Skip to content
Snippets Groups Projects
dev_samir_xarray.ipynb 74.5 KiB
Newer Older
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import xarray as xr\n",
    "from dask.distributed import Client\n",
    "import os\n",
    "import numpy as np\n",
    "from typing import List, Tuple, Union\n",
    "import warnings\n",
    "import gc\n",
    "from parameters.params_samir_class import samir_parameters\n",
    "from config.config import config\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "\n",
    "def rasterize_samir_parameters(csv_param_file: str, empty_dataset: xr.Dataset, land_cover_raster: str, chunk_size: dict) -> Tuple[xr.Dataset, dict]:\n",
    "    \"\"\"\n",
    "    Creates a raster `xarray` dataset from the csv parameter file, the land cover raster and an empty dataset\n",
    "    that contains the right structure (emptied ndvi dataset for example). For each parameter, the function loops\n",
    "    on land cover classes to fill the raster.\n",
    "\n",
    "    ## Arguments\n",
    "    1. csv_param_file: `str`\n",
    "        path to csv paramter file\n",
    "    2. empty_dataset: `xr.Dataset`\n",
    "        empty dataset that contains the right structure (emptied ndvi dataset for example).\n",
    "    3. land_cover_raster: `str`\n",
    "        path to land cover netcdf raster\n",
    "    4. chunk_size: `dict`\n",
    "        chunk_size for dask computation\n",
    "\n",
    "    ## Returns\n",
    "    1. parameter_dataset: `xr.Dataset`\n",
    "        the dataset containing all the rasterized Parameters\n",
    "    2. scale_factor: `dict`\n",
    "        dictionnary containing the scale factors for each parameter\n",
    "    \"\"\"\n",
    "    \n",
    "    # Load samir params into an object\n",
    "    table_param = samir_parameters(csv_param_file)\n",
    "    \n",
    "    # Set general variables\n",
    "    class_count = table_param.table.shape[1] - 2  # remove dtype and default columns\n",
    "    \n",
    "    # Open land cover raster\n",
    "    land_cover = xr.open_dataarray(land_cover_raster, chunks = chunk_size)\n",
    "    \n",
    "    # Create dataset\n",
    "    parameter_dataset = empty_dataset.copy(deep = True)\n",
    "    \n",
    "    # Create dictionnary containing the scale factors\n",
    "    scale_factor = {}\n",
    "    \n",
    "    # Loop on samir parameters and create \n",
    "    for parameter in table_param.table.index[1:]:\n",
    "        \n",
    "        # Create new variable and set attributes\n",
    "        parameter_dataset[parameter] = land_cover.copy(deep = True).astype('f4')\n",
    "        parameter_dataset[parameter].attrs['name'] = parameter\n",
    "        parameter_dataset[parameter].attrs['description'] = 'cf SAMIR Doc for detail'\n",
    "        parameter_dataset[parameter].attrs['scale factor'] = str(table_param.table.loc[table_param.table.index == parameter]['scale_factor'].values[0])\n",
    "        \n",
    "        # Assigne value in dictionnary\n",
    "        scale_factor[parameter] = 1/int(table_param.table.loc[table_param.table.index == parameter]['scale_factor'].values[0])\n",
    "        \n",
    "        # Loop on classes to set parameter values for each class\n",
    "        for class_val, class_name in zip(range(1, class_count + 1), table_param.table.columns[2:]):\n",
    "            \n",
    "            # Parameter values are multiplied by the scale factor in order to store all values as int16 types\n",
    "            # These values are then rounded to make sure there isn't any decimal point issues when casting the values to int16\n",
    "            parameter_dataset[parameter].values = np.where(parameter_dataset[parameter].values == class_val, round(table_param.table.loc[table_param.table.index == parameter][class_name].values[0]*table_param.table.loc[table_param.table.index == parameter]['scale_factor'].values[0]), parameter_dataset[parameter].values).astype('f4')\n",
    "    \n",
    "    # Return dataset converted to 'int16' data type to reduce memory usage\n",
    "    # and scale_factor dictionnary for later conversion\n",
    "    return parameter_dataset, scale_factor\n",
    "\n",
    "\n",
    "def setup_time_loop(calculation_variables_t1: List[str], calculation_variables_t2: List[str], empty_dataset: xr.Dataset) -> Tuple[xr.Dataset, xr.Dataset]:\n",
    "    \"\"\"\n",
    "    Creates two temporary `xarray Datasets` that will be used in the SAMIR time loop.\n",
    "    `variables_t1` corresponds to the variables for the previous day and `variables_t2`\n",
    "    corresponds to the variables for the current day. After each loop, `variables_t1`\n",
    "    takes the value of `variables_t2` for the corresponding variables.\n",
    "\n",
    "    ## Arguments\n",
    "    1. calculation_variables_t1: `List[str]`\n",
    "        list of strings containing the variable names\n",
    "        for the previous day dataset\n",
    "    2. calculation_variables_t2: `List[str]`\n",
    "        list of strings containing the variable names\n",
    "        for the current day dataset\n",
    "    3. empty_dataset: `xr.Dataset`\n",
    "        empty dataset that contains the right structure\n",
    "\n",
    "    ## Returns\n",
    "    1. variables_t1: `xr.Dataset`\n",
    "        output dataset for previous day\n",
    "    2. variables_t2: `xr.Dataset`\n",
    "        output dataset for current day\n",
    "    \"\"\"\n",
    "    \n",
    "    # Create new dataset\n",
    "    variables_t1 = empty_dataset.copy(deep = True)\n",
    "    \n",
    "    # Create empty DataArray for each variable\n",
    "    for variable in calculation_variables_t1:\n",
    "        \n",
    "        # Assign new empty DataArray\n",
    "        variables_t1[variable] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype = 'float32'))\n",
    "        variables_t1[variable].attrs['name'] = variable  # set name in attributes\n",
    "    \n",
    "    # Create new dataset\n",
    "    variables_t2 = empty_dataset.copy(deep = True)\n",
    "    \n",
    "    # Create empty DataArray for each variable\n",
    "    for variable in calculation_variables_t2:\n",
    "        \n",
    "        # Assign new empty DataArray\n",
    "        variables_t2[variable] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype = 'float32'))\n",
    "        variables_t2[variable].attrs['name'] = variable  # set name in attributes\n",
    "    \n",
    "    return variables_t1, variables_t2\n",
    "\n",
    "\n",
    "def prepare_outputs(empty_dataset: xr.Dataset, additional_outputs: List[str] = None) -> xr.Dataset:\n",
    "    \"\"\"\n",
    "    Creates the `xarray Dataset` containing the outputs of the SAMIR model that will be saved.\n",
    "    Additional variables can be saved by adding their names to the `additional_outputs` list.\n",
    "\n",
    "    ## Arguments\n",
    "    1. empty_dataset: `xr.Dataset`\n",
    "        empty dataset that contains the right structure\n",
    "    2. additional_outputs: `List[str]`\n",
    "        list of additional variable names to be saved\n",
    "\n",
    "    ## Returns\n",
    "    1. model_outputs: `xr.Dataset`\n",
    "        model outputs to be saved\n",
    "    \"\"\"\n",
    "    \n",
    "    # Evaporation and Transpiraion\n",
    "    model_outputs = empty_dataset.copy(deep = True)\n",
    "    \n",
    "    model_outputs['E'] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype = 'int16'))\n",
    "    model_outputs['E'].attrs['units'] = 'mm'\n",
    "    model_outputs['E'].attrs['standard_name'] = 'Evaporation'\n",
    "    model_outputs['E'].attrs['description'] = 'Accumulated daily evaporation in milimeters'\n",
    "    model_outputs['E'].attrs['scale factor'] = '1'\n",
    "    \n",
    "    model_outputs['Tr'] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype = 'int16'))\n",
    "    model_outputs['Tr'].attrs['units'] = 'mm'\n",
    "    model_outputs['Tr'].attrs['standard_name'] = 'Transpiration'\n",
    "    model_outputs['Tr'].attrs['description'] = 'Accumulated daily plant transpiration in milimeters'\n",
    "    model_outputs['Tr'].attrs['scale factor'] = '1'\n",
    "    \n",
    "    # Soil Water Content\n",
    "    model_outputs['SWCe'] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype = 'int16'))\n",
    "    model_outputs['SWCe'].attrs['units'] = 'mm'\n",
    "    model_outputs['SWCe'].attrs['standard_name'] = 'Soil Water Content of the evaporative zone'\n",
    "    model_outputs['SWCe'].attrs['description'] = 'Soil water content of the evaporative zone in milimeters'\n",
    "    model_outputs['SWCe'].attrs['scale factor'] = '1'\n",
    "    \n",
    "    model_outputs['SWCr'] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype = 'int16'))\n",
    "    model_outputs['SWCr'].attrs['units'] = 'mm'\n",
    "    model_outputs['SWCr'].attrs['standard_name'] = 'Soil Water Content of the root zone'\n",
    "    model_outputs['SWCr'].attrs['description'] = 'Soil water content of the root zone in milimeters'\n",
    "    model_outputs['SWCr'].attrs['scale factor'] = '1'\n",
    "    \n",
    "    # Irrigation\n",
    "    model_outputs['Irr'] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype = 'int16'))\n",
    "    model_outputs['Irr'].attrs['units'] = 'mm'\n",
    "    model_outputs['Irr'].attrs['standard_name'] = 'Irrigation'\n",
    "    model_outputs['Irr'].attrs['description'] = 'Simulated daily irrigation in milimeters'\n",
    "    model_outputs['Irr'].attrs['scale factor'] = '1'\n",
    "    \n",
    "    # Deep Percolation\n",
    "    model_outputs['DP'] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype = 'int16'))\n",
    "    model_outputs['DP'].attrs['units'] = 'mm'\n",
    "    model_outputs['DP'].attrs['standard_name'] = 'Deep Percolation'\n",
    "    model_outputs['DP'].attrs['description'] = 'Simulated daily Deep Percolation in milimeters'\n",
    "    model_outputs['DP'].attrs['scale factor'] = '1'\n",
    "    \n",
    "    if additional_outputs:\n",
    "        for var in additional_outputs:\n",
    "            model_outputs[var] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype = 'int16'))\n",
    "    \n",
    "    return model_outputs\n",
    "\n",
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
    "\n",
    "def xr_maximum(ds: xr.DataArray, value: Union[xr.DataArray, float, int]) -> xr.DataArray:\n",
    "    \"\"\"\n",
    "    Equivalent of `numpy.maximum(ds, value)` for xarray DataArrays\n",
    "\n",
    "    ## Arguments\n",
    "    1. ds: `xr.DataArray`\n",
    "        datarray to compare\n",
    "    2. value: `Union[xr.DataArray, float, int]`\n",
    "        value (scalar or dataarray) to compare\n",
    "\n",
    "    ## Returns\n",
    "    1. output: `xr.DataArray`\n",
    "        resulting dataarray with maximum value element-wise\n",
    "    \"\"\"\n",
    "    return xr.where(ds <= value, value, ds, keep_attrs = True)\n",
    "\n",
    "\n",
    "def xr_minimum(ds: xr.DataArray, value: Union[xr.DataArray, float, int]) -> xr.DataArray:\n",
    "    \"\"\"\n",
    "    Equivalent of `numpy.minimum(ds, value)` for xarray DataArrays\n",
    "\n",
    "    ## Arguments\n",
    "    1. ds: `xr.DataArray`\n",
    "        datarray to compare\n",
    "    2. value: `Union[xr.DataArray, float, int]`\n",
    "        value (scalar or dataarray) to compare\n",
    "\n",
    "    ## Returns\n",
    "    1. output: `xr.DataArray`\n",
    "        resulting dataarray with minimum value element-wise\n",
    "    \"\"\"\n",
    "    return xr.where(ds >= value, value, ds, keep_attrs = True)\n",
    "\n",
    "\n",
    "def calculate_diff_re(TAW: xr.DataArray, Dr: xr.DataArray, Zr: xr.DataArray, RUE: xr.DataArray, De: xr.DataArray, FCov: xr.DataArray, Ze_: xr.DataArray, DiffE_: xr.DataArray, scale_dict: dict) -> xr.DataArray:\n",
    "    \"\"\"\n",
    "    Calculates the diffusion between the top soil layer and the root layer.\n",
    "\n",
    "    ## Arguments\n",
    "    1. TAW: `xr.DataArray`\n",
    "        water capacity of root layer\n",
    "    2. Dr: `xr.DataArray`\n",
    "        depletion of root layer\n",
    "    3. Zr: `xr.DataArray`\n",
    "        height of root layer\n",
    "    4. RUE: `xr.DataArray`\n",
    "        total available surface water\n",
    "    5. De: `xr.DataArray`\n",
    "        depletion of the evaporative layer\n",
    "    6. FCov: `xr.DataArray`\n",
    "        fraction cover of plants\n",
    "    7. Ze_: `xr.DataArray`\n",
    "        height of evaporative layer (paramter)\n",
    "    8. DiffE_: `xr.DataArray`\n",
    "        diffusion coefficient between evaporative\n",
    "        and root layers (unitless, parameter)\n",
    "    9. scale_dict: `dict`\n",
    "        dictionnary containing the scale factors for\n",
    "        the rasterized parameters\n",
    "\n",
    "    ## Returns\n",
    "    1. diff_re: `xr.Dataset`\n",
    "        the diffusion between the top soil layer and\n",
    "        the root layer\n",
    "    \"\"\"\n",
    "    \n",
    "    # Temporary variables to make calculation easier to read\n",
    "    tmp1 = (((TAW - Dr) / Zr - (RUE - De) / (scale_dict['Ze'] * Ze_)) / FCov) * (scale_dict['DiffE'] * DiffE_)\n",
    "    tmp2 = ((TAW * scale_dict['Ze'] * Ze_) - (RUE - De - Dr) * Zr) / (Zr + scale_dict['Ze'] * Ze_) - Dr\n",
    "    \n",
    "    # Calculate diffusion according to SAMIR equation\n",
    "    diff_re = xr.where(tmp1 < 0, xr_maximum(tmp1, tmp2), xr_minimum(tmp1, tmp2))\n",
    "\n",
    "    # Return zero values where the 'DiffE' parameter is equal to 0\n",
    "    return xr.where(DiffE_ == 0, 0, diff_re)\n",
    "\n",
    "\n",
    "def calculate_diff_dr(TAW: xr.DataArray, TDW: xr.DataArray, Dr: xr.DataArray, Zr: xr.DataArray, Dd: xr.DataArray, FCov: xr.DataArray, Zsoil_: xr.DataArray, DiffR_: xr.DataArray, scale_dict: dict) -> xr.DataArray:\n",
    "    \"\"\"\n",
    "    Calculates the diffusion between the root layer and the deep layer.\n",
    "\n",
    "    ## Arguments\n",
    "    1. TAW: `xr.DataArray`\n",
    "        water capacity of root layer\n",
    "    2. TDW: `xr.DataArray`\n",
    "        water capacity of deep layer\n",
    "    3. Dr: `xr.DataArray`\n",
    "        depletion of root layer\n",
    "    4. Zr: `xr.DataArray`\n",
    "        height of root layer\n",
    "    5. Dd: `xr.DataArray`\n",
    "        depletion of deep layer\n",
    "    6. FCov: `xr.DataArray`\n",
    "        fraction cover of plants\n",
    "    7. Zsoil_: `xr.DataArray`\n",
    "        total height of soil (paramter)\n",
    "    8. DiffR_: `xr.DataArray`\n",
    "        Diffusion coefficient between root\n",
    "        and deep layers (unitless, parameter)\n",
    "    9. scale_dict: `dict`\n",
    "        dictionnary containing the scale factors for\n",
    "        the rasterized parameters\n",
    "\n",
    "    ## Returns\n",
    "    1. diff_dr: `xr.Dataset`\n",
    "        the diffusion between the root layer and the\n",
    "        deep layer\n",
    "    \"\"\"\n",
    "    \n",
    "    # Temporary variables to make calculation easier to read\n",
    "    tmp1 = (((TDW - Dd) / (scale_dict['Zsoil'] * Zsoil_ - Zr) - (TAW - Dr) / Zr) / FCov) * scale_dict['DiffR'] * DiffR_\n",
    "    tmp2 = (TDW *Zr - (TAW - Dr - Dd) * (scale_dict['Zsoil'] * Zsoil_ - Zr)) / (scale_dict['Zsoil'] * Zsoil_) - Dd\n",
    "    \n",
    "    # Calculate diffusion according to SAMIR equation\n",
    "    diff_dr = xr.where(tmp1 < 0, xr_maximum(tmp1, tmp2), xr_minimum(tmp1, tmp2))\n",
    "    \n",
    "    # Return zero values where the 'DiffR' parameter is equal to 0\n",
    "    return xr.where(DiffR_ == 0, 0, diff_dr)\n",
    "\n",
    "\n",
    "def calculate_W(TEW: xr.DataArray, Dei: xr.DataArray, Dep: xr.DataArray, fewi: xr.DataArray, fewp: xr.DataArray) -> xr.DataArray:\n",
    "    \"\"\"\n",
    "    Calculate W, the weighting factor to split the energy available\n",
    "    for evaporation depending on the difference in water availability\n",
    "    in the two evaporation components, ensuring that the larger and\n",
    "    the wetter, the more the evaporation occurs from that component\n",
    "\n",
    "    ## Arguments\n",
    "    1. TEW: `xr.DataArray`\n",
    "        water capacity of evaporative layer\n",
    "    2. Dei: `xr.DataArray`\n",
    "        depletion of the evaporative layer\n",
    "        (irrigation part)\n",
    "    3. Dep: `xr.DataArray`\n",
    "        depletion of the evaporative layer\n",
    "        (precipitation part)\n",
    "    4. fewi: `xr.DataArray`\n",
    "        soil fraction which is wetted by irrigation\n",
    "        and exposed to evaporation\n",
    "    5. fewp: `xr.DataArray`\n",
    "        soil fraction which is wetted by precipitation\n",
    "        and exposed to evaporation\n",
    "\n",
    "    ## Returns\n",
    "    1. W: `xr.DataArray`\n",
    "        weighting factor W\n",
    "    \"\"\"\n",
    "    \n",
    "    # Temporary variables to make calculation easier to read\n",
    "    tmp = fewi * (TEW - Dei)\n",
    "    \n",
    "    # Calculate the weighting factor to split the energy available for evaporation\n",
    "    W = 1 / (1 + (fewp * (TEW - Dep) / tmp ))\n",
    "\n",
    "    # Return W \n",
    "    return xr.where(tmp > 0, W, 0)\n",
    "\n",
    "\n",
    "def calculate_Kr(TEW: xr.DataArray, De: xr.DataArray, REW_: xr.DataArray, scale_dict: dict) -> xr.DataArray:\n",
    "    \"\"\"\n",
    "    calculates of the reduction coefficient for evaporation dependent \n",
    "    on the amount of water in the soil using the FAO-56 method\n",
    "\n",
    "    ## Arguments\n",
    "    1. TEW: `xr.DataArray`\n",
    "        water capacity of evaporative layer\n",
    "    2. De: `xr.DataArray`\n",
    "        depletion of evaporative layer\n",
    "    3. REW_: `xr.DataArray`\n",
    "        readily evaporable water\n",
    "    4. scale_dict: `dict`\n",
    "        dictionnary containing the scale factors for\n",
    "        the rasterized parameters\n",
    "\n",
    "    ## Returns\n",
    "    1. Kr: `xr.DataArray`\n",
    "        Kr coefficient\n",
    "    \"\"\"\n",
    "    \n",
    "    # Formula for calculating Kr\n",
    "    Kr = (TEW - De) / (TEW - scale_dict['REW'] * REW_)\n",
    "    \n",
    "    # Return Kr\n",
    "    return xr_maximum(0, xr_minimum(Kr, 1))\n",
    "\n",
    "\n",
    "def update_Dr(TAW: xr.DataArray, TDW: xr.DataArray, Zr: xr.DataArray, TAW0: xr.DataArray, TDW0: xr.DataArray, Dr0: xr.DataArray, Dd0: xr.DataArray, Zr0: xr.DataArray) -> xr.DataArray:\n",
    "    \"\"\"\n",
    "    Return the updated depletion for the root layer\n",
    "\n",
    "    ## Arguments\n",
    "    1. TAW: `xr.DataArray`\n",
    "        water capacity of root layer for current day\n",
    "    2. TDW: `xr.DataArray`\n",
    "        water capacity of deep layer for current day\n",
    "    3. Zr: `xr.DataArray`\n",
    "        root layer height for current day\n",
    "    4. TAW0: `xr.DataArray`\n",
    "        water capacity of root layer for previous day\n",
    "    5. TDW0: `xr.DataArray`\n",
    "        water capacity of deep layer for previous day\n",
    "    6. Dr0: `xr.DataArray`\n",
    "        depletion of the root layer for previous day\n",
    "    7. Dd0: `xr.DataArray`\n",
    "        depletion of the deep laye for previous day\n",
    "    8. Zr0: `xr.DataArray`\n",
    "        root layer height for previous day\n",
    "\n",
    "    ## Returns\n",
    "    1. output: `xr.DataArray`\n",
    "        updated depletion for the root layer\n",
    "    \"\"\"\n",
    "    \n",
    "    # Temporary variables to make calculation easier to read\n",
    "    tmp1 = xr_maximum(Dr0 + Dd0 * (TAW - TAW0) / TDW0, 0)\n",
    "    tmp2 = xr_minimum(Dr0 + Dd0 * (TAW - TAW0) / TDW0, TDW)\n",
    "\n",
    "    # Return updated Dr\n",
    "    return xr.where(Zr > Zr0, tmp1, tmp2)\n",
    "\n",
    "\n",
    "def update_Dd(TAW: xr.DataArray, TDW: xr.DataArray, Zr: xr.DataArray, TAW0: xr.DataArray, TDW0: xr.DataArray, Dd0: xr.DataArray, Zr0: xr.DataArray) -> xr.DataArray:\n",
    "    \"\"\"\n",
    "    Return the updated depletion for the deep layer\n",
    "\n",
    "    ## Arguments\n",
    "    1. TAW: `xr.DataArray`\n",
    "        water capacity of root layer for current day\n",
    "    2. TDW: `xr.DataArray`\n",
    "        water capacity of deep layer for current day\n",
    "    3. TAW0: `xr.DataArray`\n",
    "        water capacity of root layer for previous day\n",
    "    5. TDW0: `xr.DataArray`\n",
    "        water capacity of deep layer for previous day\n",
    "    6. Dd0: `xr.DataArray`\n",
    "        depletion of the deep laye for previous day\n",
    "    7. Zr0: `xr.DataArray`\n",
    "        root layer height for previous day\n",
    "\n",
    "    ## Returns\n",
    "    1. output: `xr.DataArray`\n",
    "        updated depletion for the deep layer\n",
    "    \"\"\"\n",
    "    \n",
    "    # Temporary variables to make calculation easier to read\n",
    "    tmp1 = xr_maximum(Dd0 - Dd0 * (TAW - TAW0) / TDW0, 0)\n",
    "    tmp2 = xr_minimum(Dd0 - Dd0 * (TAW - TAW0) / TDW0, TDW)\n",
    "    \n",
    "    # Return updated Dd\n",
    "    return xr.where(Zr > Zr0, tmp1, tmp2)\n",
    "\n",
    "\n",
    "def run_samir(json_config_file: str, csv_param_file: str, ndvi_cube_path: str, weather_cube_path: str, soil_params_path: str, land_cover_path: str, chunk_size: dict, save_path: str) -> None:\n",
    "    \n",
    "    # warnings.simplefilter(\"error\", category = RuntimeWarning())\n",
    "    warnings.filterwarnings(\"ignore\", message=\"invalid value encountered in cast\")\n",
    "    warnings.filterwarnings(\"ignore\", message=\"invalid value encountered in divide\")\n",
    "    np.errstate(all = 'raise')\n",
    "    gc.disable()\n",
    "    \n",
    "    #============ General parameters ============#\n",
    "    config_params = config(json_config_file)\n",
    "    calculation_variables_t2 = ['diff_rei', 'diff_rep', 'diff_dr' , 'Dd', 'De', 'Dei', 'Dep', 'Dr', 'FCov', 'Irrig', 'Kcb', 'Kei', 'Kep', 'Ks', 'Kti', 'Ktp', 'RUE', 'TAW', 'TDW', 'TEW', 'Tei', 'Tep', 'W', 'Zr', 'fewi', 'fewp']\n",
    "    calculation_variables_t1 = ['Dr', 'Dd', 'TAW', 'TDW', 'Zr']\n",
    "    \n",
    "    #============ Manage inputs ============#\n",
    "    # NDVI\n",
    "    ndvi_cube = xr.open_dataset(ndvi_cube_path, chunks = chunk_size).astype('f4')\n",
    "    \n",
    "    # # Create a daily DateTimeIndex for the desired date range\n",
    "    # daily_index = pd.date_range(start = config_params.start_date, end = config_params.end_date, freq = 'D')\n",
    "\n",
    "    # # Resample the dataset to a daily frequency and reindex with the new DateTimeIndex\n",
    "    # ndvi_cube = ndvi_cube.resample(time = '1D').asfreq().reindex(time = daily_index)\n",
    "\n",
    "    # # Interpolate the dataset along the time dimension to fill nan values\n",
    "    # ndvi_cube = ndvi_cube.interpolate_na(dim = 'time', method = 'linear', fill_value = 'extrapolate').astype('u1')\n",
    "    \n",
    "    # Weather\n",
    "    weather_cube = xr.open_dataset(weather_cube_path, chunks = chunk_size).astype('f4')\n",
    "    \n",
    "    # Soil\n",
    "    soil_params = xr.open_dataset(soil_params_path, chunks = chunk_size).astype('f4')\n",
    "    \n",
    "    # SAMIR Parameters\n",
    "    param_dataset, scale_factor = rasterize_samir_parameters(csv_param_file, ndvi_cube.drop_vars(['ndvi', 'time']), land_cover_path, chunk_size = chunk_size)\n",
    "    \n",
    "    # SAMIR Variables\n",
    "    variables_t1, variables_t2 = setup_time_loop(calculation_variables_t1, calculation_variables_t2, ndvi_cube.drop_vars(['ndvi', 'time']))\n",
    "\n",
    "    #============ Prepare outputs ============#\n",
    "    model_outputs = prepare_outputs(ndvi_cube.drop_vars(['ndvi']))\n",
    "    \n",
    "    #============ Prepare time iterations ============#\n",
    "    dates = ndvi_cube.time.values\n",
    "    \n",
    "    #============ Create aliases for better readability ============#\n",
    "    \n",
    "    # Variables for current day\n",
    "    diff_rei = variables_t2['diff_rei']\n",
    "    diff_rep = variables_t2['diff_rep']\n",
    "    diff_dr = variables_t2['diff_dr']\n",
    "    Dd = variables_t2['Dd']\n",
    "    De = variables_t2['De']\n",
    "    Dei = variables_t2['Dei']\n",
    "    Dep = variables_t2['Dep']\n",
    "    Dr = variables_t2['Dr']\n",
    "    FCov = variables_t2['FCov']\n",
    "    Irrig = variables_t2['Irrig']\n",
    "    Kcb = variables_t2['Kcb']\n",
    "    Kei = variables_t2['Kei']\n",
    "    Kep = variables_t2['Kep']\n",
    "    Ks = variables_t2['Ks']\n",
    "    Kti = variables_t2['Kti']\n",
    "    Ktp = variables_t2['Ktp']\n",
    "    RUE = variables_t2['RUE']\n",
    "    TAW = variables_t2['TAW']\n",
    "    TDW = variables_t2['TDW']\n",
    "    TEW = variables_t2['TEW']\n",
    "    Tei = variables_t2['Tei']\n",
    "    Tep = variables_t2['Tep']\n",
    "    Zr = variables_t2['Zr']\n",
    "    W = variables_t2['W']\n",
    "    fewi = variables_t2['fewi']\n",
    "    fewp = variables_t2['fewp']\n",
    "    \n",
    "    # Variables for previous day\n",
    "    TAW0 = variables_t1['TAW']\n",
    "    TDW0 = variables_t1['TDW']\n",
    "    Dr0 = variables_t1['Dr']\n",
    "    Dd0 = variables_t1['Dd']\n",
    "    Zr0 = variables_t1['Zr']\n",
    "    \n",
    "    # Parameters\n",
    "    # Parameters have an underscore (_) behind their name for recognition \n",
    "    DiffE_ = param_dataset['DiffE']\n",
    "    DiffR_ = param_dataset['DiffR']\n",
    "    FW_ = param_dataset['FW']\n",
    "    Fc_stop_ = param_dataset['Fc_stop']\n",
    "    FmaxFC_ = param_dataset['FmaxFC']\n",
    "    Foffset_ = param_dataset['Foffset']\n",
    "    Fslope_ = param_dataset['Fslope']\n",
    "    Init_RU_ = param_dataset['Init_RU']\n",
    "    Irrig_auto_ = param_dataset['Irrig_auto']\n",
    "    Kcmax_ = param_dataset['Kcmax']\n",
    "    KmaxKcb_ = param_dataset['KmaxKcb']\n",
    "    Koffset_ = param_dataset['Koffset']\n",
    "    Kslope_ = param_dataset['Kslope']\n",
    "    Lame_max_ = param_dataset['Lame_max']\n",
    "    REW_ = param_dataset['REW']\n",
    "    Ze_ = param_dataset['Ze']\n",
    "    Zsoil_ = param_dataset['Zsoil']\n",
    "    maxZr_ = param_dataset['maxZr']\n",
    "    minZr_ = param_dataset['minZr']\n",
    "    p_ = param_dataset['p']\n",
    "    \n",
    "    # scale factors\n",
    "    # Scale factors have the following name scheme : s_ + parameter_name\n",
    "    s_DiffE = scale_factor['DiffE']\n",
    "    s_DiffR = scale_factor['DiffR']\n",
    "    s_FW = scale_factor['FW']\n",
    "    s_Fc_stop = scale_factor['Fc_stop']\n",
    "    s_FmaxFC = scale_factor['FmaxFC']\n",
    "    s_Foffset = scale_factor['Foffset']\n",
    "    s_Fslope = scale_factor['Fslope']\n",
    "    s_Init_RU = scale_factor['Init_RU']\n",
    "    # s_Irrig_auto = scale_factor['Irrig_auto']\n",
    "    s_Kcmax = scale_factor['Kcmax']\n",
    "    s_KmaxKcb = scale_factor['KmaxKcb']\n",
    "    s_Koffset = scale_factor['Koffset']\n",
    "    s_Kslope = scale_factor['Kslope']\n",
    "    s_Lame_max = scale_factor['Lame_max']\n",
    "    s_REW = scale_factor['REW']\n",
    "    s_Ze = scale_factor['Ze']\n",
    "    s_Zsoil = scale_factor['Zsoil']\n",
    "    s_maxZr = scale_factor['maxZr']\n",
    "    s_minZr = scale_factor['minZr']\n",
    "    s_p = scale_factor['p']\n",
    "    \n",
    "    #============ First day initialization ============#\n",
    "    # Fraction cover\n",
    "    FCov = s_Fslope * Fslope_ * (ndvi_cube['ndvi'].sel({'time': dates[0]})/255) + s_Foffset * Foffset_\n",
    "    FCov = xr_minimum(xr_maximum(FCov, 0), s_Fc_stop * Fc_stop_)\n",
    "    \n",
    "    # Root depth upate\n",
    "    Zr = s_minZr * minZr_ + (FCov / (s_FmaxFC * FmaxFC_)) * s_maxZr * (maxZr_ - minZr_)\n",
    "    \n",
    "    # Water capacities\n",
    "    TEW = (soil_params['FC'] - soil_params['WP']/2) * s_Ze * Ze_\n",
    "    RUE = (soil_params['FC'] - soil_params['WP']) * s_Ze * Ze_\n",
    "    TAW = (soil_params['FC'] - soil_params['WP']) * Zr\n",
    "    TDW = (soil_params['FC'] - soil_params['WP']) * (s_Zsoil * Zsoil_ - Zr)  # Zd = Zsoil - Zr\n",
    "    \n",
    "    # Depletions\n",
    "    Dei = RUE * (1 - s_Init_RU * Init_RU_)\n",
    "    Dep = RUE * (1 - s_Init_RU * Init_RU_)\n",
    "    Dr = TAW * (1 - s_Init_RU * Init_RU_)\n",
    "    Dd = TDW * (1 - s_Init_RU * Init_RU_)\n",
    "    \n",
    "    # Irrigation   ==============!!!!!\n",
    "    Irrig = xr_minimum(xr_maximum(Dr - weather_cube['tp'].sel({'time': dates[0]}) / 1000, 0), s_Lame_max * Lame_max_) * Irrig_auto_\n",
    "    Irrig = xr.where(Dr > TAW * s_p * p_, Irrig, 0)\n",
    "    \n",
    "    # Kcb\n",
    "    Kcb = xr_minimum(s_Kslope * Kslope_ * (ndvi_cube['ndvi'].sel({'time': dates[0]}) / 255) + s_Koffset * Koffset_, s_KmaxKcb * KmaxKcb_)\n",
    "    \n",
    "    # Update depletions with rainfall and/or irrigation    \n",
    "    ## DP\n",
    "    model_outputs['DP'].loc[{'time': dates[0]}] = -xr_minimum(Dd + xr_minimum(Dr - (weather_cube['tp'].sel({'time': dates[0]}) / 1000) - Irrig, 0), 0)\n",
    "    \n",
    "    ## De\n",
    "    Dei = xr_minimum(xr_maximum(Dei - (weather_cube['tp'].sel({'time': dates[0]}) / 1000) - Irrig / (s_FW * FW_ / 100), 0), TEW)\n",
    "    Dep = xr_minimum(xr_maximum(Dep - (weather_cube['tp'].sel({'time': dates[0]}) / 1000), 0), TEW)\n",
    "    \n",
    "    fewi = xr_minimum(1 - FCov, (s_FW * FW_ / 100))\n",
    "    fewp = 1 - FCov - fewi\n",
    "    \n",
    "    De = (Dei * fewi + Dep * fewp) / (fewi + fewp)\n",
    "    # variables_t1['De'] = xr.where(variables_t1['De'].isfinite(), variables_t1['De'], variables_t1['Dei'] * (s_FW * FW_ / 100) + variables_t1['Dep'] * (1 - (s_FW * FW_ / 100)))  #================= find replacement for .isfinite() method !!!!!!!!!\n",
    "\n",
    "    ## Dr\n",
    "    Dr = xr_minimum(xr_maximum(Dr - (weather_cube['tp'].sel({'time': dates[0]}) / 1000) - Irrig, 0), TAW)\n",
    "    \n",
    "    ## Dd\n",
    "    Dd = xr_minimum(xr_maximum(Dd + xr_minimum(Dr - (weather_cube['tp'].sel({'time': dates[0]}) / 1000) - Irrig, 0), 0), TDW)\n",
    "    \n",
    "    # Diffusion coefficients\n",
    "    diff_rei = calculate_diff_re(TAW, Dr, Zr, RUE, Dei, FCov, Ze_, DiffE_, scale_factor)\n",
    "    diff_rep = calculate_diff_re(TAW, Dr, Zr, RUE, Dep, FCov, Ze_, DiffE_, scale_factor)\n",
    "    diff_dr = calculate_diff_dr(TAW, TDW, Dr, Zr, Dd, FCov, Zsoil_, DiffR_, scale_factor)    \n",
    "    \n",
    "    # Weighing factor W\n",
    "    W = calculate_W(TEW, Dei, Dep, fewi, fewp)\n",
    "    \n",
    "    # Soil water contents\n",
    "    model_outputs['SWCe'].loc[{'time': dates[0]}] = 1 - De/TEW\n",
    "    model_outputs['SWCr'].loc[{'time': dates[0]}] = 1 - Dr/TAW\n",
    "    \n",
    "    # Water Stress coefficient\n",
    "    Ks = xr_minimum((TAW - Dr) / (TAW * (1 - s_p * p_)), 1)\n",
    "    \n",
    "    # Reduction coefficient for evaporation\n",
    "    Kei = xr_minimum(W * calculate_Kr(TEW, Dei, REW_, scale_factor) * (s_Kcmax * Kcmax_ - Kcb), fewi * s_Kcmax * Kcmax_)\n",
    "    Kep = xr_minimum((1 - W) * calculate_Kr(TEW, Dep, REW_, scale_factor) * (s_Kcmax * Kcmax_ - Kcb), fewp * s_Kcmax * Kcmax_)\n",
    "    \n",
    "    # Prepare coefficients for evapotranspiration\n",
    "    Kti = xr_minimum(((s_Ze * Ze_ / Zr)**6) * (1 - Dei / TEW) / xr_maximum(1 - Dr / TAW, 0.001), 1)\n",
    "    Ktp = xr_minimum(((s_Ze * Ze_ / Zr)**6) * (1 - Dep / TEW) / xr_maximum(1 - Dr / TAW, 0.001), 1)\n",
    "    Tei = Kti * Ks * Kcb * weather_cube['ET0'].sel({'time': dates[0]}) / 1000\n",
    "    Tep = Ktp * Ks * Kcb * weather_cube['ET0'].sel({'time': dates[0]}) / 1000\n",
    "    \n",
    "    # Update depletions\n",
    "    Dei = xr.where(fewi > 0, xr_minimum(xr_maximum(Dei + (weather_cube['ET0'].sel({'time': dates[0]}) / 1000) * Kei / fewi + Tei - diff_rei, 0), TEW), xr_minimum(xr_maximum(Dei + Tei - diff_rei, 0), TEW))\n",
    "    Dep = xr.where(fewp > 0, xr_minimum(xr_maximum(Dep + (weather_cube['ET0'].sel({'time': dates[0]}) / 1000) * Kep / fewp + Tep - diff_rep, 0), TEW), xr_minimum(xr_maximum(Dep + Tep - diff_rep, 0), TEW))\n",
    "    \n",
    "    De = (Dei * fewi + Dep * fewp) / (fewi + fewp)\n",
    "    # De = xr.where(De.isfinite(), De, Dei * (s_FW * FW_ / 100) + Dep * (1 - (s_FW * FW_ / 100)))  #================= find replacement for .isfinite() method !!!!!!!!!\n",
    "    \n",
    "    # Evaporation\n",
    "    model_outputs['E'].loc[{'time': dates[0]}]  = xr_maximum((Kei + Kep) * weather_cube['ET0'].sel({'time': dates[0]}) / 1000, 0)\n",
    "    \n",
    "    # Transpiration\n",
    "    model_outputs['Tr'].loc[{'time': dates[0]}]  = Kcb * Ks * weather_cube['ET0'].sel({'time': dates[0]}) / 1000\n",
    "    \n",
    "    # Potential evapotranspiration and evaporative fraction ??\n",
    "    \n",
    "    # Update depletions (root and deep zones) at the end of the day\n",
    "    Dr = xr_minimum(xr_maximum(Dr + model_outputs['E'].loc[{'time': dates[0]}] + model_outputs['Tr'].loc[{'time': dates[0]}] - diff_dr, 0), TAW)\n",
    "    Dd = xr_minimum(xr_maximum(Dd + diff_dr, 0), TDW)\n",
    "    \n",
    "    # Write outputs\n",
    "    model_outputs['Irr'].loc[{'time': dates[0]}] = Irrig\n",
    "    \n",
    "    # Update variable_t1 values\n",
    "    for variable in calculation_variables_t1:\n",
    "        variables_t1[variable] = variables_t2[variable].copy(deep = True)\n",
    "    \n",
    "    #============ Time loop ============#\n",
    "    for i in range(1, len(dates)):\n",
    "        \n",
    "        # Update variables\n",
    "        ## Fraction cover\n",
    "        FCov = s_Fslope * Fslope_ * (ndvi_cube['ndvi'].sel({'time': dates[0]})/255) + s_Foffset * Foffset_\n",
    "        FCov = xr_minimum(xr_maximum(FCov, 0), s_Fc_stop * Fc_stop_)\n",
    "        \n",
    "        ## Root depth upate\n",
    "        Zr = s_minZr * minZr_ + (FCov / (s_FmaxFC * FmaxFC_)) * s_maxZr * (maxZr_ - minZr_)\n",
    "        \n",
    "        # Water capacities\n",
    "        TAW = (soil_params['FC'] - soil_params['WP']) * Zr\n",
    "        TDW = (soil_params['FC'] - soil_params['WP']) * (s_Zsoil * Zsoil_ - Zr)\n",
    "        \n",
    "        # Update depletions\n",
    "        Dr = update_Dr(TAW, TDW, Zr, TAW0, TDW0, Dr0, Dd0, Zr0)\n",
    "        Dd = update_Dd(TAW, TDW, Zr, TAW0, TDW0, Dd0, Zr0)\n",
    "        \n",
    "        # Update param p\n",
    "        p_ = (xr_minimum(xr_maximum(s_p * p_ + 0.04 * (5 - weather_cube['ET0'].sel({'time': dates[i-1]}) / 1000), 0.1), 0.8) * (1 / s_p)).round(0).astype('i2')\n",
    "        \n",
    "        # Irrigation   ==============!!!!!\n",
    "        Irrig = xr_minimum(xr_maximum(Dr - weather_cube['tp'].sel({'time': dates[i]}) / 1000, 0), s_Lame_max * Lame_max_) * Irrig_auto_\n",
    "        Irrig = xr.where(Dr > TAW * s_p * p_, Irrig, 0)\n",
    "    \n",
    "        # Kcb\n",
    "        Kcb = xr_minimum(s_Kslope * Kslope_ * (ndvi_cube['ndvi'].sel({'time': dates[i]}) / 255) + s_Koffset * Koffset_, s_KmaxKcb * KmaxKcb_)\n",
    "        \n",
    "        # Update depletions with rainfall and/or irrigation    \n",
    "        ## DP\n",
    "        model_outputs['DP'].loc[{'time': dates[i]}] = -xr_minimum(Dd + xr_minimum(Dr - (weather_cube['tp'].sel({'time': dates[i]}) / 1000) - Irrig, 0), 0)\n",
    "        \n",
    "        ## De\n",
    "        Dei = xr_minimum(xr_maximum(Dei - (weather_cube['tp'].sel({'time': dates[i]}) / 1000) - Irrig / (s_FW * FW_ / 100), 0), TEW)\n",
    "        Dep = xr_minimum(xr_maximum(Dep - (weather_cube['tp'].sel({'time': dates[i]}) / 1000), 0), TEW)\n",
    "        \n",
    "        fewi = xr_minimum(1 - FCov, (s_FW * FW_ / 100))\n",
    "        fewp = 1 - FCov - fewi\n",
    "        \n",
    "        De = (Dei * fewi + Dep * fewp) / (fewi + fewp)\n",
    "        # variables_t1['De'] = xr.where(variables_t1['De'].isfinite(), variables_t1['De'], variables_t1['Dei'] * (s_FW * FW_ / 100) + variables_t1['Dep'] * (1 - (s_FW * FW_ / 100)))  #================= find replacement for .isfinite() method !!!!!!!!!\n",
    "\n",
    "        ## Dr\n",
    "        Dr = xr_minimum(xr_maximum(Dr - (weather_cube['tp'].sel({'time': dates[i]}) / 1000) - Irrig, 0), TAW)\n",
    "        \n",
    "        ## Dd\n",
    "        Dd = xr_minimum(xr_maximum(Dd + xr_minimum(Dr - (weather_cube['tp'].sel({'time': dates[i]}) / 1000) - Irrig, 0), 0), TDW)\n",
    "        \n",
    "        # Diffusion coefficients\n",
    "        diff_rei = calculate_diff_re(TAW, Dr, Zr, RUE, Dei, FCov, Ze_, DiffE_, scale_factor)\n",
    "        diff_rep = calculate_diff_re(TAW, Dr, Zr, RUE, Dep, FCov, Ze_, DiffE_, scale_factor)\n",
    "        diff_dr = calculate_diff_dr(TAW, TDW, Dr, Zr, Dd, FCov, Zsoil_, DiffR_, scale_factor) \n",
    "        \n",
    "        # Weighing factor W\n",
    "        W = calculate_W(TEW, Dei, Dep, fewi, fewp)\n",
    "        \n",
    "        # Soil water contents\n",
    "        model_outputs['SWCe'].loc[{'time': dates[i]}] = 1 - De/TEW\n",
    "        model_outputs['SWCr'].loc[{'time': dates[i]}] = 1 - Dr/TAW\n",
    "        \n",
    "        # Water Stress coefficient\n",
    "        Ks = xr_minimum((TAW - Dr) / (TAW * (1 - s_p * p_)), 1)\n",
    "        \n",
    "        # Reduction coefficient for evaporation\n",
    "        Kei = xr_minimum(W * calculate_Kr(TEW, Dei, REW_, scale_factor) * (s_Kcmax * Kcmax_ - Kcb), fewi * s_Kcmax * Kcmax_)\n",
    "        Kep = xr_minimum((1 - W) * calculate_Kr(TEW, Dei, REW_, scale_factor) * (s_Kcmax * Kcmax_ - Kcb), fewp * s_Kcmax * Kcmax_)\n",
    "        \n",
    "        # Prepare coefficients for evapotranspiration\n",
    "        Kti = xr_minimum(((s_Ze * Ze_ / Zr)**6) * (1 - Dei / TEW) / xr_maximum(1 - Dr / TAW, 0.001), 1)\n",
    "        Ktp = xr_minimum(((s_Ze * Ze_ / Zr)**6) * (1 - Dep / TEW) / xr_maximum(1 - Dr / TAW, 0.001), 1)\n",
    "        Tei = Kti * Ks * Kcb * weather_cube['ET0'].sel({'time': dates[i]}) / 1000\n",
    "        Tep = Ktp * Ks * Kcb * weather_cube['ET0'].sel({'time': dates[i]}) / 1000\n",
    "        \n",
    "        # Update depletions\n",
    "        Dei = xr.where(fewi > 0, xr_minimum(xr_maximum(Dei + (weather_cube['ET0'].sel({'time': dates[i]}) / 1000) * Kei / fewi + Tei - diff_rei, 0), TEW), xr_minimum(xr_maximum(Dei + Tei - diff_rei, 0), TEW))\n",
    "        Dep = xr.where(fewp > 0, xr_minimum(xr_maximum(Dep + (weather_cube['ET0'].sel({'time': dates[i]}) / 1000) * Kep / fewp + Tep - diff_rep, 0), TEW), xr_minimum(xr_maximum(Dep + Tep - diff_rep, 0), TEW))\n",
    "        \n",
    "        De = (Dei * fewi + Dep * fewp) / (fewi + fewp)\n",
    "        # De = xr.where(De.isfinite(), De, Dei * (s_FW * FW_ / 100) + Dep * (1 - (s_FW * FW_ / 100)))  #================= find replacement for .isfinite() method !!!!!!!!!\n",
    "        \n",
    "        # Evaporation\n",
    "        model_outputs['E'].loc[{'time': dates[i]}]  = xr_maximum((Kei + Kep) * weather_cube['ET0'].sel({'time': dates[i]}) / 1000, 0)\n",
    "        \n",
    "        # Transpiration\n",
    "        model_outputs['Tr'].loc[{'time': dates[i]}]  = Kcb * Ks * weather_cube['ET0'].sel({'time': dates[i]}) / 1000\n",
    "        \n",
    "        # Potential evapotranspiration and evaporative fraction ??\n",
    "        \n",
    "        # Update depletions (root and deep zones) at the end of the day\n",
    "        Dr = xr_minimum(xr_maximum(Dr + model_outputs['E'].loc[{'time': dates[i]}] + model_outputs['Tr'].loc[{'time': dates[i]}] - diff_dr, 0), TAW)\n",
    "        Dd = xr_minimum(xr_maximum(Dd + diff_dr, 0), TDW)\n",
    "        \n",
    "        # Write outputs\n",
    "        model_outputs['Irr'].loc[{'time': dates[i]}] = Irrig\n",
    "        \n",
    "        # Update variable_t1 values\n",
    "        for variable in calculation_variables_t1:\n",
    "            variables_t1[variable] = variables_t2[variable].copy(deep = True)\n",
    "        \n",
    "        print('day ', i+1, '/', len(dates), '   ', end = '\\r')\n",
    "    \n",
    "    # Scale the model_outputs variable to save in int16 format\n",
    "    model_outputs = model_outputs * 1000\n",
    "    \n",
    "    # Write encoding dict\n",
    "    encoding_dict = {}\n",
    "    for variable in list(model_outputs.keys()):\n",
    "        encod = {}\n",
    "        encod['dtype'] = 'i2'\n",
    "        encoding_dict[variable] = encod\n",
    "    \n",
    "    # Save model outputs to netcdf\n",
    "    model_outputs.to_netcdf(save_path, encoding = encoding_dict)\n",
    "    \n",
    "    return None"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/home/auclairj/anaconda3/envs/modspa_pixel/lib/python3.10/site-packages/distributed/node.py:182: UserWarning: Port 8787 is already in use.\n",
      "Perhaps you already have a cluster running?\n",
      "Hosting the HTTP server on port 37667 instead\n",
      "  warnings.warn(\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div>\n",
       "    <div style=\"width: 24px; height: 24px; background-color: #e1e1e1; border: 3px solid #9D9D9D; border-radius: 5px; position: absolute;\"> </div>\n",
       "    <div style=\"margin-left: 48px;\">\n",
       "        <h3 style=\"margin-bottom: 0px;\">Client</h3>\n",
       "        <p style=\"color: #9D9D9D; margin-bottom: 0px;\">Client-29d78c7f-2653-11ee-9cc7-00155d33b451</p>\n",
       "        <table style=\"width: 100%; text-align: left;\">\n",
       "\n",
       "        <tr>\n",
       "        \n",
       "            <td style=\"text-align: left;\"><strong>Connection method:</strong> Cluster object</td>\n",
       "            <td style=\"text-align: left;\"><strong>Cluster type:</strong> distributed.LocalCluster</td>\n",
       "        \n",
       "        </tr>\n",
       "\n",
       "        \n",
       "            <tr>\n",
       "                <td style=\"text-align: left;\">\n",
       "                    <strong>Dashboard: </strong> <a href=\"http://127.0.0.1:37667/status\" target=\"_blank\">http://127.0.0.1:37667/status</a>\n",
       "                </td>\n",
       "                <td style=\"text-align: left;\"></td>\n",
       "            </tr>\n",
       "        \n",
       "\n",
       "        </table>\n",
       "\n",
       "        \n",
       "\n",
       "        \n",
       "            <details>\n",
       "            <summary style=\"margin-bottom: 20px;\"><h3 style=\"display: inline;\">Cluster Info</h3></summary>\n",
       "            <div class=\"jp-RenderedHTMLCommon jp-RenderedHTML jp-mod-trusted jp-OutputArea-output\">\n",
       "    <div style=\"width: 24px; height: 24px; background-color: #e1e1e1; border: 3px solid #9D9D9D; border-radius: 5px; position: absolute;\">\n",
       "    </div>\n",
       "    <div style=\"margin-left: 48px;\">\n",
       "        <h3 style=\"margin-bottom: 0px; margin-top: 0px;\">LocalCluster</h3>\n",
       "        <p style=\"color: #9D9D9D; margin-bottom: 0px;\">c5e1ba98</p>\n",
       "        <table style=\"width: 100%; text-align: left;\">\n",
       "            <tr>\n",
       "                <td style=\"text-align: left;\">\n",
       "                    <strong>Dashboard:</strong> <a href=\"http://127.0.0.1:37667/status\" target=\"_blank\">http://127.0.0.1:37667/status</a>\n",
       "                </td>\n",
       "                <td style=\"text-align: left;\">\n",
       "                    <strong>Workers:</strong> 4\n",
       "                </td>\n",
       "            </tr>\n",
       "            <tr>\n",
       "                <td style=\"text-align: left;\">\n",
       "                    <strong>Total threads:</strong> 8\n",
       "                </td>\n",
       "                <td style=\"text-align: left;\">\n",
       "                    <strong>Total memory:</strong> 23.47 GiB\n",
       "                </td>\n",
       "            </tr>\n",
       "            \n",
       "            <tr>\n",
       "    <td style=\"text-align: left;\"><strong>Status:</strong> running</td>\n",
       "    <td style=\"text-align: left;\"><strong>Using processes:</strong> True</td>\n",
       "</tr>\n",
       "\n",
       "            \n",
       "        </table>\n",
       "\n",
       "        <details>\n",
       "            <summary style=\"margin-bottom: 20px;\">\n",
       "                <h3 style=\"display: inline;\">Scheduler Info</h3>\n",
       "            </summary>\n",
       "\n",
       "            <div style=\"\">\n",
       "    <div>\n",
       "        <div style=\"width: 24px; height: 24px; background-color: #FFF7E5; border: 3px solid #FF6132; border-radius: 5px; position: absolute;\"> </div>\n",
       "        <div style=\"margin-left: 48px;\">\n",
       "            <h3 style=\"margin-bottom: 0px;\">Scheduler</h3>\n",
       "            <p style=\"color: #9D9D9D; margin-bottom: 0px;\">Scheduler-205d3daa-9675-4977-8d69-da12e45dc32c</p>\n",
       "            <table style=\"width: 100%; text-align: left;\">\n",
       "                <tr>\n",
       "                    <td style=\"text-align: left;\">\n",
       "                        <strong>Comm:</strong> tcp://127.0.0.1:42111\n",
       "                    </td>\n",
       "                    <td style=\"text-align: left;\">\n",
       "                        <strong>Workers:</strong> 4\n",
       "                    </td>\n",
       "                </tr>\n",
       "                <tr>\n",
       "                    <td style=\"text-align: left;\">\n",
       "                        <strong>Dashboard:</strong> <a href=\"http://127.0.0.1:37667/status\" target=\"_blank\">http://127.0.0.1:37667/status</a>\n",
       "                    </td>\n",
       "                    <td style=\"text-align: left;\">\n",
       "                        <strong>Total threads:</strong> 8\n",
       "                    </td>\n",
       "                </tr>\n",
       "                <tr>\n",
       "                    <td style=\"text-align: left;\">\n",
       "                        <strong>Started:</strong> Just now\n",
       "                    </td>\n",
       "                    <td style=\"text-align: left;\">\n",
       "                        <strong>Total memory:</strong> 23.47 GiB\n",
       "                    </td>\n",
       "                </tr>\n",
       "            </table>\n",
       "        </div>\n",
       "    </div>\n",
       "\n",
       "    <details style=\"margin-left: 48px;\">\n",
       "        <summary style=\"margin-bottom: 20px;\">\n",
       "            <h3 style=\"display: inline;\">Workers</h3>\n",
       "        </summary>\n",
       "\n",
       "        \n",
       "        <div style=\"margin-bottom: 20px;\">\n",
       "            <div style=\"width: 24px; height: 24px; background-color: #DBF5FF; border: 3px solid #4CC9FF; border-radius: 5px; position: absolute;\"> </div>\n",
       "            <div style=\"margin-left: 48px;\">\n",
       "            <details>\n",
       "                <summary>\n",
       "                    <h4 style=\"margin-bottom: 0px; display: inline;\">Worker: 0</h4>\n",
       "                </summary>\n",
       "                <table style=\"width: 100%; text-align: left;\">\n",
       "                    <tr>\n",
       "                        <td style=\"text-align: left;\">\n",
       "                            <strong>Comm: </strong> tcp://127.0.0.1:43845\n",
       "                        </td>\n",
       "                        <td style=\"text-align: left;\">\n",
       "                            <strong>Total threads: </strong> 2\n",
       "                        </td>\n",
       "                    </tr>\n",
       "                    <tr>\n",
       "                        <td style=\"text-align: left;\">\n",
       "                            <strong>Dashboard: </strong> <a href=\"http://127.0.0.1:44805/status\" target=\"_blank\">http://127.0.0.1:44805/status</a>\n",
       "                        </td>\n",
       "                        <td style=\"text-align: left;\">\n",
       "                            <strong>Memory: </strong> 5.87 GiB\n",
       "                        </td>\n",
       "                    </tr>\n",
       "                    <tr>\n",
       "                        <td style=\"text-align: left;\">\n",
       "                            <strong>Nanny: </strong> tcp://127.0.0.1:46421\n",
       "                        </td>\n",
       "                        <td style=\"text-align: left;\"></td>\n",
       "                    </tr>\n",
       "                    <tr>\n",
       "                        <td colspan=\"2\" style=\"text-align: left;\">\n",
       "                            <strong>Local directory: </strong> /tmp/dask-scratch-space/worker-t_o8kxq0\n",
       "                        </td>\n",
       "                    </tr>\n",
       "\n",
       "                    \n",
       "\n",
       "                    \n",
       "\n",
       "                </table>\n",
       "            </details>\n",
       "            </div>\n",
       "        </div>\n",
       "        \n",
       "        <div style=\"margin-bottom: 20px;\">\n",
       "            <div style=\"width: 24px; height: 24px; background-color: #DBF5FF; border: 3px solid #4CC9FF; border-radius: 5px; position: absolute;\"> </div>\n",
       "            <div style=\"margin-left: 48px;\">\n",
       "            <details>\n",
       "                <summary>\n",
       "                    <h4 style=\"margin-bottom: 0px; display: inline;\">Worker: 1</h4>\n",
       "                </summary>\n",
       "                <table style=\"width: 100%; text-align: left;\">\n",
       "                    <tr>\n",
       "                        <td style=\"text-align: left;\">\n",
       "                            <strong>Comm: </strong> tcp://127.0.0.1:34535\n",
       "                        </td>\n",
       "                        <td style=\"text-align: left;\">\n",
       "                            <strong>Total threads: </strong> 2\n",
       "                        </td>\n",
       "                    </tr>\n",
       "                    <tr>\n",
       "                        <td style=\"text-align: left;\">\n",
       "                            <strong>Dashboard: </strong> <a href=\"http://127.0.0.1:33207/status\" target=\"_blank\">http://127.0.0.1:33207/status</a>\n",
       "                        </td>\n",
       "                        <td style=\"text-align: left;\">\n",
       "                            <strong>Memory: </strong> 5.87 GiB\n",
       "                        </td>\n",
       "                    </tr>\n",
       "                    <tr>\n",
       "                        <td style=\"text-align: left;\">\n",
       "                            <strong>Nanny: </strong> tcp://127.0.0.1:36817\n",
       "                        </td>\n",
       "                        <td style=\"text-align: left;\"></td>\n",
       "                    </tr>\n",
       "                    <tr>\n",
       "                        <td colspan=\"2\" style=\"text-align: left;\">\n",
       "                            <strong>Local directory: </strong> /tmp/dask-scratch-space/worker-ekfvxctp\n",
       "                        </td>\n",
       "                    </tr>\n",
       "\n",
       "                    \n",
       "\n",
       "                    \n",
       "\n",
       "                </table>\n",
       "            </details>\n",
       "            </div>\n",
       "        </div>\n",
       "        \n",
       "        <div style=\"margin-bottom: 20px;\">\n",
       "            <div style=\"width: 24px; height: 24px; background-color: #DBF5FF; border: 3px solid #4CC9FF; border-radius: 5px; position: absolute;\"> </div>\n",
       "            <div style=\"margin-left: 48px;\">\n",
       "            <details>\n",
       "                <summary>\n",
       "                    <h4 style=\"margin-bottom: 0px; display: inline;\">Worker: 2</h4>\n",
       "                </summary>\n",
       "                <table style=\"width: 100%; text-align: left;\">\n",
       "                    <tr>\n",
       "                        <td style=\"text-align: left;\">\n",
       "                            <strong>Comm: </strong> tcp://127.0.0.1:38783\n",
       "                        </td>\n",
       "                        <td style=\"text-align: left;\">\n",
       "                            <strong>Total threads: </strong> 2\n",
       "                        </td>\n",
       "                    </tr>\n",
       "                    <tr>\n",
       "                        <td style=\"text-align: left;\">\n",
       "                            <strong>Dashboard: </strong> <a href=\"http://127.0.0.1:36777/status\" target=\"_blank\">http://127.0.0.1:36777/status</a>\n",
       "                        </td>\n",
       "                        <td style=\"text-align: left;\">\n",
       "                            <strong>Memory: </strong> 5.87 GiB\n",
       "                        </td>\n",
       "                    </tr>\n",
       "                    <tr>\n",
       "                        <td style=\"text-align: left;\">\n",
       "                            <strong>Nanny: </strong> tcp://127.0.0.1:33311\n",
       "                        </td>\n",
       "                        <td style=\"text-align: left;\"></td>\n",
       "                    </tr>\n",
       "                    <tr>\n",
       "                        <td colspan=\"2\" style=\"text-align: left;\">\n",
       "                            <strong>Local directory: </strong> /tmp/dask-scratch-space/worker-pq9c33gu\n",
       "                        </td>\n",
       "                    </tr>\n",
       "\n",
       "                    \n",
       "\n",
       "                    \n",
       "\n",
       "                </table>\n",
       "            </details>\n",
       "            </div>\n",
       "        </div>\n",
       "        \n",
       "        <div style=\"margin-bottom: 20px;\">\n",
       "            <div style=\"width: 24px; height: 24px; background-color: #DBF5FF; border: 3px solid #4CC9FF; border-radius: 5px; position: absolute;\"> </div>\n",
       "            <div style=\"margin-left: 48px;\">\n",
       "            <details>\n",
       "                <summary>\n",
       "                    <h4 style=\"margin-bottom: 0px; display: inline;\">Worker: 3</h4>\n",
       "                </summary>\n",
       "                <table style=\"width: 100%; text-align: left;\">\n",
       "                    <tr>\n",
       "                        <td style=\"text-align: left;\">\n",
       "                            <strong>Comm: </strong> tcp://127.0.0.1:43915\n",
       "                        </td>\n",
       "                        <td style=\"text-align: left;\">\n",
       "                            <strong>Total threads: </strong> 2\n",
       "                        </td>\n",
       "                    </tr>\n",
       "                    <tr>\n",
       "                        <td style=\"text-align: left;\">\n",
       "                            <strong>Dashboard: </strong> <a href=\"http://127.0.0.1:37865/status\" target=\"_blank\">http://127.0.0.1:37865/status</a>\n",
       "                        </td>\n",
       "                        <td style=\"text-align: left;\">\n",
       "                            <strong>Memory: </strong> 5.87 GiB\n",
       "                        </td>\n",
       "                    </tr>\n",
       "                    <tr>\n",
       "                        <td style=\"text-align: left;\">\n",
       "                            <strong>Nanny: </strong> tcp://127.0.0.1:36963\n",
       "                        </td>\n",
       "                        <td style=\"text-align: left;\"></td>\n",
       "                    </tr>\n",
       "                    <tr>\n",
       "                        <td colspan=\"2\" style=\"text-align: left;\">\n",
       "                            <strong>Local directory: </strong> /tmp/dask-scratch-space/worker-b4dzhye5\n",
       "                        </td>\n",
       "                    </tr>\n",
       "\n",
       "                    \n",
       "\n",
       "                    \n",
       "\n",
       "                </table>\n",
       "            </details>\n",
       "            </div>\n",
       "        </div>\n",
       "        \n",
       "\n",
       "    </details>\n",
       "</div>\n",
       "\n",
       "        </details>\n",
       "    </div>\n",
       "</div>\n",
       "            </details>\n",
       "        \n",
       "\n",
       "    </div>\n",
       "</div>"
      ],
      "text/plain": [
       "<Client: 'tcp://127.0.0.1:42111' processes=4 threads=8, memory=23.47 GiB>"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "client = Client()\n",
    "client"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "2023-07-19 17:36:42,921 - distributed.scheduler - ERROR - Couldn't gather keys {\"('astype-1dead4f4f28400d17d384d6a2b513c87', 0, 0)\": []} state: ['waiting'] workers: []\n",
      "NoneType: None\n",
      "2023-07-19 17:36:42,922 - distributed.scheduler - ERROR - Shut down workers that don't have promised key: [], ('astype-1dead4f4f28400d17d384d6a2b513c87', 0, 0)\n",
      "NoneType: None\n",
      "2023-07-19 17:36:42,924 - distributed.client - WARNING - Couldn't gather 1 keys, rescheduling {\"('astype-1dead4f4f28400d17d384d6a2b513c87', 0, 0)\": ()}\n",
      "2023-07-19 17:36:43,297 - distributed.scheduler - ERROR - Couldn't gather keys {\"('astype-1dead4f4f28400d17d384d6a2b513c87', 0, 0)\": []} state: [None] workers: []\n",
      "NoneType: None\n",
      "2023-07-19 17:36:43,298 - distributed.scheduler - ERROR - Shut down workers that don't have promised key: [], ('astype-1dead4f4f28400d17d384d6a2b513c87', 0, 0)\n",
      "NoneType: None\n",
      "2023-07-19 17:36:43,300 - distributed.client - WARNING - Couldn't gather 1 keys, rescheduling {\"('astype-1dead4f4f28400d17d384d6a2b513c87', 0, 0)\": ()}\n",
      "2023-07-19 17:36:43,454 - distributed.scheduler - ERROR - Couldn't gather keys {\"('astype-1dead4f4f28400d17d384d6a2b513c87', 0, 0)\": []} state: [None] workers: []\n",
      "NoneType: None\n",
      "2023-07-19 17:36:43,455 - distributed.scheduler - ERROR - Shut down workers that don't have promised key: [], ('astype-1dead4f4f28400d17d384d6a2b513c87', 0, 0)\n",
      "NoneType: None\n",
      "2023-07-19 17:36:43,456 - distributed.client - WARNING - Couldn't gather 1 keys, rescheduling {\"('astype-1dead4f4f28400d17d384d6a2b513c87', 0, 0)\": ()}\n",
      "/home/auclairj/anaconda3/envs/modspa_pixel/lib/python3.10/site-packages/dask/core.py:121: RuntimeWarning: invalid value encountered in divide\n",
      "  return func(*(_execute_task(a, cache) for a in args))\n",
      "/home/auclairj/anaconda3/envs/modspa_pixel/lib/python3.10/site-packages/dask/core.py:121: RuntimeWarning: invalid value encountered in divide\n",
      "  return func(*(_execute_task(a, cache) for a in args))\n",
      "/home/auclairj/anaconda3/envs/modspa_pixel/lib/python3.10/site-packages/dask/core.py:121: RuntimeWarning: invalid value encountered in divide\n",
      "  return func(*(_execute_task(a, cache) for a in args))\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "day  2 / 366    \r"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/home/auclairj/anaconda3/envs/modspa_pixel/lib/python3.10/site-packages/dask/core.py:121: RuntimeWarning: invalid value encountered in divide\n",
      "  return func(*(_execute_task(a, cache) for a in args))\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "day  42 / 366    \r"
     ]
    },
    {
     "ename": "KeyboardInterrupt",
     "evalue": "",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mKeyboardInterrupt\u001b[0m                         Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[4], line 14\u001b[0m\n\u001b[1;32m      9\u001b[0m save_path \u001b[39m=\u001b[39m data_path \u001b[39m+\u001b[39m os\u001b[39m.\u001b[39msep \u001b[39m+\u001b[39m \u001b[39m'\u001b[39m\u001b[39moutputs.nc\u001b[39m\u001b[39m'\u001b[39m\n\u001b[1;32m     11\u001b[0m chunk_size \u001b[39m=\u001b[39m {\u001b[39m'\u001b[39m\u001b[39mx\u001b[39m\u001b[39m'\u001b[39m: \u001b[39m-\u001b[39m\u001b[39m1\u001b[39m, \u001b[39m'\u001b[39m\u001b[39my\u001b[39m\u001b[39m'\u001b[39m: \u001b[39m-\u001b[39m\u001b[39m1\u001b[39m, \u001b[39m'\u001b[39m\u001b[39mtime\u001b[39m\u001b[39m'\u001b[39m: \u001b[39m-\u001b[39m\u001b[39m1\u001b[39m}\n\u001b[0;32m---> 14\u001b[0m run_samir(json_config_file, param_file, ndvi_path, weather_path, soil_path, land_cover_path, chunk_size, save_path)\n",
      "Cell \u001b[0;32mIn[2], line 734\u001b[0m, in \u001b[0;36mrun_samir\u001b[0;34m(json_config_file, csv_param_file, ndvi_cube_path, weather_cube_path, soil_params_path, land_cover_path, chunk_size, save_path)\u001b[0m\n\u001b[1;32m    730\u001b[0m De \u001b[39m=\u001b[39m (Dei \u001b[39m*\u001b[39m fewi \u001b[39m+\u001b[39m Dep \u001b[39m*\u001b[39m fewp) \u001b[39m/\u001b[39m (fewi \u001b[39m+\u001b[39m fewp)\n\u001b[1;32m    731\u001b[0m \u001b[39m# De = xr.where(De.isfinite(), De, Dei * (s_FW * FW_ / 100) + Dep * (1 - (s_FW * FW_ / 100)))\u001b[39;00m\n\u001b[1;32m    732\u001b[0m \n\u001b[1;32m    733\u001b[0m \u001b[39m# Evaporation\u001b[39;00m\n\u001b[0;32m--> 734\u001b[0m model_outputs[\u001b[39m'\u001b[39m\u001b[39mE\u001b[39m\u001b[39m'\u001b[39m]\u001b[39m.\u001b[39mloc[{\u001b[39m'\u001b[39m\u001b[39mtime\u001b[39m\u001b[39m'\u001b[39m: dates[i]}]  \u001b[39m=\u001b[39m xr_maximum((Kei \u001b[39m+\u001b[39m Kep) \u001b[39m*\u001b[39m weather_cube[\u001b[39m'\u001b[39m\u001b[39mET0\u001b[39m\u001b[39m'\u001b[39m]\u001b[39m.\u001b[39msel({\u001b[39m'\u001b[39m\u001b[39mtime\u001b[39m\u001b[39m'\u001b[39m: dates[i]}) \u001b[39m/\u001b[39m \u001b[39m1000\u001b[39m, \u001b[39m0\u001b[39m)\n\u001b[1;32m    736\u001b[0m \u001b[39m# Transpiration\u001b[39;00m\n\u001b[1;32m    737\u001b[0m model_outputs[\u001b[39m'\u001b[39m\u001b[39mTr\u001b[39m\u001b[39m'\u001b[39m]\u001b[39m.\u001b[39mloc[{\u001b[39m'\u001b[39m\u001b[39mtime\u001b[39m\u001b[39m'\u001b[39m: dates[i]}]  \u001b[39m=\u001b[39m Kcb \u001b[39m*\u001b[39m Ks \u001b[39m*\u001b[39m weather_cube[\u001b[39m'\u001b[39m\u001b[39mET0\u001b[39m\u001b[39m'\u001b[39m]\u001b[39m.\u001b[39msel({\u001b[39m'\u001b[39m\u001b[39mtime\u001b[39m\u001b[39m'\u001b[39m: dates[i]}) \u001b[39m/\u001b[39m \u001b[39m1000\u001b[39m\n",
      "File \u001b[0;32m~/anaconda3/envs/modspa_pixel/lib/python3.10/site-packages/xarray/core/dataarray.py:223\u001b[0m, in \u001b[0;36m_LocIndexer.__setitem__\u001b[0;34m(self, key, value)\u001b[0m\n\u001b[1;32m    220\u001b[0m     key \u001b[39m=\u001b[39m \u001b[39mdict\u001b[39m(\u001b[39mzip\u001b[39m(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mdata_array\u001b[39m.\u001b[39mdims, labels))\n\u001b[1;32m    222\u001b[0m dim_indexers \u001b[39m=\u001b[39m map_index_queries(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mdata_array, key)\u001b[39m.\u001b[39mdim_indexers\n\u001b[0;32m--> 223\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mdata_array[dim_indexers] \u001b[39m=\u001b[39m value\n",
      "File \u001b[0;32m~/anaconda3/envs/modspa_pixel/lib/python3.10/site-packages/xarray/core/dataarray.py:840\u001b[0m, in \u001b[0;36mDataArray.__setitem__\u001b[0;34m(self, key, value)\u001b[0m\n\u001b[1;32m    835\u001b[0m \u001b[39m# DataArray key -> Variable key\u001b[39;00m\n\u001b[1;32m    836\u001b[0m key \u001b[39m=\u001b[39m {\n\u001b[1;32m    837\u001b[0m     k: v\u001b[39m.\u001b[39mvariable \u001b[39mif\u001b[39;00m \u001b[39misinstance\u001b[39m(v, DataArray) \u001b[39melse\u001b[39;00m v\n\u001b[1;32m    838\u001b[0m     \u001b[39mfor\u001b[39;00m k, v \u001b[39min\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_item_key_to_dict(key)\u001b[39m.\u001b[39mitems()\n\u001b[1;32m    839\u001b[0m }\n\u001b[0;32m--> 840\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mvariable[key] \u001b[39m=\u001b[39m value\n",
      "File \u001b[0;32m~/anaconda3/envs/modspa_pixel/lib/python3.10/site-packages/xarray/core/variable.py:977\u001b[0m, in \u001b[0;36mVariable.__setitem__\u001b[0;34m(self, key, value)\u001b[0m\n\u001b[1;32m    974\u001b[0m     value \u001b[39m=\u001b[39m np\u001b[39m.\u001b[39mmoveaxis(value, new_order, \u001b[39mrange\u001b[39m(\u001b[39mlen\u001b[39m(new_order)))\n\u001b[1;32m    976\u001b[0m indexable \u001b[39m=\u001b[39m as_indexable(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_data)\n\u001b[0;32m--> 977\u001b[0m indexable[index_tuple] \u001b[39m=\u001b[39m value\n",
      "File \u001b[0;32m~/anaconda3/envs/modspa_pixel/lib/python3.10/site-packages/xarray/core/indexing.py:1338\u001b[0m, in \u001b[0;36mNumpyIndexingAdapter.__setitem__\u001b[0;34m(self, key, value)\u001b[0m\n\u001b[1;32m   1336\u001b[0m array, key \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_indexing_array_and_key(key)\n\u001b[1;32m   1337\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[0;32m-> 1338\u001b[0m     array[key] \u001b[39m=\u001b[39m value\n\u001b[1;32m   1339\u001b[0m \u001b[39mexcept\u001b[39;00m \u001b[39mValueError\u001b[39;00m:\n\u001b[1;32m   1340\u001b[0m     \u001b[39m# More informative exception if read-only view\u001b[39;00m\n\u001b[1;32m   1341\u001b[0m     \u001b[39mif\u001b[39;00m \u001b[39mnot\u001b[39;00m array\u001b[39m.\u001b[39mflags\u001b[39m.\u001b[39mwriteable \u001b[39mand\u001b[39;00m \u001b[39mnot\u001b[39;00m array\u001b[39m.\u001b[39mflags\u001b[39m.\u001b[39mowndata:\n",
      "File \u001b[0;32m~/anaconda3/envs/modspa_pixel/lib/python3.10/site-packages/dask/array/core.py:1699\u001b[0m, in \u001b[0;36mArray.__array__\u001b[0;34m(self, dtype, **kwargs)\u001b[0m\n\u001b[1;32m   1698\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39m__array__\u001b[39m(\u001b[39mself\u001b[39m, dtype\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs):\n\u001b[0;32m-> 1699\u001b[0m     x \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mcompute()\n\u001b[1;32m   1700\u001b[0m     \u001b[39mif\u001b[39;00m dtype \u001b[39mand\u001b[39;00m x\u001b[39m.\u001b[39mdtype \u001b[39m!=\u001b[39m dtype:\n\u001b[1;32m   1701\u001b[0m         x \u001b[39m=\u001b[39m x\u001b[39m.\u001b[39mastype(dtype)\n",
      "File \u001b[0;32m~/anaconda3/envs/modspa_pixel/lib/python3.10/site-packages/dask/base.py:381\u001b[0m, in \u001b[0;36mDaskMethodsMixin.compute\u001b[0;34m(self, **kwargs)\u001b[0m\n\u001b[1;32m    357\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mcompute\u001b[39m(\u001b[39mself\u001b[39m, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs):\n\u001b[1;32m    358\u001b[0m     \u001b[39m\"\"\"Compute this dask collection\u001b[39;00m\n\u001b[1;32m    359\u001b[0m \n\u001b[1;32m    360\u001b[0m \u001b[39m    This turns a lazy Dask collection into its in-memory equivalent.\u001b[39;00m\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m    379\u001b[0m \u001b[39m    dask.compute\u001b[39;00m\n\u001b[1;32m    380\u001b[0m \u001b[39m    \"\"\"\u001b[39;00m\n\u001b[0;32m--> 381\u001b[0m     (result,) \u001b[39m=\u001b[39m compute(\u001b[39mself\u001b[39;49m, traverse\u001b[39m=\u001b[39;49m\u001b[39mFalse\u001b[39;49;00m, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[1;32m    382\u001b[0m     \u001b[39mreturn\u001b[39;00m result\n",
      "File \u001b[0;32m~/anaconda3/envs/modspa_pixel/lib/python3.10/site-packages/dask/base.py:660\u001b[0m, in \u001b[0;36mcompute\u001b[0;34m(traverse, optimize_graph, scheduler, get, *args, **kwargs)\u001b[0m\n\u001b[1;32m    652\u001b[0m     \u001b[39mreturn\u001b[39;00m args\n\u001b[1;32m    654\u001b[0m schedule \u001b[39m=\u001b[39m get_scheduler(\n\u001b[1;32m    655\u001b[0m     scheduler\u001b[39m=\u001b[39mscheduler,\n\u001b[1;32m    656\u001b[0m     collections\u001b[39m=\u001b[39mcollections,\n\u001b[1;32m    657\u001b[0m     get\u001b[39m=\u001b[39mget,\n\u001b[1;32m    658\u001b[0m )\n\u001b[0;32m--> 660\u001b[0m dsk \u001b[39m=\u001b[39m collections_to_dsk(collections, optimize_graph, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[1;32m    661\u001b[0m keys, postcomputes \u001b[39m=\u001b[39m [], []\n\u001b[1;32m    662\u001b[0m \u001b[39mfor\u001b[39;00m x \u001b[39min\u001b[39;00m collections:\n",
      "File \u001b[0;32m~/anaconda3/envs/modspa_pixel/lib/python3.10/site-packages/dask/base.py:433\u001b[0m, in \u001b[0;36mcollections_to_dsk\u001b[0;34m(collections, optimize_graph, optimizations, **kwargs)\u001b[0m\n\u001b[1;32m    431\u001b[0m \u001b[39mfor\u001b[39;00m opt, val \u001b[39min\u001b[39;00m groups\u001b[39m.\u001b[39mitems():\n\u001b[1;32m    432\u001b[0m     dsk, keys \u001b[39m=\u001b[39m _extract_graph_and_keys(val)\n\u001b[0;32m--> 433\u001b[0m     dsk \u001b[39m=\u001b[39m opt(dsk, keys, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[1;32m    435\u001b[0m     \u001b[39mfor\u001b[39;00m opt_inner \u001b[39min\u001b[39;00m optimizations:\n\u001b[1;32m    436\u001b[0m         dsk \u001b[39m=\u001b[39m opt_inner(dsk, keys, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs)\n",
      "File \u001b[0;32m~/anaconda3/envs/modspa_pixel/lib/python3.10/site-packages/dask/array/optimization.py:49\u001b[0m, in \u001b[0;36moptimize\u001b[0;34m(dsk, keys, fuse_keys, fast_functions, inline_functions_fast_functions, rename_fused_keys, **kwargs)\u001b[0m\n\u001b[1;32m     46\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39misinstance\u001b[39m(dsk, HighLevelGraph):\n\u001b[1;32m     47\u001b[0m     dsk \u001b[39m=\u001b[39m HighLevelGraph\u001b[39m.\u001b[39mfrom_collections(\u001b[39mid\u001b[39m(dsk), dsk, dependencies\u001b[39m=\u001b[39m())\n\u001b[0;32m---> 49\u001b[0m dsk \u001b[39m=\u001b[39m optimize_blockwise(dsk, keys\u001b[39m=\u001b[39;49mkeys)\n\u001b[1;32m     50\u001b[0m dsk \u001b[39m=\u001b[39m fuse_roots(dsk, keys\u001b[39m=\u001b[39mkeys)\n\u001b[1;32m     51\u001b[0m dsk \u001b[39m=\u001b[39m dsk\u001b[39m.\u001b[39mcull(\u001b[39mset\u001b[39m(keys))\n",
      "File \u001b[0;32m~/anaconda3/envs/modspa_pixel/lib/python3.10/site-packages/dask/blockwise.py:1080\u001b[0m, in \u001b[0;36moptimize_blockwise\u001b[0;34m(graph, keys)\u001b[0m\n\u001b[1;32m   1078\u001b[0m \u001b[39mwhile\u001b[39;00m out\u001b[39m.\u001b[39mdependencies \u001b[39m!=\u001b[39m graph\u001b[39m.\u001b[39mdependencies:\n\u001b[1;32m   1079\u001b[0m     graph \u001b[39m=\u001b[39m out\n\u001b[0;32m-> 1080\u001b[0m     out \u001b[39m=\u001b[39m _optimize_blockwise(graph, keys\u001b[39m=\u001b[39;49mkeys)\n\u001b[1;32m   1081\u001b[0m \u001b[39mreturn\u001b[39;00m out\n",
      "File \u001b[0;32m~/anaconda3/envs/modspa_pixel/lib/python3.10/site-packages/dask/blockwise.py:1154\u001b[0m, in \u001b[0;36m_optimize_blockwise\u001b[0;34m(full_graph, keys)\u001b[0m\n\u001b[1;32m   1151\u001b[0m             stack\u001b[39m.\u001b[39mappend(d)\n\u001b[1;32m   1153\u001b[0m \u001b[39m# Merge these Blockwise layers into one\u001b[39;00m\n\u001b[0;32m-> 1154\u001b[0m new_layer \u001b[39m=\u001b[39m rewrite_blockwise([layers[l] \u001b[39mfor\u001b[39;49;00m l \u001b[39min\u001b[39;49;00m blockwise_layers])\n\u001b[1;32m   1155\u001b[0m out[layer] \u001b[39m=\u001b[39m new_layer\n\u001b[1;32m   1157\u001b[0m \u001b[39m# Get the new (external) dependencies for this layer.\u001b[39;00m\n\u001b[1;32m   1158\u001b[0m \u001b[39m# This corresponds to the dependencies defined in\u001b[39;00m\n\u001b[1;32m   1159\u001b[0m \u001b[39m# full_graph.dependencies and are not in blockwise_layers\u001b[39;00m\n",
      "File \u001b[0;32m~/anaconda3/envs/modspa_pixel/lib/python3.10/site-packages/dask/blockwise.py:1341\u001b[0m, in \u001b[0;36mrewrite_blockwise\u001b[0;34m(inputs)\u001b[0m\n\u001b[1;32m   1339\u001b[0m sub \u001b[39m=\u001b[39m {}\n\u001b[1;32m   1340\u001b[0m \u001b[39m# Map from (id(key), inds or None) -> index in indices. Used to deduplicate indices.\u001b[39;00m\n\u001b[0;32m-> 1341\u001b[0m index_map \u001b[39m=\u001b[39m {(\u001b[39mid\u001b[39m(k), inds): n \u001b[39mfor\u001b[39;00m n, (k, inds) \u001b[39min\u001b[39;00m \u001b[39menumerate\u001b[39m(indices)}\n\u001b[1;32m   1342\u001b[0m \u001b[39mfor\u001b[39;00m ii, index \u001b[39min\u001b[39;00m \u001b[39menumerate\u001b[39m(new_indices):\n\u001b[1;32m   1343\u001b[0m     id_key \u001b[39m=\u001b[39m (\u001b[39mid\u001b[39m(index[\u001b[39m0\u001b[39m]), index[\u001b[39m1\u001b[39m])\n",
      "File \u001b[0;32m~/anaconda3/envs/modspa_pixel/lib/python3.10/site-packages/dask/blockwise.py:1341\u001b[0m, in \u001b[0;36m<dictcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m   1339\u001b[0m sub \u001b[39m=\u001b[39m {}\n\u001b[1;32m   1340\u001b[0m \u001b[39m# Map from (id(key), inds or None) -> index in indices. Used to deduplicate indices.\u001b[39;00m\n\u001b[0;32m-> 1341\u001b[0m index_map \u001b[39m=\u001b[39m {(\u001b[39mid\u001b[39;49m(k), inds): n \u001b[39mfor\u001b[39;00m n, (k, inds) \u001b[39min\u001b[39;00m \u001b[39menumerate\u001b[39m(indices)}\n\u001b[1;32m   1342\u001b[0m \u001b[39mfor\u001b[39;00m ii, index \u001b[39min\u001b[39;00m \u001b[39menumerate\u001b[39m(new_indices):\n\u001b[1;32m   1343\u001b[0m     id_key \u001b[39m=\u001b[39m (\u001b[39mid\u001b[39m(index[\u001b[39m0\u001b[39m]), index[\u001b[39m1\u001b[39m])\n",
      "\u001b[0;31mKeyboardInterrupt\u001b[0m: "
     ]
    }
   ],
   "source": [
    "data_path = '/mnt/e/DATA/DEV_inputs_test'\n",
    "\n",
    "ndvi_path = data_path + os.sep + 'ndvi.nc'\n",
    "weather_path = data_path + os.sep + 'weather.nc'\n",
    "land_cover_path = data_path + os.sep + 'land_cover.nc'\n",
    "json_config_file = '/home/auclairj/GIT/modspa-pixel/config/config_modspa.json'\n",
    "param_file = '/home/auclairj/GIT/modspa-pixel/parameters/csv_files/params_samir_test.csv'\n",
    "soil_path = data_path + os.sep + 'soil.nc'\n",
    "save_path = data_path + os.sep + 'outputs.nc'\n",
    "\n",
    "chunk_size = {'x': 5, 'y': 5, 'time': -1}\n",
    "\n",
    "\n",
    "run_samir(json_config_file, param_file, ndvi_path, weather_path, soil_path, land_cover_path, chunk_size, save_path)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "modspa_pixel",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.9"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}