Skip to content
Snippets Groups Projects
dev_samir_xarray.ipynb 64.8 KiB
Newer Older
{
 "cells": [
  {
   "cell_type": "code",
   "metadata": {},
   "outputs": [],
   "source": [
    "import xarray as xr\n",
    "from dask.distributed import Client\n",
    "import os\n",
    "import numpy as np\n",
    "from typing import List, Tuple, Union\n",
    "import warnings\n",
    "from parameters.params_samir_class import samir_parameters\n",
    "from config.config import config\n",
    "from time import time"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "\n",
    "def rasterize_samir_parameters(csv_param_file: str, empty_dataset: xr.Dataset, land_cover_raster: str, chunk_size: dict) -> Tuple[xr.Dataset, dict]:\n",
    "    \"\"\"\n",
    "    Creates a raster `xarray` dataset from the csv parameter file, the land cover raster and an empty dataset\n",
    "    that contains the right structure (emptied ndvi dataset for example). For each parameter, the function loops\n",
    "    on land cover classes to fill the raster.\n",
    "\n",
    "    ## Arguments\n",
    "    1. csv_param_file: `str`\n",
    "        path to csv paramter file\n",
    "    2. empty_dataset: `xr.Dataset`\n",
    "        empty dataset that contains the right structure (emptied ndvi dataset for example).\n",
    "    3. land_cover_raster: `str`\n",
    "        path to land cover netcdf raster\n",
    "    4. chunk_size: `dict`\n",
    "        chunk_size for dask computation\n",
    "\n",
    "    ## Returns\n",
    "    1. parameter_dataset: `xr.Dataset`\n",
    "        the dataset containing all the rasterized Parameters\n",
    "    2. scale_factor: `dict`\n",
    "        dictionnary containing the scale factors for each parameter\n",
    "    \"\"\"\n",
    "    \n",
    "    # Load samir params into an object\n",
    "    table_param = samir_parameters(csv_param_file)\n",
    "    \n",
    "    # Set general variables\n",
    "    class_count = table_param.table.shape[1] - 2  # remove dtype and default columns\n",
    "    \n",
    "    # Open land cover raster\n",
    "    land_cover = xr.open_dataarray(land_cover_raster, chunks = chunk_size)\n",
    "    \n",
    "    # Create dataset\n",
    "    parameter_dataset = empty_dataset.copy(deep = True)\n",
    "    \n",
    "    # Create dictionnary containing the scale factors\n",
    "    scale_factor = {}\n",
    "    \n",
    "    # Loop on samir parameters and create \n",
    "    for parameter in table_param.table.index[1:]:\n",
    "        \n",
    "        # Create new variable and set attributes\n",
    "        parameter_dataset[parameter] = land_cover.copy(deep = True).astype('f4')\n",
    "        parameter_dataset[parameter].attrs['name'] = parameter\n",
    "        parameter_dataset[parameter].attrs['description'] = 'cf SAMIR Doc for detail'\n",
    "        parameter_dataset[parameter].attrs['scale factor'] = str(table_param.table.loc[table_param.table.index == parameter]['scale_factor'].values[0])\n",
    "        \n",
    "        # Assigne value in dictionnary\n",
    "        scale_factor[parameter] = 1/int(table_param.table.loc[table_param.table.index == parameter]['scale_factor'].values[0])\n",
    "        \n",
    "        # Loop on classes to set parameter values for each class\n",
    "        for class_val, class_name in zip(range(1, class_count + 1), table_param.table.columns[2:]):\n",
    "            \n",
    "            # Parameter values are multiplied by the scale factor in order to store all values as int16 types\n",
    "            # These values are then rounded to make sure there isn't any decimal point issues when casting the values to int16\n",
    "            parameter_dataset[parameter].values = np.where(parameter_dataset[parameter].values == class_val, round(table_param.table.loc[table_param.table.index == parameter][class_name].values[0]*table_param.table.loc[table_param.table.index == parameter]['scale_factor'].values[0]), parameter_dataset[parameter].values).astype('f4')\n",
    "    \n",
    "    # Return dataset converted to 'int16' data type to reduce memory usage\n",
    "    # and scale_factor dictionnary for later conversion\n",
    "    return parameter_dataset, scale_factor\n",
    "\n",
    "\n",
    "def setup_time_loop(calculation_variables_t1: List[str], calculation_variables_t2: List[str], empty_dataset: xr.Dataset) -> Tuple[xr.Dataset, xr.Dataset]:\n",
    "    \"\"\"\n",
    "    Creates two temporary `xarray Datasets` that will be used in the SAMIR time loop.\n",
    "    `variables_t1` corresponds to the variables for the previous day and `variables_t2`\n",
    "    corresponds to the variables for the current day. After each loop, `variables_t1`\n",
    "    takes the value of `variables_t2` for the corresponding variables.\n",
    "\n",
    "    ## Arguments\n",
    "    1. calculation_variables_t1: `List[str]`\n",
    "        list of strings containing the variable names\n",
    "        for the previous day dataset\n",
    "    2. calculation_variables_t2: `List[str]`\n",
    "        list of strings containing the variable names\n",
    "        for the current day dataset\n",
    "    3. empty_dataset: `xr.Dataset`\n",
    "        empty dataset that contains the right structure\n",
    "\n",
    "    ## Returns\n",
    "    1. variables_t1: `xr.Dataset`\n",
    "        output dataset for previous day\n",
    "    2. variables_t2: `xr.Dataset`\n",
    "        output dataset for current day\n",
    "    \"\"\"\n",
    "    \n",
    "    # Create new dataset\n",
    "    variables_t1 = empty_dataset.copy(deep = True)\n",
    "    \n",
    "    # Create empty DataArray for each variable\n",
    "    for variable in calculation_variables_t1:\n",
    "        \n",
    "        # Assign new empty DataArray\n",
    "        variables_t1[variable] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype = 'float32'))\n",
    "        variables_t1[variable].attrs['name'] = variable  # set name in attributes\n",
    "    \n",
    "    # Create new dataset\n",
    "    variables_t2 = empty_dataset.copy(deep = True)\n",
    "    \n",
    "    # Create empty DataArray for each variable\n",
    "    for variable in calculation_variables_t2:\n",
    "        \n",
    "        # Assign new empty DataArray\n",
    "        variables_t2[variable] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype = 'float32'))\n",
    "        variables_t2[variable].attrs['name'] = variable  # set name in attributes\n",
    "    \n",
    "    return variables_t1, variables_t2\n",
    "\n",
    "\n",
    "def prepare_outputs(empty_dataset: xr.Dataset, additional_outputs: List[str] = None) -> xr.Dataset:\n",
    "    \"\"\"\n",
    "    Creates the `xarray Dataset` containing the outputs of the SAMIR model that will be saved.\n",
    "    Additional variables can be saved by adding their names to the `additional_outputs` list.\n",
    "\n",
    "    ## Arguments\n",
    "    1. empty_dataset: `xr.Dataset`\n",
    "        empty dataset that contains the right structure\n",
    "    2. additional_outputs: `List[str]`\n",
    "        list of additional variable names to be saved\n",
    "\n",
    "    ## Returns\n",
    "    1. model_outputs: `xr.Dataset`\n",
    "        model outputs to be saved\n",
    "    \"\"\"\n",
    "    \n",
    "    # Evaporation and Transpiraion\n",
    "    model_outputs = empty_dataset.copy(deep = True)\n",
    "    \n",
    "    model_outputs['E'] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype = 'int16'))\n",
    "    model_outputs['E'].attrs['units'] = 'mm'\n",
    "    model_outputs['E'].attrs['standard_name'] = 'Evaporation'\n",
    "    model_outputs['E'].attrs['description'] = 'Accumulated daily evaporation in milimeters'\n",
    "    model_outputs['E'].attrs['scale factor'] = '1'\n",
    "    \n",
    "    model_outputs['Tr'] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype = 'int16'))\n",
    "    model_outputs['Tr'].attrs['units'] = 'mm'\n",
    "    model_outputs['Tr'].attrs['standard_name'] = 'Transpiration'\n",
    "    model_outputs['Tr'].attrs['description'] = 'Accumulated daily plant transpiration in milimeters'\n",
    "    model_outputs['Tr'].attrs['scale factor'] = '1'\n",
    "    \n",
    "    # Soil Water Content\n",
    "    model_outputs['SWCe'] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype = 'int16'))\n",
    "    model_outputs['SWCe'].attrs['units'] = 'mm'\n",
    "    model_outputs['SWCe'].attrs['standard_name'] = 'Soil Water Content of the evaporative zone'\n",
    "    model_outputs['SWCe'].attrs['description'] = 'Soil water content of the evaporative zone in milimeters'\n",
    "    model_outputs['SWCe'].attrs['scale factor'] = '1'\n",
    "    \n",
    "    model_outputs['SWCr'] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype = 'int16'))\n",
    "    model_outputs['SWCr'].attrs['units'] = 'mm'\n",
    "    model_outputs['SWCr'].attrs['standard_name'] = 'Soil Water Content of the root zone'\n",
    "    model_outputs['SWCr'].attrs['description'] = 'Soil water content of the root zone in milimeters'\n",
    "    model_outputs['SWCr'].attrs['scale factor'] = '1'\n",
    "    \n",
    "    # Irrigation\n",
    "    model_outputs['Irr'] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype = 'int16'))\n",
    "    model_outputs['Irr'].attrs['units'] = 'mm'\n",
    "    model_outputs['Irr'].attrs['standard_name'] = 'Irrigation'\n",
    "    model_outputs['Irr'].attrs['description'] = 'Simulated daily irrigation in milimeters'\n",
    "    model_outputs['Irr'].attrs['scale factor'] = '1'\n",
    "    \n",
    "    # Deep Percolation\n",
    "    model_outputs['DP'] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype = 'int16'))\n",
    "    model_outputs['DP'].attrs['units'] = 'mm'\n",
    "    model_outputs['DP'].attrs['standard_name'] = 'Deep Percolation'\n",
    "    model_outputs['DP'].attrs['description'] = 'Simulated daily Deep Percolation in milimeters'\n",
    "    model_outputs['DP'].attrs['scale factor'] = '1'\n",
    "    \n",
    "    if additional_outputs:\n",
    "        for var in additional_outputs:\n",
    "            model_outputs[var] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype = 'int16'))\n",
    "    \n",
    "    return model_outputs\n",
    "\n",
    "\n",
    "def xr_maximum(ds: xr.DataArray, value: Union[xr.DataArray, float, int]) -> xr.DataArray:\n",
    "    \"\"\"\n",
    "    Equivalent of `numpy.maximum(ds, value)` for xarray DataArrays\n",
    "\n",
    "    ## Arguments\n",
    "    1. ds: `xr.DataArray`\n",
    "        datarray to compare\n",
    "    2. value: `Union[xr.DataArray, float, int]`\n",
    "        value (scalar or dataarray) to compare\n",
    "\n",
    "    ## Returns\n",
    "    1. output: `xr.DataArray`\n",
    "        resulting dataarray with maximum value element-wise\n",
    "    \"\"\"\n",
    "    return xr.where(ds <= value, value, ds, keep_attrs = True)\n",
    "\n",
    "\n",
    "def xr_minimum(ds: xr.DataArray, value: Union[xr.DataArray, float, int]) -> xr.DataArray:\n",
    "    \"\"\"\n",
    "    Equivalent of `numpy.minimum(ds, value)` for xarray DataArrays\n",
    "\n",
    "    ## Arguments\n",
    "    1. ds: `xr.DataArray`\n",
    "        datarray to compare\n",
    "    2. value: `Union[xr.DataArray, float, int]`\n",
    "        value (scalar or dataarray) to compare\n",
    "\n",
    "    ## Returns\n",
    "    1. output: `xr.DataArray`\n",
    "        resulting dataarray with minimum value element-wise\n",
    "    \"\"\"\n",
    "    return xr.where(ds >= value, value, ds, keep_attrs = True)\n",
    "\n",
    "\n",
    "def calculate_diff_re(TAW: np.ndarray, Dr: np.ndarray, Zr: np.ndarray, RUE: np.ndarray, De: np.ndarray, FCov: np.ndarray, Ze_: np.ndarray, DiffE_: np.ndarray, scale_dict: dict) -> np.ndarray:\n",
    "    \"\"\"\n",
    "    Calculates the diffusion between the top soil layer and the root layer.\n",
    "\n",
    "    ## Arguments\n",
    "        water capacity of root layer\n",
    "        depletion of root layer\n",
    "        height of root layer\n",
    "        total available surface water\n",
    "        depletion of the evaporative layer\n",
    "        fraction cover of plants\n",
    "        height of evaporative layer (paramter)\n",
    "        diffusion coefficient between evaporative\n",
    "        and root layers (unitless, parameter)\n",
    "    9. scale_dict: `dict`\n",
    "        dictionnary containing the scale factors for\n",
    "        the rasterized parameters\n",
    "\n",
    "    ## Returns\n",
    "        the diffusion between the top soil layer and\n",
    "        the root layer\n",
    "    \"\"\"\n",
    "    \n",
    "    # Temporary variables to make calculation easier to read\n",
    "    tmp1 = (((TAW - Dr) / Zr - (RUE - De) / (scale_dict['Ze'] * Ze_)) / FCov) * (scale_dict['DiffE'] * DiffE_)\n",
    "    tmp2 = ((TAW * scale_dict['Ze'] * Ze_) - (RUE - De - Dr) * Zr) / (Zr + scale_dict['Ze'] * Ze_) - Dr\n",
    "    \n",
    "    # Calculate diffusion according to SAMIR equation\n",
    "    diff_re = np.where(tmp1 < 0, np.maximum(tmp1, tmp2), np.minimum(tmp1, tmp2))\n",
    "\n",
    "    # Return zero values where the 'DiffE' parameter is equal to 0\n",
    "\n",
    "\n",
    "def calculate_diff_dr(TAW: np.ndarray, TDW: np.ndarray, Dr: np.ndarray, Zr: np.ndarray, Dd: np.ndarray, FCov: np.ndarray, Zsoil_: np.ndarray, DiffR_: np.ndarray, scale_dict: dict) -> np.ndarray:\n",
    "    \"\"\"\n",
    "    Calculates the diffusion between the root layer and the deep layer.\n",
    "\n",
    "    ## Arguments\n",
    "        water capacity of root layer\n",
    "        water capacity of deep layer\n",
    "        depletion of root layer\n",
    "        height of root layer\n",
    "        depletion of deep layer\n",
    "        fraction cover of plants\n",
    "        total height of soil (paramter)\n",
    "        Diffusion coefficient between root\n",
    "        and deep layers (unitless, parameter)\n",
    "    9. scale_dict: `dict`\n",
    "        dictionnary containing the scale factors for\n",
    "        the rasterized parameters\n",
    "\n",
    "    ## Returns\n",
    "        the diffusion between the root layer and the\n",
    "        deep layer\n",
    "    \"\"\"\n",
    "    \n",
    "    # Temporary variables to make calculation easier to read\n",
    "    tmp1 = (((TDW - Dd) / (scale_dict['Zsoil'] * Zsoil_ - Zr) - (TAW - Dr) / Zr) / FCov) * scale_dict['DiffR'] * DiffR_\n",
    "    tmp2 = (TDW *Zr - (TAW - Dr - Dd) * (scale_dict['Zsoil'] * Zsoil_ - Zr)) / (scale_dict['Zsoil'] * Zsoil_) - Dd\n",
    "    \n",
    "    # Calculate diffusion according to SAMIR equation\n",
    "    diff_dr = np.where(tmp1 < 0, np.maximum(tmp1, tmp2), np.minimum(tmp1, tmp2))\n",
    "    \n",
    "    # Return zero values where the 'DiffR' parameter is equal to 0\n",
    "\n",
    "\n",
    "def calculate_W(TEW: np.ndarray, Dei: np.ndarray, Dep: np.ndarray, fewi: np.ndarray, fewp: np.ndarray) -> np.ndarray:\n",
    "    \"\"\"\n",
    "    Calculate W, the weighting factor to split the energy available\n",
    "    for evaporation depending on the difference in water availability\n",
    "    in the two evaporation components, ensuring that the larger and\n",
    "    the wetter, the more the evaporation occurs from that component\n",
    "\n",
    "    ## Arguments\n",
    "        water capacity of evaporative layer\n",
    "        depletion of the evaporative layer\n",
    "        (irrigation part)\n",
    "        depletion of the evaporative layer\n",
    "        (precipitation part)\n",
    "        soil fraction which is wetted by irrigation\n",
    "        and exposed to evaporation\n",
    "        soil fraction which is wetted by precipitation\n",
    "        and exposed to evaporation\n",
    "\n",
    "    ## Returns\n",
    "        weighting factor W\n",
    "    \"\"\"\n",
    "    \n",
    "    # Temporary variables to make calculation easier to read\n",
    "    tmp = fewi * (TEW - Dei)\n",
    "    \n",
    "    # Calculate the weighting factor to split the energy available for evaporation\n",
    "    W = 1 / (1 + (fewp * (TEW - Dep) / tmp ))\n",
    "\n",
    "    # Return W \n",
    "\n",
    "\n",
    "def calculate_Kr(TEW: np.ndarray, De: np.ndarray, REW_: np.ndarray, scale_dict: dict) -> np.ndarray:\n",
    "    \"\"\"\n",
    "    calculates of the reduction coefficient for evaporation dependent \n",
    "    on the amount of water in the soil using the FAO-56 method\n",
    "\n",
    "    ## Arguments\n",
    "        water capacity of evaporative layer\n",
    "        depletion of evaporative layer\n",
    "        readily evaporable water\n",
    "    4. scale_dict: `dict`\n",
    "        dictionnary containing the scale factors for\n",
    "        the rasterized parameters\n",
    "\n",
    "    ## Returns\n",
    "        Kr coefficient\n",
    "    \"\"\"\n",
    "    \n",
    "    # Formula for calculating Kr\n",
    "    Kr = (TEW - De) / (TEW - scale_dict['REW'] * REW_)\n",
    "    \n",
    "    # Return Kr\n",
    "\n",
    "\n",
    "def update_Dr(TAW: np.ndarray, TDW: np.ndarray, Zr: np.ndarray, TAW0: np.ndarray, TDW0: np.ndarray, Dr0: np.ndarray, Dd0: np.ndarray, Zr0: np.ndarray) -> np.ndarray:\n",
    "    \"\"\"\n",
    "    Return the updated depletion for the root layer\n",
    "\n",
    "    ## Arguments\n",
    "        water capacity of root layer for current day\n",
    "        water capacity of deep layer for current day\n",
    "        root layer height for current day\n",
    "        water capacity of root layer for previous day\n",
    "        water capacity of deep layer for previous day\n",
    "        depletion of the root layer for previous day\n",
    "        depletion of the deep laye for previous day\n",
    "        root layer height for previous day\n",
    "\n",
    "    ## Returns\n",
    "        updated depletion for the root layer\n",
    "    \"\"\"\n",
    "    \n",
    "    # Temporary variables to make calculation easier to read\n",
    "    tmp1 = np.maximum(Dr0 + Dd0 * (TAW - TAW0) / TDW0, 0)\n",
    "    tmp2 = np.minimum(Dr0 + Dd0 * (TAW - TAW0) / TDW0, TDW)\n",
    "\n",
    "    # Return updated Dr\n",
    "\n",
    "\n",
    "def update_Dd(TAW: np.ndarray, TDW: np.ndarray, Zr: np.ndarray, TAW0: np.ndarray, TDW0: np.ndarray, Dd0: np.ndarray, Zr0: np.ndarray) -> np.ndarray:\n",
    "    \"\"\"\n",
    "    Return the updated depletion for the deep layer\n",
    "\n",
    "    ## Arguments\n",
    "        water capacity of root layer for current day\n",
    "        water capacity of deep layer for current day\n",
    "        water capacity of root layer for previous day\n",
    "        water capacity of deep layer for previous day\n",
    "        depletion of the deep laye for previous day\n",
    "        root layer height for previous day\n",
    "\n",
    "    ## Returns\n",
    "        updated depletion for the deep layer\n",
    "    \"\"\"\n",
    "    \n",
    "    # Temporary variables to make calculation easier to read\n",
    "    tmp1 = np.maximum(Dd0 - Dd0 * (TAW - TAW0) / TDW0, 0)\n",
    "    tmp2 = np.minimum(Dd0 - Dd0 * (TAW - TAW0) / TDW0, TDW)\n",
    "    \n",
    "    # Return updated Dd\n",
    "    return np.where(Zr > Zr0, tmp1, tmp2)\n",
    "\n",
    "\n",
    "def format_duration(timedelta: float) -> None:\n",
    "        \"\"\"\n",
    "        Print formatted timedelta in human readable format\n",
    "        (days, hours, minutes, seconds, microseconds, milliseconds, nanoseconds).\n",
    "\n",
    "        ## Arguments\n",
    "        timedelta: `float`\n",
    "            time value in seconds to format\n",
    "\n",
    "        ## Returns\n",
    "        `None`\n",
    "        \"\"\"\n",
    "        \n",
    "        if timedelta < 0.9e-6:\n",
    "            print(round(timedelta*1e9, 1), 'ns')\n",
    "        elif timedelta < 0.9e-3:\n",
    "            print(round(timedelta*1e6, 1), 'µs')\n",
    "        elif timedelta < 0.9:\n",
    "            print(round(timedelta*1e3, 1), 'ms')\n",
    "        elif timedelta < 60:\n",
    "            print(round(timedelta, 1), 's')\n",
    "        elif timedelta < 3.6e3:\n",
    "            print(round(timedelta//60), 'm', round(timedelta%60, 1),  's')\n",
    "        elif timedelta < 24*3.6e3:\n",
    "            print(round((timedelta/3.6e3)//1), 'h', round((timedelta/3.6e3)%1*60//1), 'm', round((timedelta/3.6e3)%1*60%1*60, 1), 's' ) \n",
    "        elif timedelta < 48*3.6e3:\n",
    "            print(round((timedelta/(24*3.6e3))//1), 'day,', round(((timedelta/(24*3.6e3))%1*24)//1), 'h,', round((timedelta/(24*3.6e3))%1*24%1*60//1), 'm,',  round((timedelta/(24*3.6e3))%1*24%1*60%1*60, 1), 's')\n",
    "        else:\n",
    "            print(round((timedelta/(24*3.6e3))//1), 'days,', round(((timedelta/(24*3.6e3))%1*24)//1), 'h,', round((timedelta/(24*3.6e3))%1*24%1*60//1), 'm,',  round((timedelta/(24*3.6e3))%1*24%1*60%1*60, 1), 's')\n",
    "        \n",
    "        return None\n",
    "\n",
    "\n",
    "def run_samir(json_config_file: str, csv_param_file: str, ndvi_cube_path: str, precip_cube_path: str, ET0_cube_path: str, soil_params_path: str, land_cover_path: str, chunk_size: dict, save_path: str, max_GB: int = 2) -> None:\n",
    "    \n",
    "    # warnings.simplefilter(\"error\", category = RuntimeWarning())\n",
    "    warnings.filterwarnings(\"ignore\", message=\"invalid value encountered in cast\")\n",
    "    warnings.filterwarnings(\"ignore\", message=\"invalid value encountered in divide\")\n",
    "    \n",
    "    #============ General parameters ============#\n",
    "    config_params = config(json_config_file)\n",
    "    calculation_variables_t2 = ['diff_rei', 'diff_rep', 'diff_dr' , 'Dd', 'De', 'Dei', 'Dep', 'Dr', 'FCov', 'Irrig', 'Kcb', 'Kei', 'Kep', 'Ks', 'Kti', 'Ktp', 'RUE', 'TAW', 'TDW', 'TEW', 'Tei', 'Tep', 'W', 'Zr', 'fewi', 'fewp']\n",
    "    calculation_variables_t1 = ['Dr', 'Dd', 'TAW', 'TDW', 'Zr']\n",
    "    \n",
    "    #============ Manage inputs ============#\n",
    "    # NDVI\n",
    "    ndvi_cube = xr.open_dataset(ndvi_cube_path, chunks = chunk_size).astype('u1')\n",
    "    \n",
    "    # Weather\n",
    "    ## Open geotiff cubes and rename variables and coordinates\n",
    "    prec_cube = xr.open_dataset(precip_cube_path, chunks = chunk_size).astype('u2').rename({'band': 'time', 'band_data': 'prec'})\n",
    "    ET0_cube = xr.open_dataset(ET0_cube_path, chunks = chunk_size).astype('u2').rename({'band': 'time', 'band_data': 'ET0'})\n",
    "    \n",
    "    ## Reset times values \n",
    "    prec_cube['time'] = pd.date_range(start = config_params.start_date, end = config_params.end_date, freq = 'D')\n",
    "    ET0_cube['time'] = pd.date_range(start = config_params.start_date, end = config_params.end_date, freq = 'D')\n",
    "    \n",
    "    ## Remove unwanted attributes\n",
    "    del prec_cube.prec.attrs['AREA_OR_POINT'], ET0_cube.ET0.attrs['AREA_OR_POINT']\n",
    "    \n",
    "    # Soil\n",
    "    soil_params = xr.open_dataset(soil_params_path, chunks = chunk_size).astype('f4')\n",
    "    \n",
    "    # SAMIR Parameters\n",
    "    param_dataset, scale_factor = rasterize_samir_parameters(csv_param_file, ndvi_cube.drop_vars(['ndvi', 'time']), land_cover_path, chunk_size = chunk_size)\n",
    "    \n",
    "    # SAMIR Variables\n",
    "    variables_t1, variables_t2 = setup_time_loop(calculation_variables_t1, calculation_variables_t2, ndvi_cube.drop_vars(['ndvi', 'time']))\n",
    "    # # Manage loading of data based on disk size of inputs\n",
    "    # if ndvi_cube.nbytes < max_GB * (1024)**3:\n",
    "    #     ndvi_cube.load()\n",
    "    # if weather_cube.nbytes < max_GB * (1024)**3:\n",
    "    #     weather_cube.load()\n",
    "\n",
    "    #============ Prepare outputs ============#\n",
    "    model_outputs = prepare_outputs(ndvi_cube.drop_vars(['ndvi']))\n",
    "    \n",
    "    # Create encoding dictionnary\n",
    "    for variable in list(model_outputs.keys()):\n",
    "        # Write encoding dict\n",
    "        encoding_dict = {}\n",
    "        encod = {}\n",
    "        encod['dtype'] = 'i2'\n",
    "        encoding_dict[variable] = encod\n",
    "        \n",
    "    # Save empty output\n",
    "    model_outputs.to_netcdf(save_path, encoding = encoding_dict)\n",
    "    model_outputs.close()\n",
    "    \n",
    "    #============ Prepare time iterations ============#\n",
    "    dates = ndvi_cube.time.values\n",
    "    \n",
    "    #============ Create aliases for better readability ============#\n",
    "    \n",
    "    # Variables for current day\n",
    "    # var = da.from_array(dataarray, chunks = (5, 5))\n",
    "    diff_rei = variables_t2.diff_rei.to_numpy()\n",
    "    diff_rep = variables_t2.diff_rep.to_numpy()\n",
    "    diff_dr = variables_t2.diff_dr.to_numpy()\n",
    "    Dd = variables_t2.Dd.to_numpy()\n",
    "    De = variables_t2.De.to_numpy()\n",
    "    Dei = variables_t2.Dei.to_numpy()\n",
    "    Dep = variables_t2.Dep.to_numpy()\n",
    "    Dr = variables_t2.Dr.to_numpy()\n",
    "    FCov = variables_t2.FCov.to_numpy()\n",
    "    Irrig = variables_t2.Irrig.to_numpy()\n",
    "    Kcb = variables_t2.Kcb.to_numpy()\n",
    "    Kei = variables_t2.Kei.to_numpy()\n",
    "    Kep = variables_t2.Kep.to_numpy()\n",
    "    Ks = variables_t2.Ks.to_numpy()\n",
    "    Kti = variables_t2.Kti.to_numpy()\n",
    "    Ktp = variables_t2.Ktp.to_numpy()\n",
    "    RUE = variables_t2.RUE.to_numpy()\n",
    "    TAW = variables_t2.TAW.to_numpy()\n",
    "    TDW = variables_t2.TDW.to_numpy()\n",
    "    TEW = variables_t2.TEW.to_numpy()\n",
    "    Tei = variables_t2.Tei.to_numpy()\n",
    "    Tep = variables_t2.Tep.to_numpy()\n",
    "    Zr = variables_t2.Zr.to_numpy()\n",
    "    W = variables_t2.W.to_numpy()\n",
    "    fewi = variables_t2.fewi.to_numpy()\n",
    "    fewp = variables_t2.fewp.to_numpy()\n",
    "    \n",
    "    # Variables for previous day\n",
    "    TAW0 = variables_t1.TAW.to_numpy()\n",
    "    TDW0 = variables_t1.TDW.to_numpy()\n",
    "    Dr0 = variables_t1.Dr.to_numpy()\n",
    "    Dd0 = variables_t1.Dd.to_numpy()\n",
    "    Zr0 = variables_t1.Zr.to_numpy()\n",
    "    \n",
    "    # Parameters\n",
    "    # Parameters have an underscore (_) behind their name for recognition \n",
    "    DiffE_ = param_dataset.DiffE.to_numpy()\n",
    "    DiffR_ = param_dataset.DiffR.to_numpy()\n",
    "    FW_ = param_dataset.FW.to_numpy()\n",
    "    Fc_stop_ = param_dataset.Fc_stop.to_numpy()\n",
    "    FmaxFC_ = param_dataset.FmaxFC.to_numpy()\n",
    "    Foffset_ = param_dataset.Foffset.to_numpy()\n",
    "    Fslope_ = param_dataset.Fslope.to_numpy()\n",
    "    Init_RU_ = param_dataset.Init_RU.to_numpy()\n",
    "    Irrig_auto_ = param_dataset.Irrig_auto.to_numpy()\n",
    "    Kcmax_ = param_dataset.Kcmax.to_numpy()\n",
    "    KmaxKcb_ = param_dataset.KmaxKcb.to_numpy()\n",
    "    Koffset_ = param_dataset.Koffset.to_numpy()\n",
    "    Kslope_ = param_dataset.Kslope.to_numpy()\n",
    "    Lame_max_ = param_dataset.Lame_max.to_numpy()\n",
    "    REW_ = param_dataset.REW.to_numpy()\n",
    "    Ze_ = param_dataset.Ze.to_numpy()\n",
    "    Zsoil_ = param_dataset.Zsoil.to_numpy()\n",
    "    maxZr_ = param_dataset.maxZr.to_numpy()\n",
    "    minZr_ = param_dataset.minZr.to_numpy()\n",
    "    p_ = param_dataset.p.to_numpy()\n",
    "    \n",
    "    # scale factors\n",
    "    # Scale factors have the following name scheme : s_ + parameter_name\n",
    "    s_DiffE = scale_factor['DiffE']\n",
    "    s_DiffR = scale_factor['DiffR']\n",
    "    s_FW = scale_factor['FW']\n",
    "    s_Fc_stop = scale_factor['Fc_stop']\n",
    "    s_FmaxFC = scale_factor['FmaxFC']\n",
    "    s_Foffset = scale_factor['Foffset']\n",
    "    s_Fslope = scale_factor['Fslope']\n",
    "    s_Init_RU = scale_factor['Init_RU']\n",
    "    # s_Irrig_auto = scale_factor['Irrig_auto']\n",
    "    s_Kcmax = scale_factor['Kcmax']\n",
    "    s_KmaxKcb = scale_factor['KmaxKcb']\n",
    "    s_Koffset = scale_factor['Koffset']\n",
    "    s_Kslope = scale_factor['Kslope']\n",
    "    s_Lame_max = scale_factor['Lame_max']\n",
    "    s_REW = scale_factor['REW']\n",
    "    s_Ze = scale_factor['Ze']\n",
    "    s_Zsoil = scale_factor['Zsoil']\n",
    "    s_maxZr = scale_factor['maxZr']\n",
    "    s_minZr = scale_factor['minZr']\n",
    "    s_p = scale_factor['p']\n",
    "    \n",
    "    # input data\n",
    "    ndvi = ndvi_cube.ndvi.sel({'time': dates[0]}).to_numpy() / 255\n",
    "    prec = prec_cube.prec.sel({'time': dates[0]}).to_numpy() / 1000\n",
    "    ET0 = ET0_cube.ET0.sel({'time': dates[0]}).to_numpy() / 1000\n",
    "\n",
    "    #============ First day initialization ============#\n",
    "    # Fraction cover\n",
    "    FCov = s_Fslope * Fslope_ * ndvi + s_Foffset * Foffset_\n",
    "    FCov = np.minimum(np.maximum(FCov, 0), s_Fc_stop * Fc_stop_)\n",
    "    \n",
    "    # Root depth upate\n",
    "    Zr = s_minZr * minZr_ + (FCov / (s_FmaxFC * FmaxFC_)) * s_maxZr * (maxZr_ - minZr_)\n",
    "    \n",
    "    # Water capacities\n",
    "    TEW = (soil_params.FC.values - soil_params.WP.values/2) * s_Ze * Ze_\n",
    "    RUE = (soil_params.FC.values - soil_params.WP.values) * s_Ze * Ze_\n",
    "    TAW = (soil_params.FC.values - soil_params.WP.values) * Zr\n",
    "    TDW = (soil_params.FC.values - soil_params.WP.values) * (s_Zsoil * Zsoil_ - Zr)  # Zd = Zsoil - Zr\n",
    "    \n",
    "    # Depletions\n",
    "    Dei = RUE * (1 - s_Init_RU * Init_RU_)\n",
    "    Dep = RUE * (1 - s_Init_RU * Init_RU_)\n",
    "    Dr = TAW * (1 - s_Init_RU * Init_RU_)\n",
    "    Dd = TDW * (1 - s_Init_RU * Init_RU_)\n",
    "    \n",
    "    # Irrigation  TODO : find correct method for irrigation\n",
    "    Irrig = np.minimum(np.maximum(Dr - prec, 0), s_Lame_max * Lame_max_) * Irrig_auto_\n",
    "    Irrig = np.where(Dr > TAW * s_p * p_, Irrig, 0)\n",
    "    \n",
    "    # Kcb\n",
    "    Kcb = np.minimum(s_Kslope * Kslope_ * ndvi + s_Koffset * Koffset_, s_KmaxKcb * KmaxKcb_)\n",
    "    \n",
    "    # Update depletions with rainfall and/or irrigation\n",
    "    \n",
    "    ## DP  \n",
    "    # Variable directly written since not used later\n",
    "    # Dimensions of output dataset : (x, y, time)\n",
    "    outputs = nc.Dataset(save_path, mode='r+')\n",
    "    outputs.variables['DP'][:,:,0] = np.round(- np.minimum(Dd + np.minimum(Dr - prec - Irrig, 0), 0) * 1000).astype('int16')\n",
    "    outputs.close()\n",
    "\n",
    "    # model_outputs.DP.loc[{'time': dates[0]}] = - np.minimum(Dd + np.minimum(Dr - prec - Irrig, 0), 0)\n",
    "    \n",
    "    ## De\n",
    "    Dei = np.minimum(np.maximum(Dei - prec - Irrig / (s_FW * FW_ / 100), 0), TEW)\n",
    "    Dep = np.minimum(np.maximum(Dep - prec, 0), TEW)\n",
    "    \n",
    "    fewi = np.minimum(1 - FCov, (s_FW * FW_ / 100))\n",
    "    fewp = 1 - FCov - fewi\n",
    "    \n",
    "    De = np.divide((Dei * fewi + Dep * fewp), (fewi + fewp))\n",
    "    De = np.where(np.isfinite(De), De, Dei * (s_FW * FW_ / 100) + Dep * (1 - (s_FW * FW_ / 100)))\n",
    "\n",
    "    ## Dr\n",
    "    Dr = np.minimum(np.maximum(Dr - prec - Irrig, 0), TAW)\n",
    "    \n",
    "    ## Dd\n",
    "    Dd = np.minimum(np.maximum(Dd + np.minimum(Dr - prec - Irrig, 0), 0), TDW)\n",
    "    \n",
    "    # Diffusion coefficients\n",
    "    diff_rei = calculate_diff_re(TAW, Dr, Zr, RUE, Dei, FCov, Ze_, DiffE_, scale_factor)\n",
    "    diff_rep = calculate_diff_re(TAW, Dr, Zr, RUE, Dep, FCov, Ze_, DiffE_, scale_factor)\n",
    "    diff_dr = calculate_diff_dr(TAW, TDW, Dr, Zr, Dd, FCov, Zsoil_, DiffR_, scale_factor)    \n",
    "    \n",
    "    # Weighing factor W\n",
    "    W = calculate_W(TEW, Dei, Dep, fewi, fewp)\n",
    "    \n",
    "    # Write outputs\n",
    "    # Variables directly written since not used later\n",
    "    outputs = nc.Dataset(save_path, mode='r+')\n",
    "    # Soil water content of evaporative layer\n",
    "    outputs.variables['SWCe'][:,:,0] = np.round((1 - De/TEW) * 1000).astype('int16')\n",
    "    # Soil water content of root layer\n",
    "    outputs.variables['SWCe'][:,:,0] = np.round((1 - Dr/TAW) * 1000).astype('int16')\n",
    "    outputs.close()\n",
    "    \n",
    "    \n",
    "    # model_outputs.SWCe.loc[{'time': dates[0]}] = 1 - De/TEW\n",
    "    # model_outputs.SWCr.loc[{'time': dates[0]}] = 1 - Dr/TAW\n",
    "    \n",
    "    # Water Stress coefficient\n",
    "    Ks = np.minimum((TAW - Dr) / (TAW * (1 - s_p * p_)), 1)\n",
    "    \n",
    "    # Reduction coefficient for evaporation\n",
    "    Kei = np.minimum(W * calculate_Kr(TEW, Dei, REW_, scale_factor) * (s_Kcmax * Kcmax_ - Kcb), fewi * s_Kcmax * Kcmax_)\n",
    "    Kep = np.minimum((1 - W) * calculate_Kr(TEW, Dep, REW_, scale_factor) * (s_Kcmax * Kcmax_ - Kcb), fewp * s_Kcmax * Kcmax_)\n",
    "    \n",
    "    # Prepare coefficients for evapotranspiration\n",
    "    Kti = np.minimum(((s_Ze * Ze_ / Zr)**6) * (1 - Dei / TEW) / np.maximum(1 - Dr / TAW, 0.001), 1)\n",
    "    Ktp = np.minimum(((s_Ze * Ze_ / Zr)**6) * (1 - Dep / TEW) / np.maximum(1 - Dr / TAW, 0.001), 1)\n",
    "    Tei = Kti * Ks * Kcb * ET0\n",
    "    Tep = Ktp * Ks * Kcb * ET0\n",
    "    \n",
    "    # Update depletions\n",
    "    Dei = np.where(fewi > 0, np.minimum(np.maximum(Dei + ET0 * Kei / fewi + Tei - diff_rei, 0), TEW), np.minimum(np.maximum(Dei + Tei - diff_rei, 0), TEW))\n",
    "    Dep = np.where(fewp > 0, np.minimum(np.maximum(Dep + ET0 * Kep / fewp + Tep - diff_rep, 0), TEW), np.minimum(np.maximum(Dep + Tep - diff_rep, 0), TEW))\n",
    "    \n",
    "    De = (Dei * fewi + Dep * fewp) / (fewi + fewp)\n",
    "    De = np.where(np.isfinite(De), De, Dei * (s_FW * FW_ / 100) + Dep * (1 - (s_FW * FW_ / 100)))\n",
    "    \n",
    "    # Evaporation\n",
    "    \n",
    "    # Transpiration\n",
    "    Tr = Kcb * Ks * ET0\n",
    "    \n",
    "    # Irrigation\n",
    "    # model_outputs.Irr.loc[{'time': dates[0]}] = Irrig\n",
    "    \n",
    "    # Write outputs\n",
    "    outputs = nc.Dataset(save_path, mode='r+')\n",
    "    # Evaporation\n",
    "    outputs.variables['E'][:,:,0] = np.round(E * 1000).astype('int16')\n",
    "    # Transpiration\n",
    "    outputs.variables['Tr'][:,:,0] = np.round(Tr * 1000).astype('int16')\n",
    "    # Irrigation\n",
    "    outputs.variables['Irr'][:,:,0] = np.round(Irrig * 1000).astype('int16')\n",
    "    outputs.close()\n",
    "    \n",
    "    # Potential evapotranspiration and evaporative fraction ??\n",
    "    \n",
    "    # Update depletions (root and deep zones) at the end of the day\n",
    "    Dr = np.minimum(np.maximum(Dr + E + Tr - diff_dr, 0), TAW)\n",
    "    Dd = np.minimum(np.maximum(Dd + diff_dr, 0), TDW)\n",
    "    del E, Tr\n",
    "    \n",
    "    # Update previous day values\n",
    "    TAW0 = TAW\n",
    "    TDW0 = TDW\n",
    "    Dr0 = Dr\n",
    "    Dd0 = Dd\n",
    "    Zr0 = Zr\n",
    "    \n",
    "    print('day 1/', len(dates), '   ', end = '\\r')\n",
    "    \n",
    "    # # Update variable_t1 values\n",
    "    # for variable in calculation_variables_t1:\n",
    "    #     variables_t1[variable] = variables_t2[variable].copy(deep = True)\n",
    "    \n",
    "    #============ Time loop ============#\n",
    "    for i in range(1, len(dates)):\n",
    "        \n",
    "        # Reset input aliases\n",
    "        # input data\n",
    "        ndvi = (ndvi_cube.ndvi.sel({'time': dates[i]}).to_numpy() / 255)\n",
    "        prec = prec_cube.prec.sel({'time': dates[i]}).to_numpy() / 1000\n",
    "        ET0 = ET0_cube.ET0.sel({'time': dates[i]}).to_numpy() / 1000\n",
    "        ET0_previous = ET0_cube.ET0.sel({'time': dates[i-1]}).to_numpy() / 1000\n",
    "    \n",
    "        # Update variables\n",
    "        ## Fraction cover\n",
    "        FCov = s_Fslope * Fslope_ * ndvi + s_Foffset * Foffset_\n",
    "        FCov = np.minimum(np.maximum(FCov, 0), s_Fc_stop * Fc_stop_)\n",
    "        \n",
    "        ## Root depth upate\n",
    "        Zr = s_minZr * minZr_ + (FCov / (s_FmaxFC * FmaxFC_)) * s_maxZr * (maxZr_ - minZr_)\n",
    "        \n",
    "        # Water capacities\n",
    "        TAW = (soil_params.FC.values - soil_params.WP.values) * Zr\n",
    "        TDW = (soil_params.FC.values - soil_params.WP.values) * (s_Zsoil * Zsoil_ - Zr)\n",
    "        \n",
    "        # Update depletions\n",
    "        Dr = update_Dr(TAW, TDW, Zr, TAW0, TDW0, Dr0, Dd0, Zr0)\n",
    "        Dd = update_Dd(TAW, TDW, Zr, TAW0, TDW0, Dd0, Zr0)\n",
    "        \n",
    "        # Update param p\n",
    "        p_ = (np.minimum(np.maximum(s_p * p_ + 0.04 * (5 - ET0_previous), 0.1), 0.8) * (1 / s_p)).round(0).astype('i2')\n",
    "        \n",
    "        # Irrigation   ==============!!!!!\n",
    "        Irrig = np.minimum(np.maximum(Dr - prec, 0), s_Lame_max * Lame_max_) * Irrig_auto_\n",
    "        Irrig = np.where(Dr > TAW * s_p * p_, Irrig, 0)\n",
    "    \n",
    "        # Kcb\n",
    "        Kcb = np.minimum(s_Kslope * Kslope_ * ndvi + s_Koffset * Koffset_, s_KmaxKcb * KmaxKcb_)\n",
    "        \n",
    "        # # Write outputs\n",
    "        # model_outputs.Irr.loc[{'time': dates[i]}] = Irrig\n",
    "        \n",
    "        # Update depletions with rainfall and/or irrigation    \n",
    "        \n",
    "        # Write outputs\n",
    "        # Variable directly written since not used later\n",
    "        outputs = nc.Dataset(save_path, mode='r+')\n",
    "        ## DP (Deep percolation)\n",
    "        outputs.variables['DP'][:,:,i] = np.round(-np.minimum(Dd + np.minimum(Dr - prec - Irrig, 0), 0) * 1000).astype('int16')\n",
    "        outputs.close()\n",
    "        \n",
    "        # model_outputs.DP.loc[{'time': dates[i]}] = -np.minimum(Dd + np.minimum(Dr - prec - Irrig, 0), 0)\n",
    "        \n",
    "        ## De\n",
    "        Dei = np.minimum(np.maximum(Dei - prec - Irrig / (s_FW * FW_ / 100), 0), TEW)\n",
    "        Dep = np.minimum(np.maximum(Dep - prec, 0), TEW)\n",
    "        \n",
    "        fewi = np.minimum(1 - FCov, (s_FW * FW_ / 100))\n",
    "        fewp = 1 - FCov - fewi\n",
    "        \n",
    "        De = (Dei * fewi + Dep * fewp) / (fewi + fewp)\n",
    "        De = np.where(np.isfinite(De), De, Dei * (s_FW * FW_ / 100) + Dep * (1 - (s_FW * FW_ / 100)))\n",
    "\n",
    "        ## Dr\n",
    "        Dr = np.minimum(np.maximum(Dr - prec - Irrig, 0), TAW)\n",
    "        \n",
    "        ## Dd\n",
    "        Dd = np.minimum(np.maximum(Dd + np.minimum(Dr - prec - Irrig, 0), 0), TDW)\n",
    "        \n",
    "        # Diffusion coefficients\n",
    "        diff_rei = calculate_diff_re(TAW, Dr, Zr, RUE, Dei, FCov, Ze_, DiffE_, scale_factor)\n",
    "        diff_rep = calculate_diff_re(TAW, Dr, Zr, RUE, Dep, FCov, Ze_, DiffE_, scale_factor)\n",
    "        diff_dr = calculate_diff_dr(TAW, TDW, Dr, Zr, Dd, FCov, Zsoil_, DiffR_, scale_factor) \n",
    "        \n",
    "        # Weighing factor W\n",
    "        W = calculate_W(TEW, Dei, Dep, fewi, fewp)\n",
    "        \n",
    "        # Write outputs\n",
    "        # Variables directly written since not used later\n",
    "        outputs = nc.Dataset(save_path, mode='r+')\n",
    "        # Soil water content of evaporative layer\n",
    "        outputs.variables['SWCe'][:,:,i] = np.round((1 - De/TEW) * 1000).astype('int16')\n",
    "        # Soil water content of root layer\n",
    "        outputs.variables['SWCe'][:,:,i] = np.round((1 - Dr/TAW) * 1000).astype('int16')\n",
    "        outputs.close()\n",
    "        \n",
    "        \n",
    "        # model_outputs.SWCe.loc[{'time': dates[i]}] = 1 - De/TEW\n",
    "        # model_outputs.SWCr.loc[{'time': dates[i]}] = 1 - Dr/TAW\n",
    "        \n",
    "        # Water Stress coefficient\n",
    "        Ks = np.minimum((TAW - Dr) / (TAW * (1 - s_p * p_)), 1)\n",
    "        \n",
    "        # Reduction coefficient for evaporation\n",
    "        Kei = np.minimum(W * calculate_Kr(TEW, Dei, REW_, scale_factor) * (s_Kcmax * Kcmax_ - Kcb), fewi * s_Kcmax * Kcmax_)\n",
    "        Kep = np.minimum((1 - W) * calculate_Kr(TEW, Dei, REW_, scale_factor) * (s_Kcmax * Kcmax_ - Kcb), fewp * s_Kcmax * Kcmax_)\n",
    "        \n",
    "        # Prepare coefficients for evapotranspiration\n",
    "        Kti = np.minimum(((s_Ze * Ze_ / Zr)**6) * (1 - Dei / TEW) / np.maximum(1 - Dr / TAW, 0.001), 1)\n",
    "        Ktp = np.minimum(((s_Ze * Ze_ / Zr)**6) * (1 - Dep / TEW) / np.maximum(1 - Dr / TAW, 0.001), 1)\n",
    "        Tei = Kti * Ks * Kcb * ET0\n",
    "        Tep = Ktp * Ks * Kcb * ET0\n",
    "        \n",
    "        # Update depletions\n",
    "        Dei = np.where(fewi > 0, np.minimum(np.maximum(Dei + ET0 * Kei / fewi + Tei - diff_rei, 0), TEW), np.minimum(np.maximum(Dei + Tei - diff_rei, 0), TEW))\n",
    "        Dep = np.where(fewp > 0, np.minimum(np.maximum(Dep + ET0 * Kep / fewp + Tep - diff_rep, 0), TEW), np.minimum(np.maximum(Dep + Tep - diff_rep, 0), TEW))\n",
    "        \n",
    "        De = (Dei * fewi + Dep * fewp) / (fewi + fewp)\n",
    "        De = np.where(np.isfinite(De), De, Dei * (s_FW * FW_ / 100) + Dep * (1 - (s_FW * FW_ / 100)))\n",
    "        \n",
    "        # Evaporation\n",
    "        \n",
    "        # Transpiration\n",
    "        Tr = Kcb * Ks * ET0\n",
    "        \n",
    "        # Write outputs\n",
    "        outputs = nc.Dataset(save_path, mode='r+')\n",
    "        # Evaporation\n",
    "        outputs.variables['E'][:,:,i] = np.round(E * 1000).astype('int16')\n",
    "        # Transpiration\n",
    "        outputs.variables['Tr'][:,:,i] = np.round(Tr * 1000).astype('int16')\n",
    "        # Irrigation\n",
    "        outputs.variables['Irr'][:,:,i] = np.round(Irrig * 1000).astype('int16')\n",
    "        outputs.close()\n",
    "        \n",
    "        # Potential evapotranspiration and evaporative fraction ??\n",
    "        \n",
    "        # Update depletions (root and deep zones) at the end of the day\n",
    "        Dr = np.minimum(np.maximum(Dr + E + Tr - diff_dr, 0), TAW)\n",
    "        Dd = np.minimum(np.maximum(Dd + diff_dr, 0), TDW)\n",
    "        del E, Tr\n",
    "    \n",
    "        # Update previous day values\n",
    "        TAW0 = TAW\n",
    "        TDW0 = TDW\n",
    "        Dr0 = Dr\n",
    "        Dd0 = Dd\n",
    "        Zr0 = Zr\n",
    "        \n",
    "        # # Update variable_t1 values\n",
    "        # for variable in calculation_variables_t1:\n",
    "        #     variables_t1[variable] = variables_t2[variable].copy(deep = True)\n",
    "        \n",
    "        print('day ', i+1, '/', len(dates), '   ', end = '\\r')\n",
    "    \n",
    "    # Scale the model_outputs variable to save in int16 format\n",
    "    \n",
    "    # Save model outputs to netcdf\n",
    "    # model_outputs.to_netcdf(save_path, encoding = encoding_dict)\n",
    "    \n",
    "    return None"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {},
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "    <div style=\"width: 24px; height: 24px; background-color: #e1e1e1; border: 3px solid #9D9D9D; border-radius: 5px; position: absolute;\"> </div>\n",
       "    <div style=\"margin-left: 48px;\">\n",
       "        <h3 style=\"margin-bottom: 0px;\">Client</h3>\n",
       "        <p style=\"color: #9D9D9D; margin-bottom: 0px;\">Client-99049348-2ac2-11ee-856b-00155de7557f</p>\n",
       "        <table style=\"width: 100%; text-align: left;\">\n",
       "\n",
       "        <tr>\n",
       "        \n",
       "            <td style=\"text-align: left;\"><strong>Connection method:</strong> Cluster object</td>\n",
       "            <td style=\"text-align: left;\"><strong>Cluster type:</strong> distributed.LocalCluster</td>\n",
       "        \n",
       "        </tr>\n",
       "\n",
       "        \n",
       "            <tr>\n",
       "                <td style=\"text-align: left;\">\n",
       "                    <strong>Dashboard: </strong> <a href=\"http://127.0.0.1:8787/status\" target=\"_blank\">http://127.0.0.1:8787/status</a>\n",
       "                </td>\n",
       "                <td style=\"text-align: left;\"></td>\n",
       "            </tr>\n",
       "        \n",
       "\n",
       "        </table>\n",
       "\n",
       "        \n",
       "\n",
       "        \n",
       "            <details>\n",
       "            <summary style=\"margin-bottom: 20px;\"><h3 style=\"display: inline;\">Cluster Info</h3></summary>\n",
       "            <div class=\"jp-RenderedHTMLCommon jp-RenderedHTML jp-mod-trusted jp-OutputArea-output\">\n",
       "    <div style=\"width: 24px; height: 24px; background-color: #e1e1e1; border: 3px solid #9D9D9D; border-radius: 5px; position: absolute;\">\n",
       "    </div>\n",
       "    <div style=\"margin-left: 48px;\">\n",
       "        <h3 style=\"margin-bottom: 0px; margin-top: 0px;\">LocalCluster</h3>\n",
       "        <p style=\"color: #9D9D9D; margin-bottom: 0px;\">48bf00f8</p>\n",
       "        <table style=\"width: 100%; text-align: left;\">\n",
       "            <tr>\n",
       "                <td style=\"text-align: left;\">\n",
       "                    <strong>Dashboard:</strong> <a href=\"http://127.0.0.1:8787/status\" target=\"_blank\">http://127.0.0.1:8787/status</a>\n",
       "                </td>\n",
       "                <td style=\"text-align: left;\">\n",
       "                    <strong>Workers:</strong> 4\n",
       "                </td>\n",
       "            </tr>\n",
       "            <tr>\n",
       "                <td style=\"text-align: left;\">\n",
       "                    <strong>Total threads:</strong> 8\n",
       "                </td>\n",
       "                <td style=\"text-align: left;\">\n",
       "                    <strong>Total memory:</strong> 23.47 GiB\n",
       "                </td>\n",
       "            </tr>\n",
       "            \n",
       "            <tr>\n",
       "    <td style=\"text-align: left;\"><strong>Status:</strong> running</td>\n",
       "    <td style=\"text-align: left;\"><strong>Using processes:</strong> True</td>\n",
       "</tr>\n",
       "\n",
       "            \n",
       "        </table>\n",
       "\n",
       "        <details>\n",
       "            <summary style=\"margin-bottom: 20px;\">\n",
       "                <h3 style=\"display: inline;\">Scheduler Info</h3>\n",
       "            </summary>\n",
       "\n",
       "            <div style=\"\">\n",
       "    <div>\n",
       "        <div style=\"width: 24px; height: 24px; background-color: #FFF7E5; border: 3px solid #FF6132; border-radius: 5px; position: absolute;\"> </div>\n",
       "        <div style=\"margin-left: 48px;\">\n",
       "            <h3 style=\"margin-bottom: 0px;\">Scheduler</h3>\n",
       "            <p style=\"color: #9D9D9D; margin-bottom: 0px;\">Scheduler-d5ec5b54-f595-40fe-a4fe-ab30a54fb158</p>\n",
       "            <table style=\"width: 100%; text-align: left;\">\n",
       "                <tr>\n",
       "                    <td style=\"text-align: left;\">\n",
       "                        <strong>Comm:</strong> tcp://127.0.0.1:32951\n",
       "                    </td>\n",
       "                    <td style=\"text-align: left;\">\n",
       "                        <strong>Workers:</strong> 4\n",
       "                    </td>\n",
       "                </tr>\n",
       "                <tr>\n",
       "                    <td style=\"text-align: left;\">\n",
       "                        <strong>Dashboard:</strong> <a href=\"http://127.0.0.1:8787/status\" target=\"_blank\">http://127.0.0.1:8787/status</a>\n",
       "                    </td>\n",
       "                    <td style=\"text-align: left;\">\n",
       "                        <strong>Total threads:</strong> 8\n",
       "                    </td>\n",
       "                </tr>\n",
       "                <tr>\n",
       "                    <td style=\"text-align: left;\">\n",
       "                        <strong>Started:</strong> Just now\n",
       "                    </td>\n",
       "                    <td style=\"text-align: left;\">\n",
       "                        <strong>Total memory:</strong> 23.47 GiB\n",
       "                    </td>\n",
       "                </tr>\n",
       "            </table>\n",
       "        </div>\n",
       "    </div>\n",
       "\n",
       "    <details style=\"margin-left: 48px;\">\n",
       "        <summary style=\"margin-bottom: 20px;\">\n",
       "            <h3 style=\"display: inline;\">Workers</h3>\n",
       "        </summary>\n",
       "\n",
       "        \n",
       "        <div style=\"margin-bottom: 20px;\">\n",
       "            <div style=\"width: 24px; height: 24px; background-color: #DBF5FF; border: 3px solid #4CC9FF; border-radius: 5px; position: absolute;\"> </div>\n",
       "            <div style=\"margin-left: 48px;\">\n",
       "            <details>\n",
       "                <summary>\n",
       "                    <h4 style=\"margin-bottom: 0px; display: inline;\">Worker: 0</h4>\n",
       "                </summary>\n",
       "                <table style=\"width: 100%; text-align: left;\">\n",
       "                    <tr>\n",
       "                        <td style=\"text-align: left;\">\n",
       "                            <strong>Comm: </strong> tcp://127.0.0.1:45105\n",
       "                        </td>\n",
       "                        <td style=\"text-align: left;\">\n",
       "                            <strong>Total threads: </strong> 2\n",
       "                        </td>\n",
       "                    </tr>\n",
       "                    <tr>\n",
       "                        <td style=\"text-align: left;\">\n",
       "                            <strong>Dashboard: </strong> <a href=\"http://127.0.0.1:42443/status\" target=\"_blank\">http://127.0.0.1:42443/status</a>\n",
       "                        </td>\n",
       "                        <td style=\"text-align: left;\">\n",
       "                            <strong>Memory: </strong> 5.87 GiB\n",
       "                        </td>\n",
       "                    </tr>\n",
       "                    <tr>\n",
       "                        <td style=\"text-align: left;\">\n",
       "                            <strong>Nanny: </strong> tcp://127.0.0.1:37411\n",
       "                        </td>\n",
       "                        <td style=\"text-align: left;\"></td>\n",
       "                    </tr>\n",
       "                    <tr>\n",
       "                        <td colspan=\"2\" style=\"text-align: left;\">\n",
       "                            <strong>Local directory: </strong> /tmp/dask-scratch-space/worker-v5s639lg\n",
       "                        </td>\n",
       "                    </tr>\n",
       "\n",
       "                    \n",
       "\n",
       "                    \n",
       "\n",
       "                </table>\n",
       "            </details>\n",
       "            </div>\n",
       "        </div>\n",
       "        \n",
       "        <div style=\"margin-bottom: 20px;\">\n",
       "            <div style=\"width: 24px; height: 24px; background-color: #DBF5FF; border: 3px solid #4CC9FF; border-radius: 5px; position: absolute;\"> </div>\n",
       "            <div style=\"margin-left: 48px;\">\n",
       "            <details>\n",
       "                <summary>\n",
       "                    <h4 style=\"margin-bottom: 0px; display: inline;\">Worker: 1</h4>\n",
       "                </summary>\n",
       "                <table style=\"width: 100%; text-align: left;\">\n",
       "                    <tr>\n",
       "                        <td style=\"text-align: left;\">\n",
       "                            <strong>Comm: </strong> tcp://127.0.0.1:36993\n",
       "                        </td>\n",
       "                        <td style=\"text-align: left;\">\n",
       "                            <strong>Total threads: </strong> 2\n",
       "                        </td>\n",
       "                    </tr>\n",
       "                    <tr>\n",
       "                        <td style=\"text-align: left;\">\n",
       "                            <strong>Dashboard: </strong> <a href=\"http://127.0.0.1:40175/status\" target=\"_blank\">http://127.0.0.1:40175/status</a>\n",
       "                        </td>\n",
       "                        <td style=\"text-align: left;\">\n",
       "                            <strong>Memory: </strong> 5.87 GiB\n",
       "                        </td>\n",
       "                    </tr>\n",
       "                    <tr>\n",
       "                        <td style=\"text-align: left;\">\n",
       "                            <strong>Nanny: </strong> tcp://127.0.0.1:45519\n",
       "                        </td>\n",
       "                        <td style=\"text-align: left;\"></td>\n",
       "                    </tr>\n",
       "                    <tr>\n",
       "                        <td colspan=\"2\" style=\"text-align: left;\">\n",
       "                            <strong>Local directory: </strong> /tmp/dask-scratch-space/worker-0cke1ycu\n",
       "                        </td>\n",
       "                    </tr>\n",
       "\n",
       "                    \n",
       "\n",
       "                    \n",
       "\n",
       "                </table>\n",
       "            </details>\n",
       "            </div>\n",
       "        </div>\n",
       "        \n",
       "        <div style=\"margin-bottom: 20px;\">\n",
       "            <div style=\"width: 24px; height: 24px; background-color: #DBF5FF; border: 3px solid #4CC9FF; border-radius: 5px; position: absolute;\"> </div>\n",
       "            <div style=\"margin-left: 48px;\">\n",
       "            <details>\n",
       "                <summary>\n",
       "                    <h4 style=\"margin-bottom: 0px; display: inline;\">Worker: 2</h4>\n",
       "                </summary>\n",
       "                <table style=\"width: 100%; text-align: left;\">\n",
       "                    <tr>\n",
       "                        <td style=\"text-align: left;\">\n",
       "                            <strong>Comm: </strong> tcp://127.0.0.1:36987\n",
       "                        </td>\n",
       "                        <td style=\"text-align: left;\">\n",
       "                            <strong>Total threads: </strong> 2\n",
       "                        </td>\n",
       "                    </tr>\n",
       "                    <tr>\n",
       "                        <td style=\"text-align: left;\">\n",
       "                            <strong>Dashboard: </strong> <a href=\"http://127.0.0.1:45413/status\" target=\"_blank\">http://127.0.0.1:45413/status</a>\n",
       "                        </td>\n",
       "                        <td style=\"text-align: left;\">\n",
       "                            <strong>Memory: </strong> 5.87 GiB\n",
       "                        </td>\n",
       "                    </tr>\n",
       "                    <tr>\n",
       "                        <td style=\"text-align: left;\">\n",
       "                            <strong>Nanny: </strong> tcp://127.0.0.1:42671\n",
       "                        </td>\n",
       "                        <td style=\"text-align: left;\"></td>\n",
       "                    </tr>\n",
       "                    <tr>\n",
       "                        <td colspan=\"2\" style=\"text-align: left;\">\n",
       "                            <strong>Local directory: </strong> /tmp/dask-scratch-space/worker-2gvmrt11\n",
       "                        </td>\n",
       "                    </tr>\n",
       "\n",
       "                    \n",
       "\n",
       "                    \n",
       "\n",
       "                </table>\n",
       "            </details>\n",
       "            </div>\n",
       "        </div>\n",
       "        \n",
       "        <div style=\"margin-bottom: 20px;\">\n",
       "            <div style=\"width: 24px; height: 24px; background-color: #DBF5FF; border: 3px solid #4CC9FF; border-radius: 5px; position: absolute;\"> </div>\n",
       "            <div style=\"margin-left: 48px;\">\n",
       "            <details>\n",
       "                <summary>\n",
       "                    <h4 style=\"margin-bottom: 0px; display: inline;\">Worker: 3</h4>\n",
       "                </summary>\n",
       "                <table style=\"width: 100%; text-align: left;\">\n",
       "                    <tr>\n",
       "                        <td style=\"text-align: left;\">\n",
       "                            <strong>Comm: </strong> tcp://127.0.0.1:40491\n",
       "                        </td>\n",
       "                        <td style=\"text-align: left;\">\n",
       "                            <strong>Total threads: </strong> 2\n",
       "                        </td>\n",
       "                    </tr>\n",
       "                    <tr>\n",
       "                        <td style=\"text-align: left;\">\n",
       "                            <strong>Dashboard: </strong> <a href=\"http://127.0.0.1:33959/status\" target=\"_blank\">http://127.0.0.1:33959/status</a>\n",
       "                        </td>\n",
       "                        <td style=\"text-align: left;\">\n",
       "                            <strong>Memory: </strong> 5.87 GiB\n",
       "                        </td>\n",
       "                    </tr>\n",
       "                    <tr>\n",
       "                        <td style=\"text-align: left;\">\n",
       "                            <strong>Nanny: </strong> tcp://127.0.0.1:37215\n",
       "                        </td>\n",
       "                        <td style=\"text-align: left;\"></td>\n",
       "                    </tr>\n",
       "                    <tr>\n",
       "                        <td colspan=\"2\" style=\"text-align: left;\">\n",
       "                            <strong>Local directory: </strong> /tmp/dask-scratch-space/worker-iv3e92vj\n",
       "                        </td>\n",
       "                    </tr>\n",
       "\n",
       "                    \n",
       "\n",
       "                    \n",
       "\n",
       "                </table>\n",
       "            </details>\n",
       "            </div>\n",
       "        </div>\n",
       "        \n",
       "\n",
       "    </details>\n",
       "</div>\n",
       "\n",
       "        </details>\n",
       "    </div>\n",
       "</div>\n",
       "            </details>\n",
       "        \n",
       "\n",
       "    </div>\n",
       "</div>"
      ],
      "text/plain": [
       "<Client: 'tcp://127.0.0.1:32951' processes=4 threads=8, memory=23.47 GiB>"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "client"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/home/auclairj/anaconda3/envs/modspa_pixel/lib/python3.10/site-packages/dask/array/chunk.py:278: RuntimeWarning: invalid value encountered in cast\n",
      "  return x.astype(astype_dtype, **kwargs)\n",
      "/home/auclairj/anaconda3/envs/modspa_pixel/lib/python3.10/site-packages/dask/array/chunk.py:278: RuntimeWarning: invalid value encountered in cast\n",
      "  return x.astype(astype_dtype, **kwargs)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "day 1/ 366    \r"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/home/auclairj/anaconda3/envs/modspa_pixel/lib/python3.10/site-packages/dask/array/chunk.py:278: RuntimeWarning: invalid value encountered in cast\n",
      "  return x.astype(astype_dtype, **kwargs)\n",
      "/home/auclairj/anaconda3/envs/modspa_pixel/lib/python3.10/site-packages/dask/array/chunk.py:278: RuntimeWarning: invalid value encountered in cast\n",
      "  return x.astype(astype_dtype, **kwargs)\n",
      "/tmp/ipykernel_1387/2938761162.py:242: RuntimeWarning: divide by zero encountered in divide\n",
      "  tmp1 = (((TAW - Dr) / Zr - (RUE - De) / (scale_dict['Ze'] * Ze_)) / FCov) * (scale_dict['DiffE'] * DiffE_)\n",
      "/tmp/ipykernel_1387/2938761162.py:285: RuntimeWarning: divide by zero encountered in divide\n",
      "  tmp1 = (((TDW - Dd) / (scale_dict['Zsoil'] * Zsoil_ - Zr) - (TAW - Dr) / Zr) / FCov) * scale_dict['DiffR'] * DiffR_\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "day  3 / 366    \r"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/home/auclairj/anaconda3/envs/modspa_pixel/lib/python3.10/site-packages/dask/array/chunk.py:278: RuntimeWarning: invalid value encountered in cast\n",
      "  return x.astype(astype_dtype, **kwargs)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "day  366 / 366    \r"
     ]
    }
   ],
   "source": [
    "data_path = '/mnt/e/DATA/DEV_inputs_test'\n",
    "\n",
    "size = 100\n",
    "\n",
    "ndvi_path = data_path + os.sep + 'ndvi_' + str(size) + '.nc'\n",
    "prec_path = data_path + os.sep + 'rain_' + str(size) + '.tif'\n",
    "ET0_path = data_path + os.sep + 'ET0_' + str(size) + '.tif'\n",
    "land_cover_path = data_path + os.sep + 'land_cover_' + str(size) + '.nc'\n",
    "json_config_file = '/home/auclairj/GIT/modspa-pixel/config/config_modspa.json'\n",
    "param_file = '/home/auclairj/GIT/modspa-pixel/parameters/csv_files/params_samir_test.csv'\n",
    "soil_path = data_path + os.sep + 'soil_' + str(size) + '.nc'\n",
    "save_path = data_path + os.sep + 'outputs_' + str(size) + '.nc'\n",
    "\n",
    "chunk_size = {'x': 50, 'y': 50, 'time': -1}\n",
    "\n",
    "t = time()\n",
    "\n",
    "run_samir(json_config_file, param_file, ndvi_path, prec_path, ET0_path, soil_path, land_cover_path, chunk_size, save_path)\n",
  },
  {
   "cell_type": "code",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "/mnt/e/DATA/DEV_inputs_test/outputs_10.nc\n"
     ]
    }
   ],
   "source": [
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "modspa_pixel",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.9"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}