Newer
Older
Jeremy Auclair
committed
# Dimensions of ndvi dataset : (time, y, x)
Jeremy Auclair
committed
ds.variables['NDVI'].set_auto_mask(False)
NDVI = ds.variables['NDVI'][i: i + time_slice, :, :]
with nc.Dataset(weather_path, mode='r') as ds:
Jeremy Auclair
committed
# Dimensions of ndvi dataset : (time, y, x)
Jeremy Auclair
committed
ds.variables['Rain'].set_auto_mask(False)
Rain = ds.variables['Rain'][i: i + time_slice, :, :]
ds.variables['ET0'].set_auto_mask(False)
ET0 = ds.variables['ET0'][i: i + time_slice, :, :]
return NDVI, Rain, ET0

Jérémy AUCLAIR
committed
def write_outputs(save_path: str, DP: np.ndarray, SWCe: np.ndarray, SWCr: np.ndarray, E: np.ndarray, Tr: np.ndarray, Irrig: np.ndarray, additional_outputs: dict[str, int], additional_outputs_data: np.ndarray, i: int, time_slice: int, write_all = False) -> None:
Write outputs to netcdf file based on conditions of current loop.
Arguments
=========
1. save_path: ``str``
output netcdf save path
2. DP: ``np.ndarray``
deep percolaton ``np.ndarray``
3. SWCe: ``np.ndarray``
soil water content of evaporative layer ``np.ndarray``
4. SWCr: ``np.ndarray``
soil water content of root layer ``np.ndarray``
5. E: ``np.ndarray``
surface evaporation ``np.ndarray``
6. Tr: ``np.ndarray``
plant transpiration ``np.ndarray``
7. Irrig: ``np.ndarray``
simulated irrigation ``np.ndarray``
Jeremy Auclair
committed
8. additional_outputs: ``Dict[str, int]``
dictionnary containing additional outputs and their scale factors
9. additional_outputs_data: ``List[np.ndarray]``
list of additional output ``np.ndarray``. Is ``None`` if no additional ouputs
10. i: ``int``
current loop counter
number of loaded time slices
weather to write the whole output dataset
"""
# Write whole output dataset
if write_all:

Jérémy AUCLAIR
committed
with nc.Dataset(save_path, mode = 'a') as outputs:
Jeremy Auclair
committed
# Dimensions of output dataset : (time, y, x)
# Deep percolation
Jeremy Auclair
committed
outputs.variables['DP'][:, :, :] = DP
# Soil water content of the evaporative layer
Jeremy Auclair
committed
outputs.variables['SWCe'][:, :, :] = SWCe
# Soil water content of the root layer
Jeremy Auclair
committed
outputs.variables['SWCr'][:, :, :] = SWCr
# Evaporation
Jeremy Auclair
committed
outputs.variables['E'][:, :, :] = E
# Transpiration
Jeremy Auclair
committed
outputs.variables['Tr'][:, :, :] = Tr
# Irrigation
Jeremy Auclair
committed
outputs.variables['Irr'][:, :, :] = Irrig
# Additionnal outputs
if additional_outputs:
k = 0
Jeremy Auclair
committed
for var in additional_outputs.keys():

Jérémy AUCLAIR
committed
outputs.variables[var][:, :, :] = additional_outputs_data[k,:,:,:]
k+=1
else:
# Write given number of time slices

Jérémy AUCLAIR
committed
with nc.Dataset(save_path, mode = 'a') as outputs:
Jeremy Auclair
committed
# Dimensions of output dataset : (time, y, x)
# Deep percolation
Jeremy Auclair
committed
outputs.variables['DP'][i - time_slice + 1: i + 1, :, :] = DP
# Soil water content of the evaporative layer
Jeremy Auclair
committed
outputs.variables['SWCe'][i - time_slice + 1: i + 1, :, :] = SWCe
# Soil water content of the root layer
Jeremy Auclair
committed
outputs.variables['SWCr'][i - time_slice + 1: i + 1, :, :] = SWCr
# Evaporation
Jeremy Auclair
committed
outputs.variables['E'][i - time_slice + 1: i + 1, :, :] = E
# Transpiration
Jeremy Auclair
committed
outputs.variables['Tr'][i - time_slice + 1: i + 1, :, :] = Tr
# Irrigation
Jeremy Auclair
committed
outputs.variables['Irr'][i - time_slice + 1: i + 1, :, :] = Irrig
# Additionnal outputs
if additional_outputs:
k=0
Jeremy Auclair
committed
for var in additional_outputs.keys():

Jérémy AUCLAIR
committed
outputs.variables[var][i - time_slice + 1: i + 1, :, :] = additional_outputs_data[k,:,:,:]
k+=1
Jeremy Auclair
committed
return None

Jérémy AUCLAIR
committed
@njit((uint8[:, :], uint16[:, :], uint16[:, :], float32[:, :], float32[:, :], float32[:, :], boolean[:, :], boolean[:, :], float32[:, :], float32[:, :], float32[:, :], uint16[:, :], uint16[:, :], float32[:, :], float32[:, :], int64, float32[:, :, :], types.ListType(types.unicode_type), types.ListType(types.unicode_type), int16[:], boolean, int16[:], types.ListType(types.unicode_type), int16[:], int16[:, :, :, :], int64), nogil = True, parallel = True, fastmath = True, cache = True)
def samir_daily(NDVI: np.ndarray, ET0: np.ndarray, Rain: np.ndarray, Wfc: np.ndarray, Wwp: np.ndarray, Kcb_max_obs: np.ndarray, Irrig_auto: np.ndarray, Irrig_test: np.ndarray, Dr0: np.ndarray, Dd0: np.ndarray, Zr0: np.ndarray, E0: np.ndarray, Tr0: np.ndarray, Dei0: np.ndarray, Dep0: np.ndarray, iday: int, params: np.ndarray, param_list: list[str], scaling_names: list[str], scaling_array: np.ndarray, write_additional_data: bool, additional_outputs: np.ndarray, additional_names: list[str], additional_idx: list[int], additional_outputs_data: np.ndarray, time_slice: int) -> tuple[np.ndarray]:
Run the SAMIR model on a single day. Inputs and outputs are `numpy.ndarray`.
Calls functions compiled with numba for intermediary calculations.
Jeremy Auclair
committed
1. NDVI: ``np.ndarray``
input NDVI
Jeremy Auclair
committed
2. ET0: ``np.ndarray``
input ET0
input Rain
field capacity
field wilting point
Jeremy Auclair
committed
6. Kcb_max_obs: ``np.ndarray``
observed maximum value of Kcb
7. Irrig_test: ``np.ndarray``
boolean array that is true after the Kcb has reached 80%
of its maximum

Jérémy AUCLAIR
committed
8. params: ``np.ndarray``
dictionnary containing the rasterized
samir parameters and their scale factors
Jeremy Auclair
committed
9. Dr0: ``np.ndarray``
previous day root layer depletion
Jeremy Auclair
committed
10. Dd0: ``np.ndarray``
previous day deep layer depletion
Jeremy Auclair
committed
11. Zr0: ``np.ndarray``
previous day root depth
Jeremy Auclair
committed
12. E0: ``np.ndarray``
previous day surface evaporation
Jeremy Auclair
committed
13. Tr0: ``np.ndarray``
previous day plant transpiration
Jeremy Auclair
committed
14. Dei0: ``np.ndarray``
previous day surface layer depletion
for irrigation part
Jeremy Auclair
committed
15. Dep0: ``np.ndarray``
previous day surface layer depletion
for precipitation part
Jeremy Auclair
committed
16. iday: ``int``
current loop counter

Jérémy AUCLAIR
committed
17. scaling_dict: ``np.ndarray``
Jeremy Auclair
committed
scaling dictionnary for the nominal outputs

Jérémy AUCLAIR
committed
18. additional_names: ``list[str]``
list of names of additional outputs
19. field_indices: ``list[int]``
list of indices corresponding to additional names
20. additional_outputs: ``np.ndarray``
Jeremy Auclair
committed
dictionary containing the names of additional
output data and their integer scale

Jérémy AUCLAIR
committed
21. additional_outputs_data: ``np.ndarray``
Jeremy Auclair
committed
list of numpy arrays containing the scaled values of
the additional outputs

Jérémy AUCLAIR
committed
22. time_slice: ``int``
Jeremy Auclair
committed
value of the current time slice, used to
correctly write additional output data
Jeremy Auclair
committed

Jérémy AUCLAIR
committed
1. current_day_outputs: `Tuple[np.ndarray]`
multiple `numpy.ndarray` arrays are returned as a tuple for current day
"""
# Create aliases

Jérémy AUCLAIR
committed
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
DiffE = params[find_index(param_list, 'DiffE')]
DiffR = params[find_index(param_list, 'DiffR')]
FW = params[find_index(param_list, 'FW')]
FCmax = params[find_index(param_list, 'FCmax')]
Foffset = params[find_index(param_list, 'Foffset')]
Fslope = params[find_index(param_list, 'Fslope')]
frac_TAW = params[find_index(param_list, 'frac_TAW')]
Init_RU = params[find_index(param_list, 'Init_RU')]
Kcbmax = params[find_index(param_list, 'Kcbmax')]
Kcmax = params[find_index(param_list, 'Kcmax')]
Kslope = params[find_index(param_list, 'Kslope')]
Koffset= params[find_index(param_list, 'Koffset')]
Kcb_min_start_irrig = params[find_index(param_list, 'Kcb_min_start_irrig')]
frac_Kcb_stop_irrig = params[find_index(param_list, 'frac_Kcb_stop_irrig')]
Lame_max = params[find_index(param_list, 'Lame_max')]
Lame_min = params[find_index(param_list, 'Lame_min')]
REW = params[find_index(param_list, 'REW')]
Ze = params[find_index(param_list, 'Ze')]
Zsoil = params[find_index(param_list, 'Zsoil')]
minZr = params[find_index(param_list, 'minZr')]
maxZr = params[find_index(param_list, 'maxZr')]
p = params[find_index(param_list, 'p')]
Jeremy Auclair
committed
# Scale input parameters

Jérémy AUCLAIR
committed
NDVI = NDVI.astype(np.float32) / np.float32(255)
Rain = Rain.astype(np.float32) / np.float32(100)
ET0 = ET0.astype(np.float32) / np.float32(1000)
E0 = E0.astype(np.float32) / scaling_array[find_index(scaling_names, 'E')]
Tr0 = Tr0.astype(np.float32) / scaling_array[find_index(scaling_names, 'Tr')]
# Update variables
# Fraction cover
# Equation: Fslope * NDVI + Foffset

Jérémy AUCLAIR
committed
FCov = Fslope * NDVI + Foffset
# Equation: min(max(FCov, 0), FCmax)

Jérémy AUCLAIR
committed
FCov = np.minimum(np.maximum(FCov, np.float32(0)), FCmax)
# Root depth upate
# Equation: Zr = max(minZr + (FCov / FCmax) * (maxZr - minZr), Ze + 0.001)

Jérémy AUCLAIR
committed
Zr = np.maximum(minZr + (FCov / FCmax) * (maxZr - minZr), Ze + np.float32(0.001))
# Water capacities
TAW = (Wfc - Wwp) * Zr

Jérémy AUCLAIR
committed
TDW = (Wfc - Wwp) * (Zsoil - Zr)
TEW = (Wfc - (Wwp / np.float32(2))) * Ze
RUE = (Wfc - Wwp) * Ze
# Update depletions from root increase

Jérémy AUCLAIR
committed
Dei = Dei0
Dep = Dep0
Dr = update_Dr_from_root(Wfc, Wwp, Zr, Zsoil, Dr0, Dd0, Zr0)
Dd = update_Dd_from_root(Wfc, Wwp, Zr, Zsoil, Dr0, Dd0, Zr0)
# Kcb
# Equation: Kslope * NDVI + Koffset

Jérémy AUCLAIR
committed
Kcb = np.minimum(np.maximum(Kslope * NDVI + Koffset, np.float32(0)), Kcbmax)
Irrig_test = np.where(np.invert(Irrig_test) & (Kcb > frac_Kcb_stop_irrig * Kcb_max_obs), True, Irrig_test) # set Irrig_test to true when Kcb goes over Kcb_stop_irrig fraction of maximum and stay true
# Irrigation

Jérémy AUCLAIR
committed
Irrig = calculate_irrig(Dr, TAW, Rain, Kcb, Irrig_auto, Lame_max, Lame_min, Kcb_min_start_irrig, frac_Kcb_stop_irrig, Irrig_test, frac_TAW, Kcb_max_obs)
# Create temporary variable used multiple times

Jérémy AUCLAIR
committed
temp = np.subtract(Dr, Rain + Irrig)
# DP (Deep percolation)

Jérémy AUCLAIR
committed
DP = - np.minimum(Dd + np.minimum(temp, np.float32(0)), np.float32(0))
# Update depletions with Rainfall and/or irrigation
# Dei and Dep
# Equation: Dei = min(max(Dei - Rain - Irrig / FW, 0), TEW)

Jérémy AUCLAIR
committed
Dei = np.minimum(np.maximum(Dei - Rain - (Irrig / FW), np.float32(0)), TEW)
# Equation: Dep = min(max(Dep - Rain, 0), TEW)

Jérémy AUCLAIR
committed
Dep = np.minimum(np.maximum(Dep - Rain, np.float32(0)), TEW)

Jérémy AUCLAIR
committed
fewi = np.minimum(np.float32(1) - FCov, FW)
fewp = np.float32(1) - FCov - fewi
# De
# Equation: De = (Dei * fewi + Dep * fewp) / (fewi + fewp)

Jérémy AUCLAIR
committed
De = ((Dei * fewi) + (Dep * fewp)) / (fewi + fewp)
# Equation: De = where(De.isfinite, De, Dei * FW + Dep * (1 - FW))

Jérémy AUCLAIR
committed
De = np.where(np.isfinite(De), De, Dei * FW + Dep * (np.float32(1) - FW))
# Update depletions from rain and irrigation

Jérémy AUCLAIR
committed
Dr = np.minimum(np.maximum(temp, np.float32(0)), TAW)
Dd = np.minimum(np.maximum(Dd + np.minimum(temp, np.float32(0)), np.float32(0)), TDW)
temp = False # remove temp variable
# Diffusion coefficients
# Equation: check calculate_diff_re() and calculate_diff_dr functions

Jérémy AUCLAIR
committed
Diff_rei = calculate_diff_re(TAW, Dr, Zr, RUE, Dei, Wfc, Ze, DiffE)
Diff_rep = calculate_diff_re(TAW, Dr, Zr, RUE, Dep, Wfc, Ze, DiffE)
Diff_dr = calculate_diff_dr(TAW, TDW, Dr, Zr, Dd, Wfc, Zsoil, DiffR)
# Water Stress coefficient
if iday == 0:

Jérémy AUCLAIR
committed
Ks = np.minimum((TAW - Dr) / (TAW * (np.float32(1) - p)), np.float32(1))
else:
# When not first day

Jérémy AUCLAIR
committed
Ks = calculate_Ks(Dr, TAW, p, E0, Tr0)
# Reduction coefficient for evaporation
W = calculate_W(TEW, Dei, Dep, fewi, fewp)
# Equation: Kei = np.minimum(W * Kri * (Kc_max - Kcb), fewi * Kc_max)

Jérémy AUCLAIR
committed
Kei = calculate_Ke(W, Dei, TEW, REW, Kcmax, Kcb, fewi)
# Equation: Kep = np.minimum((1 - W) * Krp * (Kc_max - Kcb), fewp * Kc_max)

Jérémy AUCLAIR
committed
Kep = calculate_Ke((np.float32(1)-W), Dep, TEW, REW, Kcmax, Kcb, fewp)
# Prepare coefficients for evapotranspiration

Jérémy AUCLAIR
committed
Tei = calculate_Te(Dei, Dr, Ks, Kcb, Ze, Zr, TEW, TAW, ET0)
Tep = calculate_Te(Dep, Dr, Ks, Kcb, Ze, Zr, TEW, TAW, ET0)
# Update depletions
Dei = update_De_from_Diff(Dei, fewi, Kei, Tei, Diff_rei, TEW, ET0)
Dep = update_De_from_Diff(Dep, fewp, Kep, Tep, Diff_rep, TEW, ET0)
# Equation: De = (Dei * fewi + Dep * fewp) / (fewi + fewp)

Jérémy AUCLAIR
committed
De = ((Dei * fewi) + (Dep * fewp)) / (fewi + fewp)
# Equation: De = where(De.isfinite, De, Dei * FW + Dep * (1 - FW))

Jérémy AUCLAIR
committed
De = np.where(np.isfinite(De), De, Dei * FW + Dep * (np.float32(1) - FW))
# Evaporation

Jérémy AUCLAIR
committed
E = np.maximum((Kei + Kep) * ET0, np.float32(0))
# Transpiration
Tr = Kcb * Ks * ET0
# Update depletions (root and deep zones) at the end of the day

Jérémy AUCLAIR
committed
Dr = np.minimum(np.maximum(Dr + E + Tr - Diff_dr, np.float32(0)), TAW)
Dd = np.minimum(np.maximum(Dd + Diff_dr, np.float32(0)), TDW)
# Soil water content of evaporative laye
SWCe = calculate_SWCe(Dei, Dep, fewi, fewp, TEW)
# Soil water content of root layer

Jérémy AUCLAIR
committed
SWCr = np.float32(1) - Dr/TAW
Jeremy Auclair
committed
# Scale outputs before return

Jérémy AUCLAIR
committed
DP = (DP * scaling_array[find_index(scaling_names, 'DP')]).astype(np.int16)
Irrig = (Irrig * scaling_array[find_index(scaling_names, 'Irr')]).astype(np.int16)
SWCe = (SWCe * scaling_array[find_index(scaling_names, 'SWCe')]).astype(np.int16)
SWCr = (SWCr * scaling_array[find_index(scaling_names, 'SWCr')]).astype(np.int16)
E = (E * scaling_array[find_index(scaling_names, 'E')]).astype(np.int16)
Tr = (Tr * scaling_array[find_index(scaling_names, 'Tr')]).astype(np.uint16)
Jeremy Auclair
committed
# Collect additionnal outputs

Jérémy AUCLAIR
committed
if write_additional_data:
variable_mapping = {
'FCov': FCov, 'Zr': Zr, 'TAW': TAW, 'TDW': TDW, 'TEW': TEW, 'RUE': RUE, 'Dei': Dei, 'Dep': Dep,
'De': De, 'Dr': Dr, 'Dd': Dd, 'Kcb': Kcb, 'fewi': fewi, 'fewp': fewp, 'Diff_rei': Diff_rei,
'Diff_rep': Diff_rep, 'Diff_dr': Diff_dr, 'Ks': Ks, 'W': W, 'Kei': Kei, 'Kep': Kep, 'Tei': Tei,
'Tep': Tep}
for var, idx in zip(additional_names, additional_idx):
additional_outputs_data[idx, iday % time_slice, :, :] = np.round(variable_mapping[var] * additional_outputs[idx]).astype(np.int16)
Jeremy Auclair
committed
return DP, Dd, Dei, Dep, Dr, E, Irrig, Irrig_test, SWCe, SWCr, Tr, Zr

Jérémy AUCLAIR
committed
def run_samir(csv_param_file: str, ndvi_cube_path: str, weather_path: str, soil_params_path: str, land_cover_path: str, irrigation_raster: str, init_RU_path: str, Kcb_max_obs_path: str, save_path: str, scaling_dict: dict[str, int] = {'E': 1000, 'Tr': 1000, 'SWCe': 1000, 'SWCr': 1000, 'DP': 100, 'Irr': 100}, additional_outputs: dict[str, int] = None, available_ram: int = 8, available_cpu: int = 4, compress_outputs: bool = False) -> None:
"""
Run the *SAMIR* model on the prepared inputs. Calls the ``samir_daily()`` in a time loop.
Maximizes memory usage with given limits to run faster.
Arguments
=========
1. csv_param_file: ``str``
SAMIR csv parameter file
2. ndvi_cube_path: ``str``
path to ndvi cube
3. weather_path: ``str``
path to weather cube
4. soil_params_path: ``str``
path to soil dataset
5. land_cover_path: ``str``
path to land cover raster

Jérémy AUCLAIR
committed
6. irrigation_raster: ``str``
path to netCDF file containing an irrigation mask
for input parameters

Jérémy AUCLAIR
committed
7. init_RU_path: ``str``
path to netCDF file containing initial soil water content raster
8. Kcb_max_obs_path: ``str``
Jeremy Auclair
committed
path to netCDF containing a single
array of maximum observed Kcb values

Jérémy AUCLAIR
committed
8. save_path: ``str``
path to save the model outputs

Jérémy AUCLAIR
committed
9. scaling_dict: ``Dict[str, int]`` ``default = {'E': 1000, 'Tr': 1000, 'SWCe': 1000, 'SWCr': 1000, 'DP': 100, 'Irr': 100}``
Jeremy Auclair
committed
scaling dictionnary for the nominal outputs

Jérémy AUCLAIR
committed
10. additional_outputs: ``Dict[str, int]`` ``default = None``
dictionnary containing the names and scale
factors of potential additional outouts

Jérémy AUCLAIR
committed
11. available_ram: ``int`` ``default = 8``
available RAM in **GiB** for the model

Jérémy AUCLAIR
committed
12. available_cpu: ``int`` ``default = 4``
number of available **physical** CPU cores
12. compress_outputs: ``bool`` ``default = False``
choice to compress output file (takes longer)
Returns
=======
``None``
"""
# Turn off numpy warings
np.seterr(divide='ignore', invalid='ignore')
# Test if memory requirement is not loo large
if np.ceil(virtual_memory().available / (1024**3)) < available_ram:
print('\nRequested', available_ram, 'GiB of memory when available memory is approximately', round(virtual_memory().available / (1024**3), 1), 'GiB.\n\nExiting script.\n')
return None
Jeremy Auclair
committed
# Set maximum number of usable CPU cores
# Get number of CPU cores and limit max value (working on a cluster requires os.sched_getaffinity to get true number of available CPUs,
# this is not true on a "personnal" computer, hence the use of the min function)
try:
nb_threads = min([available_cpu * 2, cpu_count(logical = True), len(os.sched_getaffinity(0))])
except:
nb_threads = min([available_cpu * 2, cpu_count(logical = True)]) # os.sched_getaffinity won't work on windows
Jeremy Auclair
committed
set_num_threads(nb_threads)
Jeremy Auclair
committed
# ============ Manage inputs ============ #
# NDVI (to have a correct empty dataset structure)
Jeremy Auclair
committed
ndvi_cube = xr.open_dataset(ndvi_cube_path)
Jeremy Auclair
committed
ndvi_cube_empty = ndvi_cube.drop_sel(time = ndvi_cube.time) # create dataset with a time dimension of length 0
# SAMIR Parameters

Jérémy AUCLAIR
committed
parameter_array, Irrig_auto, Init_RU, param_list = rasterize_samir_parameters(csv_param_file, land_cover_path, irrigation_raster, init_RU_path)
# ============ Get size of dataset ============ #
x_size = ndvi_cube.sizes['x']
y_size = ndvi_cube.sizes['y']
time_size = ndvi_cube.sizes['time']
dimensions = ndvi_cube_empty.sizes # to create empty output dataset
Jeremy Auclair
committed
dates = ndvi_cube.time
Jeremy Auclair
committed
ndvi_cube.close()

Jérémy AUCLAIR
committed
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
# ============ Scaling factors ============ #
# Standard scaling dict
scaling_array = []
for var in scaling_dict.keys():
scaling_array.append(scaling_dict[var])
scaling_array = np.ascontiguousarray(np.array(scaling_array, dtype = np.int16))
scaling_names = List(list(scaling_dict.keys()))
# Manage additional output parameters
if additional_outputs is not None:
# Additional output scaling dict
additional_scaling_array = []
for var in additional_outputs.keys():
additional_scaling_array.append(additional_outputs[var])
additional_scaling_array = np.array(additional_scaling_array, dtype = np.int16)
additional_names = list(additional_outputs.keys())
field_name_to_index = {name: idx for idx, name in enumerate(additional_outputs)}
additional_idx = np.ascontiguousarray(np.array([field_name_to_index[var] for var in additional_names], dtype = np.int16))
additional_names = List(additional_names)
write_additional_data = True
else:
# Create empty variables for correct numba parsing
additional_scaling_array = np.array([0], dtype = np.int16)
additional_idx = np.array([0], dtype = np.int16)
additional_names = List(['0'])
additional_outputs_data = np.empty(shape = (1,1,1,1), dtype = np.int16)
write_additional_data = False
# ============ Memory handling ============ #
# Check how much memory the calculation would take if all the inputs would be loaded in memory
# Unit is GiB
# Datatype of variables is float32 for calculation
nb_inputs = 3 # NDVI, Rain, ET0
if additional_outputs:
nb_outputs = 6 + len(additional_outputs) # DP, E, Irr, SWCe, SWCr, Tr
else:
Jeremy Auclair
committed
nb_outputs = 6 # DP, E, Irr, SWCe, SWCr, Tr
Jeremy Auclair
committed
nb_variables = 38 # calculation variables (e.g: Dd, Diff_rei, FCov, etc.)

Jérémy AUCLAIR
committed
nb_params = parameter_array.shape[0]
Jeremy Auclair
committed
# Get total memory requirement
total_memory_requirement = calculate_memory_requirement(x_size, y_size, time_size, nb_inputs, nb_outputs, nb_variables, nb_params, nb_bytes)
# Determine how many time slices can be loaded in memory at once
# This will allow faster I/O operations and a faster runtime
time_slice, remainder_to_load, already_loaded = calculate_time_slices_to_load(x_size, y_size, time_size, nb_inputs, nb_outputs, nb_variables, nb_params, nb_bytes, available_ram)
Jeremy Auclair
committed
# Get actual memory requirement
actual_memory_requirement = calculate_memory_requirement(x_size, y_size, time_slice, nb_inputs, nb_outputs, nb_variables, nb_params, nb_bytes)
Jeremy Auclair
committed
print_size1, print_unit1 = format_Byte_size(total_memory_requirement, decimals = 1)
print_size2, print_unit2, = format_Byte_size(actual_memory_requirement, decimals = 1)
print('\nApproximate memory requirement of calculation:', print_size1, print_unit1 + ', available memory:', available_ram, 'GiB\n\nLoading blocks of', time_slice, 'time bands, actual memory requirement:', print_size2, print_unit2, '\n')
# ============ Prepare outputs ============ #
model_outputs = prepare_output_dataset(ndvi_cube_path, dimensions, scaling_dict, additional_outputs = additional_outputs)
# Create encoding dictionnary
Jeremy Auclair
committed
encoding_dict = {}
for variable in list(model_outputs.keys()):
# Write encoding dict
encod = {}
Jeremy Auclair
committed
if variable not in scaling_dict.keys(): # additional outputs are not in the scaling dict
encod['dtype'] = 'i2'
else:
encod['dtype'] = 'u2'
# TODO: figure out optimal file chunk size
Jeremy Auclair
committed
encod['chunksizes'] = (1, y_size, x_size)
if compress_outputs:
encod['zlib'] = True
encod['complevel'] = 1
encoding_dict[variable] = encod
# Save empty output
Jeremy Auclair
committed
print('Writing empty output dataset\n')
Jeremy Auclair
committed
model_outputs.to_netcdf(save_path, encoding = encoding_dict, unlimited_dims = 'time') # add time as an unlimited dimension, allows to append data along the time dimension
model_outputs.close()
# ============ Prepare time iterations ============#
# input soil data
Jeremy Auclair
committed
with nc.Dataset(soil_params_path, mode = 'r') as ds:
Jeremy Auclair
committed
ds.variables['Wfc'].set_auto_mask(False)
Wfc = ds.variables['Wfc'][:, :]
ds.variables['Wwp'].set_auto_mask(False)
Wwp = ds.variables['Wwp'][:, :]
Jeremy Auclair
committed
# Observed Kcb max data
with nc.Dataset(Kcb_max_obs_path, mode = 'r') as ds:
ds.variables['Kcb_max_obs'].set_auto_mask(False)
Kcb_max_obs = ds.variables['Kcb_max_obs'][:, :]

Jérémy AUCLAIR
committed
# ============ Time loop ============ #
# Create progress bar
progress_bar = tqdm(total = len(dates), desc = '', unit = ' days')
for i in range(0, len(dates)):
# ============ Load input data and prepare output data ============ #
# Based on available memory and previous calculation of time slices to load,
# load a given number of time slices
if time_slice == time_size and not already_loaded: # if whole dataset fits in memory and it has not already been loaded
Jeremy Auclair
committed
# Update progress bar
progress_bar.set_description_str(desc = 'Reading inputs')
NDVI, Rain, ET0 = read_inputs(ndvi_cube_path, weather_path, i, time_slice, load_all = True)
already_loaded = True
Jeremy Auclair
committed
write_remainder = False
# Prepare output data
# Standard outputs
DP, E, Irrig, SWCe, SWCr, Tr = get_empty_arrays(x_size, y_size, time_slice, 6)
# Additionnal outputs
if additional_outputs:

Jérémy AUCLAIR
committed
additional_outputs_data = get_empty_arrays(x_size, y_size, time_slice, len(additional_outputs.keys()), array = True)
Jeremy Auclair
committed
# Update progress bar
progress_bar.set_description_str(desc = 'Running model')
elif i % time_slice == 0: # load a time slice every time i is divisible by the size of the time slice
if i + time_slice <= time_size: # if the time slice does not gow over the dataset size
Jeremy Auclair
committed
# Update progress bar
progress_bar.set_description_str(desc = 'Reading inputs')
NDVI, Rain, ET0 = read_inputs(ndvi_cube_path, weather_path, i, time_slice)
Jeremy Auclair
committed
write_remainder = False
# Prepare output data
DP, E, Irrig, SWCe, SWCr, Tr = get_empty_arrays(x_size, y_size, time_slice, 6)
# Additionnal outputs
if additional_outputs:

Jérémy AUCLAIR
committed
additional_outputs_data = get_empty_arrays(x_size, y_size, time_slice, len(additional_outputs.keys()), array = True)
Jeremy Auclair
committed
# Update progress bar
progress_bar.set_description_str(desc = 'Running model')
else: # load the remainder when the time slice would go over the dataset size
Jeremy Auclair
committed
# Update progress bar
progress_bar.set_description_str(desc = 'Reading inputs')
NDVI, Rain, ET0 = read_inputs(ndvi_cube_path, weather_path, i, remainder_to_load)
Jeremy Auclair
committed
write_remainder = True
# Prepare output data
DP, E, Irrig, SWCe, SWCr, Tr = get_empty_arrays(x_size, y_size, remainder_to_load, 6)
# Additionnal outputs
if additional_outputs:

Jérémy AUCLAIR
committed
additional_outputs_data = get_empty_arrays(x_size, y_size, remainder_to_load, len(additional_outputs.keys()), array = True)
Jeremy Auclair
committed
# Update progress bar
progress_bar.set_description_str(desc = 'Running model')
if i == 0:

Jérémy AUCLAIR
committed
E0, Tr0, Zr0, Dei0, Dep0, Dr0, Dd0, Irrig_test = get_starting_conditions(parameter_array, param_list, NDVI[0], Init_RU, Wfc, Wwp, y_size, x_size)
# Run SAMIR daily
DP[i % time_slice], Dd0, Dei0, Dep0, Dr0, E[i % time_slice], Irrig[i % time_slice], Irrig_test, SWCe[i % time_slice], SWCr[i % time_slice], Tr[i % time_slice], Zr0 = samir_daily(NDVI[i % time_slice], ET0[i % time_slice], Rain[i % time_slice], Wfc, Wwp, Kcb_max_obs, Irrig_auto, Irrig_test, Dr0, Dd0, Zr0, E0, Tr0, Dei0, Dep0, i, parameter_array, param_list, scaling_names, scaling_array, write_additional_data, additional_scaling_array, additional_names, additional_idx, additional_outputs_data, time_slice)
# Update previous day values
Jeremy Auclair
committed
E0, Tr0 = E[i % time_slice], Tr[i % time_slice]
# ============ Write outputs ============ #
# Based on available memory and previous calculation of time slices to load,

Jérémy AUCLAIR
committed
# write a given number of time slices
if time_slice == time_size and i == time_size - 1: # if whole dataset fits in memory, write data at the end of the loop
Jeremy Auclair
committed
# Remove unecessary data
del NDVI, Rain, ET0
collect() # free up unused memory
Jeremy Auclair
committed
# Update progress bar
progress_bar.set_description_str(desc = 'Writing outputs')
Jeremy Auclair
committed
write_outputs(save_path, DP, SWCe, SWCr, E, Tr, Irrig, additional_outputs, additional_outputs_data, i, time_slice, write_all = True)
# Remove written data
del DP, SWCe, SWCr, E, Tr, Irrig, additional_outputs_data
additional_outputs_data = None
Jeremy Auclair
committed
collect() # free up unused memory
Jeremy Auclair
committed
elif (i % time_slice == time_slice - 1) and (remainder_to_load != None): # write a time slice every time i is divisible by the size of the time slice
Jeremy Auclair
committed
# Remove unecessary data
del NDVI, Rain, ET0
collect() # free up unused memory
Jeremy Auclair
committed
# Update progress bar
progress_bar.set_description_str(desc = 'Writing outputs')
Jeremy Auclair
committed
write_outputs(save_path, DP, SWCe, SWCr, E, Tr, Irrig, additional_outputs, additional_outputs_data, i, time_slice)
Jeremy Auclair
committed
# Remove written data
del DP, SWCe, SWCr, E, Tr, Irrig, additional_outputs_data
additional_outputs_data = None
Jeremy Auclair
committed
collect() # free up unused memory
Jeremy Auclair
committed
elif i == time_size - 1 and write_remainder: # write the remainder when the time slice would go over the dataset size
Jeremy Auclair
committed
# Remove unecessary data
del NDVI, Rain, ET0
collect() # free up unused memory
Jeremy Auclair
committed
# Update progress bar
progress_bar.set_description_str(desc = 'Writing outputs')
Jeremy Auclair
committed
write_outputs(save_path, DP, SWCe, SWCr, E, Tr, Irrig, additional_outputs, additional_outputs_data, i, remainder_to_load)
# Remove written data
del DP, SWCe, SWCr, E, Tr, Irrig, additional_outputs_data
additional_outputs_data = None
Jeremy Auclair
committed
collect() # free up unused memory
# Update progress bar
progress_bar.update()
# Close progress bar
progress_bar.close()
Jeremy Auclair
committed
print('\nWritting output dataset:', save_path)
Jeremy Auclair
committed
Jeremy Auclair
committed
with nc.Dataset(save_path, mode = 'a') as model_outputs:
model_outputs.variables['time'].units = f'days since {np.datetime_as_string(dates[0], unit = "D")} 00:00:00' # set correct unit
model_outputs.variables['time'][:] = np.arange(0, len(dates)) # save dates as integers representing the number of days since the first day
model_outputs.sync() # flush data to disk
return None