Newer
Older
Jeremy Auclair
committed
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import xarray as xr\n",
"from dask.distributed import Client\n",
Jeremy Auclair
committed
"import dask.array as da\n",
"import numpy as np\n",
"from typing import List, Tuple, Union\n",
"import warnings\n",
Jeremy Auclair
committed
"import pandas as pd\n",
"import netCDF4 as nc\n",
"from parameters.params_samir_class import samir_parameters\n",
Jeremy Auclair
committed
"from config.config import config\n",
"from time import time"
Jeremy Auclair
committed
"execution_count": 2,
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
"metadata": {},
"outputs": [],
"source": [
"\n",
"\n",
"def rasterize_samir_parameters(csv_param_file: str, empty_dataset: xr.Dataset, land_cover_raster: str, chunk_size: dict) -> Tuple[xr.Dataset, dict]:\n",
" \"\"\"\n",
" Creates a raster `xarray` dataset from the csv parameter file, the land cover raster and an empty dataset\n",
" that contains the right structure (emptied ndvi dataset for example). For each parameter, the function loops\n",
" on land cover classes to fill the raster.\n",
"\n",
" ## Arguments\n",
" 1. csv_param_file: `str`\n",
" path to csv paramter file\n",
" 2. empty_dataset: `xr.Dataset`\n",
" empty dataset that contains the right structure (emptied ndvi dataset for example).\n",
" 3. land_cover_raster: `str`\n",
" path to land cover netcdf raster\n",
" 4. chunk_size: `dict`\n",
" chunk_size for dask computation\n",
"\n",
" ## Returns\n",
" 1. parameter_dataset: `xr.Dataset`\n",
" the dataset containing all the rasterized Parameters\n",
" 2. scale_factor: `dict`\n",
" dictionnary containing the scale factors for each parameter\n",
" \"\"\"\n",
" \n",
" # Load samir params into an object\n",
" table_param = samir_parameters(csv_param_file)\n",
" \n",
" # Set general variables\n",
" class_count = table_param.table.shape[1] - 2 # remove dtype and default columns\n",
" \n",
" # Open land cover raster\n",
" land_cover = xr.open_dataarray(land_cover_raster, chunks = chunk_size)\n",
" \n",
" # Create dataset\n",
" parameter_dataset = empty_dataset.copy(deep = True)\n",
" \n",
" # Create dictionnary containing the scale factors\n",
" scale_factor = {}\n",
" \n",
" # Loop on samir parameters and create \n",
" for parameter in table_param.table.index[1:]:\n",
" \n",
" # Create new variable and set attributes\n",
" parameter_dataset[parameter] = land_cover.copy(deep = True).astype('f4')\n",
" parameter_dataset[parameter].attrs['name'] = parameter\n",
" parameter_dataset[parameter].attrs['description'] = 'cf SAMIR Doc for detail'\n",
" parameter_dataset[parameter].attrs['scale factor'] = str(table_param.table.loc[table_param.table.index == parameter]['scale_factor'].values[0])\n",
" \n",
" # Assigne value in dictionnary\n",
" scale_factor[parameter] = 1/int(table_param.table.loc[table_param.table.index == parameter]['scale_factor'].values[0])\n",
" \n",
" # Loop on classes to set parameter values for each class\n",
" for class_val, class_name in zip(range(1, class_count + 1), table_param.table.columns[2:]):\n",
" \n",
" # Parameter values are multiplied by the scale factor in order to store all values as int16 types\n",
" # These values are then rounded to make sure there isn't any decimal point issues when casting the values to int16\n",
" parameter_dataset[parameter].values = np.where(parameter_dataset[parameter].values == class_val, round(table_param.table.loc[table_param.table.index == parameter][class_name].values[0]*table_param.table.loc[table_param.table.index == parameter]['scale_factor'].values[0]), parameter_dataset[parameter].values).astype('f4')\n",
" \n",
" # Return dataset converted to 'int16' data type to reduce memory usage\n",
" # and scale_factor dictionnary for later conversion\n",
" return parameter_dataset, scale_factor\n",
"\n",
"\n",
"def setup_time_loop(calculation_variables_t1: List[str], calculation_variables_t2: List[str], empty_dataset: xr.Dataset) -> Tuple[xr.Dataset, xr.Dataset]:\n",
" \"\"\"\n",
" Creates two temporary `xarray Datasets` that will be used in the SAMIR time loop.\n",
" `variables_t1` corresponds to the variables for the previous day and `variables_t2`\n",
" corresponds to the variables for the current day. After each loop, `variables_t1`\n",
" takes the value of `variables_t2` for the corresponding variables.\n",
"\n",
" ## Arguments\n",
" 1. calculation_variables_t1: `List[str]`\n",
" list of strings containing the variable names\n",
" for the previous day dataset\n",
" 2. calculation_variables_t2: `List[str]`\n",
" list of strings containing the variable names\n",
" for the current day dataset\n",
" 3. empty_dataset: `xr.Dataset`\n",
" empty dataset that contains the right structure\n",
"\n",
" ## Returns\n",
" 1. variables_t1: `xr.Dataset`\n",
" output dataset for previous day\n",
" 2. variables_t2: `xr.Dataset`\n",
" output dataset for current day\n",
" \"\"\"\n",
" \n",
" # Create new dataset\n",
" variables_t1 = empty_dataset.copy(deep = True)\n",
" \n",
" # Create empty DataArray for each variable\n",
" for variable in calculation_variables_t1:\n",
" \n",
" # Assign new empty DataArray\n",
" variables_t1[variable] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype = 'float32'))\n",
" variables_t1[variable].attrs['name'] = variable # set name in attributes\n",
" \n",
" # Create new dataset\n",
" variables_t2 = empty_dataset.copy(deep = True)\n",
" \n",
" # Create empty DataArray for each variable\n",
" for variable in calculation_variables_t2:\n",
" \n",
" # Assign new empty DataArray\n",
" variables_t2[variable] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype = 'float32'))\n",
" variables_t2[variable].attrs['name'] = variable # set name in attributes\n",
" \n",
" return variables_t1, variables_t2\n",
"\n",
"\n",
"def prepare_outputs(empty_dataset: xr.Dataset, additional_outputs: List[str] = None) -> xr.Dataset:\n",
" \"\"\"\n",
" Creates the `xarray Dataset` containing the outputs of the SAMIR model that will be saved.\n",
" Additional variables can be saved by adding their names to the `additional_outputs` list.\n",
"\n",
" ## Arguments\n",
" 1. empty_dataset: `xr.Dataset`\n",
" empty dataset that contains the right structure\n",
" 2. additional_outputs: `List[str]`\n",
" list of additional variable names to be saved\n",
"\n",
" ## Returns\n",
" 1. model_outputs: `xr.Dataset`\n",
" model outputs to be saved\n",
" \"\"\"\n",
" \n",
" # Evaporation and Transpiraion\n",
" model_outputs = empty_dataset.copy(deep = True)\n",
" \n",
" model_outputs['E'] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype = 'int16'))\n",
" model_outputs['E'].attrs['units'] = 'mm'\n",
" model_outputs['E'].attrs['standard_name'] = 'Evaporation'\n",
" model_outputs['E'].attrs['description'] = 'Accumulated daily evaporation in milimeters'\n",
" model_outputs['E'].attrs['scale factor'] = '1'\n",
" \n",
" model_outputs['Tr'] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype = 'int16'))\n",
" model_outputs['Tr'].attrs['units'] = 'mm'\n",
" model_outputs['Tr'].attrs['standard_name'] = 'Transpiration'\n",
" model_outputs['Tr'].attrs['description'] = 'Accumulated daily plant transpiration in milimeters'\n",
" model_outputs['Tr'].attrs['scale factor'] = '1'\n",
" \n",
" # Soil Water Content\n",
" model_outputs['SWCe'] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype = 'int16'))\n",
" model_outputs['SWCe'].attrs['units'] = 'mm'\n",
" model_outputs['SWCe'].attrs['standard_name'] = 'Soil Water Content of the evaporative zone'\n",
" model_outputs['SWCe'].attrs['description'] = 'Soil water content of the evaporative zone in milimeters'\n",
" model_outputs['SWCe'].attrs['scale factor'] = '1'\n",
" \n",
" model_outputs['SWCr'] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype = 'int16'))\n",
" model_outputs['SWCr'].attrs['units'] = 'mm'\n",
" model_outputs['SWCr'].attrs['standard_name'] = 'Soil Water Content of the root zone'\n",
" model_outputs['SWCr'].attrs['description'] = 'Soil water content of the root zone in milimeters'\n",
" model_outputs['SWCr'].attrs['scale factor'] = '1'\n",
" \n",
" # Irrigation\n",
" model_outputs['Irr'] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype = 'int16'))\n",
" model_outputs['Irr'].attrs['units'] = 'mm'\n",
" model_outputs['Irr'].attrs['standard_name'] = 'Irrigation'\n",
" model_outputs['Irr'].attrs['description'] = 'Simulated daily irrigation in milimeters'\n",
" model_outputs['Irr'].attrs['scale factor'] = '1'\n",
" \n",
" # Deep Percolation\n",
" model_outputs['DP'] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype = 'int16'))\n",
" model_outputs['DP'].attrs['units'] = 'mm'\n",
" model_outputs['DP'].attrs['standard_name'] = 'Deep Percolation'\n",
" model_outputs['DP'].attrs['description'] = 'Simulated daily Deep Percolation in milimeters'\n",
" model_outputs['DP'].attrs['scale factor'] = '1'\n",
" \n",
" if additional_outputs:\n",
" for var in additional_outputs:\n",
" model_outputs[var] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype = 'int16'))\n",
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
" \n",
" return model_outputs\n",
"\n",
"\n",
"def xr_maximum(ds: xr.DataArray, value: Union[xr.DataArray, float, int]) -> xr.DataArray:\n",
" \"\"\"\n",
" Equivalent of `numpy.maximum(ds, value)` for xarray DataArrays\n",
"\n",
" ## Arguments\n",
" 1. ds: `xr.DataArray`\n",
" datarray to compare\n",
" 2. value: `Union[xr.DataArray, float, int]`\n",
" value (scalar or dataarray) to compare\n",
"\n",
" ## Returns\n",
" 1. output: `xr.DataArray`\n",
" resulting dataarray with maximum value element-wise\n",
" \"\"\"\n",
" return xr.where(ds <= value, value, ds, keep_attrs = True)\n",
"\n",
"\n",
"def xr_minimum(ds: xr.DataArray, value: Union[xr.DataArray, float, int]) -> xr.DataArray:\n",
" \"\"\"\n",
" Equivalent of `numpy.minimum(ds, value)` for xarray DataArrays\n",
"\n",
" ## Arguments\n",
" 1. ds: `xr.DataArray`\n",
" datarray to compare\n",
" 2. value: `Union[xr.DataArray, float, int]`\n",
" value (scalar or dataarray) to compare\n",
"\n",
" ## Returns\n",
" 1. output: `xr.DataArray`\n",
" resulting dataarray with minimum value element-wise\n",
" \"\"\"\n",
" return xr.where(ds >= value, value, ds, keep_attrs = True)\n",
"\n",
"\n",
Jeremy Auclair
committed
"def calculate_diff_re(TAW: np.ndarray, Dr: np.ndarray, Zr: np.ndarray, RUE: np.ndarray, De: np.ndarray, FCov: np.ndarray, Ze_: np.ndarray, DiffE_: np.ndarray, scale_dict: dict) -> np.ndarray:\n",
" \"\"\"\n",
" Calculates the diffusion between the top soil layer and the root layer.\n",
"\n",
" ## Arguments\n",
Jeremy Auclair
committed
" 1. TAW: `np.ndarray`\n",
Jeremy Auclair
committed
" 2. Dr: `np.ndarray`\n",
Jeremy Auclair
committed
" 3. Zr: `np.ndarray`\n",
Jeremy Auclair
committed
" 4. RUE: `np.ndarray`\n",
Jeremy Auclair
committed
" 5. De: `np.ndarray`\n",
Jeremy Auclair
committed
" 6. FCov: `np.ndarray`\n",
Jeremy Auclair
committed
" 7. Ze_: `np.ndarray`\n",
" height of evaporative layer (paramter)\n",
Jeremy Auclair
committed
" 8. DiffE_: `np.ndarray`\n",
" diffusion coefficient between evaporative\n",
" and root layers (unitless, parameter)\n",
" 9. scale_dict: `dict`\n",
" dictionnary containing the scale factors for\n",
" the rasterized parameters\n",
"\n",
" ## Returns\n",
Jeremy Auclair
committed
" 1. diff_re: `np.ndarray`\n",
" the diffusion between the top soil layer and\n",
" the root layer\n",
" \"\"\"\n",
" \n",
" # Temporary variables to make calculation easier to read\n",
" tmp1 = (((TAW - Dr) / Zr - (RUE - De) / (scale_dict['Ze'] * Ze_)) / FCov) * (scale_dict['DiffE'] * DiffE_)\n",
" tmp2 = ((TAW * scale_dict['Ze'] * Ze_) - (RUE - De - Dr) * Zr) / (Zr + scale_dict['Ze'] * Ze_) - Dr\n",
" \n",
" # Calculate diffusion according to SAMIR equation\n",
Jeremy Auclair
committed
" diff_re = np.where(tmp1 < 0, np.maximum(tmp1, tmp2), np.minimum(tmp1, tmp2))\n",
"\n",
" # Return zero values where the 'DiffE' parameter is equal to 0\n",
Jeremy Auclair
committed
" return np.where(DiffE_ == 0, 0, diff_re)\n",
Jeremy Auclair
committed
"def calculate_diff_dr(TAW: np.ndarray, TDW: np.ndarray, Dr: np.ndarray, Zr: np.ndarray, Dd: np.ndarray, FCov: np.ndarray, Zsoil_: np.ndarray, DiffR_: np.ndarray, scale_dict: dict) -> np.ndarray:\n",
" \"\"\"\n",
" Calculates the diffusion between the root layer and the deep layer.\n",
"\n",
" ## Arguments\n",
Jeremy Auclair
committed
" 1. TAW: `np.ndarray`\n",
Jeremy Auclair
committed
" 2. TDW: `np.ndarray`\n",
Jeremy Auclair
committed
" 3. Dr: `np.ndarray`\n",
Jeremy Auclair
committed
" 4. Zr: `np.ndarray`\n",
Jeremy Auclair
committed
" 5. Dd: `np.ndarray`\n",
Jeremy Auclair
committed
" 6. FCov: `np.ndarray`\n",
Jeremy Auclair
committed
" 7. Zsoil_: `np.ndarray`\n",
Jeremy Auclair
committed
" 8. DiffR_: `np.ndarray`\n",
" Diffusion coefficient between root\n",
" and deep layers (unitless, parameter)\n",
" 9. scale_dict: `dict`\n",
" dictionnary containing the scale factors for\n",
" the rasterized parameters\n",
"\n",
" ## Returns\n",
Jeremy Auclair
committed
" 1. diff_dr: `np.ndarray`\n",
" the diffusion between the root layer and the\n",
" deep layer\n",
" \"\"\"\n",
" \n",
" # Temporary variables to make calculation easier to read\n",
" tmp1 = (((TDW - Dd) / (scale_dict['Zsoil'] * Zsoil_ - Zr) - (TAW - Dr) / Zr) / FCov) * scale_dict['DiffR'] * DiffR_\n",
" tmp2 = (TDW *Zr - (TAW - Dr - Dd) * (scale_dict['Zsoil'] * Zsoil_ - Zr)) / (scale_dict['Zsoil'] * Zsoil_) - Dd\n",
" \n",
" # Calculate diffusion according to SAMIR equation\n",
Jeremy Auclair
committed
" diff_dr = np.where(tmp1 < 0, np.maximum(tmp1, tmp2), np.minimum(tmp1, tmp2))\n",
" \n",
" # Return zero values where the 'DiffR' parameter is equal to 0\n",
Jeremy Auclair
committed
" return np.where(DiffR_ == 0, 0, diff_dr)\n",
Jeremy Auclair
committed
"def calculate_W(TEW: np.ndarray, Dei: np.ndarray, Dep: np.ndarray, fewi: np.ndarray, fewp: np.ndarray) -> np.ndarray:\n",
" \"\"\"\n",
" Calculate W, the weighting factor to split the energy available\n",
" for evaporation depending on the difference in water availability\n",
" in the two evaporation components, ensuring that the larger and\n",
" the wetter, the more the evaporation occurs from that component\n",
"\n",
" ## Arguments\n",
Jeremy Auclair
committed
" 1. TEW: `np.ndarray`\n",
Jeremy Auclair
committed
" 2. Dei: `np.ndarray`\n",
" depletion of the evaporative layer\n",
" (irrigation part)\n",
Jeremy Auclair
committed
" 3. Dep: `np.ndarray`\n",
" depletion of the evaporative layer\n",
" (precipitation part)\n",
Jeremy Auclair
committed
" 4. fewi: `np.ndarray`\n",
" soil fraction which is wetted by irrigation\n",
" and exposed to evaporation\n",
Jeremy Auclair
committed
" 5. fewp: `np.ndarray`\n",
" soil fraction which is wetted by precipitation\n",
" and exposed to evaporation\n",
"\n",
" ## Returns\n",
Jeremy Auclair
committed
" 1. W: `np.ndarray`\n",
" weighting factor W\n",
" \"\"\"\n",
" \n",
" # Temporary variables to make calculation easier to read\n",
" tmp = fewi * (TEW - Dei)\n",
" \n",
" # Calculate the weighting factor to split the energy available for evaporation\n",
" W = 1 / (1 + (fewp * (TEW - Dep) / tmp ))\n",
"\n",
" # Return W \n",
Jeremy Auclair
committed
" return np.where(tmp > 0, W, 0)\n",
Jeremy Auclair
committed
"def calculate_Kr(TEW: np.ndarray, De: np.ndarray, REW_: np.ndarray, scale_dict: dict) -> np.ndarray:\n",
" \"\"\"\n",
" calculates of the reduction coefficient for evaporation dependent \n",
" on the amount of water in the soil using the FAO-56 method\n",
"\n",
" ## Arguments\n",
Jeremy Auclair
committed
" 1. TEW: `np.ndarray`\n",
Jeremy Auclair
committed
" 2. De: `np.ndarray`\n",
Jeremy Auclair
committed
" 3. REW_: `np.ndarray`\n",
" readily evaporable water\n",
" 4. scale_dict: `dict`\n",
" dictionnary containing the scale factors for\n",
" the rasterized parameters\n",
"\n",
" ## Returns\n",
Jeremy Auclair
committed
" 1. Kr: `np.ndarray`\n",
" Kr coefficient\n",
" \"\"\"\n",
" \n",
" # Formula for calculating Kr\n",
" Kr = (TEW - De) / (TEW - scale_dict['REW'] * REW_)\n",
" \n",
" # Return Kr\n",
Jeremy Auclair
committed
" return np.maximum(0, np.minimum(Kr, 1))\n",
Jeremy Auclair
committed
"def update_Dr(TAW: np.ndarray, TDW: np.ndarray, Zr: np.ndarray, TAW0: np.ndarray, TDW0: np.ndarray, Dr0: np.ndarray, Dd0: np.ndarray, Zr0: np.ndarray) -> np.ndarray:\n",
" \"\"\"\n",
" Return the updated depletion for the root layer\n",
"\n",
" ## Arguments\n",
Jeremy Auclair
committed
" 1. TAW: `np.ndarray`\n",
" water capacity of root layer for current day\n",
Jeremy Auclair
committed
" 2. TDW: `np.ndarray`\n",
" water capacity of deep layer for current day\n",
Jeremy Auclair
committed
" 3. Zr: `np.ndarray`\n",
Jeremy Auclair
committed
" 4. TAW0: `np.ndarray`\n",
" water capacity of root layer for previous day\n",
Jeremy Auclair
committed
" 5. TDW0: `np.ndarray`\n",
" water capacity of deep layer for previous day\n",
Jeremy Auclair
committed
" 6. Dr0: `np.ndarray`\n",
" depletion of the root layer for previous day\n",
Jeremy Auclair
committed
" 7. Dd0: `np.ndarray`\n",
" depletion of the deep laye for previous day\n",
Jeremy Auclair
committed
" 8. Zr0: `np.ndarray`\n",
" root layer height for previous day\n",
"\n",
" ## Returns\n",
Jeremy Auclair
committed
" 1. output: `np.ndarray`\n",
" updated depletion for the root layer\n",
" \"\"\"\n",
" \n",
" # Temporary variables to make calculation easier to read\n",
Jeremy Auclair
committed
" tmp1 = np.maximum(Dr0 + Dd0 * (TAW - TAW0) / TDW0, 0)\n",
" tmp2 = np.minimum(Dr0 + Dd0 * (TAW - TAW0) / TDW0, TDW)\n",
Jeremy Auclair
committed
" return np.where(Zr > Zr0, tmp1, tmp2)\n",
Jeremy Auclair
committed
"def update_Dd(TAW: np.ndarray, TDW: np.ndarray, Zr: np.ndarray, TAW0: np.ndarray, TDW0: np.ndarray, Dd0: np.ndarray, Zr0: np.ndarray) -> np.ndarray:\n",
" \"\"\"\n",
" Return the updated depletion for the deep layer\n",
"\n",
" ## Arguments\n",
Jeremy Auclair
committed
" 1. TAW: `np.ndarray`\n",
" water capacity of root layer for current day\n",
Jeremy Auclair
committed
" 2. TDW: `np.ndarray`\n",
" water capacity of deep layer for current day\n",
Jeremy Auclair
committed
" 3. TAW0: `np.ndarray`\n",
" water capacity of root layer for previous day\n",
Jeremy Auclair
committed
" 5. TDW0: `np.ndarray`\n",
" water capacity of deep layer for previous day\n",
Jeremy Auclair
committed
" 6. Dd0: `np.ndarray`\n",
" depletion of the deep laye for previous day\n",
Jeremy Auclair
committed
" 7. Zr0: `np.ndarray`\n",
" root layer height for previous day\n",
"\n",
" ## Returns\n",
Jeremy Auclair
committed
" 1. output: `np.ndarray`\n",
" updated depletion for the deep layer\n",
" \"\"\"\n",
" \n",
" # Temporary variables to make calculation easier to read\n",
Jeremy Auclair
committed
" tmp1 = np.maximum(Dd0 - Dd0 * (TAW - TAW0) / TDW0, 0)\n",
" tmp2 = np.minimum(Dd0 - Dd0 * (TAW - TAW0) / TDW0, TDW)\n",
Jeremy Auclair
committed
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
" return np.where(Zr > Zr0, tmp1, tmp2)\n",
"\n",
"\n",
"def format_duration(timedelta: float) -> None:\n",
" \"\"\"\n",
" Print formatted timedelta in human readable format\n",
" (days, hours, minutes, seconds, microseconds, milliseconds, nanoseconds).\n",
"\n",
" ## Arguments\n",
" timedelta: `float`\n",
" time value in seconds to format\n",
"\n",
" ## Returns\n",
" `None`\n",
" \"\"\"\n",
" \n",
" if timedelta < 0.9e-6:\n",
" print(round(timedelta*1e9, 1), 'ns')\n",
" elif timedelta < 0.9e-3:\n",
" print(round(timedelta*1e6, 1), 'µs')\n",
" elif timedelta < 0.9:\n",
" print(round(timedelta*1e3, 1), 'ms')\n",
" elif timedelta < 60:\n",
" print(round(timedelta, 1), 's')\n",
" elif timedelta < 3.6e3:\n",
" print(round(timedelta//60), 'm', round(timedelta%60, 1), 's')\n",
" elif timedelta < 24*3.6e3:\n",
" print(round((timedelta/3.6e3)//1), 'h', round((timedelta/3.6e3)%1*60//1), 'm', round((timedelta/3.6e3)%1*60%1*60, 1), 's' ) \n",
" elif timedelta < 48*3.6e3:\n",
" print(round((timedelta/(24*3.6e3))//1), 'day,', round(((timedelta/(24*3.6e3))%1*24)//1), 'h,', round((timedelta/(24*3.6e3))%1*24%1*60//1), 'm,', round((timedelta/(24*3.6e3))%1*24%1*60%1*60, 1), 's')\n",
" else:\n",
" print(round((timedelta/(24*3.6e3))//1), 'days,', round(((timedelta/(24*3.6e3))%1*24)//1), 'h,', round((timedelta/(24*3.6e3))%1*24%1*60//1), 'm,', round((timedelta/(24*3.6e3))%1*24%1*60%1*60, 1), 's')\n",
" \n",
" return None\n",
Jeremy Auclair
committed
"def run_samir(json_config_file: str, csv_param_file: str, ndvi_cube_path: str, precip_cube_path: str, ET0_cube_path: str, soil_params_path: str, land_cover_path: str, chunk_size: dict, save_path: str, max_GB: int = 2) -> None:\n",
" \n",
" # warnings.simplefilter(\"error\", category = RuntimeWarning())\n",
" warnings.filterwarnings(\"ignore\", message=\"invalid value encountered in cast\")\n",
" warnings.filterwarnings(\"ignore\", message=\"invalid value encountered in divide\")\n",
Jeremy Auclair
committed
" np.errstate(all = 'ignore')\n",
" \n",
" #============ General parameters ============#\n",
" config_params = config(json_config_file)\n",
" calculation_variables_t2 = ['diff_rei', 'diff_rep', 'diff_dr' , 'Dd', 'De', 'Dei', 'Dep', 'Dr', 'FCov', 'Irrig', 'Kcb', 'Kei', 'Kep', 'Ks', 'Kti', 'Ktp', 'RUE', 'TAW', 'TDW', 'TEW', 'Tei', 'Tep', 'W', 'Zr', 'fewi', 'fewp']\n",
" calculation_variables_t1 = ['Dr', 'Dd', 'TAW', 'TDW', 'Zr']\n",
" \n",
" #============ Manage inputs ============#\n",
" # NDVI\n",
Jeremy Auclair
committed
" ndvi_cube = xr.open_dataset(ndvi_cube_path, chunks = chunk_size).astype('u1')\n",
Jeremy Auclair
committed
" ## Open geotiff cubes and rename variables and coordinates\n",
" prec_cube = xr.open_dataset(precip_cube_path, chunks = chunk_size).astype('u2').rename({'band': 'time', 'band_data': 'prec'})\n",
" ET0_cube = xr.open_dataset(ET0_cube_path, chunks = chunk_size).astype('u2').rename({'band': 'time', 'band_data': 'ET0'})\n",
" \n",
" ## Reset times values \n",
" prec_cube['time'] = pd.date_range(start = config_params.start_date, end = config_params.end_date, freq = 'D')\n",
" ET0_cube['time'] = pd.date_range(start = config_params.start_date, end = config_params.end_date, freq = 'D')\n",
" \n",
" ## Remove unwanted attributes\n",
" del prec_cube.prec.attrs['AREA_OR_POINT'], ET0_cube.ET0.attrs['AREA_OR_POINT']\n",
" \n",
" # Soil\n",
" soil_params = xr.open_dataset(soil_params_path, chunks = chunk_size).astype('f4')\n",
" \n",
" # SAMIR Parameters\n",
" param_dataset, scale_factor = rasterize_samir_parameters(csv_param_file, ndvi_cube.drop_vars(['ndvi', 'time']), land_cover_path, chunk_size = chunk_size)\n",
" \n",
" # SAMIR Variables\n",
" variables_t1, variables_t2 = setup_time_loop(calculation_variables_t1, calculation_variables_t2, ndvi_cube.drop_vars(['ndvi', 'time']))\n",
Jeremy Auclair
committed
" # # Manage loading of data based on disk size of inputs\n",
" # if ndvi_cube.nbytes < max_GB * (1024)**3:\n",
" # ndvi_cube.load()\n",
Jeremy Auclair
committed
" # if weather_cube.nbytes < max_GB * (1024)**3:\n",
" # weather_cube.load()\n",
"\n",
" #============ Prepare outputs ============#\n",
" model_outputs = prepare_outputs(ndvi_cube.drop_vars(['ndvi']))\n",
" \n",
Jeremy Auclair
committed
" # Create encoding dictionnary\n",
" for variable in list(model_outputs.keys()):\n",
" # Write encoding dict\n",
" encoding_dict = {}\n",
" encod = {}\n",
" encod['dtype'] = 'i2'\n",
" encoding_dict[variable] = encod\n",
" \n",
" # Save empty output\n",
" model_outputs.to_netcdf(save_path, encoding = encoding_dict)\n",
" model_outputs.close()\n",
" \n",
" #============ Prepare time iterations ============#\n",
" dates = ndvi_cube.time.values\n",
" \n",
" #============ Create aliases for better readability ============#\n",
" \n",
" # Variables for current day\n",
Jeremy Auclair
committed
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
" # var = da.from_array(dataarray, chunks = (5, 5))\n",
" diff_rei = variables_t2.diff_rei.to_numpy()\n",
" diff_rep = variables_t2.diff_rep.to_numpy()\n",
" diff_dr = variables_t2.diff_dr.to_numpy()\n",
" Dd = variables_t2.Dd.to_numpy()\n",
" De = variables_t2.De.to_numpy()\n",
" Dei = variables_t2.Dei.to_numpy()\n",
" Dep = variables_t2.Dep.to_numpy()\n",
" Dr = variables_t2.Dr.to_numpy()\n",
" FCov = variables_t2.FCov.to_numpy()\n",
" Irrig = variables_t2.Irrig.to_numpy()\n",
" Kcb = variables_t2.Kcb.to_numpy()\n",
" Kei = variables_t2.Kei.to_numpy()\n",
" Kep = variables_t2.Kep.to_numpy()\n",
" Ks = variables_t2.Ks.to_numpy()\n",
" Kti = variables_t2.Kti.to_numpy()\n",
" Ktp = variables_t2.Ktp.to_numpy()\n",
" RUE = variables_t2.RUE.to_numpy()\n",
" TAW = variables_t2.TAW.to_numpy()\n",
" TDW = variables_t2.TDW.to_numpy()\n",
" TEW = variables_t2.TEW.to_numpy()\n",
" Tei = variables_t2.Tei.to_numpy()\n",
" Tep = variables_t2.Tep.to_numpy()\n",
" Zr = variables_t2.Zr.to_numpy()\n",
" W = variables_t2.W.to_numpy()\n",
" fewi = variables_t2.fewi.to_numpy()\n",
" fewp = variables_t2.fewp.to_numpy()\n",
" \n",
" # Variables for previous day\n",
Jeremy Auclair
committed
" TAW0 = variables_t1.TAW.to_numpy()\n",
" TDW0 = variables_t1.TDW.to_numpy()\n",
" Dr0 = variables_t1.Dr.to_numpy()\n",
" Dd0 = variables_t1.Dd.to_numpy()\n",
" Zr0 = variables_t1.Zr.to_numpy()\n",
" \n",
" # Parameters\n",
" # Parameters have an underscore (_) behind their name for recognition \n",
Jeremy Auclair
committed
" DiffE_ = param_dataset.DiffE.to_numpy()\n",
" DiffR_ = param_dataset.DiffR.to_numpy()\n",
" FW_ = param_dataset.FW.to_numpy()\n",
" Fc_stop_ = param_dataset.Fc_stop.to_numpy()\n",
" FmaxFC_ = param_dataset.FmaxFC.to_numpy()\n",
" Foffset_ = param_dataset.Foffset.to_numpy()\n",
" Fslope_ = param_dataset.Fslope.to_numpy()\n",
" Init_RU_ = param_dataset.Init_RU.to_numpy()\n",
" Irrig_auto_ = param_dataset.Irrig_auto.to_numpy()\n",
" Kcmax_ = param_dataset.Kcmax.to_numpy()\n",
" KmaxKcb_ = param_dataset.KmaxKcb.to_numpy()\n",
" Koffset_ = param_dataset.Koffset.to_numpy()\n",
" Kslope_ = param_dataset.Kslope.to_numpy()\n",
" Lame_max_ = param_dataset.Lame_max.to_numpy()\n",
" REW_ = param_dataset.REW.to_numpy()\n",
" Ze_ = param_dataset.Ze.to_numpy()\n",
" Zsoil_ = param_dataset.Zsoil.to_numpy()\n",
" maxZr_ = param_dataset.maxZr.to_numpy()\n",
" minZr_ = param_dataset.minZr.to_numpy()\n",
" p_ = param_dataset.p.to_numpy()\n",
" \n",
" # scale factors\n",
" # Scale factors have the following name scheme : s_ + parameter_name\n",
" s_DiffE = scale_factor['DiffE']\n",
" s_DiffR = scale_factor['DiffR']\n",
" s_FW = scale_factor['FW']\n",
" s_Fc_stop = scale_factor['Fc_stop']\n",
" s_FmaxFC = scale_factor['FmaxFC']\n",
" s_Foffset = scale_factor['Foffset']\n",
" s_Fslope = scale_factor['Fslope']\n",
" s_Init_RU = scale_factor['Init_RU']\n",
" # s_Irrig_auto = scale_factor['Irrig_auto']\n",
" s_Kcmax = scale_factor['Kcmax']\n",
" s_KmaxKcb = scale_factor['KmaxKcb']\n",
" s_Koffset = scale_factor['Koffset']\n",
" s_Kslope = scale_factor['Kslope']\n",
" s_Lame_max = scale_factor['Lame_max']\n",
" s_REW = scale_factor['REW']\n",
" s_Ze = scale_factor['Ze']\n",
" s_Zsoil = scale_factor['Zsoil']\n",
" s_maxZr = scale_factor['maxZr']\n",
" s_minZr = scale_factor['minZr']\n",
" s_p = scale_factor['p']\n",
" \n",
Jeremy Auclair
committed
" # input data\n",
" ndvi = ndvi_cube.ndvi.sel({'time': dates[0]}).to_numpy() / 255\n",
" prec = prec_cube.prec.sel({'time': dates[0]}).to_numpy() / 1000\n",
" ET0 = ET0_cube.ET0.sel({'time': dates[0]}).to_numpy() / 1000\n",
"\n",
" #============ First day initialization ============#\n",
" # Fraction cover\n",
Jeremy Auclair
committed
" FCov = s_Fslope * Fslope_ * ndvi + s_Foffset * Foffset_\n",
" FCov = np.minimum(np.maximum(FCov, 0), s_Fc_stop * Fc_stop_)\n",
" \n",
" # Root depth upate\n",
" Zr = s_minZr * minZr_ + (FCov / (s_FmaxFC * FmaxFC_)) * s_maxZr * (maxZr_ - minZr_)\n",
" \n",
" # Water capacities\n",
Jeremy Auclair
committed
" TEW = (soil_params.FC.values - soil_params.WP.values/2) * s_Ze * Ze_\n",
" RUE = (soil_params.FC.values - soil_params.WP.values) * s_Ze * Ze_\n",
" TAW = (soil_params.FC.values - soil_params.WP.values) * Zr\n",
" TDW = (soil_params.FC.values - soil_params.WP.values) * (s_Zsoil * Zsoil_ - Zr) # Zd = Zsoil - Zr\n",
" \n",
" # Depletions\n",
" Dei = RUE * (1 - s_Init_RU * Init_RU_)\n",
" Dep = RUE * (1 - s_Init_RU * Init_RU_)\n",
" Dr = TAW * (1 - s_Init_RU * Init_RU_)\n",
" Dd = TDW * (1 - s_Init_RU * Init_RU_)\n",
" \n",
Jeremy Auclair
committed
" # Irrigation TODO : find correct method for irrigation\n",
" Irrig = np.minimum(np.maximum(Dr - prec, 0), s_Lame_max * Lame_max_) * Irrig_auto_\n",
" Irrig = np.where(Dr > TAW * s_p * p_, Irrig, 0)\n",
Jeremy Auclair
committed
" Kcb = np.minimum(s_Kslope * Kslope_ * ndvi + s_Koffset * Koffset_, s_KmaxKcb * KmaxKcb_)\n",
Jeremy Auclair
committed
" # Update depletions with rainfall and/or irrigation\n",
" \n",
" ## DP \n",
" # Variable directly written since not used later\n",
" # Dimensions of output dataset : (x, y, time)\n",
" outputs = nc.Dataset(save_path, mode='r+')\n",
" outputs.variables['DP'][:,:,0] = np.round(- np.minimum(Dd + np.minimum(Dr - prec - Irrig, 0), 0) * 1000).astype('int16')\n",
" outputs.close()\n",
"\n",
" # model_outputs.DP.loc[{'time': dates[0]}] = - np.minimum(Dd + np.minimum(Dr - prec - Irrig, 0), 0)\n",
Jeremy Auclair
committed
" Dei = np.minimum(np.maximum(Dei - prec - Irrig / (s_FW * FW_ / 100), 0), TEW)\n",
" Dep = np.minimum(np.maximum(Dep - prec, 0), TEW)\n",
Jeremy Auclair
committed
" fewi = np.minimum(1 - FCov, (s_FW * FW_ / 100))\n",
Jeremy Auclair
committed
" De = np.divide((Dei * fewi + Dep * fewp), (fewi + fewp))\n",
" De = np.where(np.isfinite(De), De, Dei * (s_FW * FW_ / 100) + Dep * (1 - (s_FW * FW_ / 100)))\n",
Jeremy Auclair
committed
" Dr = np.minimum(np.maximum(Dr - prec - Irrig, 0), TAW)\n",
Jeremy Auclair
committed
" Dd = np.minimum(np.maximum(Dd + np.minimum(Dr - prec - Irrig, 0), 0), TDW)\n",
" \n",
" # Diffusion coefficients\n",
" diff_rei = calculate_diff_re(TAW, Dr, Zr, RUE, Dei, FCov, Ze_, DiffE_, scale_factor)\n",
" diff_rep = calculate_diff_re(TAW, Dr, Zr, RUE, Dep, FCov, Ze_, DiffE_, scale_factor)\n",
" diff_dr = calculate_diff_dr(TAW, TDW, Dr, Zr, Dd, FCov, Zsoil_, DiffR_, scale_factor) \n",
" \n",
" # Weighing factor W\n",
" W = calculate_W(TEW, Dei, Dep, fewi, fewp)\n",
" \n",
Jeremy Auclair
committed
" # Write outputs\n",
" # Variables directly written since not used later\n",
" outputs = nc.Dataset(save_path, mode='r+')\n",
" # Soil water content of evaporative layer\n",
" outputs.variables['SWCe'][:,:,0] = np.round((1 - De/TEW) * 1000).astype('int16')\n",
" # Soil water content of root layer\n",
" outputs.variables['SWCe'][:,:,0] = np.round((1 - Dr/TAW) * 1000).astype('int16')\n",
" outputs.close()\n",
" \n",
" \n",
" # model_outputs.SWCe.loc[{'time': dates[0]}] = 1 - De/TEW\n",
" # model_outputs.SWCr.loc[{'time': dates[0]}] = 1 - Dr/TAW\n",
" \n",
" # Water Stress coefficient\n",
Jeremy Auclair
committed
" Ks = np.minimum((TAW - Dr) / (TAW * (1 - s_p * p_)), 1)\n",
" \n",
" # Reduction coefficient for evaporation\n",
Jeremy Auclair
committed
" Kei = np.minimum(W * calculate_Kr(TEW, Dei, REW_, scale_factor) * (s_Kcmax * Kcmax_ - Kcb), fewi * s_Kcmax * Kcmax_)\n",
" Kep = np.minimum((1 - W) * calculate_Kr(TEW, Dep, REW_, scale_factor) * (s_Kcmax * Kcmax_ - Kcb), fewp * s_Kcmax * Kcmax_)\n",
" \n",
" # Prepare coefficients for evapotranspiration\n",
Jeremy Auclair
committed
" Kti = np.minimum(((s_Ze * Ze_ / Zr)**6) * (1 - Dei / TEW) / np.maximum(1 - Dr / TAW, 0.001), 1)\n",
" Ktp = np.minimum(((s_Ze * Ze_ / Zr)**6) * (1 - Dep / TEW) / np.maximum(1 - Dr / TAW, 0.001), 1)\n",
" Tei = Kti * Ks * Kcb * ET0\n",
" Tep = Ktp * Ks * Kcb * ET0\n",
Jeremy Auclair
committed
" Dei = np.where(fewi > 0, np.minimum(np.maximum(Dei + ET0 * Kei / fewi + Tei - diff_rei, 0), TEW), np.minimum(np.maximum(Dei + Tei - diff_rei, 0), TEW))\n",
" Dep = np.where(fewp > 0, np.minimum(np.maximum(Dep + ET0 * Kep / fewp + Tep - diff_rep, 0), TEW), np.minimum(np.maximum(Dep + Tep - diff_rep, 0), TEW))\n",
" \n",
" De = (Dei * fewi + Dep * fewp) / (fewi + fewp)\n",
Jeremy Auclair
committed
" De = np.where(np.isfinite(De), De, Dei * (s_FW * FW_ / 100) + Dep * (1 - (s_FW * FW_ / 100)))\n",
Jeremy Auclair
committed
" E = np.maximum((Kei + Kep) * ET0, 0)\n",
Jeremy Auclair
committed
" Tr = Kcb * Ks * ET0\n",
" \n",
" # Irrigation\n",
" # model_outputs.Irr.loc[{'time': dates[0]}] = Irrig\n",
" \n",
" # Write outputs\n",
" outputs = nc.Dataset(save_path, mode='r+')\n",
" # Evaporation\n",
" outputs.variables['E'][:,:,0] = np.round(E * 1000).astype('int16')\n",
" # Transpiration\n",
" outputs.variables['Tr'][:,:,0] = np.round(Tr * 1000).astype('int16')\n",
" # Irrigation\n",
" outputs.variables['Irr'][:,:,0] = np.round(Irrig * 1000).astype('int16')\n",
" outputs.close()\n",
" \n",
" # Potential evapotranspiration and evaporative fraction ??\n",
" \n",
" # Update depletions (root and deep zones) at the end of the day\n",
Jeremy Auclair
committed
" Dr = np.minimum(np.maximum(Dr + E + Tr - diff_dr, 0), TAW)\n",
" Dd = np.minimum(np.maximum(Dd + diff_dr, 0), TDW)\n",
" del E, Tr\n",
Jeremy Auclair
committed
" # Update previous day values\n",
" TAW0 = TAW\n",
" TDW0 = TDW\n",
" Dr0 = Dr\n",
" Dd0 = Dd\n",
" Zr0 = Zr\n",
Jeremy Auclair
committed
" print('day 1/', len(dates), ' ', end = '\\r')\n",
" \n",
" # # Update variable_t1 values\n",
" # for variable in calculation_variables_t1:\n",
" # variables_t1[variable] = variables_t2[variable].copy(deep = True)\n",
" \n",
" #============ Time loop ============#\n",
" for i in range(1, len(dates)):\n",
" \n",
Jeremy Auclair
committed
" # Reset input aliases\n",
" # input data\n",
" ndvi = (ndvi_cube.ndvi.sel({'time': dates[i]}).to_numpy() / 255)\n",
" prec = prec_cube.prec.sel({'time': dates[i]}).to_numpy() / 1000\n",
" ET0 = ET0_cube.ET0.sel({'time': dates[i]}).to_numpy() / 1000\n",
" ET0_previous = ET0_cube.ET0.sel({'time': dates[i-1]}).to_numpy() / 1000\n",
" \n",
" # Update variables\n",
" ## Fraction cover\n",
Jeremy Auclair
committed
" FCov = s_Fslope * Fslope_ * ndvi + s_Foffset * Foffset_\n",
" FCov = np.minimum(np.maximum(FCov, 0), s_Fc_stop * Fc_stop_)\n",
" \n",
" ## Root depth upate\n",
" Zr = s_minZr * minZr_ + (FCov / (s_FmaxFC * FmaxFC_)) * s_maxZr * (maxZr_ - minZr_)\n",
" \n",
" # Water capacities\n",
Jeremy Auclair
committed
" TAW = (soil_params.FC.values - soil_params.WP.values) * Zr\n",
" TDW = (soil_params.FC.values - soil_params.WP.values) * (s_Zsoil * Zsoil_ - Zr)\n",
" \n",
" # Update depletions\n",
" Dr = update_Dr(TAW, TDW, Zr, TAW0, TDW0, Dr0, Dd0, Zr0)\n",
" Dd = update_Dd(TAW, TDW, Zr, TAW0, TDW0, Dd0, Zr0)\n",
" \n",
" # Update param p\n",
Jeremy Auclair
committed
" p_ = (np.minimum(np.maximum(s_p * p_ + 0.04 * (5 - ET0_previous), 0.1), 0.8) * (1 / s_p)).round(0).astype('i2')\n",
" \n",
" # Irrigation ==============!!!!!\n",
Jeremy Auclair
committed
" Irrig = np.minimum(np.maximum(Dr - prec, 0), s_Lame_max * Lame_max_) * Irrig_auto_\n",
" Irrig = np.where(Dr > TAW * s_p * p_, Irrig, 0)\n",
Jeremy Auclair
committed
" Kcb = np.minimum(s_Kslope * Kslope_ * ndvi + s_Koffset * Koffset_, s_KmaxKcb * KmaxKcb_)\n",
" \n",
" # # Write outputs\n",
" # model_outputs.Irr.loc[{'time': dates[i]}] = Irrig\n",
" \n",
" # Update depletions with rainfall and/or irrigation \n",
Jeremy Auclair
committed
" \n",
" # Write outputs\n",
" # Variable directly written since not used later\n",
" outputs = nc.Dataset(save_path, mode='r+')\n",
" ## DP (Deep percolation)\n",
" outputs.variables['DP'][:,:,i] = np.round(-np.minimum(Dd + np.minimum(Dr - prec - Irrig, 0), 0) * 1000).astype('int16')\n",
" outputs.close()\n",
" \n",
" # model_outputs.DP.loc[{'time': dates[i]}] = -np.minimum(Dd + np.minimum(Dr - prec - Irrig, 0), 0)\n",
Jeremy Auclair
committed
" Dei = np.minimum(np.maximum(Dei - prec - Irrig / (s_FW * FW_ / 100), 0), TEW)\n",
" Dep = np.minimum(np.maximum(Dep - prec, 0), TEW)\n",
Jeremy Auclair
committed
" fewi = np.minimum(1 - FCov, (s_FW * FW_ / 100))\n",
" fewp = 1 - FCov - fewi\n",
" \n",
" De = (Dei * fewi + Dep * fewp) / (fewi + fewp)\n",
Jeremy Auclair
committed
" De = np.where(np.isfinite(De), De, Dei * (s_FW * FW_ / 100) + Dep * (1 - (s_FW * FW_ / 100)))\n",
Jeremy Auclair
committed
" Dr = np.minimum(np.maximum(Dr - prec - Irrig, 0), TAW)\n",
Jeremy Auclair
committed
" Dd = np.minimum(np.maximum(Dd + np.minimum(Dr - prec - Irrig, 0), 0), TDW)\n",
" \n",
" # Diffusion coefficients\n",
" diff_rei = calculate_diff_re(TAW, Dr, Zr, RUE, Dei, FCov, Ze_, DiffE_, scale_factor)\n",
" diff_rep = calculate_diff_re(TAW, Dr, Zr, RUE, Dep, FCov, Ze_, DiffE_, scale_factor)\n",
" diff_dr = calculate_diff_dr(TAW, TDW, Dr, Zr, Dd, FCov, Zsoil_, DiffR_, scale_factor) \n",
" \n",
" # Weighing factor W\n",
" W = calculate_W(TEW, Dei, Dep, fewi, fewp)\n",
" \n",
Jeremy Auclair
committed
" # Write outputs\n",
" # Variables directly written since not used later\n",
" outputs = nc.Dataset(save_path, mode='r+')\n",
" # Soil water content of evaporative layer\n",
" outputs.variables['SWCe'][:,:,i] = np.round((1 - De/TEW) * 1000).astype('int16')\n",
" # Soil water content of root layer\n",
" outputs.variables['SWCe'][:,:,i] = np.round((1 - Dr/TAW) * 1000).astype('int16')\n",
" outputs.close()\n",
" \n",
" \n",
" # model_outputs.SWCe.loc[{'time': dates[i]}] = 1 - De/TEW\n",
" # model_outputs.SWCr.loc[{'time': dates[i]}] = 1 - Dr/TAW\n",
" \n",
" # Water Stress coefficient\n",
Jeremy Auclair
committed
" Ks = np.minimum((TAW - Dr) / (TAW * (1 - s_p * p_)), 1)\n",
" \n",
" # Reduction coefficient for evaporation\n",
Jeremy Auclair
committed
" Kei = np.minimum(W * calculate_Kr(TEW, Dei, REW_, scale_factor) * (s_Kcmax * Kcmax_ - Kcb), fewi * s_Kcmax * Kcmax_)\n",
" Kep = np.minimum((1 - W) * calculate_Kr(TEW, Dei, REW_, scale_factor) * (s_Kcmax * Kcmax_ - Kcb), fewp * s_Kcmax * Kcmax_)\n",
" \n",
" # Prepare coefficients for evapotranspiration\n",
Jeremy Auclair
committed
" Kti = np.minimum(((s_Ze * Ze_ / Zr)**6) * (1 - Dei / TEW) / np.maximum(1 - Dr / TAW, 0.001), 1)\n",
" Ktp = np.minimum(((s_Ze * Ze_ / Zr)**6) * (1 - Dep / TEW) / np.maximum(1 - Dr / TAW, 0.001), 1)\n",
" Tei = Kti * Ks * Kcb * ET0\n",
" Tep = Ktp * Ks * Kcb * ET0\n",
Jeremy Auclair
committed
" Dei = np.where(fewi > 0, np.minimum(np.maximum(Dei + ET0 * Kei / fewi + Tei - diff_rei, 0), TEW), np.minimum(np.maximum(Dei + Tei - diff_rei, 0), TEW))\n",
" Dep = np.where(fewp > 0, np.minimum(np.maximum(Dep + ET0 * Kep / fewp + Tep - diff_rep, 0), TEW), np.minimum(np.maximum(Dep + Tep - diff_rep, 0), TEW))\n",
" \n",
" De = (Dei * fewi + Dep * fewp) / (fewi + fewp)\n",
Jeremy Auclair
committed
" De = np.where(np.isfinite(De), De, Dei * (s_FW * FW_ / 100) + Dep * (1 - (s_FW * FW_ / 100)))\n",
Jeremy Auclair
committed
" E = np.maximum((Kei + Kep) * ET0, 0)\n",
Jeremy Auclair
committed
" Tr = Kcb * Ks * ET0\n",
" \n",
" # Write outputs\n",
" outputs = nc.Dataset(save_path, mode='r+')\n",
" # Evaporation\n",
" outputs.variables['E'][:,:,i] = np.round(E * 1000).astype('int16')\n",
" # Transpiration\n",
" outputs.variables['Tr'][:,:,i] = np.round(Tr * 1000).astype('int16')\n",
" # Irrigation\n",
" outputs.variables['Irr'][:,:,i] = np.round(Irrig * 1000).astype('int16')\n",
" outputs.close()\n",
" \n",
" # Potential evapotranspiration and evaporative fraction ??\n",
" \n",
" # Update depletions (root and deep zones) at the end of the day\n",
Jeremy Auclair
committed
" Dr = np.minimum(np.maximum(Dr + E + Tr - diff_dr, 0), TAW)\n",
" Dd = np.minimum(np.maximum(Dd + diff_dr, 0), TDW)\n",
" del E, Tr\n",
" \n",
" # Update previous day values\n",
" TAW0 = TAW\n",
" TDW0 = TDW\n",
" Dr0 = Dr\n",
" Dd0 = Dd\n",
" Zr0 = Zr\n",
Jeremy Auclair
committed
" # # Update variable_t1 values\n",
" # for variable in calculation_variables_t1:\n",
" # variables_t1[variable] = variables_t2[variable].copy(deep = True)\n",
" \n",
" print('day ', i+1, '/', len(dates), ' ', end = '\\r')\n",
" \n",
" # Scale the model_outputs variable to save in int16 format\n",
Jeremy Auclair
committed
" # model_outputs = model_outputs * 1000\n",
" \n",
" # Save model outputs to netcdf\n",
Jeremy Auclair
committed
" # model_outputs.to_netcdf(save_path, encoding = encoding_dict)\n",
" \n",
" return None"
]
},
{
"cell_type": "code",
Jeremy Auclair
committed
"execution_count": 3,
Jeremy Auclair
committed
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
" <div style=\"width: 24px; height: 24px; background-color: #e1e1e1; border: 3px solid #9D9D9D; border-radius: 5px; position: absolute;\"> </div>\n",
" <div style=\"margin-left: 48px;\">\n",
" <h3 style=\"margin-bottom: 0px;\">Client</h3>\n",
" <p style=\"color: #9D9D9D; margin-bottom: 0px;\">Client-99049348-2ac2-11ee-856b-00155de7557f</p>\n",
" <table style=\"width: 100%; text-align: left;\">\n",
"\n",
" <tr>\n",
" \n",
" <td style=\"text-align: left;\"><strong>Connection method:</strong> Cluster object</td>\n",
" <td style=\"text-align: left;\"><strong>Cluster type:</strong> distributed.LocalCluster</td>\n",
" \n",
" </tr>\n",
"\n",
" \n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Dashboard: </strong> <a href=\"http://127.0.0.1:8787/status\" target=\"_blank\">http://127.0.0.1:8787/status</a>\n",
" </td>\n",
" <td style=\"text-align: left;\"></td>\n",
" </tr>\n",
" \n",
"\n",
" </table>\n",
"\n",
" \n",
"\n",
" \n",
" <details>\n",
" <summary style=\"margin-bottom: 20px;\"><h3 style=\"display: inline;\">Cluster Info</h3></summary>\n",
" <div class=\"jp-RenderedHTMLCommon jp-RenderedHTML jp-mod-trusted jp-OutputArea-output\">\n",
" <div style=\"width: 24px; height: 24px; background-color: #e1e1e1; border: 3px solid #9D9D9D; border-radius: 5px; position: absolute;\">\n",
" </div>\n",
" <div style=\"margin-left: 48px;\">\n",
" <h3 style=\"margin-bottom: 0px; margin-top: 0px;\">LocalCluster</h3>\n",
" <p style=\"color: #9D9D9D; margin-bottom: 0px;\">48bf00f8</p>\n",
" <table style=\"width: 100%; text-align: left;\">\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Dashboard:</strong> <a href=\"http://127.0.0.1:8787/status\" target=\"_blank\">http://127.0.0.1:8787/status</a>\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Workers:</strong> 4\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Total threads:</strong> 8\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Total memory:</strong> 23.47 GiB\n",
" </td>\n",
" </tr>\n",
" \n",
" <tr>\n",
" <td style=\"text-align: left;\"><strong>Status:</strong> running</td>\n",
" <td style=\"text-align: left;\"><strong>Using processes:</strong> True</td>\n",
"</tr>\n",
"\n",
" \n",
" </table>\n",
"\n",
" <details>\n",
" <summary style=\"margin-bottom: 20px;\">\n",
" <h3 style=\"display: inline;\">Scheduler Info</h3>\n",
" </summary>\n",
"\n",
" <div style=\"\">\n",
" <div>\n",
" <div style=\"width: 24px; height: 24px; background-color: #FFF7E5; border: 3px solid #FF6132; border-radius: 5px; position: absolute;\"> </div>\n",
" <div style=\"margin-left: 48px;\">\n",
" <h3 style=\"margin-bottom: 0px;\">Scheduler</h3>\n",
" <p style=\"color: #9D9D9D; margin-bottom: 0px;\">Scheduler-d5ec5b54-f595-40fe-a4fe-ab30a54fb158</p>\n",
" <table style=\"width: 100%; text-align: left;\">\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Comm:</strong> tcp://127.0.0.1:32951\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Workers:</strong> 4\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Dashboard:</strong> <a href=\"http://127.0.0.1:8787/status\" target=\"_blank\">http://127.0.0.1:8787/status</a>\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Total threads:</strong> 8\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Started:</strong> Just now\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Total memory:</strong> 23.47 GiB\n",
" </td>\n",
" </tr>\n",
" </table>\n",
" </div>\n",
" </div>\n",
"\n",
" <details style=\"margin-left: 48px;\">\n",
" <summary style=\"margin-bottom: 20px;\">\n",
" <h3 style=\"display: inline;\">Workers</h3>\n",
" </summary>\n",
"\n",
" \n",
" <div style=\"margin-bottom: 20px;\">\n",
" <div style=\"width: 24px; height: 24px; background-color: #DBF5FF; border: 3px solid #4CC9FF; border-radius: 5px; position: absolute;\"> </div>\n",
" <div style=\"margin-left: 48px;\">\n",
" <details>\n",
" <summary>\n",
" <h4 style=\"margin-bottom: 0px; display: inline;\">Worker: 0</h4>\n",
" </summary>\n",
" <table style=\"width: 100%; text-align: left;\">\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Comm: </strong> tcp://127.0.0.1:45105\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Total threads: </strong> 2\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Dashboard: </strong> <a href=\"http://127.0.0.1:42443/status\" target=\"_blank\">http://127.0.0.1:42443/status</a>\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Memory: </strong> 5.87 GiB\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Nanny: </strong> tcp://127.0.0.1:37411\n",
" </td>\n",
" <td style=\"text-align: left;\"></td>\n",
" </tr>\n",
" <tr>\n",
" <td colspan=\"2\" style=\"text-align: left;\">\n",
" <strong>Local directory: </strong> /tmp/dask-scratch-space/worker-v5s639lg\n",
" </td>\n",
" </tr>\n",
"\n",
" \n",
"\n",
" \n",
"\n",
" </table>\n",
" </details>\n",
" </div>\n",
" </div>\n",
" \n",
" <div style=\"margin-bottom: 20px;\">\n",
" <div style=\"width: 24px; height: 24px; background-color: #DBF5FF; border: 3px solid #4CC9FF; border-radius: 5px; position: absolute;\"> </div>\n",
" <div style=\"margin-left: 48px;\">\n",
" <details>\n",
" <summary>\n",
" <h4 style=\"margin-bottom: 0px; display: inline;\">Worker: 1</h4>\n",
" </summary>\n",
" <table style=\"width: 100%; text-align: left;\">\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Comm: </strong> tcp://127.0.0.1:36993\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Total threads: </strong> 2\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Dashboard: </strong> <a href=\"http://127.0.0.1:40175/status\" target=\"_blank\">http://127.0.0.1:40175/status</a>\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Memory: </strong> 5.87 GiB\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Nanny: </strong> tcp://127.0.0.1:45519\n",
" </td>\n",
" <td style=\"text-align: left;\"></td>\n",
" </tr>\n",
" <tr>\n",
" <td colspan=\"2\" style=\"text-align: left;\">\n",
" <strong>Local directory: </strong> /tmp/dask-scratch-space/worker-0cke1ycu\n",
" </td>\n",
" </tr>\n",
"\n",
" \n",
"\n",
" \n",
"\n",
" </table>\n",
" </details>\n",
" </div>\n",
" </div>\n",
" \n",
" <div style=\"margin-bottom: 20px;\">\n",
" <div style=\"width: 24px; height: 24px; background-color: #DBF5FF; border: 3px solid #4CC9FF; border-radius: 5px; position: absolute;\"> </div>\n",
" <div style=\"margin-left: 48px;\">\n",
" <details>\n",
" <summary>\n",
" <h4 style=\"margin-bottom: 0px; display: inline;\">Worker: 2</h4>\n",
" </summary>\n",
" <table style=\"width: 100%; text-align: left;\">\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Comm: </strong> tcp://127.0.0.1:36987\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Total threads: </strong> 2\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Dashboard: </strong> <a href=\"http://127.0.0.1:45413/status\" target=\"_blank\">http://127.0.0.1:45413/status</a>\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Memory: </strong> 5.87 GiB\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Nanny: </strong> tcp://127.0.0.1:42671\n",
" </td>\n",
" <td style=\"text-align: left;\"></td>\n",
" </tr>\n",
" <tr>\n",
" <td colspan=\"2\" style=\"text-align: left;\">\n",
" <strong>Local directory: </strong> /tmp/dask-scratch-space/worker-2gvmrt11\n",
" </td>\n",
" </tr>\n",
"\n",
" \n",
"\n",
" \n",
"\n",
" </table>\n",
" </details>\n",
" </div>\n",
" </div>\n",
" \n",
" <div style=\"margin-bottom: 20px;\">\n",
" <div style=\"width: 24px; height: 24px; background-color: #DBF5FF; border: 3px solid #4CC9FF; border-radius: 5px; position: absolute;\"> </div>\n",
" <div style=\"margin-left: 48px;\">\n",
" <details>\n",
" <summary>\n",
" <h4 style=\"margin-bottom: 0px; display: inline;\">Worker: 3</h4>\n",
" </summary>\n",
" <table style=\"width: 100%; text-align: left;\">\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Comm: </strong> tcp://127.0.0.1:40491\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Total threads: </strong> 2\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Dashboard: </strong> <a href=\"http://127.0.0.1:33959/status\" target=\"_blank\">http://127.0.0.1:33959/status</a>\n",
" </td>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Memory: </strong> 5.87 GiB\n",
" </td>\n",
" </tr>\n",
" <tr>\n",
" <td style=\"text-align: left;\">\n",
" <strong>Nanny: </strong> tcp://127.0.0.1:37215\n",
" </td>\n",
" <td style=\"text-align: left;\"></td>\n",
" </tr>\n",
" <tr>\n",
" <td colspan=\"2\" style=\"text-align: left;\">\n",
" <strong>Local directory: </strong> /tmp/dask-scratch-space/worker-iv3e92vj\n",
" </td>\n",
" </tr>\n",
"\n",
" \n",
"\n",
" \n",
"\n",
" </table>\n",
" </details>\n",
" </div>\n",
" </div>\n",
" \n",
"\n",
" </details>\n",
"</div>\n",
"\n",
" </details>\n",
" </div>\n",
"</div>\n",
" </details>\n",
" \n",
"\n",
" </div>\n",
"</div>"
],
"text/plain": [
"<Client: 'tcp://127.0.0.1:32951' processes=4 threads=8, memory=23.47 GiB>"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
Jeremy Auclair
committed
"client = Client(interface='lo')\n",
"client"
]
},
{
"cell_type": "code",
Jeremy Auclair
committed
"execution_count": 4,
Jeremy Auclair
committed
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/auclairj/anaconda3/envs/modspa_pixel/lib/python3.10/site-packages/dask/array/chunk.py:278: RuntimeWarning: invalid value encountered in cast\n",
" return x.astype(astype_dtype, **kwargs)\n",
"/home/auclairj/anaconda3/envs/modspa_pixel/lib/python3.10/site-packages/dask/array/chunk.py:278: RuntimeWarning: invalid value encountered in cast\n",
" return x.astype(astype_dtype, **kwargs)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"day 1/ 366 \r"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/auclairj/anaconda3/envs/modspa_pixel/lib/python3.10/site-packages/dask/array/chunk.py:278: RuntimeWarning: invalid value encountered in cast\n",
" return x.astype(astype_dtype, **kwargs)\n",
"/home/auclairj/anaconda3/envs/modspa_pixel/lib/python3.10/site-packages/dask/array/chunk.py:278: RuntimeWarning: invalid value encountered in cast\n",
" return x.astype(astype_dtype, **kwargs)\n",
"/tmp/ipykernel_1387/2938761162.py:242: RuntimeWarning: divide by zero encountered in divide\n",
" tmp1 = (((TAW - Dr) / Zr - (RUE - De) / (scale_dict['Ze'] * Ze_)) / FCov) * (scale_dict['DiffE'] * DiffE_)\n",
"/tmp/ipykernel_1387/2938761162.py:285: RuntimeWarning: divide by zero encountered in divide\n",
" tmp1 = (((TDW - Dd) / (scale_dict['Zsoil'] * Zsoil_ - Zr) - (TAW - Dr) / Zr) / FCov) * scale_dict['DiffR'] * DiffR_\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"day 3 / 366 \r"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/auclairj/anaconda3/envs/modspa_pixel/lib/python3.10/site-packages/dask/array/chunk.py:278: RuntimeWarning: invalid value encountered in cast\n",
" return x.astype(astype_dtype, **kwargs)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"day 366 / 366 \r"
]
}
],
"source": [
"data_path = '/mnt/e/DATA/DEV_inputs_test'\n",
"\n",
Jeremy Auclair
committed
"size = 100\n",
"\n",
"ndvi_path = data_path + os.sep + 'ndvi_' + str(size) + '.nc'\n",
"prec_path = data_path + os.sep + 'rain_' + str(size) + '.tif'\n",
"ET0_path = data_path + os.sep + 'ET0_' + str(size) + '.tif'\n",
"land_cover_path = data_path + os.sep + 'land_cover_' + str(size) + '.nc'\n",
"json_config_file = '/home/auclairj/GIT/modspa-pixel/config/config_modspa.json'\n",
"param_file = '/home/auclairj/GIT/modspa-pixel/parameters/csv_files/params_samir_test.csv'\n",
Jeremy Auclair
committed
"soil_path = data_path + os.sep + 'soil_' + str(size) + '.nc'\n",
"save_path = data_path + os.sep + 'outputs_' + str(size) + '.nc'\n",
"\n",
"chunk_size = {'x': 50, 'y': 50, 'time': -1}\n",
"\n",
"t = time()\n",
"\n",
Jeremy Auclair
committed
"run_samir(json_config_file, param_file, ndvi_path, prec_path, ET0_path, soil_path, land_cover_path, chunk_size, save_path)\n",
Jeremy Auclair
committed
"format_duration(time() - t)\n",
Jeremy Auclair
committed
"client.close()"
Jeremy Auclair
committed
"execution_count": 6,
Jeremy Auclair
committed
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"/mnt/e/DATA/DEV_inputs_test/outputs_10.nc\n"
]
}
],
Jeremy Auclair
committed
"print(save_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
}
],
"metadata": {
"kernelspec": {
"display_name": "modspa_pixel",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.9"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}