcloud.link/publink/show?code=XZjIQYZvgGOVnUBzVYonPJugrNDLfWSscXk){.btn .btn-primary .btn-sm role="button"}
3. Create a directory called "img" for image outputs
4. Download and unzip shapefile of Cambodian provinces in the 'data/' directory: [Province shapefile](https://data.humdata.org/dataset/wfp-geonode-cambodia-admin-boundaries-level-1-provinces)
5. Check your working directory using `getwd()`
## Load and visualize the data
### Steps
1. Load R libraries `sf` and `mapsf`,
2. Load province shapefile with `st_read()` and set the projection `st_transform()`,
3. Load population data with `read.table()` and sum the counts over provinces using `aggregate()`,
4. Load the number of cases per province from the csv file.
### Solution
```{r load_data, eval = FALSE, echo = TRUE, nm = TRUE, fig.width=6, class.output="code-out", warning=FALSE, message=FALSE}
#============================================
# 2. Load and visualize the data
#============================================
### 2.1 Load R libraries
#-----------------------
# library(dplyr) # deals with dataframes
library(sf) # spatial objects
library(mapsf) # Plot
### 2.2 Spatial data
#----------------------
# Load data
province_sf <- st_read("data/khm_admbnda_adm1_gov_20181004.shp", quiet = TRUE)
head(province_sf) # We need to define the projection
# set crs
province_sf <- st_transform(province_sf, crs = 32648)
# Visualize
class(province_sf) # type of R object
dim(province_sf) # dimensions of the object = n columns + 1 geometry
summary(province_sf) # Summarize the information of the object
plot(province_sf[,1]) # Plot the first column to look at geometry
# (if you plot all of column it is sometimes too long)
### 2.3 Population data
#--------------------------
# Load
population_df <- read.table(file = "data/Population_district_Cambodia.csv",
sep = ',', header = TRUE)
# Visualize
head(population_df)
class(population_df)
dim(population_df)
colnames(population_df)
summary(population_df)
# Because we work on province we need to aggregate the values
# Tips: ?aggregate
pop_by_district_df <- aggregate(population_df$T_POP,
by = list(ADM1_PCODE = population_df$ADM1_PCODE),
FUN = sum)
colnames(pop_by_district_df) <- c("ADM1_PCODE", "pop") # rename column for later
### 2.4 Cases
#-------------------------
# Load number of cases
cases_df <- read.table(file = "data/R_infection_monthly_cases.csv",
header = TRUE, sep = ";")
head(cases_df)
dim(cases_df)
colnames(cases_df)
summary(cases_df)
# What are these data ?
# What represents each row ? each column ?
# What is the time span ?
```
## Merge data with shapefiles
### Steps
1. Merge population with sf polygon using `merge()`,
2. Merge the new sf object with number of cases,
3. Identify the merging issues and correct the datasets, you can compares columns of the datasets using boolean (`TRUE`/`FALSE`) operation as `==` (is equal to), `%in%` (appear in at least once), `!` (negate, invert `TRUE` and `FALSE` values) and extract row of interest using `[row_selection, column_selection]`.
### Solution
```{r merge_data, eval = FALSE, echo = TRUE, nm = TRUE, fig.width=6, class.output="code-out", warning=FALSE, message=FALSE}
#=======================================================
# 3. Merge all data
#=======================================================
### 3.1 Merge population with sf polygons to prepare for mapping
#---------------------------------------------------------------
# What is the key column to merge the objects (column with IDs) ?
province_pop_sf <- merge(pop_by_district_df, province_sf, by = "ADM1_PCODE")
class(province_pop_sf) # What a mess !!! We lost the geometry !
province_pop_sf <- merge(province_sf, pop_by_district_df, by = "ADM1_PCODE")
class(province_pop_sf) # Much better !!!
head(province_pop_sf)
# Create a maps to represent population
mf_export(province_pop_sf, filename = 'img/Population_province.png', width = 500, res = 100)
mf_map(province_pop_sf)
mf_map(province_pop_sf,
var = "pop" ,
inches = .2,
type = "prop",
col = "#000066",
leg_title = "Population")
mf_layout(title = "Population in cambodian provinces")
dev.off()
### 3.2 Merge polygon with number of cases
#---------------------------------------------------------------
# What is (are) the key column(s) ?
province_pop_cases_sf <- merge(province_pop_sf, cases_df, by.x = 'ADM1_EN', by.y = "Province")
class(province_pop_cases_sf) # Perfect !
dim(province_pop_cases_sf) # Why do I have only 18 province instead of 25 ? 7 missing values
# detect names from cases_df that do not match names in province_pop_sf
!(cases_df$Province %in% province_pop_sf$ADM1_EN) # We have 6 provinces that do not match the names (FALSE value)!
sum(!(cases_df$Province %in% province_pop_sf$ADM1_EN))
# which ones ?
cases_df$Province[!(cases_df$Province %in% province_pop_sf$ADM1_EN)]
# What are the names of these provinces in the sf file ?
province_pop_sf$ADM1_EN[!(province_pop_sf$ADM1_EN %in% cases_df$Province)]
# Some names do not have the same spelling ...
### 3.4 Correct the province names
#----------------------------------------------------------
## OPTION 1 : Open the csv file and change the names one by one
## OPTION 2 (advanced R): Change the names using R
# What are the names in the cases files ?
dput(cases_df$Province[!(cases_df$Province %in% province_pop_sf$ADM1_EN)])
# correct the names
cases_df$Province[!(cases_df$Province %in% province_pop_sf$ADM1_EN)] <- c("Ratanak Kiri",
"Banteay Meanchey",
"Siemreap",
"Mondul Kiri",
"Preah Sihanouk",
"Tboung Khmum")
# Be careful of the order of the provinces names !!!
# Merge again
province_pop_cases_sf <- merge(province_pop_sf, cases_df, by.x = 'ADM1_EN', by.y = "Province")
class(province_pop_cases_sf) # Perfect !
dim(province_pop_cases_sf) # One province is still missing !
# Which one ?
province_pop_sf$ADM1_EN[!(province_pop_sf$ADM1_EN %in% cases_df$Province)]
# This province does not exists in our cases data.
# We need to keep it as a NA value in the merged file
# Merge again
province_pop_cases_sf <- merge(province_pop_sf, cases_df,
by.x = 'ADM1_EN', by.y = "Province",
all.x = TRUE )
# We can use all.x = TRUE to keep all rows from x object event if it is not in the y object
class(province_pop_cases_sf) # Perfect !
dim(province_pop_cases_sf) # YEAH !!!! Wonderful !!!
# what happen to Pailin ? Let extract the row to look at it :
province_pop_cases_sf[province_pop_cases_sf$ADM1_EN == "Pailin",]
# NA values have been set for the missing data
```
## Map the count data
### Steps
1. Map the number of cases from 2018 to 2022 (`mf_map()`) in the same figure (you can split your plotting windows with `par(mfrow=c(number_of_line, number_of_columns))`) and save it (`png()`),
2. Add NA values on the map with `mf_map(type = "symb")`.
### Solution
```{r map_count, eval = FALSE, echo = TRUE, nm = TRUE, fig.width=6, class.output="code-out", warning=FALSE, message=FALSE}
#=======================================================
# 4. Map the count data per year
#=======================================================
### 4.1 Create a maps to represent the number of cases
#---------------------------------------------------
# Save the map in img/ directory
png(filename = "img/Count_R_infections.png",
width = 700, res = 100) # Run the code until "dev.off()" function
par(mfrow = c(2,2)) # create subplots
# Count from 2018
mf_map(province_pop_cases_sf)
mf_map(province_pop_cases_sf,
var = "X2018" ,
inches = .2,
type = "prop",
col = "#000066",
leg_title = "Cases")
mf_layout(title = "Number of cases per province (2018)")
# Count from 2019
mf_map(province_pop_cases_sf)
mf_map(province_pop_cases_sf,
var = "X2019" ,
inches = .2,
type = "prop",
col = "#000066",
leg_title = "Cases")
mf_layout(title = "Number of cases per province (2019)")
# Count from 2020
mf_map(province_pop_cases_sf)
mf_map(province_pop_cases_sf,
var = "X2020" ,
inches = .2,
type = "prop",
col = "#000066",
leg_title = "Cases")
mf_layout(title = "Number of cases per province (2020)")
# Count from 2021
mf_map(province_pop_cases_sf)
mf_map(province_pop_cases_sf,
var = "X2021" ,
inches = .2,
type = "prop",
col = "#000066",
leg_title = "Cases")
mf_layout(title = "Number of cases per province (2021)")
dev.off()
# What about Pailin ? It is treated as a zero instead of NA value and this is a big issue !
# How can we add it as a NA values ?
# 4.2 Deals with NA values
#-----------------------------------------------
# There is no easy solution design for it yet ...
# What do you think ? We can try to do it by hand. Here is just a suggestions :
# Baseline map
mf_map(province_pop_cases_sf)
# Add symbol for Pailin
pailin_sf <- province_pop_cases_sf[province_pop_cases_sf$ADM1_EN == "Pailin",] # select row
pailin_sf$data_avail <- "No data" # Define no data value for pailin
mf_map(pailin_sf ,
var = "data_avail",
leg_title = NULL,
col = "black",
cex = 1.5,
pch = 22,
type = "symb")
# Count from 2021
mf_map(province_pop_cases_sf,
var = "X2021" ,
inches = .2,
type = "prop",
col = "#000066",
leg_title = "Cases")
mf_layout(title = "Number of cases per province (2021)")
# How can I improve this map ? change colors ? fix the scale for all subplot ?
# These count are not really informative since it depends on the population.
# We can compute incidence instead of cases in a new column
```
## Transform data to incidence
### Steps
1. Compute incidence for each column (number of cases/ population \* 100,000)
2. Compute incidence using `apply()` and by creating a `function(){}`,
3. Merge incidences with shapefile,
4. Map incidence for each year in the same figure (`par(mfrow)`) using a loop `for(variable in vector){}`, you can call help with `?for (variable in vector) {}`
### Solution
```{r compute_incidence, eval = FALSE, echo = TRUE, nm = TRUE, fig.width=6, class.output="code-out", warning=FALSE, message=FALSE}
#=======================================================
### 5. Transform to incidence
#=======================================================
### 5.1 Compute incidence
#---------------------------------------------------------
# OPTION 1 : compute columns by columns
province_pop_cases_sf$incidence_2017 <- province_pop_cases_sf$X2017/province_pop_cases_sf$pop * 100000
province_pop_cases_sf$incidence_2018 <- province_pop_cases_sf$X2018/province_pop_cases_sf$pop * 100000
province_pop_cases_sf$incidence_2019 <- province_pop_cases_sf$X2019/province_pop_cases_sf$pop * 100000
province_pop_cases_sf$incidence_2018 <- province_pop_cases_sf$X2020/province_pop_cases_sf$pop * 100000
# OPTION 2 : use "apply" function (?apply)
# remove geometry to work on dataframe
attribute_df <- st_drop_geometry(province_pop_cases_sf)
# set rownames
row.names(attribute_df) <- attribute_df$ADM1_PCODE # easier to use the ID
# remove useless column
colnames(attribute_df) # show the column names of our dataframe
attribute_cases_df <- attribute_df[, 15:20] # select columns 15 to 20 (contains cases values)
# Create your own function to compute incidence
compute_incidence <- function(cases, population){
# cases and population are parameters of the function
# case is a numerical values of a number of cases (can be a single value or a vector)
# population is a numerical values of population count (can be a single value or a vector)
# Both parameters must have the same length
incidence <- cases/population * 100000
return(incidence)
}
class(compute_incidence)
print(compute_incidence)
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
# example:
incidence_by_hand <- province_pop_cases_sf$X2017/province_pop_cases_sf$pop * 100000
incidence_with_function <- compute_incidence(cases = province_pop_cases_sf$X2017, population = province_pop_cases_sf$pop)
incidence_by_hand == incidence_with_function # It gives the same results
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
# Apply the same function to each column of the dataframe
attribute_inc_mat <- apply(attribute_cases_df, 2, compute_incidence, population = attribute_df$pop)
class(attribute_inc_mat) # apply return a matrix (table of numerical values only)
# turn it to dataframe to add a column of character
attribute_inc_df <- as.data.frame(attribute_inc_mat)
class(attribute_inc_df)
# Change the columns names to inform on data
colnames(attribute_inc_df) <- paste0('incidence_', colnames(attribute_inc_df))
# Retrieve ID code from row names
attribute_inc_df$ADM1_PCODE <- row.names(attribute_inc_df)
# Have look at the final object
head(attribute_inc_df)
summary(attribute_inc_df)
dim(attribute_inc_df)
# Might look longer to use this option but reminds that when you have larger dataframe
# in hand this option is way more convenient than dealing with each line with the
# risque of producing mistakes
### 5.2 Merge with the spatial object
#---------------------------------------------------------
province_pop_inc_sf <- merge(x = province_pop_sf, y = attribute_inc_df, by = "ADM1_PCODE")
class(province_pop_inc_sf)
head(province_pop_inc_sf)
summary(province_pop_inc_sf)
dim(province_pop_inc_sf)
### 5.3 Map incidence
#---------------------------------------------------------
# OPTION 1: Just like we did earlier with the number of cases, plot by plot
# OPTION 2: Use a loop !
# A loop repeat a part of your code for many values
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
# Simple examples:
for(i in 1:10){
# i is a variable that will successively takes the values contains in the vector given after 'in'
print(i)
}
j <- "Fixed value ouside the loop"
for(i in c("a", "b", "d", "end")){
print(i)
print(j)
}
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
png(filename = "img/Incidence_R_infections.png",
width = 700, res = 100) # Run the code until "dev.off()" function
par(mfrow = c(2,2)) # create subplots
for(year in c("2018", "2019", "2020", "2021")) {
print(paste0("Plot incidence for the year ", year))
name_col <- paste0("incidence_X", year) # Define names of the plotted column
mf_map(province_pop_inc_sf)
mf_map(province_pop_inc_sf,
var = c( "pop", name_col) ,
inches = .2,
type = "prop_choro",
col = "#000066",
leg_title = "Incidence")
mf_layout(title = paste0(" Incidence of R infections per province (", year, ")"))
}
dev.off() # Don't forget to close the plotting window
```
## Go further in analysis (Advanced R) ...
The section gives suggestions to go further into the data description.
### Work with average incidence
We are now interested in the averaged incidence between 2017 and 2022. In other terms, we wantto compute the mean values of incidence for each row.
### Let look at hospital distribution
Do I have higher incidence if there is more hospital in the province ? In other term, is there a bias in case detected cause by the access to health care ?