Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
# Vector Data
## Importing and exporting data
The `st_read()` and `st_write()` function are used to import and export many types of files. The following lines import the administrative data in district level layer located in the **cambodia.gpkg** [geopackage](https://www.geopackage.org/) file.
```{r import, class.output="code-out", warning=FALSE, message=FALSE}
library(sf)
district = st_read("data_cambodia/cambodia.gpkg", layer = "district") #import district data
```
The following lines export the **district object** to a **data** folder in geopackage and shapefile format.
```{r export, class.output="code-out", warning=FALSE, message=FALSE}
st_write(obj = district, dsn = "data_cambodia/district.gpkg", delete_layer = TRUE)
st_write(obj = district, "data_cambodia/district.shp", layer_options = "ENCODING=UTF-8", delete_layer = TRUE)
```
## Display
**Preview of the variables** via the function `head()` and `plot()`.
```{r aff1, nm = TRUE, class.output="code-out", warning=FALSE, message=FALSE}
head(district)
plot(district)
```
**for Geometry display** only.
```{r aff2, nm=TRUE, class.output="code-out", warning=FALSE, message=FALSE}
plot(st_geometry(district))
```
## Coordinate systems
### Look up the coordinate system of an object
The function `st_crs()` makes it possible to consult the system of coordinates used and object sf.
```{r proj1, proj1, class.output="code-out", warning=FALSE, message=FALSE}
st_crs(district)
```
### Changing the coordinate system of an object
The function `st_transform()` allows to change the coordinate system of an sf object, to re-project it.
```{r, proj2, sm=TRUE, class.output="code-out", warning=FALSE, message=FALSE}
plot(st_geometry(district))
title("WGS 84 / UTM zone 48N")
dist_reproj <- st_transform(district, "epsg:4326")
plot(st_geometry(dist_reproj))
title("WGS84")
```
The [Spatial Reference](http://spatialreference.org/){target="_blank"} site provides reference for a large number of coordinate systems.
## Selection by attributes
The object `sf` **are** `data.frame`, so you can select their rows and columns in the same way as `data.frame`.
```{r selectAttr, class.output="code-out", warning=FALSE, message=FALSE}
# row Selection
district[1:2, ]
district[district$ADM1_EN == "Phnom Penh", ]
# column selection
district[district$ADM1_EN == "Phnom Penh", 1:4]
```
## Spatial selection
### Intersections
Selection of roads that are intersecting **dangkao** district
```{r intersects, nm=TRUE, class.output="code-out", warning=FALSE, message=FALSE}
road <- st_read("data_cambodia/cambodia.gpkg", layer = "road", quiet = TRUE)
dangkao <- district[district$ADM2_EN == "Dangkao", ]
inter <- st_intersects(x = road, y = dangkao, sparse = FALSE)
head(inter)
dim(inter)
```
The **inter** object is a matrix which indicates for each of element of the **road** object (6 elements) whether it intersects each elements the **dangkao** object (1 element). The dimension of the matrix is therefore indeed 6 rows \* 1 column. Note the use of the parameter `sparse = FALSE` here. It is then possible to create a column from this object:
```{r intersects2, nm =TRUE, class.output="code-out", warning=FALSE, message=FALSE}
road$intersect_dangkao <- inter
plot(st_geometry(dangkao), col = "lightblue")
plot(st_geometry(road), add = TRUE)
plot(st_geometry(road[road$intersect_dangkao, ]),
col = "tomato", lwd = 1.5, add = TRUE)
```
#### Difference between `sparse = TRUE` and `sparse = FALSE`
```{r st_intersparse, echo =FALSE, eval = TRUE, class.output="code-out", warning=FALSE, message=FALSE}
library(sf)
set.seed(41)
x <- mapsf::mf_get_mtq()
grid <- st_make_grid(x = x, n = c(2,2))
grid <- st_sf(id = 1:4, geom = grid)
pt <- st_sample(grid, size = 8)
pt <- st_sf(id = letters[1:length(pt)], geom = pt)
library(mapsf)
mf_init(grid, expandBB = c(0, 0, 0, .3))
mf_map(grid, add = T)
mf_label(grid, "id", cex = 2, pos = 3)
mf_map(pt, add = T, pch = 4, cex = 1.2, lwd = 2, col = "red")
mf_label(pt, "id", cex = 1, col = "red", font = 3, pos = 2, overlap = F)
legend(x = "topright",
col = c("black", NA, "red"),
legend =
c(" grid ", NA, " pt "),
pch = c(22,NA,4),
pt.bg = "grey",
pt.cex = c(6,NA, 1.2),
bty = "n")
mf_title("st_intersects()", tab = FALSE, pos = "center")
```
- `sparse = TRUE`
```{r st_intersparse2, class.output="code-out", warning=FALSE, message=FALSE}
inter <- st_intersects(x = grid, y = pt, sparse = TRUE)
inter
```
- `sparse = FALSE`
```{r st_intersparse3, class.output="code-out", warning=FALSE, message=FALSE}
inter <- st_intersects(x = grid, y = pt, sparse = FALSE)
rownames(inter) <- grid$id
colnames(inter) <- pt$id
inter
```
### Contains / Within
Selection of roads contained in the municipality of *Dangkao*. The function `st_within()` works like the function `st_intersects()`
```{r within, nm = TRUE, class.output="code-out", warning=FALSE, message=FALSE}
road$within_dangkao <- st_within(road, dangkao, sparse = FALSE)
plot(st_geometry(dangkao), col = "lightblue")
plot(st_geometry(road), add = TRUE)
plot(st_geometry(road[road$within_dangkao, ]), col = "tomato",
lwd = 2, add = TRUE)
```
## Operation of geometries
### Extract centroids
```{r centroid, nm = TRUE, class.output="code-out", warning=FALSE, message=FALSE}
dist_c <- st_centroid(district)
plot(st_geometry(district))
plot(st_geometry(dist_c), add = TRUE, cex = 1.2, col = "red", pch = 20)
```
### Aggregate polygons
```{r aggreg, nm = TRUE, class.output="code-out", warning=FALSE, message=FALSE}
cambodia_dist <- st_union(district)
plot(st_geometry(district), col = "lightblue")
plot(st_geometry(cambodia_dist), add = TRUE, lwd = 2, border = "red")
```
### Aggregate polygons based on a variable
```{r aggreg2, nm=TRUE, class.output="code-out", warning=FALSE, message=FALSE}
dist_union <- aggregate(x = district[,c("T_POP")],
by = list(STATUT = district$Status),
FUN = "sum")
plot(dist_union)
```
### Create a buffer zone
```{r buffers, nm=TRUE, class.output="code-out", warning=FALSE, message=FALSE}
dangkao_buffer <- st_buffer(x = dangkao, dist = 1000)
plot(st_geometry(dangkao_buffer), col = "#E8DAEF", lwd=2, border = "#6C3483")
plot(st_geometry(dangkao), add = TRUE, lwd = 2)
```
### Making an intersection
By using the function `st_intersection()` we will cut one layer by another.
```{r intersect2, nm=TRUE, class.output="code-out", warning=FALSE, message=FALSE}
library(magrittr)
# creation of a buffer zone around the centroid of the municipality of Dangkao district
# using the pipe
zone <- st_geometry(dangkao) %>%
st_centroid() %>%
st_buffer(30000)
plot(st_geometry(district))
plot(zone, border = "#F06292", lwd = 2, add = TRUE)
dist_z <- st_intersection(x = district, y = zone)
plot(st_geometry(district))
plot(st_geometry(dist_z), col="#AF7AC5", border="#F9E79F", add=T)
plot(st_geometry(dist_z))
```
### Create regular grid
The function `st_make_grid()` allows you to create regular grid. The function produce and object `sfc`, you must then use the function `st_sf()` to transform the object `sfc` into and object `sf`. During this transformation we add here a column of unique identifiers.
```{r grid, nm=TRUE, class.output="code-out", warning=FALSE, message=FALSE}
grid <- st_make_grid(x = district, cellsize = 10000)
grid <- st_sf(ID = 1:length(grid), geom = grid)
plot(st_geometry(grid), col = "grey", border = "white")
plot(st_geometry(district), border = "grey50", add = TRUE)
```
### Counting points in a polygon (in a grid tile)
```{r intersect3.1, nm=TRUE, class.output="code-out", warning=FALSE, message=FALSE}
# selection of grid tiles that intersect the district
inter <- st_intersects(grid, cambodia_dist, sparse = FALSE)
grid <- grid[inter, ]
case_cambodia <- st_read("data_cambodia/cambodia.gpkg", layer = "cases" , quiet = TRUE)
plot(st_geometry(grid), col = "grey", border = "white")
plot(st_geometry(case_cambodia), pch = 20, col = "red", add = TRUE, cex = 0.8)
inter <- st_intersects(grid, case_cambodia, sparse = TRUE)
length(inter)
```
Here we use the argument `sparse = TRUE`. The **inter** object is a list the length of the **grid** and each item in the list contain the index of the object items of **cases** and **grid** intersection.
For example **grid tile** 35th intersect with four **cases** 97, 138, 189, 522, 624, 696
```{r intersect3.3, nm=TRUE, class.output="code-out", warning=FALSE, message=FALSE}
inter[35]
plot(st_geometry(grid[35, ]))
plot(st_geometry(case_cambodia), add = T)
plot(st_geometry(case_cambodia[c(97, 138, 189, 522, 624, 696), ]),
col = "red", pch = 19, add = TRUE)
```
To count number of **case**, simply go to the list and report length of the elements.
```{r intersect3.4, class.output="code-out", warning=FALSE, message=FALSE}
grid$nb_case <- sapply(X = inter, FUN = length) # create 'nb_case' column to store number of health centers in each grid tile
plot(grid["nb_case"])
```
### Aggregate point values into polygons
In this example we import a csv file that contain data from a population grid. Once import we transform it `data.frame` into an object `sf`.
The objective is to aggregate the values id these points (the population contained in the "DENs" field) in the municipalities of the district.
```{r agval, class.output="code-out", warning=FALSE, message=FALSE}
pp_pop_raw <- read.csv("data_cambodia/pp_pop_dens.csv") # import file
pp_pop_raw$id <- 1:nrow(pp_pop_raw) # adding a unique identifier
pp_pop <- st_as_sf(pp_pop_raw, coords = c("X", "Y"), crs = 32648) # Transform into object sf
pp_pop <- st_transform(pp_pop, st_crs(district)) # Transform projection
inter <- st_intersection(pp_pop, district) # Intersection
inter
```
By using the function `st_intersection()` we add to each point of the grid all the information on the municipality in which it is located.
We can then use the function `aggregate()` to aggregate the population by municipalities.
```{r agval2, class.output="code-out", warning=FALSE, message=FALSE}
resultat <- aggregate(x = list(pop_from_grid = inter$DENs),
by = list(ADM2_EN = inter$ADM2_EN),
FUN = "sum")
head(resultat)
```
We can then create a new object with this result.
```{r agval3, class.output="code-out", warning=FALSE, message=FALSE}
dist_result <- merge(district, resultat, by = "ADM2_EN", all.x = TRUE)
dist_result
```
## Measurements
### Create a distance matrix
If the dataset's projection system is specified, the distance are expressed in the projection measurement unit (most often in meter)
```{r distance, nm=TRUE, class.output="code-out", warning=FALSE, message=FALSE}
mat <- st_distance(x = dist_c, y = dist_c)
mat[1:5,1:5]
```
### Calculate routes
<img src="img/logo_osrm.svg" align="right" width="120"/> The package `osrm` [@R-osrm] acts as an interface R and the [OSRM](http://project-osrm.org/) [@luxen-vetter-2011]. This package allows to calculate time and distance matrices, road routes, isochrones. The package uses the OSRM demo server by default. In case of intensive use [it is strongly recommended to use your own instance of OSRM (with Docker)](https://github.com/Project-OSRM/osrm-backend#using-docker).
#### Calculate a route
The fonction `osrmRoute()` allows you to calculate routes.
```{r osrmroute, fig.width = 3, fig.height = 5, class.output="code-out", warning=FALSE, message=FALSE}
library(sf)
library(osrm)
library(maptiles)
district <- st_read("data_cambodia/cambodia.gpkg",layer = "district", quiet = TRUE)
district <- st_transform(district, 32648)
odongk <- district[district$ADM2_PCODE == "KH0505", ] # Itinerary between Odongk district and Toul Kouk
takmau <- district[district$ADM2_PCODE == "KH0811",]
route <- osrmRoute(src = odongk,
dst = takmau,
returnclass = "sf")
osm <- get_tiles(route, crop = TRUE)
plot_tiles(osm)
plot(st_geometry(route), col = "#b23a5f", lwd = 6, add = T)
plot(st_geometry(route), col = "#eee0e5", lwd = 1, add = T)
```
#### Calculation of a time matrix
The function `osrmTable()` makes it possible to calculate matrices of distances or times by road.
In this example we calculate a time matrix between 2 addresses and health centers in Phnom Penh on foot.
```{r osrmtable, fig.width = 8, class.output="code-out", warning=FALSE, message=FALSE}
library(sf)
library(tidygeocoder)
hospital <- st_read("data_cambodia/cambodia.gpkg",layer= "hospital", quiet = TRUE)
hospital_pp <- hospital[hospital$PCODE == "12", ] # Selection of health centers in Phnom Penh
adresses <- data.frame(adr = c("Royal Palace Park, Phnom Penh Phnom, Cambodia",
"Wat Phnom Daun Penh, Phnom Penh, Cambodia")) # Geocoding of 2 addresses in Phnom Penh
places <- tidygeocoder::geocode(.tbl = adresses,address = adr)
places
# Calculation of the distance matrix between the 2 addresses and the health center in Phnom Penh
cal_mat <- osrmTable(src = places[,c(1,3,2)],
dst = hospital_pp,
osrm.profile = "foot")
cal_mat$durations[1:2, 1:5]
# Which address has better accessibility to health center in Phnom Penh?
boxplot(t(cal_mat$durations[,]), cex.axis = 0.7)
```