Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
iamap
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
AMAP
iamap
Commits
93fcfdfe
Commit
93fcfdfe
authored
5 months ago
by
paul.tresson_ird.fr
Browse files
Options
Downloads
Patches
Plain Diff
handle gt column as string
parent
0f56e308
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
ml.py
+32
-22
32 additions, 22 deletions
ml.py
with
32 additions
and
22 deletions
ml.py
+
32
−
22
View file @
93fcfdfe
...
@@ -309,36 +309,26 @@ class MLAlgorithm(SHPAlgorithm):
...
@@ -309,36 +309,26 @@ class MLAlgorithm(SHPAlgorithm):
self
.
do_kfold
=
self
.
parameterAsBoolean
(
self
.
do_kfold
=
self
.
parameterAsBoolean
(
parameters
,
self
.
DO_KFOLDS
,
context
)
parameters
,
self
.
DO_KFOLDS
,
context
)
self
.
gt_col
=
self
.
parameterAsString
(
gt_col
=
self
.
parameterAsString
(
parameters
,
self
.
GT_COL
,
context
)
parameters
,
self
.
GT_COL
,
context
)
fold_col
=
self
.
parameterAsString
(
fold_col
=
self
.
parameterAsString
(
parameters
,
self
.
FOLD_COL
,
context
)
parameters
,
self
.
FOLD_COL
,
context
)
nfolds
=
self
.
parameterAsInt
(
nfolds
=
self
.
parameterAsInt
(
parameters
,
self
.
NFOLDS
,
context
)
parameters
,
self
.
NFOLDS
,
context
)
str_kwargs
=
self
.
parameterAsString
(
str_kwargs
=
self
.
parameterAsString
(
parameters
,
self
.
SK_PARAM
,
context
)
parameters
,
self
.
SK_PARAM
,
context
)
if
str_kwargs
!=
''
:
self
.
passed_kwargs
=
ast
.
literal_eval
(
str_kwargs
)
else
:
self
.
passed_kwargs
=
{}
## If no test set is provided and the option to perform kfolds is true, we perform kfolds
## If a fold column is provided, this defines the folds. Otherwise, random split
## If a fold column is provided, this defines the folds. Otherwise, random split
## check that no column with name 'fold' exists, otherwise we use 'fold1' etc..
## check that no column with name 'fold' exists, otherwise we use 'fold1' etc..
## we also make a new column containing gt values
self
.
fold_col
=
get_unique_col_name
(
self
.
gdf
,
'
fold
'
)
self
.
fold_col
=
get_unique_col_name
(
self
.
gdf
,
'
fold
'
)
self
.
gt_col
=
get_unique_col_name
(
self
.
gdf
,
'
gt
'
)
if
self
.
test_gdf
==
None
and
self
.
do_kfold
:
## Instantiate model
if
fold_col
.
strip
()
!=
''
:
if
str_kwargs
!=
''
:
self
.
gdf
[
self
.
fold_col
]
=
self
.
gdf
[
fold_col
]
self
.
passed_kwargs
=
ast
.
literal_eval
(
str_kwargs
)
else
:
self
.
gdf
[
self
.
fold_col
]
=
np
.
random
.
randint
(
1
,
nfolds
+
1
,
size
=
len
(
self
.
gdf
))
## Else, self.gdf is the train set
else
:
else
:
self
.
train_gdf
=
self
.
gdf
self
.
passed_kwargs
=
{}
method_idx
=
self
.
parameterAsEnum
(
method_idx
=
self
.
parameterAsEnum
(
parameters
,
self
.
METHOD
,
context
)
parameters
,
self
.
METHOD
,
context
)
...
@@ -357,6 +347,29 @@ class MLAlgorithm(SHPAlgorithm):
...
@@ -357,6 +347,29 @@ class MLAlgorithm(SHPAlgorithm):
self
.
model
=
instantiate_sklearn_algorithm
(
neighbors
,
self
.
method_name
,
**
kwargs
)
self
.
model
=
instantiate_sklearn_algorithm
(
neighbors
,
self
.
method_name
,
**
kwargs
)
## different behaviours if we are doing classification or regression
## If classification, we create a new col with unique integers for each classes
## to ease inference
self
.
task_type
=
check_model_type
(
self
.
model
)
if
self
.
task_type
==
'
classification
'
:
self
.
out_dtype
=
'
int8
'
self
.
gdf
[
self
.
gt_col
]
=
pd
.
factorize
(
self
.
gdf
[
gt_col
])[
0
]
# unique int for each class
else
:
self
.
gt_col
=
gt_col
## If no test set is provided and the option to perform kfolds is true, we perform kfolds
if
self
.
test_gdf
==
None
and
self
.
do_kfold
:
if
fold_col
.
strip
()
!=
''
:
self
.
gdf
[
self
.
fold_col
]
=
self
.
gdf
[
fold_col
]
else
:
self
.
gdf
[
self
.
fold_col
]
=
np
.
random
.
randint
(
1
,
nfolds
+
1
,
size
=
len
(
self
.
gdf
))
## Else, self.gdf is the train set
else
:
self
.
train_gdf
=
self
.
gdf
def
get_raster
(
self
,
mode
=
'
train
'
):
def
get_raster
(
self
,
mode
=
'
train
'
):
if
mode
==
'
train
'
:
if
mode
==
'
train
'
:
...
@@ -407,10 +420,8 @@ class MLAlgorithm(SHPAlgorithm):
...
@@ -407,10 +420,8 @@ class MLAlgorithm(SHPAlgorithm):
def
get_metrics
(
self
,
test_gts
,
predictions
,
feedback
):
def
get_metrics
(
self
,
test_gts
,
predictions
,
feedback
):
task_type
=
check_model_type
(
self
.
model
)
metrics_dict
=
{}
metrics_dict
=
{}
if
self
.
task_type
==
'
classification
'
:
if
task_type
==
'
classification
'
:
# Evaluate the model
# Evaluate the model
metrics_dict
[
'
accuracy
'
]
=
accuracy_score
(
test_gts
,
predictions
)
metrics_dict
[
'
accuracy
'
]
=
accuracy_score
(
test_gts
,
predictions
)
metrics_dict
[
'
precision
'
]
=
precision_score
(
test_gts
,
predictions
,
average
=
'
weighted
'
)
# Modify `average` for multiclass if necessary
metrics_dict
[
'
precision
'
]
=
precision_score
(
test_gts
,
predictions
,
average
=
'
weighted
'
)
# Modify `average` for multiclass if necessary
...
@@ -418,10 +429,9 @@ class MLAlgorithm(SHPAlgorithm):
...
@@ -418,10 +429,9 @@ class MLAlgorithm(SHPAlgorithm):
metrics_dict
[
'
f1
'
]
=
f1_score
(
test_gts
,
predictions
,
average
=
'
weighted
'
)
metrics_dict
[
'
f1
'
]
=
f1_score
(
test_gts
,
predictions
,
average
=
'
weighted
'
)
metrics_dict
[
'
conf_matrix
'
]
=
confusion_matrix
(
test_gts
,
predictions
)
metrics_dict
[
'
conf_matrix
'
]
=
confusion_matrix
(
test_gts
,
predictions
)
metrics_dict
[
'
class_report
'
]
=
classification_report
(
test_gts
,
predictions
)
metrics_dict
[
'
class_report
'
]
=
classification_report
(
test_gts
,
predictions
)
self
.
out_dtype
=
'
int8
'
elif
task_type
==
'
regression
'
:
elif
self
.
task_type
==
'
regression
'
:
metrics_dict
[
'
mae
'
]
=
mean_absolute_error
(
test_gts
,
predictions
)
metrics_dict
[
'
mae
'
]
=
mean_absolute_error
(
test_gts
,
predictions
)
metrics_dict
[
'
mse
'
]
=
mean_squared_error
(
test_gts
,
predictions
)
metrics_dict
[
'
mse
'
]
=
mean_squared_error
(
test_gts
,
predictions
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment