Skip to content
Snippets Groups Projects
download_ERA5_weather.py 7.96 KiB
Newer Older
@author: rivallandv, heavily modified by jeremy auclair
Download ERA5 daily weather files for modspa
"""

import glob  # for path management
import sys  # for path management
import os  # for path exploration
import geopandas as gpd  # to manage shapefiles
from psutil import cpu_count  # to get number of physical cores available
import modspa_pixel.preprocessing.lib_era5_land_pixel as era5land  # custom built functions for ERA5-Land data download
from modspa_pixel.config.config import config  # to load modspa config file
from modspa_pixel.preprocessing.parcel_to_pixel import convert_dataframe_to_xarray
def request_ER5_weather(config_file: str, ndvi_path: str, raw_S2_image_ref: str = None, shapefile: str = None,  mode: str = 'pixel') -> str:
    Download ERA5 reanalysis daily weather files, concatenate and calculate ET0
    to obtain a netCDF4 dataset for precipitation and ET0 values. Weather data
    reprojection and conversion can take some time for large spatial windows.
    Arguments
    =========
    
    1. config_file: ``str``
        path to ndvi cube, used for weather data reprojection
    3. raw_S2_image_ref: ``str`` ``default = None``
        unmodified sentinel-2 image at correct resolution for
        weather data reprojection in pixel mode
    4. shapefile: ``str`` ``default = None``
        path to shapefile for extraction in parcel mode
    5. mode: ``str`` ``default = 'pixel'``
        choose between ``'pixel'`` and ``'parcel'`` mode
    Returns
    =======
    
    1. weather_file: ``str``
        path to netCDF4 file containing weather data
    outpath = config_params.era5_path + os.sep + config_params.run_name

    # Geometry configuration
    wgs84_epsg = 'epsg:4326'  # WGS84 is the ERA5 epsg
    
    # ERA5 product parameters
    wind_height = 10  # height of ERA5 wind measurements in meters

    print('REQUEST CONFIGURATION INFORMATIONS:')
    if config_params.shapefile_path:
        if os.path.exists(config_params.shapefile_path):
            print('shapeFile: ', config_params.shapefile_path)
        else:
            print('shapeFile not found')

    else:
        # print('specify either shapeFile, boxbound or point coordinate in json file')
        print('specify shapeFile in json file')
        sys.exit(-1)
    print('period: ', config_params.start_date, ' - ', config_params.end_date)
    print('experiment name:', config_params.run_name)
    if os.path.exists(outpath):
        print('path for nc files: ', outpath)
    else:
        os.mkdir(outpath)
        print('mkdir path for nc files: ', outpath)
    print('----------')

    # Request ERA5-land BoxBound Determination
    if config_params.shapefile_path:
        # Load shapefile to access geometrics informations for ERA5-Land request
        gdf_expe_polygons = gpd.read_file(config_params.shapefile_path)
        print('Input polygons CRS :', gdf_expe_polygons.crs)
        expe_epsg = gdf_expe_polygons.crs

        # verification que les polygones sont tous fermés
        liste_polygons_validity = gdf_expe_polygons.geometry.is_valid
        if list(liste_polygons_validity).count(False) > 0:
            print('some polygons of Shapefile are not valid')
            polygons_invalid = liste_polygons_validity.loc[liste_polygons_validity == False]
            print('invalid polygons:', polygons_invalid)
            for i in polygons_invalid.index:
                gdf_expe_polygons.geometry[i]

            # Application d'un buffer de zero m
            gdf_expe_polygons_clean = gdf_expe_polygons.geometry.buffer(0)
            gdf_expe_polygons = gdf_expe_polygons_clean

        # search for the total extent of the whole polygons in lat/lon [xlo/ylo/xhi/yhi] [W S E N]
        expe_polygons_boxbound = gdf_expe_polygons.geometry.total_bounds
        expe_polygons_boxbound = list(expe_polygons_boxbound)
        print('shape extend in ', expe_epsg.srs, ':', expe_polygons_boxbound)

        if expe_epsg.srs != wgs84_epsg:
            print('--- convert extend in wgs84 coordinates ---')
            # idem en wgs84 pour des lat/lon en degree (format utilisé par google earth engine)
            expe_polygons_boxbound_wgs84 = gdf_expe_polygons.to_crs(wgs84_epsg).geometry.total_bounds
            
            # convert to list for earth engine
            expe_polygons_boxbound_wgs84 = list(expe_polygons_boxbound_wgs84)
        else:
            expe_polygons_boxbound_wgs84 = expe_polygons_boxbound

        # switch coordinates order to agree with ECMWF order: N W S E
        expe_area = expe_polygons_boxbound_wgs84[3], expe_polygons_boxbound_wgs84[0], expe_polygons_boxbound_wgs84[1], expe_polygons_boxbound_wgs84[2]

    print('boxbound [N W S E] extend in ', wgs84_epsg)
    print(expe_area)
    # determine boxbound for ECMWF request (included shape boxbound)
    era5_expe_polygons_boxbound_wgs84 = era5land.era5_enclosing_shp_aera(expe_area, 0.1)
    print('boxbound [N W S E] request extend in ', wgs84_epsg)
    print(era5_expe_polygons_boxbound_wgs84)

    print('--start request--')

    # Get number of available CPUs
    nb_processes = 4 * min([cpu_count(logical = False), len(os.sched_getaffinity(0)), config_params.max_cpu])  # downloading data demands very little computing power, each processor core can manage multiple downloads

    # Call daily data
    era5land.call_era5land_daily_for_MODSPA(config_params.start_date, config_params.end_date, era5_expe_polygons_boxbound_wgs84, output_path = outpath, processes = nb_processes)

    year = config_params.start_date[0:4]
    list_era5land_hourly_ncFiles = glob.glob(outpath + os.sep + 'ERA5-land_' + year + '*' + '.nc')
    for ncfile in list_era5land_hourly_ncFiles:
        print(ncfile)
    
    save_dir = outpath + os.sep + 'ncdailyfiles'
    if os.path.exists(outpath+os.sep+'ncdailyfiles'):
        print('path for nc daily files: ', save_dir)
    else:
        os.mkdir(outpath+os.sep+'ncdailyfiles')
        print('mkdir path for nc daily files: ', save_dir)
    print('----------')

    # Save daily wheather data into ncfile
    weather_daily_ncFile = save_dir + os.sep + config_params.start_date + '_' + config_params.end_date + '_' + config_params.run_name + '_era5-land-daily-meteo'

    # Temporary save directory for daily file merge
    variable_list = ['2m_dewpoint_temperature_daily_maximum', '2m_dewpoint_temperature_daily_minimum', '2m_temperature_daily_maximum', '2m_temperature_daily_minimum', 'total_precipitation_daily_mean', '10m_u_component_of_wind_daily_mean', '10m_v_component_of_wind_daily_mean', 'surface_solar_radiation_downwards_daily_mean']

    # Aggregate monthly files
    aggregated_files = era5land.concat_monthly_nc_file(list_era5land_hourly_ncFiles, variable_list, save_dir)
    
    # Generate pandas dataframe for parcel mode
    if mode == 'parcel':
        
        # Generate daily weather datasets as Geotiffs for each variable
        weather_daily_rain, weather_daily_ET0 = era5land.era5Land_daily_to_yearly_parcel(aggregated_files, weather_daily_ncFile, h = wind_height)
        
        # Create save path
        weather_datframe = weather_daily_ncFile + '_df.csv'
        weather_dataset = weather_daily_ncFile + '_parcel.nc'
        
        # Generate and save weather dataframe
        era5land.extract_weather_dataframe(weather_daily_rain, weather_daily_ET0, shapefile, config_file, weather_datframe)
        
        # Convert dataframe to xarray dataset
        convert_dataframe_to_xarray(weather_datframe, weather_dataset, variables = ['Rain', 'ET0'], data_types = ['u2', 'u2'])
        
        return weather_dataset
    
    # Calculate ET0 over the whole time period
    weather_daily_ncFile = era5land.era5Land_daily_to_yearly_pixel(aggregated_files, weather_daily_ncFile, raw_S2_image_ref, ndvi_path, h = wind_height, max_ram = 16)