Newer
Older
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
This chapter is largely inspired by two presentation; @MmadelinSIGR and @JNowosadSIGR; carried out as part of the [SIGR2021](https://sigr2021.github.io/site/index.html) thematic school.
## Format of objects `SpatRaster`
The package `terra` [@terra] allows to handle vector and raster data. To manipulate this spatial data, `terra` store it in object of type `SpatVector` and `SpatRaster`. In this chapter, we focus on the manipulation of raster data (`SpatRaster`) from functions offered by this package.
An object `SpatRaster` allows to handle vector and raster data, in one or more layers (variables). This object also stores a number of fundamental parameters that describe it (number of columns, rows, spatial extent, coordinate reference system, etc.).
![Source : [@RasterCheatSheet]](img/raster.png){fig-align="center" width="350"}
## Importing and exporting data
The package `terra` allows importing and exporting raster files. It is based on the [GDAL](https://gdal.org/) library which makes it possible to read and process a very large number of geographic image formats.
```{r terra, message=FALSE}
library(terra)
```
The function `rast()` allows you to create and/or import raster data. The following lines import the raster file **elevation.tif** ([*Tagged Image File Format*](https://fr.wikipedia.org/wiki/Tagged_Image_File_Format)) into an object of type `SpatRaster` (default).
```{r import_raster, message=FALSE}
elevation <- rast("data_cambodia/elevation.tif")
elevation
```
Modifying the name of the stored variable (altitude).
```{r names_raster, message=FALSE}
names(elevation) <- "Altitude"
```
The function `writeRaster()` allow you to save an object `SpatRaster` on your machine, in the format of your choice.
```{r export_raster, eval=FALSE}
writeRaster(x = elevation, filename = "data_cambodia/new_elevation.tif")
```
## Displaying a SpatRaster object
The function `plot()` is use to display an object `SpatRaster`.
```{r affichage_1_raster, eval=TRUE, fig.align='center', fig.width=6}
plot(elevation)
```
A raster always contains numerical data, but it can be both quantitative data and numerically coded qualitative (categorical) data (ex: type of land cover).
Specify the type of data stored with the augment `type` (`type = "continuous"` default), to display them correctly.
Import and display of raster containing categorical data: Phnom Penh Land Cover 2019 (land cover types) with a resolution of 1.5 meters:
```{r import_raster_2, message=FALSE}
lulc_2019 <- rast("data_cambodia/lulc_2019.tif") #Import Phnom Penh landcover 2019, landcover types
```
The landcover data was produced from SPOT7 satellite image with 1.5 meter spatial resolution. An extraction centered on the municipality of Phnom Penh was then carried out.
```{r affichage_raster_2, fig.align='center', fig.width=6}
plot(lulc_2019, type = "classes")
```
To display the actual tiles of landcover types you can proceed as follows.
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
```{r affichage_raster_3, eval=TRUE, fig.align='center', fig.width = 12}
class_name <- c(
"Roads",
"Built-up areas",
"Water Bodies and rivers",
"Wetlands",
"Dry bare area",
"Bare crop fields",
"Low vegetation areas",
"High vegetation areas",
"Forested areas")
class_color <- c("#070401", "#c84639", "#1398eb","#8bc2c2",
"#dc7b34", "#a6bd5f","#e8e8e8", "#4fb040", "#35741f")
plot(lulc_2019,
type = "classes",
levels = class_name,
col = class_color,
plg = list(cex = 0.7),
mar = c(3.1, 3.1, 2.1, 10) #The margin are (bottom, left, top, right) respectively
)
```
## Change to the study area
### (Re)projections {#reprojections}
To modify the projection system of a raster, use the function `project()`. It is then necessary to indicate the method for estimating the new cell values.
{fig-align="center"}
Four interpolation methods are available:
- ***near*** : nearest neighbor, fast and default method for qualitative data;\
- ***bilinear*** : bilinear interpolation. Default method for quantitative data;\
- ***cubic*** : cubic interpolation;\
- ***cubicspline*** : cubic spline interpolation.
```{r reproj_raster, eval=TRUE, fig.align='center', fig.width=8}
# Re-project data
elevation_utm = project(x = elevation, y = "EPSG:32648", method = "bilinear") #from WGS84(EPSG:4326) to UTM zone48N(EPSG:32648)
lulc_2019_utm = project(x = lulc_2019, y = "EPSG:32648", method = "near") #keep original projection: UTM zone48N(EPSG:32648)
```
```{r reproj_raster_2, eval=TRUE, echo=FALSE, fig.align='center', fig.width = 7}
par(mfrow=c(1,2))
plot(elevation_utm, main="Projected elevation raster in UTM 48 N" )
plot(lulc_2019_utm, type ="classes", main="CLC 2018 projected in UTM 48 N")
```
### Crop {#crop}
Clipping a raster to the extent of another object `SpatVector` or `SpatRaster` is achievable with the `crop()`.
::: {layout-ncol="2"}


Source : [@RasterCheatSheet]
:::
Import vector data of (municipal divisions) using function `vect`. This data will be stored in an `SpatVector` object.
```{r crop_raster, eval=TRUE}
district <- vect("data_cambodia/cambodia.gpkg", layer="district")
```
Extraction of district boundaries of Thma Bang district (ADM2_PCODE : KH0907).
```{r crop_raster_1, eval=TRUE}
thma_bang <- subset(district, district$ADM2_PCODE == "KH0907")
```
Using the function `crop()`, Both data layers must be in the same projection.
```{r crop_raster_3, eval=TRUE, fig.align='center', fig.width=6}
crop_thma_bang <- crop(elevation_utm, thma_bang)
plot(crop_thma_bang)
plot(thma_bang, add=TRUE)
```
### Mask {#mask}
To display only the values of a raster contained in a polygon, use the function `mask()`.
![Source : [@RasterCheatSheet]](img/mask.png){fig-align="center" width="350"}
Creation of a mask on the **crop_thma_bang** raster to the municipal limits (polygon) of **Thma Bang district**.
```{r mask_raster, eval=TRUE, fig.align='center', fig.width=6}
mask_thma_bang <- mask(crop_thma_bang, thma_bang)
plot(mask_thma_bang)
plot(thma_bang, add = TRUE)
```
### Aggregation and disaggregation
Resampling a raster to a different resolution is done in two steps.
::: {layout-ncol="3"}



Source : [@RasterCheatSheet]
:::
Display the resolution of a raster with the function `res()`.
```{r agr_raster, eval=TRUE}
res(elevation_utm) #check cell size
```
Create a grid with the same extent, then decrease the spatial resolution (larger cells).
```{r agr_raster_1, eval=TRUE}
elevation_LowerGrid <- elevation_utm
# elevation_HigherGrid <- elevation_utm
res(elevation_LowerGrid) <- 1000 #cells size = 1000 meter
# res(elevation_HigherGrid) <- 10 #cells size = 10 meter
elevation_LowerGrid
```
The function `resample()` allows to resample the atarting values in the new spatial resolution. Several resampling methods are available (cf. [partie 5.4.1](#reprojections)).
```{r agr_raster_2, eval=TRUE, fig.align='center', fig.width=6}
elevation_LowerGrid <- resample(elevation_utm,
elevation_LowerGrid,
method = "bilinear")
plot(elevation_LowerGrid,
main="Cell size = 1000m\nBilinear resampling method")
```
### Raster fusion
Merge multiple objects `SpatRaster` into one with `merge()` or `mosaic()`.
{fig-align="center"}
After cutting the elevation raster by the municipal boundary of Thma Bang district (cf [partie 5.4.2](#crop)), we do the same thing for the neighboring municipality of Phnum Kravanh district.
```{r merge_raster, eval=TRUE}
phnum_kravanh <- subset(district, district$ADM2_PCODE == "KH1504") # Extraction of the municipal boundaries of Phnum Kravanh district
crop_phnum_kravanh <- crop(elevation_utm, phnum_kravanh) #clipping the elevation raster according to district boundaries
```
The **crop_thma_bang** and **crop_phnum_kravanh** elevation raster overlap spatially:
```{r merge_raster_1, eval=TRUE, echo=FALSE, fig.align='center',fig.width=8}
par(mfrow=c(1,2), mar=c(0,0,0,0))
plot(crop_thma_bang, main="Crop Thma Bang")
plot(thma_bang, add=TRUE)
plot(phnum_kravanh, add=TRUE)
plot(crop_phnum_kravanh, main="Crop Phnum Kravanh")
plot(phnum_kravanh, add=TRUE)
plot(thma_bang, add=TRUE)
```
The difference between the functions `merge()` and `mosiac()` relates to values of the overlapping cells. The function `mosaic()` calculate the average value while `merge()` holding the value of the object `SpaRaster` called n the function.
```{r merge_raster_2, eval=TRUE, fig.align='center', fig.width=6}
#in this example, merge() and mosaic() give the same result
merge_raster <- merge(crop_thma_bang, crop_phnum_kravanh)
mosaic_raster <- mosaic(crop_thma_bang, crop_phnum_kravanh)
plot(merge_raster)
# plot(mosaic_raster)
```
### Segregate
Decompose a raster by value (or modality) into different rasterlayers with the function `segregate`.
```{r segregate, eval=TRUE, fig.align='center', fig.width=6}
lulc_2019_class <- segregate(lulc_2019, keep=TRUE, other=NA) #creating a raster layer by modality
plot(lulc_2019_class)
```
## Map Algebra
Map algebra is classified into four groups of operation [@Tomlin_1990]:
- ***Local*** : operation by cell, on one or more layers;\
- ***Focal*** : neighborhood operation (surrounding cells);\
- ***Zonal*** : to summarize the matrix values for certain zones, usually irregular;
- ***Global*** : to summarize the matrix values of one or more matrices.
![Source : [@XingongLi2009]](img/lo_fo_zo_glo.png){fig-align="center"}
### Local operations
![Source : [@JMennis2015]](img/op_local_2.png){fig-align="center" width="452"}
#### Value replacement
```{r op_local_0, eval=FALSE}
elevation_utm[elevation_utm[[1]]== -9999] <- NA #replaces -9999 values with NA
elevation_utm[elevation_utm < 1500] <- NA #Replace values < 1500 with NA
```
```{r op_local_00, eval=TRUE}
elevation_utm[is.na(elevation_utm)] <- 0 #replace NA values with 0
```
#### Operation on each cell
```{r op_local_1, eval=TRUE}
elevation_1000 <- elevation_utm + 1000 # Adding 1000 to the value of each cell
elevation_median <- elevation_utm - global(elevation_utm, median)[[1]] # Removed median elevation to each cell's value
```
```{r op_local_2, eval=TRUE, echo=FALSE, fig.align='center', fig.width=8}
par(mfrow=c(1,2), mar=c(0,0,0,0))
plot(elevation_1000, main="elevation_1000\nelevation + 1000")
plot(elevation_median, main="elevation_median\nelevation - median value")
```
#### Reclassification
Reclassifying raster values can be used to discretize quantitative data as well as to categorize qualitative categories.
```{r reclass_2, eval=TRUE}
reclassif <- matrix(c(1, 2, 1,
2, 4, 2,
4, 6, 3,
6, 9, 4),
ncol = 3, byrow = TRUE)
```
Values between 1 and 2 will be replaced by the value 1.\
Values between 3 and 4 will be replaced by the value 2.\
Values between 5 and 6 will be replaced by the value 3. Values between 7 and 9 will be replaced by the value 4.
...
```{r reclass_3, eval=TRUE}
reclassif
```
The function `classify()` allows you to perform the reclassification.
```{r reclass_4, eval=TRUE}
lulc_2019_reclass <- classify(lulc_2019, rcl = reclassif)
plot(lulc_2019_reclass, type ="classes")
```
Display with the official titles and colors of the different categories.
```{r reclass_6, eval=TRUE, fig.align='center', out.width="80%"}
plot(lulc_2019_reclass,
type ="classes",
levels=c("Urban areas",
"Water body",
"Bare areas",
"Vegetation areas"),
col=c("#E6004D",
"#00BFFF",
"#D3D3D3",
"#32CD32"),
mar=c(3, 1.5, 1, 11))
```
#### Operation on several layers (ex: NDVI)
It is possible to calculate the value of a cell from its values stored in different layers of an object `SpatRaster`.
Perhaps the most common example is the calculation of the [Normalized Vegetation Index (*NDVI*)](http://www.trameverteetbleue.fr/outils-methodes/donnees-mobilisables/indice-vegetation-modis). For each cell, a value is calculated from two layers of raster from a multispectral satellite image.
```{r NDVI, eval=TRUE}
# Import d'une image satellite multispectrale
sentinel2a <- rast("data_cambodia/Sentinel2A.tif")
```
This multispectral satellite image (10m resolution) dated 25/02/2020, was produced by Sentinel-2 satellite and was retrieved from [plateforme Copernicus Open Access Hub](https://scihub.copernicus.eu/dhus/#/home). An extraction of Red and near infrared spectral bands, centered on the Phnom Penh city, was then carried out.
```{r NDVI_1, eval=TRUE, fig.align='center', fig.width=7}
plot(sentinel2a)
```
To lighten the code, we assign the two matrix layers in different `SpatRaster` objects.
```{r NDVI_2, eval=TRUE}
B04_Red <- sentinel2a[[1]] #spectral band Red
B08_NIR <-sentinel2a[[2]] #spectral band near infrared
```
From these two raster objects , we can calculate the normalized vegetation index:
$${NDVI}=\frac{\mathrm{NIR} - \mathrm{Red}} {\mathrm{NIR} + \mathrm{Red}}$$
```{r NDVI_3, eval=TRUE, fig.align='center', out.width="90%"}
raster_NDVI <- (B08_NIR - B04_Red ) / (B08_NIR + B04_Red )
plot(raster_NDVI)
```
The higher the values (close to 1), the denser the vegetation.
### Focal operations
![Source : [@JMennis2015]](img/op_focal_2.png){fig-align="center" width="415"}
Focal analysis conisders a cell plus its direct neighbors in contiguous and symmetrical (neighborhood operations). Most often, the value of the output cell is the result of a block of 3 x 3 (odd number) input cells.
The first step is to build a matrix that determines the block of cells that will be considered around each cell.
```{r op_focal_1, eval=TRUE}
# 5 x 5 matrix, where each cell has the same weight
mon_focal <- matrix(1, nrow = 5, ncol = 5)
mon_focal
```
The function `focal()` Then allows you to perform the desired analysis. For example: calculating the average of the values of all contiguous cells, for each cell in the raster.
```{r op_focal_3, eval=TRUE}
elevation_LowerGrid_mean <- focal(elevation_LowerGrid,
w = mon_focal,
fun = mean)
```
```{r op_focal_5, eval=TRUE, echo=FALSE, fig.align='center', fig.width=8}
par(mfrow=c(1,2), mar=c(0,0,0,0))
plot(elevation_LowerGrid, main="Elevation_LowerGrid\n(starting raster)")
plot(elevation_LowerGrid_mean, main="Elevation_LowerGrid_mean\n(focal result 5 x 5)")
```
#### Focal operations for elevation rasters
The function `terrain()` allows to perform focal analyzes specific to elevation rasters. Six operations are available:
- ***slope*** = calculation of the slope or degree of inclination of the surface;\
- ***aspect*** = calculate slope orientation;\
- ***roughness*** = calculate of the variability or irregularity of the elevation;\
- ***TPI*** = calculation of the index of topgraphic positions;\
- ***TRI*** = elevation variability index calculation;\
- ***flowdir*** = calculation of the water flow direction.
Example with calculation of slopes(*slope*).
```{r op_focal_6, eval=TRUE, fig.align='center', fig.width=6}
#slope calculation
slope <- terrain(elevation_utm, "slope",
neighbors = 8, #8 (or 4) cells around taken into account
unit = "degrees") #Output unit
plot(slope) #Inclination of the slopes, in degrees
```
### Global operations
{fig-align="center" width="297"}
Global operation are used to summarize the matrix values of one or more matrices.
```{r op_global_1, eval=TRUE}
global(elevation_utm, fun = "mean") #average values
```
```{r op_global_2, eval=TRUE}
global(elevation_utm, fun = "sd") #standard deviation
```
```{r op_global_3, eval=TRUE}
freq(lulc_2019_reclass) #frequency
table(lulc_2019_reclass[]) #contingency table
```
Statistical representations that summarize matrix information.
```{r op_global_4, eval=TRUE, fig.align='center', fig.width=6}
hist(elevation_utm) #histogram
density(elevation_utm) #density
```
### Zonal operation
![Source : [@JMennis2015]](img/op_zonal_2.png){fig-align="center" width="342"}
The zonal operation make it possible to summarize the matrix values of certain zones (group of contiguous cells in space or in value).
#### Zonal operation on an extraction
**All global operations can be performed on an extraction of cells resulting from the functions `crop()`, `mask()`, `segregate()`...**
Example: average elevation for the city of Thma Bang district (cf [partie 5.4.3](#mask)).
```{r op_global_6, eval=TRUE}
# Average value of the "mask" raster over Thma Bang district
global(mask_thma_bang, fun = "mean", na.rm=TRUE)
```
#### Zonal operation from a vector layer
The function `extract()` allows you to extract and manipulate the values of cells that intersect vector data.
Example from polygons:
```{r op_zonal_poly, eval=TRUE}
# Average elevation for each polygon (district)?
elevation_by_dist <- extract(elevation_LowerGrid, district, fun=mean)
head(elevation_by_dist, 10)
```
#### Zonal operation from raster
Zonal operation can be performed by area bounded by the categorical values of a second raster. For this, the two raster must have exaclty the same extent and the same resolution.
```{r op_zonal_1, eval=TRUE}
#create a second raster with same resolution and extent as "elevation_clip"
elevation_clip <- rast("data_cambodia/elevation_clip.tif")
elevation_clip_utm <- project(x = elevation_clip, y = "EPSG:32648", method = "bilinear")
second_raster_CLC <- rast(elevation_clip_utm)
#resampling of lulc_2019_reclass
second_raster_CLC <- resample(lulc_2019_reclass, second_raster_CLC, method = "near")
#added a variable name for the second raster
names(second_raster_CLC) <- "lulc_2019_reclass_resample"
```
```{r op_zonal_2, eval=TRUE, echo=FALSE, fig.align='center', fig.width=8}
par(mfrow=c(1,2), mar=c(0,0,0,0))
plot(elevation_clip_utm, main="elevation_clip_utm")
plot(second_raster_CLC, type = "classes", main="lulc_2019_reclass_resample")
```
Calculation of the average elevation for the different areas of the second raster.
```{r op_zonal_3, eval=TRUE}
#average elevation for each area of the "second_raster"
zonal(elevation_clip_utm, second_raster_CLC , "mean", na.rm=TRUE)
```
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
Convert polygons to raster format.
```{r Raster_vec1, eval=TRUE}
chamkarmon = subset(district, district$ADM2_PCODE =="KH1201")
raster_district <- rasterize(x = chamkarmon, y = elevation_clip_utm)
```
```{r Raster_vec11, eval=TRUE, fig.align='center', fig.width=6}
plot(raster_district)
```
Convert points to raster format
```{r Raster_vec2, eval=TRUE}
#rasterization of the centroids of the municipalities
raster_dist_centroid <- rasterize(x = centroids(district),
y = elevation_clip_utm, fun=sum)
plot(raster_dist_centroid, col = "red")
plot(district, add =TRUE)
```
Convert lines in raster format
```{r Raster_vec3, eval=TRUE}
#rasterization of municipal boundaries
raster_dist_line <- rasterize(x = as.lines(district), y = elevation_clip_utm, fun=sum)
```
```{r Raster_vec33, eval=TRUE}
plot(raster_dist_line)
```
### Vectorisation
Transform a raster to vector polygons.
```{r Raster_vec4, eval=TRUE}
polygon_elevation <- as.polygons(elevation_clip_utm)
```
```{r Raster_vec44, eval=TRUE}
plot(polygon_elevation, y = 1, border="white")
```
Transform a raster to vector points.
```{r Raster_vec5, eval=TRUE}
points_elevation <- as.points(elevation_clip_utm)
```
```{r Raster_vec55, eval=TRUE}
plot(points_elevation, y = 1, cex = 0.3)
```
Transform a raster into vector lines.
```{r Raster_vec6, eval=TRUE}
lines_elevation <- as.lines(elevation_clip_utm)
```
```{r Raster_vec66, eval=TRUE}
plot(lines_elevation)
```
### terra, raster, sf, stars...
Reference packages for manipulating spatial data all rely o their own object class. It is sometimes necessary to convert these objects from one class to another class to take advance of all the features offered by these different packages.
Conversion functions for raster data:
| FROM/TO | raster | terra | stars |
|---------|----------|--------------------------|---------------|
| raster | | rast() | st_as_stars() |
| terra | raster() | | st_as_stars() |
| stars | raster() | as(x, 'Raster') + rast() | |
Conversion functions for vector data:
| FROM/TO | sf | sp | terra |
|---------|------------|------------------|--------|
| sf | | as(x, 'Spatial') | vect() |
| sp | st_as_sf() | | vect() |
| terra | st_as_sf() | as(x, 'Spatial') | |