Newer
Older
Jeremy Auclair
committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
#! /usr/bin/env python
#-*- coding: utf-8 -*-
"""
11-07-2023 adapted from modspa-parcel code
@author: jeremy auclair
Classes to load and store SAMIR parameters.
"""
from pandas import read_csv # to read csv parameter files
from numpy import nan # to fill nan values
import param # type: ignore
class samir_parameters_LC:
"""
This class allows to store all the SAMIR parameters for one land cover class
"""
def __init__(self, csvLine, defaultClass, mode_init = 1):
# List of parameters that will be optimised (and hence that are not read in the param csv file)
self.optimList = []
if defaultClass:
#print(csvLine)
for v in csvLine.values():
if v == '':
raise ValueError("All fields must be filled for the default value line")
self.name = csvLine['ClassName']
self.number = int(csvLine['ClassNumber'])
# Parameters for the NDVI - Fraction Cover relation
if (csvLine['FminFC'] != "optim"):
self.ndviFCminFC = param.Number(float(csvLine['FminFC']), bounds=(0., 1.)).default
else:
self.optimList.append("FminFC")
if (csvLine['FmaxFC'] != "optim"):
self.ndviFCmaxFC = param.Number(float(csvLine['FmaxFC']), bounds=(0., 1.)).default
else:
self.optimList.append("FmaxFC")
if (csvLine['Fslope'] != "optim"):
self.ndviFCslope = param.Number(float(csvLine['Fslope']), bounds=(0., 10)).default
else:
self.optimList.append("Fslope")
if (csvLine['Foffset'] != "optim"):
self.ndviFCoffset = param.Number(float(csvLine['Foffset']), bounds=(-1, 1)).default
else:
self.optimList.append("Foffset")
if (csvLine['Plateau'] != "optim"):
self.ndviPlateau = param.Number(int(float(csvLine['Plateau'])), bounds=(0, 365)).default
else:
self.optimList.append("Plateau")
# Parameters for the NDVI -Kcb relation
if (csvLine['KminKcb'] != "optim"):
self.ndviKcbminKcb = param.Number(float(csvLine['KminKcb']), bounds=(0, 0.5)).default
else:
self.optimList.append("KminKcb")
if (csvLine['KmaxKcb'] != "optim"):
self.ndviKcbmaxKcb = param.Number(float(csvLine['KmaxKcb']), bounds=(0.5, 2)).default
else:
self.optimList.append("KmaxKcb")
if (csvLine['Kslope'] != "optim"):
self.ndviKcbslope = param.Number(float(csvLine['Kslope'])).default
else:
self.optimList.append("Kslope")
if (csvLine['Koffset'] != "optim"):
self.ndviKcboffset = param.Number(float(csvLine['Koffset'])).default
else:
self.optimList.append("Koffset")
# Soil parameters
if (csvLine['Zsoil'] != "optim"):
self.Zsoil = param.Number(float(csvLine['Zsoil']), bounds=(100, 10000), doc = "Soil depth (in mm)").default
else:
self.optimList.append("Zsoil")
if (csvLine['Ze'] != "optim"):
self.Ze = param.Number(float(csvLine['Ze']), bounds=(1, self.Zsoil), doc = "Evaporative layer depth (in mm)").default
else:
self.optimList.append("Ze")
if mode_init == 1 or mode_init == 3:
if (csvLine['Init_RU'] != "optim"):
self.Init_RU = param.Number(float(csvLine['Init_RU']), doc = "Filling rate of the available water").default
else:
self.optimList.append("Init_RU")
else :
self.Dei = param.Number(float(csvLine['Init_Dei']), bounds=(0, None), doc = "Initial Depletion of the evaporative layer (irrigation + precipitation) (in mm)").default
self.Dep = param.Number(float(csvLine['Init_Dep']), bounds=(0, None), doc = "Initial Depletion of the evaporative layer (precipitation only) (in mm)").default
self.Dr = param.Number(float(csvLine['Init_Dr']), bounds=(0, None), doc = "Initial Depletion of the root layer (in mm)").default
self.Dd = param.Number(float(csvLine['Init_Dd']), bounds=(0, None), doc = "Initial Depletion of the deep layer (in mm)").default
if (csvLine['DiffE'] != "optim"):
self.DiffE = param.Number(float(csvLine['DiffE']), bounds=(0, 1000), doc = "Diffusion coefficient between evaporative and root layers (unitless)").default
else:
self.optimList.append("DiffE")
if (csvLine['DiffR'] != "optim"):
self.DiffR = param.Number(float(csvLine['DiffR']), bounds=(0, 1000), doc = "Diffusion coefficient between root and deep layers (unitless)").default
else:
self.optimList.append("DiffR")
if (csvLine['REW'] != "optim"):
self.REW = param.Number(float(csvLine['REW']), bounds=(-1000, 1000), doc = "Readily Evaporable Water (in mm)").default
else:
self.optimList.append("REW")
if (csvLine['m'] != "optim"):
self.m = param.Number(float(csvLine['m']), bounds=(0, 1), doc = "").default ## si utilise, REW minimum doit etre à 0 ?
else:
self.optimList.append("m")
# Crop parameters
if (csvLine['minZr'] != "optim"):
if (csvLine['Ze'] != "optim") & (csvLine['Zsoil'] != "optim"):
self.minZr = param.Number(float(csvLine['minZr']), bounds=(self.Ze, self.Zsoil), doc = "Minimum root depth (mm)").default
else:
self.minZr = param.Number(float(csvLine['minZr']), bounds=(1, 10000), doc = "Minimum root depth (mm)").default
else:
self.optimList.append("minZr")
if (csvLine['maxZr'] != "optim"):
if (csvLine['Zsoil'] != "optim"):
self.maxZr = param.Number(float(csvLine['maxZr']), bounds=(0, self.Zsoil-1), doc = "Maximum root depth (mm)").default
else:
self.maxZr = param.Number(float(csvLine['maxZr']), bounds=(0, 10000-1), doc = "Maximum root depth (mm)").default
else:
self.optimList.append("maxZr")
if (csvLine['p'] != "optim"):
self.p = param.Number(float(csvLine['p']), bounds=(0, 1), doc = "Fraction of readily available water").default
else:
self.optimList.append("p")
# Irrigation parameters
self.irrigFW = param.Number(float(csvLine['FW']), bounds=(0, 100), doc = "% of soil wetted by irrigation").default
self.Irrig_auto = param.Integer(int(float(csvLine['Irrig_auto'])), doc = "1 if the automatic irrigation mode is activated").default
self.Irrig_man = param.Integer(int(float(csvLine['Irrig_man'])), doc = "1 if the manual irrigation mode is activated").default
if (csvLine['Lame_max'] != "optim"):
self.Lame_max = param.Number(float(csvLine['Lame_max']), doc = "Maximum of irrigation height for each irrigation event (in mm)").default
else:
self.optimList.append("Lame_max")
if (csvLine['minDays'] != "optim"):
self.irrigMinDays = param.Integer(int(float(csvLine['minDays'])), bounds=(0, None), doc = "Minimum number of days between two irrigation events").default
else:
self.optimList.append("minDays")
if (csvLine['Kcbmin_start'] != "optim"):
self.Kcbmin_start = param.Number(float(csvLine['Kcbmin_start']), bounds=(0, 1), doc = "Minimum Kcb value above which irrigation may start").default
else:
self.optimList.append("Kcbmin_start")
if (csvLine['Kcbmax_stop'] != "optim"):
self.Kcbmax_stop = param.Number(float(csvLine['Kcbmax_stop']), bounds=(0, 1), doc = "Fraction of peak Kcb value below which irrigation stops").default
else:
self.optimList.append("Kcbmax_stop")
if (csvLine['Kcmax'] != "optim"):
self.Kcmax = param.Number(float(csvLine['Kcmax']), bounds=(0, None), doc = "pas d'info").default
else:
self.optimList.append("Kcmax")
if (csvLine['Fc_stop'] != "optim"):
self.Fc_stop = param.Number(float(csvLine['Fc_stop']), bounds=(0, None), doc = "pas d'info").default
else:
self.optimList.append("Fc_stop")
if (csvLine['Start_date_Irr'] != "optim"):
self.Start_date_Irr = param.Number(int(float(csvLine['Start_date_Irr'])), bounds=(0, None), doc = "pas d'info").default
else:
self.optimList.append("Start_date_Irr")
if (csvLine["p_trigger"] != "optim"):
self.p_trigger = param.Number(float(csvLine['p_trigger']), bounds=(-1, 1), doc = "Fraction of water storage capacity below which irrigation is triggered").default
else:
self.optimList.append("Fc_stop")
def setParam(self, paramName, value):
# Soil parameters
if paramName == "REW":
self.REW = value
elif paramName == "Init_RU":
self.Init_RU = value
elif paramName == "minZr":
self.minZr = value
elif paramName == "maxZr":
self.maxZr = value
elif paramName == "Ze":
self.Ze = value
elif paramName == "Zsoil":
self.Zsoil = value
elif paramName == "DiffR":
self.DiffR = value
elif paramName == "DiffE":
self.DiffE = value
# Irrigation parameters
elif paramName == "Lame_max":
self.Lame_max = value
elif paramName == "minDays":
self.irrigMinDays = value
# Vegetation parameters
elif paramName == "FminFC":
self.ndviFCminFC = value
elif paramName == "FmaxFC":
self.ndviFCmaxFC = value
elif paramName == "Fc_stop":
self.Fc_stop = value
elif paramName == "Kcmax":
self.Kcmax = value
elif paramName == "Kcbmin_start" :
self.Kcbmin_start = value
elif paramName == "Kcbmax_stop" :
self.Kcbmax_stop = value
elif paramName == "Plateau" :
self.ndviPlateau = value
elif paramName == "Fslope" :
self.ndviFCslope = value
elif paramName == "Foffset" :
self.ndviFCoffset = value
elif paramName == "KmaxKcb" :
self.ndviKcbmaxKcb = value
elif paramName == "KminKcb" :
self.ndviKcbminKcb = value
elif paramName == "Kslope" :
self.ndviKcbslope = value
elif paramName == "Koffset" :
self.ndviKcboffset = value
elif paramName == "m" :
self.m = value
elif paramName == "p" :
self.p = value
elif paramName == "p_trigger":
self.p_trigger = value
class samir_parameters:
"""
Load all parameters for multiples classes in one object.
"""
def __init__(self, paramFile, mode_init = 1):
Jeremy Auclair
committed
# Read csv file with Pandas
csvFile = read_csv(paramFile, header = None)
# Index file for correct conversion to dictionnary
csvFile.index = csvFile.iloc[:,0]
csvFile.replace(nan, '', inplace = True)
defaultClass = True
# Loop on columns
for column in csvFile.columns[1:]:
# Convert pandas column to dictionnary
line = csvFile[column].to_dict()
#TODO : @VR+@CO Intoduire ici une verification des valeurs
#!! notamment si min=max alors error_rel=0
#!! Ajouter la possibilité de configurer plusieurs land cover
if defaultClass:
defaultLine = line.copy()
elif line['ClassName'] in ['error_rel','error_abs','min','max']:
Jeremy Auclair
committed
for k in line.keys():
if k != 'ClassName':
if line[k] == '':
line[k] = 0
self.classes[line['ClassName']][k] = float(line[k])
Jeremy Auclair
committed
continue
else:
for k in line.keys():
if line[k] == '':
line[k] = defaultLine[k]
self.classes[line['ClassName']] = samir_parameters_LC(line, defaultClass, mode_init)
Jeremy Auclair
committed
defaultClass = False