Skip to content
Snippets Groups Projects
test_samir.py 38.3 KiB
Newer Older
# -*- coding: UTF-8 -*-
# Python
"""
04-07-2023
@author: jeremy auclair

Test file
"""

Jeremy Auclair's avatar
Jeremy Auclair committed
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
import xarray as xr
# from dask.distributed import Client
import os
import numpy as np
# import pandas as pd
import rasterio as rio
from typing import List, Tuple, Union
# import warnings
import netCDF4 as nc
from tqdm import tqdm
from parameters.params_samir_class import samir_parameters
from config.config import config
from time import time
# import webbrowser  # to open dask dashboard


def rasterize_samir_parameters(csv_param_file: str, empty_dataset: xr.Dataset, land_cover_raster: str, chunk_size: dict) -> Tuple[xr.Dataset, dict]:
    """
    Creates a raster `xarray` dataset from the csv parameter file, the land cover raster and an empty dataset
    that contains the right structure (emptied ndvi dataset for example). For each parameter, the function loops
    on land cover classes to fill the raster.

    # Arguments
    1. csv_param_file: `str`
        path to csv paramter file
    2. empty_dataset: `xr.Dataset`
        empty dataset that contains the right structure (emptied ndvi dataset for example).
    3. land_cover_raster: `str`
        path to land cover netcdf raster
    4. chunk_size: `dict`
        chunk_size for dask computation

    # Returns
    1. parameter_dataset: `xr.Dataset`
        the dataset containing all the rasterized Parameters
    2. scale_factor: `dict`
        dictionnary containing the scale factors for each parameter
    """

    # Load samir params into an object
    table_param = samir_parameters(csv_param_file)

    # Set general variables
    class_count = table_param.table.shape[1] - 2  # remove dtype and default columns

    # Open land cover raster
    land_cover = xr.open_dataarray(land_cover_raster, chunks=chunk_size)

    # Create dataset
    parameter_dataset = empty_dataset.copy(deep=True)

    # Create dictionnary containing the scale factors
    scale_factor = {}

    # Loop on samir parameters and create
    for parameter in table_param.table.index[1:]:

        # Create new variable and set attributes
        parameter_dataset[parameter] = land_cover.copy(deep=True).astype('f4')
        parameter_dataset[parameter].attrs['name'] = parameter
        parameter_dataset[parameter].attrs['description'] = 'cf SAMIR Doc for detail'
        parameter_dataset[parameter].attrs['scale factor'] = str(
            table_param.table.loc[table_param.table.index == parameter]['scale_factor'].values[0])

        # Assigne value in dictionnary
        scale_factor[parameter] = 1/int(table_param.table.loc[table_param.table.index ==
                                        parameter]['scale_factor'].values[0])

        # Loop on classes to set parameter values for each class
        for class_val, class_name in zip(range(1, class_count + 1), table_param.table.columns[2:]):

            # Parameter values are multiplied by the scale factor in order to store all values as int16 types
            # These values are then rounded to make sure there isn't any decimal point issues when casting the values to int16
            # TODO vr: formule trop longue, trouver un moyen de rendre lisible
            parameter_dataset[parameter].values = np.where(parameter_dataset[parameter].values == class_val,
                                                           round(table_param.table.loc[table_param.table.index == parameter][class_name].values[0]
                                                                 * table_param.table.loc[table_param.table.index == parameter]['scale_factor'].values[0]),
                                                           parameter_dataset[parameter].values).astype('f4')

    # Return dataset converted to 'int16' data type to reduce memory usage
    # and scale_factor dictionnary for later conversion
    return parameter_dataset, scale_factor


def setup_time_loop(calculation_variables_t1: List[str], calculation_variables_t2: List[str],
                    empty_dataset: xr.Dataset) -> Tuple[xr.Dataset, xr.Dataset]:
    """
    Creates two temporary `xarray Datasets` that will be used in the SAMIR time loop.
    `variables_t1` corresponds to the variables for the previous day and `variables_t2`
    corresponds to the variables for the current day. After each loop, `variables_t1`
    takes the value of `variables_t2` for the corresponding variables.

    # Arguments
    1. calculation_variables_t1: `List[str]`
        list of strings containing the variable names
        for the previous day dataset
    2. calculation_variables_t2: `List[str]`
        list of strings containing the variable names
        for the current day dataset
    3. empty_dataset: `xr.Dataset`
        empty dataset that contains the right structure

    # Returns
    1. variables_t1: `xr.Dataset`
        output dataset for previous day
    2. variables_t2: `xr.Dataset`
        output dataset for current day
    """

    # Create new dataset
    variables_t1 = empty_dataset.copy(deep=True)

    # Create empty DataArray for each variable
    for variable in calculation_variables_t1:

        # Assign new empty DataArray
        variables_t1[variable] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d]
                                  for d in list(empty_dataset.dims)), dtype='float32'))
        variables_t1[variable].attrs['name'] = variable  # set name in attributes

    # Create new dataset
    variables_t2 = empty_dataset.copy(deep=True)

    # Create empty DataArray for each variable
    for variable in calculation_variables_t2:

        # Assign new empty DataArray
        variables_t2[variable] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d]
                                  for d in list(empty_dataset.dims)), dtype='float32'))
        variables_t2[variable].attrs['name'] = variable  # set name in attributes

    return variables_t1, variables_t2


def prepare_outputs(empty_dataset: xr.Dataset, additional_outputs: List[str] = None) -> xr.Dataset:
    """
    Creates the `xarray Dataset` containing the outputs of the SAMIR model that will be saved.
    Additional variables can be saved by adding their names to the `additional_outputs` list.

    # Arguments
    1. empty_dataset: `xr.Dataset`
        empty dataset that contains the right structure
    2. additional_outputs: `List[str]`
        list of additional variable names to be saved

    # Returns
    1. model_outputs: `xr.Dataset`
        model outputs to be saved
    """

    # Evaporation and Transpiraion
    model_outputs = empty_dataset.copy(deep=True)

    model_outputs['E'] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d]
                          for d in list(empty_dataset.dims)), dtype='int16'))
    model_outputs['E'].attrs['units'] = 'mm'
    model_outputs['E'].attrs['standard_name'] = 'Evaporation'
    model_outputs['E'].attrs['description'] = 'Accumulated daily evaporation in milimeters'
    model_outputs['E'].attrs['scale factor'] = '1000'

    model_outputs['Tr'] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d]
                           for d in list(empty_dataset.dims)), dtype='int16'))
    model_outputs['Tr'].attrs['units'] = 'mm'
    model_outputs['Tr'].attrs['standard_name'] = 'Transpiration'
    model_outputs['Tr'].attrs['description'] = 'Accumulated daily plant transpiration in milimeters'
    model_outputs['Tr'].attrs['scale factor'] = '1000'

    # Soil Water Content
    model_outputs['SWCe'] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d]
                             for d in list(empty_dataset.dims)), dtype='int16'))
    model_outputs['SWCe'].attrs['units'] = 'mm'
    model_outputs['SWCe'].attrs['standard_name'] = 'Soil Water Content of the evaporative zone'
    model_outputs['SWCe'].attrs['description'] = 'Soil water content of the evaporative zone in milimeters'
    model_outputs['SWCe'].attrs['scale factor'] = '1000'

    model_outputs['SWCr'] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d]
                             for d in list(empty_dataset.dims)), dtype='int16'))
    model_outputs['SWCr'].attrs['units'] = 'mm'
    model_outputs['SWCr'].attrs['standard_name'] = 'Soil Water Content of the root zone'
    model_outputs['SWCr'].attrs['description'] = 'Soil water content of the root zone in milimeters'
    model_outputs['SWCr'].attrs['scale factor'] = '1000'

    # Irrigation
    model_outputs['Irr'] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d]
                            for d in list(empty_dataset.dims)), dtype='int16'))
    model_outputs['Irr'].attrs['units'] = 'mm'
    model_outputs['Irr'].attrs['standard_name'] = 'Irrigation'
    model_outputs['Irr'].attrs['description'] = 'Simulated daily irrigation in milimeters'
    model_outputs['Irr'].attrs['scale factor'] = '1000'

    # Deep Percolation
    model_outputs['DP'] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d]
                           for d in list(empty_dataset.dims)), dtype='int16'))
    model_outputs['DP'].attrs['units'] = 'mm'
    model_outputs['DP'].attrs['standard_name'] = 'Deep Percolation'
    model_outputs['DP'].attrs['description'] = 'Simulated daily Deep Percolation in milimeters'
    model_outputs['DP'].attrs['scale factor'] = '1000'

    if additional_outputs:
        for var in additional_outputs:
            model_outputs[var] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d]
                                  for d in list(empty_dataset.dims)), dtype='int16'))

    return model_outputs


def xr_maximum(ds: xr.DataArray, value: Union[xr.DataArray, float, int]) -> xr.DataArray:
    """
    Equivalent of `numpy.maximum(ds, value)` for xarray DataArrays

    # Arguments
    1. ds: `xr.DataArray`
        datarray to compare
    2. value: `Union[xr.DataArray, float, int]`
        value (scalar or dataarray) to compare

    # Returns
    1. output: `xr.DataArray`
        resulting dataarray with maximum value element-wise
    """
    return xr.where(ds <= value, value, ds, keep_attrs=True)


def xr_minimum(ds: xr.DataArray, value: Union[xr.DataArray, float, int]) -> xr.DataArray:
    """
    Equivalent of `numpy.minimum(ds, value)` for xarray DataArrays

    # Arguments
    1. ds: `xr.DataArray`
        datarray to compare
    2. value: `Union[xr.DataArray, float, int]`
        value (scalar or dataarray) to compare

    # Returns
    1. output: `xr.DataArray`
        resulting dataarray with minimum value element-wise
    """
    return xr.where(ds >= value, value, ds, keep_attrs=True)


def calculate_diff_re(TAW: np.ndarray, Dr: np.ndarray, Zr: np.ndarray, RUE: np.ndarray, De: np.ndarray,
                      Wfc: np.ndarray, Ze: np.ndarray, DiffE: np.ndarray) -> np.ndarray:
    """
    Calculates the diffusion between the top soil layer and the root layer.

    # Arguments
    1. TAW: `np.ndarray`
        water capacity of root layer
    2. Dr: `np.ndarray`
        depletion of root layer
    3. Zr: `np.ndarray`
        height of root layer
    4. RUE: `np.ndarray`
        total available surface water = (Wfc-Wwp)*Ze
    5. De: `np.ndarray`
        depletion of the evaporative layer
    6. Wfc: `np.ndarray`
        field capacity
    7. Ze: `np.ndarray`
        height of evaporative layer (paramter)
    8. DiffE: `np.ndarray`
        diffusion coefficient between evaporative
        and root layers (unitless, parameter)

    # Returns
    1. diff_re: `np.ndarray`
        the diffusion between the top soil layer and
        the root layer
    """

    # Temporary variables to make calculation easier to read
    tmp1 = ((TAW - Dr) / Zr - (RUE - De) / Ze) / (Wfc * DiffE)
    tmp2 = ((TAW * Ze) - (RUE - De - Dr) * Zr) / (Zr + Ze) - Dr

    # Calculate diffusion according to SAMIR equation
    diff_re = np.where(tmp1 < 0, np.maximum(tmp1, tmp2), np.minimum(tmp1, tmp2))

    # Return zero values where the 'DiffE' parameter is equal to 0
    return np.where(DiffE == 0, 0, diff_re)


def calculate_diff_dr(TAW: np.ndarray, TDW: np.ndarray, Dr: np.ndarray, Zr: np.ndarray, Dd: np.ndarray,
                      Wfc: np.ndarray, Zsoil: np.ndarray, DiffR: np.ndarray) -> np.ndarray:
    """
    Calculates the diffusion between the root layer and the deep layer.

    # Arguments
    1. TAW: `np.ndarray`
        water capacity of root layer
    2. TDW: `np.ndarray`
        water capacity of deep layer
    3. Dr: `np.ndarray`
        depletion of root layer
    4. Zr: `np.ndarray`
        height of root layer
    5. Dd: `np.ndarray`
        depletion of deep layer
    6. Wfc: `np.ndarray`
        field capacity
    7. Zsoil: `np.ndarray`
        total height of soil (paramter)
    8. DiffR: `np.ndarray`
        Diffusion coefficient between root
        and deep layers (unitless, parameter)

    # Returns
    1. Diff_dr: `np.ndarray`
        the diffusion between the root layer and the
        deep layer
    """

    # Temporary variables to make calculation easier to read
    tmp1 = (((TDW - Dd) / (Zsoil - Zr) - (TAW - Dr) / Zr) / Wfc) * DiffR
    tmp2 = (TDW * Zr - (TAW - Dr - Dd) * (Zsoil - Zr)) / Zsoil - Dd

    # Calculate diffusion according to SAMIR equation
    Diff_dr = np.where(tmp1 < 0, np.maximum(tmp1, tmp2), np.minimum(tmp1, tmp2))

    # Return zero values where the 'DiffR' parameter is equal to 0
    return np.where(DiffR == 0, 0, Diff_dr)


def calculate_W(TEW: np.ndarray, Dei: np.ndarray, Dep: np.ndarray, fewi: np.ndarray, fewp: np.ndarray) -> np.ndarray:
    """
    Calculate W, the weighting factor to split the energy available
    for evaporation depending on the difference in water availability
    in the two evaporation components, ensuring that the larger and
    the wetter, the more the evaporation occurs from that component

    # Arguments
    1. TEW: `np.ndarray`
        water capacity of evaporative layer
    2. Dei: `np.ndarray`
        depletion of the evaporative layer
        (irrigation part)
    3. Dep: `np.ndarray`
        depletion of the evaporative layer
        (precipitation part)
    4. fewi: `np.ndarray`
        soil fraction which is wetted by irrigation
        and exposed to evaporation
    5. fewp: `np.ndarray`
        soil fraction which is wetted by precipitation
        and exposed to evaporation

    # Returns
    1. W: `np.ndarray`
        weighting factor W
    """

    # Temporary variables to make calculation easier to read
    tmp = fewi * (TEW - Dei)

    # Calculate the weighting factor to split the energy available for evaporation
    W = 1 / (1 + (fewp * (TEW - Dep) / tmp))

    # Return W
    return np.where(tmp > 0, W, 0)


def calculate_Kr(TEW: np.ndarray, De: np.ndarray, REW: np.ndarray) -> np.ndarray:
    """
    calculates of the reduction coefficient for evaporation dependent
    on the amount of water in the soil using the FAO-56 method.

    # Arguments
    1. TEW: `np.ndarray`
        water capacity of evaporative layer
    2. De: `np.ndarray`
        depletion of evaporative layer
    3. REW: `np.ndarray`
        fixed readily evaporable water

    # Returns
    1. Kr: `np.ndarray`
        Kr coefficient
    """

    # Formula for calculating Kr
    Kr = (TEW - De) / (TEW - REW)

    # Return Kr
    return np.maximum(0, np.minimum(Kr, 1))


def update_Dr_from_root(TAW: np.ndarray, Zr: np.ndarray, TAW0: np.ndarray, TDW0: np.ndarray,
                        Dr0: np.ndarray, Dd0: np.ndarray, Zr0: np.ndarray) -> np.ndarray:
    """
    Return the updated depletion for the root layer.

    # Arguments
    1. TAW: `np.ndarray`
        water capacity of root layer for current day
    2. Zr: `np.ndarray`
        root layer height for current day
    3. TAW0: `np.ndarray`
        water capacity of root layer for previous day
    4. TDW0: `np.ndarray`
        water capacity of deep layer for previous day
    5. Dr0: `np.ndarray`
        depletion of the root layer for previous day
    6. Dd0: `np.ndarray`
        depletion of the deep laye for previous day
    7. Zr0: `np.ndarray`
        root layer height for previous day

    # Returns
    1. output: `np.ndarray`
        updated depletion for the root layer
    """
    # Temporary variables to make calculation easier to read
    # tmp1 = np.minimum(Dr0 + Dd0 * (TAW - TAW0) / TDW0, TAW)
    # tmp2 = np.maximum(Dr0 + Dd0 * (TAW - TAW0) / TDW0, 0)

    # TODO vr: Updated version from xls
    tmp1 = np.maximum(Dr0 + Dd0 * (TAW - TAW0)/TDW0, 0)
    tmp2 = np.maximum(Dr0 + Dr0 * (TAW - TAW0)/TAW0, 0)

    # Return updated Dr
    return np.where(Zr > Zr0, tmp1, tmp2)


def update_Dd_from_root(TAW: np.ndarray, TDW: np.ndarray, Zr: np.ndarray, TAW0: np.ndarray, TDW0: np.ndarray,
                        Dr0: np.ndarray, Dd0: np.ndarray, Zr0: np.ndarray) -> np.ndarray:
    """
    Return the updated depletion for the deep layer

    # Arguments
    1. TAW: `np.ndarray`
        water capacity of root layer for current day
    2. TDW: `np.ndarray`
        water capacity of deep layer for current day
    3. TAW0: `np.ndarray`
        water capacity of root layer for previous day
    5. TDW0: `np.ndarray`
        water capacity of deep layer for previous day
    6. Dd0: `np.ndarray`
        depletion of the deep laye for previous day
    7. Zr0: `np.ndarray`
        root layer height for previous day

    # Returns
    1. output: `np.ndarray`
        updated depletion for the deep layer
    """

    # Temporary variables to make calculation easier to read
    # tmp1 = np.maximum(Dd0 - Dd0 * (TAW - TAW0) / TDW0, 0)
    # tmp2 = np.minimum(Dd0 - Dd0 * (TAW - TAW0) / TDW0, TDW)

    # TODO vr: Updated version from xls
    tmp1 = np.maximum(Dd0 + Dd0 * (TAW - TAW0)/TDW0, 0)
    tmp2 = np.maximum(Dd0 + Dr0 * (TAW - TAW0)/TAW0, 0)

    # Return updated Dd
    return np.where(Zr > Zr0, tmp1, tmp2)


def format_duration(timedelta: float) -> None:
    """
    Print formatted timedelta in human readable format
    (days, hours, minutes, seconds, microseconds, milliseconds, nanoseconds).

    # Arguments
    timedelta: `float`
        time value in seconds to format

    # Returns
    `None`
    """

    if timedelta < 0.9e-6:
        print(round(timedelta*1e9, 1), 'ns')
    elif timedelta < 0.9e-3:
        print(round(timedelta*1e6, 1), 'µs')
    elif timedelta < 0.9:
        print(round(timedelta*1e3, 1), 'ms')
    elif timedelta < 60:
        print(round(timedelta, 1), 's')
    elif timedelta < 3.6e3:
        print(round(timedelta//60), 'm', round(timedelta % 60, 1),  's')
    elif timedelta < 24*3.6e3:
        print(round((timedelta/3.6e3)//1), 'h', round((timedelta/3.6e3) %
              1*60//1), 'm', round((timedelta/3.6e3) % 1*60 % 1*60, 1), 's')
    elif timedelta < 48*3.6e3:
        print(round((timedelta/(24*3.6e3))//1), 'day,', round(((timedelta/(24*3.6e3)) % 1*24)//1), 'h,',
              round((timedelta/(24*3.6e3)) % 1*24 % 1*60//1), 'm,',  round((timedelta/(24*3.6e3)) % 1*24 % 1*60 % 1*60, 1), 's')
    else:
        print(round((timedelta/(24*3.6e3))//1), 'days,', round(((timedelta/(24*3.6e3)) % 1*24)//1), 'h,',
              round((timedelta/(24*3.6e3)) % 1*24 % 1*60//1), 'm,',  round((timedelta/(24*3.6e3)) % 1*24 % 1*60 % 1*60, 1), 's')

    return None


# @profile  # type: ignore
def run_samir(json_config_file: str, csv_param_file: str, ndvi_cube_path: str, Rain_path: str, ET0_path: str,
              soil_params_path: str, land_cover_path: str, chunk_size: dict, save_path: str,
              additional_outputs: List[str] = None, additional_outputs_scale: List[float] = None, max_ram_GB: int = 2) -> None:

    # Test inputs
    if len(additional_outputs) != len(additional_outputs_scale):
        print('\nadditional outpus name and scale list length do not match\n')
        return None

    # Turn off numpy warings
    np.seterr(divide='ignore', invalid='ignore')

    # ============ General parameters ============#
    # TODO vr: config_params jamais utilisé...?
    config_params = config(json_config_file)
    # TODO vr: serait il possible de décrire le pourquoi de ses 2 listes?
    calculation_variables_t2 = ['Diff_rei', 'Diff_rep', 'Diff_dr', 'Dd', 'De', 'Dei', 'Dep', 'DP', 'Dr', 'FCov', 'Irrig', 'Kcb', 'Kei',
                                'Kep', 'Kri', 'Krp', 'Ks', 'Kti', 'Ktp', 'RUE', 'SWCe', 'SWCr', 'TAW', 'TDW', 'TEW', 'Tei', 'Tep', 'W',
                                'Zr', 'fewi', 'fewp', 'p_cor']
    calculation_variables_t1 = ['Dr', 'Dd', 'TAW', 'TDW', 'Zr']

    # ============ Manage inputs ============#
    # NDVI (to have a correct empty dataset structure)
    ndvi_cube = xr.open_mfdataset(ndvi_cube_path, chunks=chunk_size, parallel=True)

    # SAMIR Parameters
    param_dataset, scale_factor = rasterize_samir_parameters(
        csv_param_file, ndvi_cube.drop_vars(['NDVI', 'time']), land_cover_path, chunk_size=chunk_size)

    # SAMIR Variables
    variables_t1, variables_t2 = setup_time_loop(
        calculation_variables_t1, calculation_variables_t2, ndvi_cube.drop_vars(['NDVI', 'time']))

    # ============ Prepare outputs ============#
    model_outputs = prepare_outputs(ndvi_cube.drop_vars(['NDVI']), additional_outputs=additional_outputs)

    # Create encoding dictionnary
    for variable in list(model_outputs.keys()):
        # Write encoding dict
        encoding_dict = {}
        encod = {}
        encod['dtype'] = 'i2'
        encoding_dict[variable] = encod

    # Save empty output
    model_outputs.to_netcdf(save_path, encoding=encoding_dict)
    model_outputs.close()

    # ============ Prepare time iterations ============#
    dates = ndvi_cube.time.values
    ndvi_cube.close()

    # ============ Create aliases for better readability ============#

    # Variables for current day
    # var = da.from_array(dataarray, chunks = (5, 5))
    Diff_rei = variables_t2.Diff_rei.to_numpy()
    Diff_rep = variables_t2.Diff_rep.to_numpy()
    Diff_dr = variables_t2.Diff_dr.to_numpy()
    Dd = variables_t2.Dd.to_numpy()
    De = variables_t2.De.to_numpy()
    Dei = variables_t2.Dei.to_numpy()
    Dep = variables_t2.Dep.to_numpy()
    DP = variables_t2.DP.to_numpy()
    Dr = variables_t2.Dr.to_numpy()
    FCov = variables_t2.FCov.to_numpy()
    Irrig = variables_t2.Irrig.to_numpy()
    Kcb = variables_t2.Kcb.to_numpy()
    Kei = variables_t2.Kei.to_numpy()
    Kep = variables_t2.Kep.to_numpy()
    Kri = variables_t2.Kri.to_numpy()
    Krp = variables_t2.Krp.to_numpy()
    Ks = variables_t2.Ks.to_numpy()
    Kti = variables_t2.Kti.to_numpy()
    Ktp = variables_t2.Ktp.to_numpy()
    RUE = variables_t2.RUE.to_numpy()
    SWCe = variables_t2.SWCe.to_numpy()
    SWCr = variables_t2.SWCr.to_numpy()
    TAW = variables_t2.TAW.to_numpy()
    TDW = variables_t2.TDW.to_numpy()
    TEW = variables_t2.TEW.to_numpy()
    Tei = variables_t2.Tei.to_numpy()
    Tep = variables_t2.Tep.to_numpy()
    Zr = variables_t2.Zr.to_numpy()
    W = variables_t2.W.to_numpy()
    fewi = variables_t2.fewi.to_numpy()
    fewp = variables_t2.fewp.to_numpy()
    p_cor = variables_t2.p_cor.to_numpy()

    # Variables for previous day
    TAW0 = variables_t1.TAW.to_numpy()
    TDW0 = variables_t1.TDW.to_numpy()
    Dr0 = variables_t1.Dr.to_numpy()
    Dd0 = variables_t1.Dd.to_numpy()
    Zr0 = variables_t1.Zr.to_numpy()

    # Parameters
    # Parameters have an underscore (_) behind their name for recognition
    DiffE_ = param_dataset.DiffE.to_numpy()
    DiffR_ = param_dataset.DiffR.to_numpy()
    FW_ = param_dataset.FW.to_numpy()
    Fc_stop_ = param_dataset.Fc_stop.to_numpy()
    FmaxFC_ = param_dataset.FmaxFC.to_numpy()
    Foffset_ = param_dataset.Foffset.to_numpy()
    Fslope_ = param_dataset.Fslope.to_numpy()
    Init_RU_ = param_dataset.Init_RU.to_numpy()
    Irrig_auto_ = param_dataset.Irrig_auto.to_numpy()
    # Kcmax_ = param_dataset.Kcmax.to_numpy() # Inutile?
    KmaxKcb_ = param_dataset.KmaxKcb.to_numpy()
    Koffset_ = param_dataset.Koffset.to_numpy()
    Kslope_ = param_dataset.Kslope.to_numpy()
    Lame_max_ = param_dataset.Lame_max.to_numpy()
    REW_ = param_dataset.REW.to_numpy()
    Ze_ = param_dataset.Ze.to_numpy()
    Zsoil_ = param_dataset.Zsoil.to_numpy()
    maxZr_ = param_dataset.maxZr.to_numpy()
    minZr_ = param_dataset.minZr.to_numpy()
    p_ = param_dataset.p.to_numpy()

    # scale factors
    # Scale factors have the following name scheme : s_ + parameter_name
    s_FW = scale_factor['FW']
    s_Fc_stop = scale_factor['Fc_stop']
    s_FmaxFC = scale_factor['FmaxFC']
    s_Foffset = scale_factor['Foffset']
    s_Fslope = scale_factor['Fslope']
    s_Init_RU = scale_factor['Init_RU']
    # s_Irrig_auto = scale_factor['Irrig_auto']
    # s_Kcmax = scale_factor['Kcmax']  # TODO vr: variable jamais utilisée?
    s_KmaxKcb = scale_factor['KmaxKcb']
    s_Koffset = scale_factor['Koffset']
    s_Kslope = scale_factor['Kslope']
    s_Lame_max = scale_factor['Lame_max']
    s_REW = scale_factor['REW']
    s_Ze = scale_factor['Ze']
    s_DiffE = scale_factor['DiffE']
    s_DiffR = scale_factor['DiffR']
    s_Zsoil = scale_factor['Zsoil']
    s_maxZr = scale_factor['maxZr']
    s_minZr = scale_factor['minZr']
    s_p = scale_factor['p']

    # input data
    with nc.Dataset(ndvi_cube_path, mode='r') as ds:
        # Dimensions of ndvi dataset : (time, x, y)
        NDVI = ds.variables['NDVI'][0, :, :] / 255
    with nc.Dataset(soil_params_path, mode='r') as ds:
        Wfc = ds.variables['FC'][:, :]  # TODO vr: modifier FC en Wfc dans fichier sol
        Wwp = ds.variables['WP'][:, :]  # TODO vr: modifier WP en Wwp dans fichier sol
        print('soil Wfc and Wwp:', Wfc[0, 0], Wwp[0, 0])
    with rio.open(Rain_path, mode='r') as ds:
        Rain = ds.read(1) / 1000
    with rio.open(ET0_path, mode='r') as ds:
        ET0 = ds.read(1) / 1000

    # Create progress bar
    progress_bar = tqdm(total=len(dates), desc='Running model', unit=' days')

    # ============ First day initialization ============#
    # Fraction cover
    FCov = s_Fslope * Fslope_ * NDVI + s_Foffset * Foffset_
    FCov = np.minimum(np.maximum(FCov, 0), s_Fc_stop * Fc_stop_)

    # Root depth upate
    # TODO vr: il semblerait que dans le xls, Fcmax soit le Fc max de la simulation, alors que dans python, c'est un parametre
    Zr = np.maximum(s_minZr * minZr_ + (FCov / (s_FmaxFC * FmaxFC_)) * (s_maxZr * maxZr_ - s_minZr * minZr_), s_Ze * Ze_ + 0.001)

    # Water capacities
    TEW = (Wfc - Wwp/2) * s_Ze * Ze_
    RUE = (Wfc - Wwp) * s_Ze * Ze_
    TAW = (Wfc - Wwp) * Zr
    TDW = (Wfc - Wwp) * (s_Zsoil * Zsoil_ - Zr)  # Zd = Zsoil - Zr

    # Depletions
    Dei = RUE * (1 - s_Init_RU * Init_RU_)
    Dep = RUE * (1 - s_Init_RU * Init_RU_)
    Dr = TAW * (1 - s_Init_RU * Init_RU_)
    Dd = TDW * (1 - s_Init_RU * Init_RU_)

    # p_cor
    p_cor = s_p * p_

    # Irrigation  TODO : find correct method for irrigation
    Irrig = np.minimum(np.maximum(Dr - Rain, 0), s_Lame_max * Lame_max_) * Irrig_auto_
    Irrig = np.where(Dr > TAW * p_cor, Irrig, 0)

    # Kcb
    Kcb = np.minimum(np.maximum(s_Kslope * Kslope_ * NDVI + s_Koffset * Koffset_, 0), s_KmaxKcb * KmaxKcb_)

    # Update depletions with Rainfall and/or irrigation

    # DP
    DP = - np.minimum(Dd + np.minimum(Dr - Rain - Irrig, 0), 0)

    # De
    Dei = np.minimum(np.maximum(Dei - Rain - Irrig / (s_FW * FW_), 0), TEW)
    Dep = np.minimum(np.maximum(Dep - Rain, 0), TEW)

    fewi = np.minimum(1 - FCov, (s_FW * FW_))
    fewp = 1 - FCov - fewi

    De = np.nansum((Dei * fewi, Dep * fewp)) / np.nansum([fewi, fewp])
    De = np.where(np.isfinite(De), De, Dei * (s_FW * FW_) + Dep * (1 - (s_FW * FW_)))

    # Dr
    Dr = np.minimum(np.maximum(Dr - Rain - Irrig, 0), TAW)

    # Dd
    Dd = np.minimum(np.maximum(Dd + np.minimum(Dr - Rain - Irrig, 0), 0), TDW)

    # Diffusion coefficients
    Diff_rei = calculate_diff_re(TAW, Dr, Zr, RUE, Dei, Wfc, s_Ze*Ze_, s_DiffE*DiffE_)
    Diff_rep = calculate_diff_re(TAW, Dr, Zr, RUE, Dep, Wfc, s_Ze*Ze_, s_DiffE*DiffE_)
    Diff_dr = calculate_diff_dr(TAW, TDW, Dr, Zr, Dd, Wfc, s_Zsoil*Zsoil_, s_DiffR*DiffR_)

    # Weighing factor W
    W = calculate_W(TEW, Dei, Dep, fewi, fewp)

    # Soil water content of evaporative layer
    SWCe = 1 - De/TEW
    # Soil water content of root layer
    SWCr = 1 - Dr/TAW

    # Water Stress coefficient
    Ks = np.minimum((TAW - Dr) / (TAW * (1 - p_cor)), 1)

    # Reduction coefficient for evaporation
    Kri = calculate_Kr(TEW, Dei, s_REW*REW_)
    Krp = calculate_Kr(TEW, Dep, s_REW*REW_)
    Kei = np.minimum(W * Kri * (s_KmaxKcb*KmaxKcb_ - Kcb), fewi * s_KmaxKcb*KmaxKcb_)
    Kep = np.minimum((1 - W) * Krp * (s_KmaxKcb*KmaxKcb_ - Kcb), fewp * s_KmaxKcb*KmaxKcb_)

    # Prepare coefficients for evapotranspiration
    Kti = np.minimum(((s_Ze*Ze_ / Zr)**0.6) * (1 - Dei / TEW) / np.maximum(1 - Dr / TAW, 0.001), 1)
    Ktp = np.minimum(((s_Ze*Ze_ / Zr)**0.6) * (1 - Dep / TEW) / np.maximum(1 - Dr / TAW, 0.001), 1)
    Tei = Kti * Ks * Kcb * ET0
    Tep = Ktp * Ks * Kcb * ET0

    # Update depletions
    Dei = np.where(fewi > 0, np.minimum(np.maximum(Dei + ET0 * Kei / fewi + Tei - Diff_rei, 0), TEW),
                   np.minimum(np.maximum(Dei + Tei - Diff_rei, 0), TEW))
    Dep = np.where(fewp > 0, np.minimum(np.maximum(Dep + ET0 * Kep / fewp + Tep - Diff_rep, 0), TEW),
                   np.minimum(np.maximum(Dep + Tep - Diff_rep, 0), TEW))

    De = np.nansum((Dei * fewi, Dep * fewp)) / np.nansum([fewi, fewp])
    De = np.where(np.isfinite(De), De, Dei * (s_FW * FW_) + Dep * (1 - (s_FW * FW_)))

    # Evaporation
    E = np.maximum((Kei + Kep) * ET0, 0)

    # Transpiration
    Tr = Kcb * Ks * ET0

    # Potential evapotranspiration and evaporative fraction ??

    # Update depletions (root and deep zones) at the end of the day
    Dr = np.minimum(np.maximum(Dr + E + Tr - Diff_dr, 0), TAW)
    Dd = np.minimum(np.maximum(Dd + Diff_dr, 0), TDW)

    # Write outputs
    with nc.Dataset(save_path, mode='r+') as outputs:
        # Dimensions of output dataset : (x, y, time)
        # Deep percolation
        outputs.variables['DP'][:, :, 0] = np.round(DP * 1000)
        # Soil water content of the evaporative layer
        outputs.variables['SWCe'][:, :, 0] = np.round(SWCe * 1000)
        # Soil water content of the root layer
        outputs.variables['SWCr'][:, :, 0] = np.round(SWCr * 1000)
        # Evaporation
        outputs.variables['E'][:, :, 0] = np.round(E * 1000)
        # Transpiration
        outputs.variables['Tr'][:, :, 0] = np.round(Tr * 1000)
        # Irrigation
Jeremy Auclair's avatar
Jeremy Auclair committed
        outputs.variables['Irr'][:, :, 0] = np.round(Irrig * 1000)
        # Additionnal outputs
        for var, scale in zip(additional_outputs, additional_outputs_scale):
            outputs.variables[var][:, :, 0] = np.round(eval(var) * scale)

    # Update previous day values
    TAW0 = TAW
    TDW0 = TDW
    Dr0 = Dr
    Dd0 = Dd
    Zr0 = Zr

    # Update progress bar
    progress_bar.update()

    # %% ============ Time loop ============#
    for i in range(1, len(dates)):

        # Reset input aliases
        # input data
Jeremy Auclair's avatar
Jeremy Auclair committed
        with nc.Dataset(ndvi_cube_path, mode='r') as ds:
            # Dimensions of ndvi dataset : (time, x, y)
Jeremy Auclair's avatar
Jeremy Auclair committed
            NDVI = ds.variables['NDVI'][i, :, :] / 255
        with rio.open(Rain_path, mode='r') as ds:
            Rain = ds.read(i+1) / 1000
        with rio.open(ET0_path, mode='r') as ds:
            ET0 = ds.read(i+1) / 1000
            # ET0_previous = ds.read(i) / 1000  # TODO vr: variable jamais utilisée!

        # Update variables
        # Fraction cover
Jeremy Auclair's avatar
Jeremy Auclair committed
        FCov = s_Fslope * Fslope_ * NDVI + s_Foffset * Foffset_
        FCov = np.minimum(np.maximum(FCov, 0), s_Fc_stop * Fc_stop_)
        # Root depth upate
Jeremy Auclair's avatar
Jeremy Auclair committed
        Zr = np.maximum(s_minZr * minZr_ + (FCov / (s_FmaxFC * FmaxFC_))
                        * s_maxZr * (maxZr_ - minZr_), s_Ze * Ze_ + 0.001)

        # Water capacities
Jeremy Auclair's avatar
Jeremy Auclair committed
        TAW = (Wfc - Wwp) * Zr
        TDW = (Wfc - Wwp) * (s_Zsoil * Zsoil_ - Zr)  # Zd = Zsoil - Zr

        # Update depletions from root increase
        Dr = update_Dr_from_root(TAW, Zr, TAW0, TDW0, Dr0, Dd0, Zr0)
        Dd = update_Dd_from_root(TAW, TDW, Zr, TAW0, TDW0, Dr0, Dd0, Zr0)

        # Update param p
        # TODO: Calcul p_cor différent entre la doc ou l'excel et le code samir parcelle
        # p_cor = np.minimum(np.maximum(s_p * p_ + 0.04 * (5 - (E + Tr)), 0.1), 0.8)
        # Calcul p_cor différent entre la doc ou l'excel et le code samir parcelle
        p_cor = s_p * p_ + 0.04 * (5 - (E + Tr))

        # Irrigation   TODO : find correct method for irrigation
        Irrig = np.minimum(np.maximum(Dr - Rain, 0), s_Lame_max * Lame_max_) * Irrig_auto_
        Irrig = np.where(Dr > TAW * p_cor, Irrig, 0)
        # Kcb
Jeremy Auclair's avatar
Jeremy Auclair committed
        Kcb = np.minimum(np.maximum(s_Kslope * Kslope_ * NDVI + s_Koffset * Koffset_, 0), s_KmaxKcb * KmaxKcb_)

        # DP (Deep percolation)
        DP = - np.minimum(Dd + np.minimum(Dr - Rain - Irrig, 0), 0)

        # Update depletions with Rainfall and/or irrigation

        # De
        Dei = np.minimum(np.maximum(Dei - Rain - Irrig / (s_FW * FW_), 0), TEW)
        Dep = np.minimum(np.maximum(Dep - Rain, 0), TEW)

        fewi = np.minimum(1 - FCov, (s_FW * FW_))
        fewp = 1 - FCov - fewi
Jeremy Auclair's avatar
Jeremy Auclair committed

        De = np.nansum((Dei * fewi, Dep * fewp)) / np.nansum([fewi, fewp])
        De = np.where(np.isfinite(De), De, Dei * (s_FW * FW_) + Dep * (1 - (s_FW * FW_)))
Jeremy Auclair's avatar
Jeremy Auclair committed
        # Update depletions from rain and irrigation
        Dr = np.minimum(np.maximum(Dr - Rain - Irrig, 0), TAW)
        Dd = np.minimum(np.maximum(Dd + np.minimum(Dr - Rain - Irrig, 0), 0), TDW)

        # Diffusion coefficients
Jeremy Auclair's avatar
Jeremy Auclair committed
        Diff_rei = calculate_diff_re(TAW, Dr, Zr, RUE, Dei, Wfc, s_Ze*Ze_, s_DiffE*DiffE_)
        Diff_rep = calculate_diff_re(TAW, Dr, Zr, RUE, Dep, Wfc, s_Ze*Ze_, s_DiffE*DiffE_)
        Diff_dr = calculate_diff_dr(TAW, TDW, Dr, Zr, Dd, Wfc, s_Zsoil*Zsoil_, s_DiffR*DiffR_)

        # Weighing factor W
        W = calculate_W(TEW, Dei, Dep, fewi, fewp)
        # Soil water content of evaporative layer
        SWCe = 1 - De/TEW
        # Soil water content of root layer
        SWCr = 1 - Dr/TAW
        # Water Stress coefficient
        Ks = np.minimum((TAW - Dr) / (TAW * (1 - p_cor)), 1)
        # Reduction coefficient for evaporation
Jeremy Auclair's avatar
Jeremy Auclair committed
        Kri = calculate_Kr(TEW, Dei, REW_*s_REW)
        Krp = calculate_Kr(TEW, Dep, REW_*s_REW)
        Kei = np.minimum(W * Kri * (s_KmaxKcb * KmaxKcb_ - Kcb), fewi * s_KmaxKcb * KmaxKcb_)
        Kep = np.minimum((1 - W) * Krp * (s_KmaxKcb * KmaxKcb_ - Kcb), fewp * s_KmaxKcb * KmaxKcb_)
        # Prepare coefficients for evapotranspiration
        Kti = np.minimum(((s_Ze * Ze_ / Zr)**0.6) * (1 - Dei / TEW) / np.maximum(1 - Dr / TAW, 0.001), 1)
        Ktp = np.minimum(((s_Ze * Ze_ / Zr)**0.6) * (1 - Dep / TEW) / np.maximum(1 - Dr / TAW, 0.001), 1)
        Tei = Kti * Ks * Kcb * ET0
        Tep = Ktp * Ks * Kcb * ET0
        # Update depletions
Jeremy Auclair's avatar
Jeremy Auclair committed
        Dei = np.where(fewi > 0, np.minimum(np.maximum(Dei + ET0 * Kei / fewi + Tei - Diff_rei, 0), TEW),
                       np.minimum(np.maximum(Dei + Tei - Diff_rei, 0), TEW))
        Dep = np.where(fewp > 0, np.minimum(np.maximum(Dep + ET0 * Kep / fewp + Tep - Diff_rep, 0), TEW),
                       np.minimum(np.maximum(Dep + Tep - Diff_rep, 0), TEW))

        De = np.nansum((Dei * fewi, Dep * fewp)) / np.nansum([fewi, fewp])
        De = np.where(np.isfinite(De), De, Dei * (s_FW * FW_) + Dep * (1 - (s_FW * FW_)))
        # Evaporation
        E = np.maximum((Kei + Kep) * ET0, 0)
        # Transpiration
        Tr = Kcb * Ks * ET0
        # Potential evapotranspiration and evaporative fraction ??
        # Update depletions (root and deep zones) at the end of the day
Jeremy Auclair's avatar
Jeremy Auclair committed
        Dr = np.minimum(np.maximum(Dr + E + Tr - Diff_dr, 0), TAW)
        Dd = np.minimum(np.maximum(Dd + Diff_dr, 0), TDW)

        # Write outputs
        with nc.Dataset(save_path, mode='r+') as outputs:
            # Dimensions of output dataset : (x, y, time)
            # Deep percolation
Jeremy Auclair's avatar
Jeremy Auclair committed
            outputs.variables['DP'][:, :, i] = np.round(DP * 1000)
            # Soil water content of the evaporative layer
Jeremy Auclair's avatar
Jeremy Auclair committed
            outputs.variables['SWCe'][:, :, i] = np.round(SWCe * 1000)
            # Soil water content of the root layer
Jeremy Auclair's avatar
Jeremy Auclair committed
            outputs.variables['SWCr'][:, :, i] = np.round(SWCr * 1000)
            # Evaporation
Jeremy Auclair's avatar
Jeremy Auclair committed
            outputs.variables['E'][:, :, i] = np.round(E * 1000)
            # Transpiration
Jeremy Auclair's avatar
Jeremy Auclair committed
            outputs.variables['Tr'][:, :, i] = np.round(Tr * 1000)
            # Irrigation
Jeremy Auclair's avatar
Jeremy Auclair committed
            outputs.variables['Irr'][:, :, i] = np.round(Irrig * 1000)
            # Additionnal outputs
            for var, scale in zip(additional_outputs, additional_outputs_scale):
Jeremy Auclair's avatar
Jeremy Auclair committed
                outputs.variables[var][:, :, i] = np.round(eval(var) * scale)

        # Update previous day values
        TAW0 = TAW
        TDW0 = TDW
        Dr0 = Dr
        Dd0 = Dd
        Zr0 = Zr
        # Update progress bar
        progress_bar.update()

Jeremy Auclair's avatar
Jeremy Auclair committed
    # Close progress bar
    progress_bar.close()

    return None
Jeremy Auclair's avatar
Jeremy Auclair committed

# %% MAIN
if __name__ == '__main__':

    # data_path = '/mnt/e/DATA/DEV_inputs_test'
    data_path = './DEV_inputs_test'
Jeremy Auclair's avatar
Jeremy Auclair committed
    NDVI_path = data_path + os.sep + 'NDVI_' + str(size) + '.nc'
    Rain_path = data_path + os.sep + 'Rain_' + str(size) + '.tif'
    ET0_path = data_path + os.sep + 'ET0_' + str(size) + '.tif'
    land_cover_path = data_path + os.sep + 'land_cover_' + str(size) + '.nc'
Jeremy Auclair's avatar
Jeremy Auclair committed
    # json_config_file = '/home/auclairj/GIT/modspa-pixel/config/config_modspa.json'
    json_config_file = './config/config_modspa.json'
    # param_file = '/home/auclairj/GIT/modspa-pixel/parameters/csv_files/params_samir_test.csv'
    param_file = './parameters/csv_files/params_samir_test.csv'
    soil_path = data_path + os.sep + 'soil_' + str(size) + '.nc'
    save_path = data_path + os.sep + 'outputs_' + str(size) + '.nc'
Jeremy Auclair's avatar
Jeremy Auclair committed
    if os.path.exists(save_path):
        os.remove(save_path)

Jeremy Auclair's avatar
Jeremy Auclair committed
    xls_NDVI_path = data_path + os.sep + 'xls_NDVI_10.nc'
    xls_Rain_path = data_path + os.sep + 'xls_Rain_10.tif'
    val_ET0_path = data_path + os.sep + 'xls_ET0_10.tif'

    output_save_path = data_path + os.sep + 'pix_outputs_10.nc'

    additional_outputs = ['Zr', 'Dei', 'Dep', 'Dr', 'Dd', 'Kei', 'Kep', 'Ks', 'W', 'Kcb', 'Kri', 'Krp', 'NDVI',
                          'fewi', 'fewp', 'TDW', 'TAW', 'FCov', 'Tei', 'Tep', 'Diff_rei', 'Diff_rep', 'Diff_dr', 'Rain', 'p_cor']
    additional_outputs_scale = [100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
                                100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100]

    chunk_size = {'x': 250, 'y': 250, 'time': -1}

    t = time()

    # webbrowser.open('http://127.0.0.1:8787/status', new=2, autoraise=True)

Jeremy Auclair's avatar
Jeremy Auclair committed
    # run_samir(json_config_file, param_file, ndvi_path, Rain_path, ET0_path, soil_path, land_cover_path, chunk_size, save_path)
    run_samir(json_config_file, param_file, xls_NDVI_path, xls_Rain_path, val_ET0_path, soil_path, land_cover_path,
              chunk_size, output_save_path, additional_outputs=additional_outputs, additional_outputs_scale=additional_outputs_scale)
Jeremy Auclair's avatar
Jeremy Auclair committed
    print('')
    print('Writting Output:', output_save_path)
    format_duration(time() - t)

Jeremy Auclair's avatar
Jeremy Auclair committed
    # client.close()