Newer
Older

nina.marthe_ird.fr
committed
from Graph_gff import Features,load_intersect
from Functions import get_segment_sequence,convert_strand
target_genome_name="genome4_chr10"

nina.marthe_ird.fr
committed
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
intersect_path='/home/nina/annotpangenome/test_data/input_data_inf/intersect.bed'
load_intersect(intersect_path)
gfa="test_data/input_data_inf/graph_test.gfa"
def get_segments_sequence_and_paths(gfa):
file_gfa=open(gfa,'r')
lines_gfa=file_gfa.readlines()
file_gfa.close()
seg_seq={}
paths={}
for line in lines_gfa:
line=line.split()
if (line[0]=="S"): # get the sequence of the segment
seg_id='s'+line[1]
seg_seq[seg_id]=line[2]
if (line[0]=="W") & (line[1]!="_MINIGRAPH_"): # get the walk of the genome
path=line[6].replace(">",";>")
path=path.replace("<",";<").split(';')
list_path=[]
for segment in path:
if segment[0:1]=='>':
list_path.append('+s'+segment[1:])
elif segment[0:1]=='<':
list_path.append('-s'+segment[1:])
paths[line[3]]=list_path
return [paths,seg_seq]
[paths,seg_seq]=get_segments_sequence_and_paths(gfa)
segments_on_target_genome={}
pos_seg="test_data/input_data_inf/genome3_chr10.bed"
def get_segments_positions_on_genome(pos_seg):
bed=open(pos_seg,'r')
lines=bed.readlines() # read line by line ?
bed.close()
for line in lines:
line=line.split()
[seg,chrom,start,stop,strand]=[line[3][1:],line[0],line[1],line[2],line[3][0:1]]
segments_on_target_genome[seg]=[chrom,start,stop,strand]
get_segments_positions_on_genome(pos_seg)
def add_feature_sequence(feature,seg_seq):
feature_sequence=""
for segment in feature.segments_list:
if segment==feature.segments_list[0]:
feature_sequence+=get_segment_sequence(seg_seq,segment)[feature.pos_start-1:] # revérifier les +/- 1 pour la position, avec de vraies données
elif segment==feature.segments_list[-1]:
feature_sequence+=get_segment_sequence(seg_seq,segment)[0:feature.pos_stop] # revérifier les +/- 1 pour la position, avec de vraies données
else:
feature_sequence+=get_segment_sequence(seg_seq,segment)
feature.sequence=feature_sequence
def get_first_seg(list_seg,segments_on_target_genome):

nina.marthe_ird.fr
committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
first_seg_found=''
for segment in list_seg:
if segment[1:] in segments_on_target_genome:
first_seg_found=segment[1:]
break
return first_seg_found
def get_feature_path(paths,first_seg,last_seg):
# find the path in azucena.
first_strand=convert_strand(segments_on_target_genome[first_seg][3])
first_seg_stranded=first_strand+first_seg
last_strand=convert_strand(segments_on_target_genome[last_seg][3])
last_seg_stranded=last_strand+last_seg
index_first_seg=int(paths[target_genome_name].index(first_seg_stranded))
index_last_seg=int(paths[target_genome_name].index(last_seg_stranded))
first_index=min(index_first_seg,index_last_seg)
last_index=max(index_last_seg,index_first_seg)
list_segfeat_azu=paths[target_genome_name][first_index:last_index+1]
list_segfeat_azu_corrected=[convert_strand(segment_stranded[0])+segment_stranded[1:] for segment_stranded in list_segfeat_azu]
return list_segfeat_azu_corrected
def get_rna(dna_sequence):
return dna_sequence.replace("T","U")
# penser à transcrire la séquence codante du gène !!
def get_aa(codon):
match codon[0:2]:
case "UU":
if (codon[2]=="U") | (codon[2]=="C"):
return "Phe"
else:
return "Leu"
case "UC":
return "Ser"
case "UA":
if (codon[2]=="U") | (codon[2]=="C"):
return "Tyr"
else:
return "*"
case "UG":
if (codon[2]=="U") | (codon[2]=="C"):
return "Cys"
elif codon[2]=="A":
return "*"
else:
return "Trp"
case "CU":
return "Leu"
case "CC":
return "Pro"
case "CA":
if (codon[2]=="U") | (codon[2]=="C"):
return "His"
else:
return "Gln"
case "CG":
return "Arg"
case "AU":
if codon[2]=="G":
return "Met"
else:
return "Ile"
case "AC":
return "Thr"
case "AA":
if (codon[2]=="U") | (codon[2]=="C"):
return "Asn"
else:
return "Lys"
case "AG":
if (codon[2]=="U") | (codon[2]=="C"):
return "Ser"
else:
return "Arg"
case "GU":
return "Val"
case "GC":
return "Ala"
case "GA":
if (codon[2]=="U") | (codon[2]=="C"):
return "Asp"
else:
return "Glu"
case "GG":
return "Gly"
def traduction(sequence_arn):
list_codons=decoupe_codon(sequence_arn)
prot=list()
for codon in list_codons:
prot.append(get_aa(codon))
return prot
from textwrap import wrap
def decoupe_codon(sequence):
return wrap(sequence,3)
def get_sequence_before(first_seg,seg_seq,n,paths,feat):
first_strand=convert_strand(first_seg[0])
first_seg_stranded=first_strand+first_seg[1:]
index_first_seg=int(paths[target_genome_name].index(first_seg_stranded))
sequence_before=seg_seq[first_seg[1:]][0:feat.pos_start-1] # sequence left on the segment on which the cds start (can be empty)
current_index=index_first_seg-1
while (len(sequence_before)<n) & (current_index>=0):
segment=paths[target_genome_name][current_index]
sequence_before=seg_seq[segment[1:]]+sequence_before
current_index-=1
return sequence_before[0:99]
def get_sequence_after(last_seg,seg_seq,n,paths,feat):
last_strand=convert_strand(last_seg[0])
last_seg_stranded=last_strand+last_seg[1:]
index_last_seg=int(paths[target_genome_name].index(last_seg_stranded))
sequence_after=seg_seq[last_seg[1:]][feat.pos_stop:] # sequence left on the segment on which the cds ends (can be empty)
current_index=index_last_seg+1
while (len(sequence_after)<n) & (current_index>len(paths[target_genome_name])):
segment=paths[target_genome_name][current_index]
sequence_after=sequence_after+seg_seq[segment[1:]]
current_index+=1
return sequence_after[len(sequence_after)-100:]
'''
first_strand=convert_strand(segments_on_target_genome[first_seg][3])
first_seg_stranded=first_strand+first_seg
last_strand=convert_strand(segments_on_target_genome[last_seg][3])
last_seg_stranded=last_strand+last_seg
index_first_seg=int(paths[target_genome_name].index(first_seg_stranded))
index_last_seg=int(paths[target_genome_name].index(last_seg_stranded))
first_index=min(index_first_seg,index_last_seg)
last_index=max(index_last_seg,index_first_seg)
list_segfeat_azu=paths[target_genome_name][first_index:last_index+1]
list_segfeat_azu_corrected=[convert_strand(segment_stranded[0])+segment_stranded[1:] for segment_stranded in list_segfeat_azu]
'''
def get_sequence_on_genome(feature,segments_on_target_genome):
list_seg=Features[feature].segments_list
first_seg=get_first_seg(list_seg,segments_on_target_genome)
last_seg=get_first_seg(reversed(list_seg),segments_on_target_genome)

nina.marthe_ird.fr
committed
path_on_target=get_feature_path(paths,first_seg,last_seg)
new_sequence=""
for segment in path_on_target:
if segment==cds.segments_list[0]:
new_sequence+=get_segment_sequence(seg_seq,segment)[cds.pos_start-1:]
elif segment==cds.segments_list[-1]:
new_sequence+=get_segment_sequence(seg_seq,segment)[0:cds.pos_stop]
else:
new_sequence+=get_segment_sequence(seg_seq,segment)
return new_sequence

nina.marthe_ird.fr
committed
var=open("test_data/variations.txt",'r')
lines=var.readlines()
var.close()

nina.marthe_ird.fr
committed
# dict cds-var
cds_var={}
for line in lines:
line=line.split()
if line[1]=="CDS":
cds_id=line[0].replace('.','_').replace(':','_')
if cds_id not in cds_var.keys():
cds_var[cds_id]=list()
cds_var[cds_id].append(line)

nina.marthe_ird.fr
committed
for feature in Features.values():
add_feature_sequence(feature,seg_seq)

nina.marthe_ird.fr
committed
version="new"
import re
for cds_id in cds_var.keys():
cds=Features[cds_id]
print("analysing variations in cds",cds_id)

nina.marthe_ird.fr
committed
for var in cds_var[cds_id]:
size_var=int(var[11])
type_var=var[8]
pos_var=int(var[12])-1
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
if pos_var<=3:
print("codon start touché")
#chercher start (dans le mrna) avant et apres
# chercher codon start en amont du cds, dans le mrna
seq_parent=get_sequence_on_genome(cds.parent,segments_on_target_genome)
seq_cds=get_sequence_on_genome(cds_id,segments_on_target_genome)
sequence_amont=seq_parent[0:seq_parent.rfind(seq_cds)] # get the mrna sequence before the last occurence of the cds sequence
print(sequence_amont)
if "ATG" in sequence_amont:
start_pos_list=[m.start() for m in re.finditer('(?=ATG)', sequence_amont)]
stop_pos_list=[m.start() for m in re.finditer('(?=TAG|TAA|TGA)', sequence_amont)]
print(start_pos_list,stop_pos_list) # positions (overlapping) où on trouve un atg.
# vérifier ensuite s'il y a un stop après un atg, et sinon le cadre de lecture de l'atg (peut décaler toute la prot !)
for start_pos in start_pos_list:
print(start_pos)
start_pos_frame=start_pos%3
test_list=[39,46,47]
if True not in ( (stop_pos%3==start_pos_frame) & (stop_pos>start_pos) for stop_pos in stop_pos_list) :
n=len(sequence_amont)-start_pos
print("codon start candidat trouvé dans l'arn messager,",n,"bases en amont du cds")
# calculer le décalage : si on en trouve un 2 bases en amont, ça décale le cadre de lecture !
frame_shift=n%3 # mais si on a plusieurs start candidats il faut choisir celui qu'on prend !??
# chercher codon start en aval, dans le cds
if "ATG" in seq_cds:
start_pos_list=[m.start() for m in re.finditer('(?=ATG)', seq_cds)]
for pos in start_pos_list:
print("codon start candidat trouvé plus loin dans le cds, à la base",pos)
if version=="old":
for cds_id in cds_var.keys(): # for a gene that has cds, concatenate all cds to make a prot. then detail var by cds.
cds=Features[cds_id]
print("analysing variations in cds",cds_id)
add_feature_sequence(cds,seg_seq)
cds_prot=traduction(get_rna(cds.sequence))
list_seg=Features[cds_id].segments_list
first_seg=get_first_seg(list_seg)
last_seg=get_first_seg(reversed(list_seg))
path_on_target=get_feature_path(paths,first_seg,last_seg)
new_sequence=""
for segment in path_on_target:
if segment==cds.segments_list[0]:
new_sequence+=get_segment_sequence(seg_seq,segment)[cds.pos_start-1:]
elif segment==cds.segments_list[-1]:
new_sequence+=get_segment_sequence(seg_seq,segment)[0:cds.pos_stop]
else:
new_sequence+=get_segment_sequence(seg_seq,segment)
new_prot=traduction(get_rna(new_sequence))
print("original prot = ", cds_prot)
print("new prot = ", new_prot) # print new version with new start and stop codons of deleted. (before and after the gene sequence)
if new_prot[0]!="Met":
print("no Met at the start of the new version of the protein -> start codon loss")
if "Met" in new_prot:
print("Met found at position", (new_prot.index("Met")+1),"-> possible later start codon") # print cette version de la prot
print("look for start codon before. if none, print 'no start codon, likely gene not active'")
# récupérer n pb avant, les traduire, chercher la dernière Met (list[::-1].index("Met")), donner cette version de la prot
sequence_before=get_sequence_before(path_on_target[0],seg_seq,100,paths,cds)
print(sequence_before)
first_stop_index=new_prot.index("*") if "*" in new_prot else "None"
if "*" not in new_prot:
print("no stop codon")
# récupérer n pb après, les traduire, chercher le premier *, donner cette version de la prot.
elif first_stop_index+1!=len(new_prot):
print("early stop codon at position",(first_stop_index+1),"instead of",len(new_prot))
else:
print("stop codon found at expected position")
sequence_after=get_sequence_after(path_on_target[-1],seg_seq,100,paths,cds)
print(sequence_after)
for var in cds_var[cds_id]:
#print("\n",var)
size_var=int(var[11])
type_var=var[8]
pos_var=int(var[12])-1

nina.marthe_ird.fr
committed
if type_var=="insertions":
sequence_var=var[10]
if size_var%3==0:
print("pas de décalage du cadre de lecture")
trad_seq_ins=traduction(get_rna(sequence_var))

nina.marthe_ird.fr
committed
if pos_var%3==0:
print("insertion entre deux codons")
if "*" in trad_seq_ins:
print("apparition d'un codon stop")
print(f'ancienne sequence : {", ".join(cds_prot)}')
print(f'nouvelle sequence : {", ".join(cds_prot[0:(pos_var//3)-1])}, *')
else:
print(f'ancienne sequence : {", ".join(cds_prot)}')
print(f'{type_var} de {size_var//3} acides amines {", ".join(trad_seq_ins)} à la position {pos_var//3}')

nina.marthe_ird.fr
committed
else:
print("insertion au milieu d'un codon, changement de certains acides amines")
elif type_var=="deletions":
sequence_var=line[9]
if size_var%3==0:
print("pas de décalage du cadre de lecture")
trad_seq_ins=traduction(get_rna(sequence_var))
if pos_var%3==0:
print("deletion de codons entiers")
if "*" in trad_seq_ins:
print("disparition d'un codon stop")
else:
print(f'ancienne sequence : {", ".join(cds_prot)}')
print(f'{type_var} de {size_var//3} acides amines {", ".join(trad_seq_ins)} à la position {pos_var//3}')

nina.marthe_ird.fr
committed
else:
print("deletion au milieu d'un codon, changement de certains acides amines")