Skip to content
Snippets Groups Projects
ml.py 37.2 KiB
Newer Older
import ast
import numpy as np
from pathlib import Path
from typing import Dict, Any
import joblib
import json
import tempfile

import rasterio
from rasterio import windows
import geopandas as gpd
import pandas as pd
from shapely.geometry import box
from qgis.PyQt.QtCore import QCoreApplication
from qgis.core import (Qgis,
                       QgsGeometry,
                       QgsProcessingParameterBoolean,
                       QgsProcessingParameterFile,
                       QgsProcessingParameterEnum,
                       QgsCoordinateTransform,
                       QgsProcessingException,
                       QgsProcessingAlgorithm,
                       QgsProcessingParameterRasterLayer,
                       QgsProcessingParameterFolderDestination,
                       QgsProcessingParameterString,
                       QgsProcessingParameterBand,
                       QgsProcessingParameterNumber,
                       QgsProcessingParameterExtent,
                       QgsProcessingParameterCrs,
                       QgsProcessingParameterDefinition,
                       )
import torch
import torch.nn as nn
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split

from .utils.misc import get_unique_filename
from .utils.geo import get_random_samples_in_gdf, get_unique_col_name
from .utils.algo import (
                        SHPAlgorithm,
                        get_sklearn_algorithms_with_methods,
                        instantiate_sklearn_algorithm,
                        get_arguments,
                        )

import sklearn.ensemble as ensemble
import sklearn.neighbors as neighbors
from sklearn.base import ClassifierMixin, RegressorMixin
from sklearn.metrics import (
                            accuracy_score,
                            precision_score, 
                            recall_score, 
                            f1_score, 
                            confusion_matrix, 
                            classification_report
                            )
from sklearn.metrics import (
                            mean_absolute_error, 
                            mean_squared_error, 
                            r2_score,
                            )


def check_model_type(model):
    if isinstance(model, ClassifierMixin):
        return "classification"
    elif isinstance(model, RegressorMixin):
        return "regression"
    else:
        return "unknown"


class MLAlgorithm(SHPAlgorithm):
    """
    """

    GT_COL = 'GT_COL'
    DO_KFOLDS = 'DO_KFOLDS'
    FOLD_COL = 'FOLD_COL'
    NFOLDS = 'NFOLDS'
    SK_PARAM = 'SK_PARAM'
    TEMPLATE_TEST = 'TEMPLATE_TEST'
    METHOD = 'METHOD'
    TMP_DIR = 'iamap_ml'
    DEFAULT_TEMPLATE = 'ml_poly.shp'
    TYPE = 'ml'

    def initAlgorithm(self, config=None):
        """
        Here we define the inputs and output of the algorithm, along
        with some other properties.
        """
        self.init_input_output_raster()
        self.init_seed()
        self.init_input_shp()

        self.method_opt = self.get_algorithms()
        default_index = self.method_opt.index('RandomForestClassifier')
        self.addParameter (
            QgsProcessingParameterEnum(
                name = self.METHOD,
                description = self.tr(
                    'Sklearn algorithm used'),
                defaultValue = default_index,
                options = self.method_opt,
            )
        )

        self.addParameter (
            QgsProcessingParameterString(
                name = self.SK_PARAM,
                description = self.tr(
                    'Arguments for the initialisation of the algorithm. If empty this goes to sklearn default. It will overwrite cluster or components arguments.'),
                defaultValue = '',
                optional=True,
            )
        )


        self.addParameter(
            QgsProcessingParameterFile(
                name=self.TEMPLATE,
                description=self.tr(
                    'Input shapefile path for training data set for random forest (if no test data_set, will be devised in train and test)'),
            # defaultValue=os.path.join(self.cwd,'assets',self.DEFAULT_TEMPLATE),
            ),
        )
        
        self.addParameter(
            QgsProcessingParameterFile(
                name=self.TEMPLATE_TEST,
                description=self.tr(
                    'Input shapefile path for test dataset.'),
                optional = True
            ),
        )


        self.addParameter (
            QgsProcessingParameterString(
                name = self.GT_COL,
                description = self.tr(
                    'Name of the column containing ground truth values.'),
        self.addParameter (
            QgsProcessingParameterBoolean(
                name = self.DO_KFOLDS,
                description = self.tr(
                    'Perform cross-validation'),
                defaultValue = True,
            )
        )
        self.addParameter (
            QgsProcessingParameterString(
                name = self.FOLD_COL,
                description = self.tr(
                    'Name of the column defining folds in case of cross-validation. If none is selected, random sampling is used.'),
                defaultValue = '',
                optional=True,
            )
        )
        nfold_param = QgsProcessingParameterNumber(
            name=self.NFOLDS,
            description=self.tr(
                'Number of folds performed'),
            type=QgsProcessingParameterNumber.Integer,
            optional=True,
            minValue=2,
            defaultValue=5,
            maxValue=10
        )

        for param in (
                nfold_param,
                ):
            param.setFlags(
                param.flags() | QgsProcessingParameterDefinition.FlagAdvanced)
            self.addParameter(param)


    def processAlgorithm(self, parameters, context, feedback):
        """
        Here is where the processing itself takes place.
        """
        self.process_geo_parameters(parameters, context, feedback)
        self.process_common_shp(parameters, context, feedback)
        self.process_ml_shp(parameters, context, feedback)
        self.process_ml_options(parameters, context, feedback)

        if self.test_gdf is not None:
            self.train_test_loop(feedback)
            for fold in sorted(self.gdf[self.fold_col].unique()):
                feedback.pushInfo(f'==== Fold {fold} ====')
                self.test_gdf = self.gdf.loc[self.gdf[self.fold_col] == fold]
                self.train_gdf = self.gdf.loc[self.gdf[self.fold_col] != fold]
                self.train_test_loop(feedback)
        return {'OUTPUT_RASTER':self.dst_path, 'OUTPUT_LAYER_NAME':self.layer_name}


    def train_test_loop(self, feedback):
        train_set, train_gts = self.get_raster(mode='train')
        test_set, test_gts = self.get_raster(mode='test')
        self.model.fit(train_set, train_gts)
        predictions = self.model.predict(test_set)
        self.get_metrics(test_gts,predictions, feedback)
    def process_ml_shp(self, parameters, context, feedback):

        template_test = self.parameterAsFile(
            parameters, self.TEMPLATE_TEST, context)

        self.test_gdf=None

        if template_test != '' :
            random_samples = self.parameterAsInt(
                parameters, self.RANDOM_SAMPLES, context)

            gdf = gpd.read_file(template_test)
            gdf = gdf.to_crs(self.crs.toWkt())

            feedback.pushInfo(f'before samples: {len(gdf)}')
            ## get random samples if geometry is not point based
            gdf = get_random_samples_in_gdf(gdf, random_samples)

            feedback.pushInfo(f'before extent: {len(gdf)}')
            bounds = box(
                    self.extent.xMinimum(), 
                    self.extent.yMinimum(), 
                    self.extent.xMaximum(), 
                    self.extent.yMaximum(), 
                    )
            self.test_gdf = gdf[gdf.within(bounds)]
            feedback.pushInfo(f'after extent: {len(self.test_gdf)}')

            if len(self.test_gdf) == 0:
                feedback.pushWarning("No template points within extent !")
                return False

    def process_ml_options(self, parameters, context, feedback):

        self.do_kfold = self.parameterAsBoolean(
            parameters, self.DO_KFOLDS, context)
        self.gt_col = self.parameterAsString(
            parameters, self.GT_COL, context)
        fold_col = self.parameterAsString(
            parameters, self.FOLD_COL, context)
        nfolds = self.parameterAsInt(
            parameters, self.NFOLDS, context)

        str_kwargs = self.parameterAsString(
                parameters, self.SK_PARAM, context)

        if str_kwargs != '':
            self.passed_kwargs = ast.literal_eval(str_kwargs)
        else:
            self.passed_kwargs = {}

        ## If no test set is provided and the option to perform kfolds is true, we perform kfolds
        ## If a fold column is provided, this defines the folds. Otherwise, random split

        ## check that no column with name 'fold' exists, otherwise we use 'fold1' etc..
        self.fold_col = get_unique_col_name(self.gdf, 'fold')

        if self.test_gdf == None and self.do_kfold:
            if fold_col.strip() != '' :
                self.gdf[self.fold_col] = self.gdf[fold_col]
                self.gdf[self.fold_col] = np.random.randint(1, nfolds + 1, size=len(self.gdf))

        ## Else, self.gdf is the train set
        else:
            self.train_gdf = self.gdf

        method_idx = self.parameterAsEnum(
            parameters, self.METHOD, context)
        self.method_name = self.method_opt[method_idx]

        try:
            default_args = get_arguments(ensemble, self.method_name)
        except AttributeError:
            default_args = get_arguments(neighbors, self.method_name)
        kwargs = self.update_kwargs(default_args)
        try:
            self.model = instantiate_sklearn_algorithm(ensemble, self.method_name, **kwargs)
        except AttributeError:
            self.model = instantiate_sklearn_algorithm(neighbors, self.method_name, **kwargs)
    def get_raster(self, mode='train'):

        if mode == 'train':
            gdf = self.train_gdf
        else:
            gdf = self.test_gdf

        with rasterio.open(self.rlayer_path) as ds:

            gdf = gdf.to_crs(ds.crs)
            pixel_values = []
            gts = []

            transform = ds.transform
            win = windows.from_bounds(
                    self.extent.xMinimum(), 
                    self.extent.yMinimum(), 
                    self.extent.xMaximum(), 
                    self.extent.yMaximum(), 
                    transform=transform
                    )
            raster = ds.read(window=win)
            transform = ds.window_transform(win)
            raster = raster[self.input_bands,:,:]

            for index, data in gdf.iterrows():
                # Get the coordinates of the point in the raster's pixel space
                x, y = data.geometry.x, data.geometry.y

                # Convert point coordinates to pixel coordinates within the window
                col, row = ~transform * (x, y)  # Convert from map coordinates to pixel coordinates
                col, row = int(col), int(row)
                pixel_values.append(list(raster[:,row, col]))
                gts.append(data[self.gt_col])


        return np.asarray(pixel_values), np.asarray(gts)


    def update_kwargs(self, kwargs_dict):

        for key, value in self.passed_kwargs.items():
            if key in kwargs_dict.keys():
                kwargs_dict[key] = value

        return kwargs_dict


    def get_metrics(self, test_gts, predictions, feedback):

        task_type = check_model_type(self.model)

        if task_type == 'classification':
            # Evaluate the model
            accuracy = accuracy_score(test_gts, predictions)
            precision = precision_score(test_gts, predictions, average='weighted')  # Modify `average` for multiclass if necessary
            recall = recall_score(test_gts, predictions, average='weighted')
            f1 = f1_score(test_gts, predictions, average='weighted')
            conf_matrix = confusion_matrix(test_gts, predictions)
            class_report = classification_report(test_gts, predictions)


            feedback.pushInfo(f'Accuracy:\t {accuracy}')
            feedback.pushInfo(f'Precision:\t {precision}')
            feedback.pushInfo(f'Recall:\t {recall}')
            feedback.pushInfo(f'F1-Score:\t {f1}')
            feedback.pushInfo(f'Confusion Matrix:\n {conf_matrix}')
            feedback.pushInfo(f'Classification Report:\n {class_report}')

        elif task_type == 'regression':
            pass
            mae = mean_absolute_error(test_gts, predictions)
            mse = mean_squared_error(test_gts, predictions)
            rmse = np.sqrt(mse)
            r2 = r2_score(test_gts, predictions)

            feedback.pushInfo(f'MAE:\t {mae}')
            feedback.pushInfo(f'MSE:\t {mse}')
            feedback.pushInfo(f'RMSE:\t {rmse}')
            feedback.pushInfo(f'R2 Score:\t {r2}')
        
        else:
            feedback.pushWarning('Unable to evaluate the model !!')


386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
    def get_algorithms(self):
        required_methods = ['fit', 'predict']
        ensemble_algos = get_sklearn_algorithms_with_methods(ensemble, required_methods)
        neighbors_algos = get_sklearn_algorithms_with_methods(neighbors, required_methods)
        return sorted(ensemble_algos+neighbors_algos)

    # used to handle any thread-sensitive cleanup which is required by the algorithm.
    def postProcessAlgorithm(self, context, feedback) -> Dict[str, Any]:
        return {}


    def tr(self, string):
        """
        Returns a translatable string with the self.tr() function.
        """
        return QCoreApplication.translate('Processing', string)

    def createInstance(self):
        return MLAlgorithm()

    def name(self):
        """
        Returns the algorithm name, used for identifying the algorithm. This
        string should be fixed for the algorithm, and must not be localised.
        The name should be unique within each provider. Names should contain
        lowercase alphanumeric characters only and no spaces or other
        formatting characters.
        """
        return 'ml'

    def displayName(self):
        """
        Returns the translated algorithm name, which should be used for any
        user-visible display of the algorithm name.
        """
        return self.tr('Machine Learning')

    def group(self):
        """
        Returns the name of the group this algorithm belongs to. This string
        should be localised.
        """
        return self.tr('')

    def groupId(self):
        """
        Returns the unique ID of the group this algorithm belongs to. This
        string should be fixed for the algorithm, and must not be localised.
        The group id should be unique within each provider. Group id should
        contain lowercase alphanumeric characters only and no spaces or other
        formatting characters.
        """
        return ''

    def shortHelpString(self):
        """
        Returns a localised short helper string for the algorithm. This string
        should provide a basic description about what the algorithm does and the
        parameters and outputs associated with it..
        """
        return self.tr("Fit a Machine Learning model using input template")

    def icon(self):
        return 'E'








#class RFAlgorithm(QgsProcessingAlgorithm):
#    """
#    """

#    INPUT = 'INPUT'
#    BANDS = 'BANDS'
#    EXTENT = 'EXTENT'
#    LOAD = 'LOAD'
#    OUTPUT = 'OUTPUT'
#    RESOLUTION = 'RESOLUTION'
#    CRS = 'CRS'
#    TEMPLATE = 'TEMPLATE'
#    COLONNE_RF = 'COLONNE_RF'
#    TEMPLATE_TEST = 'TEMPLATE_TEST'

#    def initAlgorithm(self, config=None):
#        """
#        Here we define the inputs and output of the algorithm, along
#        with some other properties.
#        """
#        cwd = Path(__file__).parent.absolute()
#        tmp_wd = os.path.join(tempfile.gettempdir(), "iamap_rf")

#        self.addParameter(
#            QgsProcessingParameterRasterLayer(
#                name=self.INPUT,
#                description=self.tr(
#                    'Input raster layer or image file path'),
#            defaultValue=os.path.join(cwd,'assets','test.tif'),
#            ),
#        )

#        self.addParameter(
#            QgsProcessingParameterBand(
#                name=self.BANDS,
#                description=self.tr(
#                    'Selected Bands (defaults to all bands selected)'),
#                defaultValue=None,
#                parentLayerParameterName=self.INPUT,
#                optional=True,
#                allowMultiple=True,
#            )
#        )

#        crs_param = QgsProcessingParameterCrs(
#            name=self.CRS,
#            description=self.tr('Target CRS (default to original CRS)'),
#            optional=True,
#        )

#        res_param = QgsProcessingParameterNumber(
#            name=self.RESOLUTION,
#            description=self.tr(
#                'Target resolution in meters (default to native resolution)'),
#            type=QgsProcessingParameterNumber.Double,
#            optional=True,
#            minValue=0,
#            maxValue=100000
#        )

#        self.addParameter(
#            QgsProcessingParameterExtent(
#                name=self.EXTENT,
#                description=self.tr(
#                    'Processing extent (default to the entire image)'),
#                optional=True
#            )
#        )

#        self.addParameter(
#            QgsProcessingParameterFile(
#                name=self.TEMPLATE,
#                description=self.tr(
#                    'Input shapefile path for training data set for random forest (if no test data_set, will be devised in train and test)'),
#            # defaultValue=os.path.join(cwd,'assets','rf.gpkg'),
#            defaultValue=os.path.join(cwd,'assets','rf.shp'),
#            ),
#        )
        
#        self.addParameter(
#            QgsProcessingParameterFile(
#                name=self.TEMPLATE_TEST,
#                description=self.tr(
#                    'Input shapefile path for test data set for random forest (optional)'),
#                optional = True
#            ),
#        )


#        self.addParameter(
#            QgsProcessingParameterFolderDestination(
#                self.OUTPUT,
#                self.tr(
#                    "Output directory (choose the location that the image features will be saved)"),
#            defaultValue=tmp_wd,
#            )
#        )
        
        
#        self.addParameter (
#            QgsProcessingParameterString(
#                name = self.COLONNE_RF,
#                description = self.tr(
#                    'Name of the column you want random forest to work on'),
#                defaultValue = 'Type',
#            )
#        )


#        for param in (crs_param, res_param):
#            param.setFlags(
#                param.flags() | QgsProcessingParameterDefinition.FlagAdvanced)
#            self.addParameter(param)


#    def processAlgorithm(self, parameters, context, feedback):
#        """
#        Here is where the processing itself takes place.
#        """
#        self.process_options(parameters, context, feedback)

#        gdf = gpd.read_file(self.template)
#        feedback.pushInfo(f"self_template_test : {self.template_test}")
#        DATA_SET_TEST=False
#        if(self.template_test != ''):
#            gdf_test = gpd.read_file(self.template_test)
#            gdf_test = gdf_test.to_crs(self.crs.toWkt())
#            DATA_SET_TEST = True
#            feedback.pushInfo(f"In good loop !")

#        gdf = gdf.to_crs(self.crs.toWkt())
        
#        feedback.pushInfo(f"DATA_SET_TEST : {DATA_SET_TEST}")
        

#        feedback.pushInfo(f'before extent: {len(gdf)}')
#        bounds = box(
#                self.extent.xMinimum(), 
#                self.extent.yMinimum(), 
#                self.extent.xMaximum(), 
#                self.extent.yMaximum(), 
#                )
#        feedback.pushInfo(f'xmin: {self.extent.xMinimum()},ymin: {self.extent.yMinimum()}, xmax: {self.extent.xMaximum()}, ymax: {self.extent.yMaximum()} ')
#        gdf = gdf[gdf.within(bounds)]
#        feedback.pushInfo(f'after extent: {len(gdf)}')

#        if len(gdf) == 0:
#            feedback.pushWarning("No template points within extent !")
#            return False

        


#        input_bands = [i_band -1 for i_band in self.selected_bands]


#        with rasterio.open(self.rlayer_path) as ds:
            
        
            
            
#            gdf = gdf.to_crs(ds.crs)
            
#            pixel_values_test = []
            
#            pixel_values = []

#            transform = ds.transform
#            crs = ds.crs
#            win = windows.from_bounds(
#                    self.extent.xMinimum(), 
#                    self.extent.yMinimum(), 
#                    self.extent.xMaximum(), 
#                    self.extent.yMaximum(), 
#                    transform=transform
#                    )
#            raster = ds.read(window=win)
#            transform = ds.window_transform(win)
#            raster = raster[input_bands,:,:]

#            if (DATA_SET_TEST == True):
#                gdf_test = gdf_test.to_crs(ds.crs)
#                for index, data in gdf_test.iterrows():
#                    # Get the coordinates of the point in the raster's pixel space
#                    x, y = data.geometry.x, data.geometry.y
#                    feedback.pushInfo (f"x : {x}, y : {y}")
#                    feedback.pushInfo (f"gdf geometry : {gdf['geometry']}")

#                    # Convert point coordinates to pixel coordinates within the window
#                    col, row = ~transform * (x, y)  # Convert from map coordinates to pixel coordinates
#                    col, row = int(col), int(row)
#                    feedback.pushInfo(f'after extent: {row, col}')
#                    pixel_values_test.append(list(raster[:,row, col]))
#                    template_npy_test = np.asarray(pixel_values_test)
#                    template_test = torch.from_numpy(template_npy_test).to(torch.float32)

#            for index, data in gdf.iterrows():
#                # Get the coordinates of the point in the raster's pixel space
#                x, y = data.geometry.x, data.geometry.y
#                feedback.pushInfo (f"x : {x}, y : {y}")
#                feedback.pushInfo (f"gdf geometry : {gdf['geometry']}")

#                # Convert point coordinates to pixel coordinates within the window
#                col, row = ~transform * (x, y)  # Convert from map coordinates to pixel coordinates
#                col, row = int(col), int(row)
#                feedback.pushInfo(f'after extent: {row, col}')
#                pixel_values.append(list(raster[:,row, col]))

#            raster = np.transpose(raster, (1,2,0))

#            feedback.pushInfo(f'{raster.shape}')

#            template_npy = np.asarray(pixel_values)
            
#            feedback.pushInfo(f'points : {template_npy}')
#            feedback.pushInfo(f'dim points : {template_npy.shape}')
#            template = torch.from_numpy(template_npy).to(torch.float32)
            

            
        
#            feat_img = torch.from_numpy(raster)
            
#            #template contient les valeurs
#            #y = gdf['Type']
#            #y=gdf ['Desc_']

#            if (DATA_SET_TEST == False):
                
#                if self.colonne_rf in gdf.columns :
                    
#                    y = gdf[self.colonne_rf]
#                else :
#                    feedback.pushWarning (f'{self.colonne_rf} is not a valid column name of the dataset !!')
                
                
                
#                X_train, X_test, y_train, y_test = train_test_split(template, y, test_size=0.4, random_state=55)
                
#                rf_classifier = RandomForestClassifier(n_estimators=100, min_samples_split=4, random_state=42)
#                rf_classifier.fit(X_train, y_train)
                
#            if (DATA_SET_TEST == True):
                
#                y_train=gdf[self.colonne_rf]
#                y_test=gdf_test[self.colonne_rf]
            
#                X_train = template
                
                
#                X_test = template_test
                
                
#                rf_classifier = RandomForestClassifier(n_estimators=100, min_samples_split=4, random_state=42)
                
#                rf_classifier.fit(X_train, y_train)

#            params = rf_classifier.get_params()
            
#            #joblib.dump(rf_classifier, model_file)
                
#            y_pred = rf_classifier.predict(X_test)
#            accuracy = accuracy_score(y_test, y_pred)
#            feedback.pushInfo(f"Accuracy ; {accuracy}")
            
#            predicted_types = rf_classifier.predict(raster.reshape(-1, raster.shape[-1]))
#            feedback.pushInfo(f"predicted types ; {predicted_types.shape}")
#            predicted_types_image = predicted_types.reshape(raster.shape[:-1])
#            feedback.pushInfo(f"predicted_types_image ; {predicted_types_image.shape}")
            
#            label_encoder = LabelEncoder()
#            predicted_types_numeric = label_encoder.fit_transform(predicted_types_image.flatten())
#            feedback.pushInfo(f'carte avant transfo : {predicted_types_numeric.shape}')
#            predicted_types_numeric = predicted_types_numeric.reshape(predicted_types_image.shape)
#            feedback.pushInfo(f'carte après transfo : {predicted_types_numeric.shape}')
        

#            height, width = predicted_types_numeric.shape
#            channels = 1
            
            
            
            

#            dst_path = os.path.join(self.output_dir,'random_forest.tif')
#            params_file = os.path.join(self.output_dir, 'random_forest_parameters.json')
            

            
#            rlayer_basename = os.path.basename(self.rlayer_path)
#            rlayer_name, ext = os.path.splitext(rlayer_basename)
#            dst_path, layer_name = get_unique_filename(self.output_dir, 'random_forest.tif', f'{rlayer_name} random forest')
#            # if os.path.exists(dst_path):
#            #         i = 1
#            #         while True:
#            #             modified_output_file = os.path.join(self.output_dir, f"random_forest_{i}.tif")
#            #             if not os.path.exists(modified_output_file):
#            #                 dst_path = modified_output_file
#            #                 break
#            #             i += 1
                        
#            if os.path.exists(params_file):
#                    i = 1
#                    while True:
#                        modified_output_file_params = os.path.join(self.output_dir, f"random_forest_parameters_{i}.json")
#                        if not os.path.exists(modified_output_file_params):
#                            params_file = modified_output_file_params
#                            break
#                        i += 1

#            with rasterio.open(dst_path, 'w', driver='GTiff',
#                               height=height, width=width, count=channels, dtype='float32',
#                               crs=crs, transform=transform) as dst_ds:
#                dst_ds.write(predicted_types_numeric, 1)
                
#            with open(params_file, 'w') as f:
#                json.dump(params, f, indent=4)
#            feedback.pushInfo(f"Parameters saved to {params_file}")

#            parameters['OUTPUT_RASTER']=dst_path

#        return {'OUTPUT_RASTER':dst_path, 'OUTPUT_LAYER_NAME':layer_name}

#    def process_options(self,parameters, context, feedback):
#        self.iPatch = 0
        
#        self.feature_dir = ""
        
#        feedback.pushInfo(
#                f'PARAMETERS :\n{parameters}')
        
#        feedback.pushInfo(
#                f'CONTEXT :\n{context}')
        
#        feedback.pushInfo(
#                f'FEEDBACK :\n{feedback}')

#        rlayer = self.parameterAsRasterLayer(
#            parameters, self.INPUT, context)
        
#        if rlayer is None:
#            raise QgsProcessingException(
#                self.invalidRasterError(parameters, self.INPUT))

#        self.selected_bands = self.parameterAsInts(
#            parameters, self.BANDS, context)

#        if len(self.selected_bands) == 0:
#            self.selected_bands = list(range(1, rlayer.bandCount()+1))

#        if max(self.selected_bands) > rlayer.bandCount():
#            raise QgsProcessingException(
#                self.tr("The chosen bands exceed the largest band number!")
#            )

#        self.template = self.parameterAsFile(
#            parameters, self.TEMPLATE, context)
        
#        self.template_test = self.parameterAsFile(
#            parameters, self.TEMPLATE_TEST, context)
        
#        self.colonne_rf = self.parameterAsString(
#            parameters, self.COLONNE_RF, context)

#        res = self.parameterAsDouble(
#            parameters, self.RESOLUTION, context)
#        crs = self.parameterAsCrs(
#            parameters, self.CRS, context)
#        extent = self.parameterAsExtent(
#            parameters, self.EXTENT, context)
#        output_dir = self.parameterAsString(
#            parameters, self.OUTPUT, context)
#        self.output_dir = Path(output_dir)
#        self.output_dir.mkdir(parents=True, exist_ok=True)


#        rlayer_data_provider = rlayer.dataProvider()

#        # handle crs
#        if crs is None or not crs.isValid():
#            crs = rlayer.crs()
#            feedback.pushInfo(f'crs : {crs}')
            
#            """
#            feedback.pushInfo(
#                f'Layer CRS unit is {crs.mapUnits()}')  # 0 for meters, 6 for degrees, 9 for unknown
#            feedback.pushInfo(
#                f'whether the CRS is a geographic CRS (using lat/lon coordinates) {crs.isGeographic()}')
#            if crs.mapUnits() == Qgis.DistanceUnit.Degrees:
#                crs = self.estimate_utm_crs(rlayer.extent())

#        # target crs should use meters as units
#        if crs.mapUnits() != Qgis.DistanceUnit.Meters:
#            feedback.pushInfo(
#                f'Layer CRS unit is {crs.mapUnits()}')
#            feedback.pushInfo(
#                f'whether the CRS is a geographic CRS (using lat/lon coordinates) {crs.isGeographic()}')
#            raise QgsProcessingException(
#                self.tr("Only support CRS with the units as meters")
#            )
#        """

#        # 0 for meters, 6 for degrees, 9 for unknown
#        UNIT_METERS = 0
#        UNIT_DEGREES = 6
#        if rlayer.crs().mapUnits() == UNIT_DEGREES: # Qgis.DistanceUnit.Degrees:
#            layer_units = 'degrees'
#        else:
#            layer_units = 'meters'
#        # if res is not provided, get res info from rlayer
#        if np.isnan(res) or res == 0:
#            res = rlayer.rasterUnitsPerPixelX()  # rasterUnitsPerPixelY() is negative
#            target_units = layer_units
#        else:
#            # when given res in meters by users, convert crs to utm if the original crs unit is degree
#            if crs.mapUnits() != UNIT_METERS: # Qgis.DistanceUnit.Meters:
#                if rlayer.crs().mapUnits() == UNIT_DEGREES: # Qgis.DistanceUnit.Degrees:
#                    # estimate utm crs based on layer extent
#                    crs = self.estimate_utm_crs(rlayer.extent())
#                else:
#                    raise QgsProcessingException(
#                        f"Resampling of image with the CRS of {crs.authid()} in meters is not supported.")
#            target_units = 'meters'
#            # else:
#            #     res = (rlayer_extent.xMaximum() -
#            #            rlayer_extent.xMinimum()) / rlayer.width()
#        self.res = res

#        # handle extent
#        if extent.isNull():
#            extent = rlayer.extent()  # QgsProcessingUtils.combineLayerExtents(layers, crs, context)
#            extent_crs = rlayer.crs()
#        else:
#            if extent.isEmpty():
#                raise QgsProcessingException(
#                    self.tr("The extent for processing can not be empty!"))
#            extent_crs = self.parameterAsExtentCrs(
#                parameters, self.EXTENT, context)
#        # if extent crs != target crs, convert it to target crs
#        if extent_crs != crs:
#            transform = QgsCoordinateTransform(
#                extent_crs, crs, context.transformContext())
#            # extent = transform.transformBoundingBox(extent)
#            # to ensure coverage of the transformed extent
#            # convert extent to polygon, transform polygon, then get boundingBox of the new polygon
#            extent_polygon = QgsGeometry.fromRect(extent)
#            extent_polygon.transform(transform)
#            extent = extent_polygon.boundingBox()
#            extent_crs = crs

#        # check intersects between extent and rlayer_extent
#        if rlayer.crs() != crs:
#            transform = QgsCoordinateTransform(
#                rlayer.crs(), crs, context.transformContext())
#            rlayer_extent = transform.transformBoundingBox(
#                rlayer.extent())
#        else:
#            rlayer_extent = rlayer.extent()
#        if not rlayer_extent.intersects(extent):
#            raise QgsProcessingException(
#                self.tr("The extent for processing is not intersected with the input image!"))

#        img_width_in_extent = round(
#            (extent.xMaximum() - extent.xMinimum())/self.res)
#        img_height_in_extent = round(
#            (extent.yMaximum() - extent.yMinimum())/self.res)

#        # Send some information to the user
#        feedback.pushInfo(
#            f'Layer path: {rlayer_data_provider.dataSourceUri()}')
#        # feedback.pushInfo(
#        #     f'Layer band scale: {rlayer_data_provider.bandScale(self.selected_bands[0])}')
#        feedback.pushInfo(f'Layer name: {rlayer.name()}')
#        if rlayer.crs().authid():
#            feedback.pushInfo(f'Layer CRS: {rlayer.crs().authid()}')
#        else:
#            feedback.pushInfo(
#                f'Layer CRS in WKT format: {rlayer.crs().toWkt()}')
#        feedback.pushInfo(
#            f'Layer pixel size: {rlayer.rasterUnitsPerPixelX()}, {rlayer.rasterUnitsPerPixelY()} {layer_units}')

#        feedback.pushInfo(f'Bands selected: {self.selected_bands}')

#        if crs.authid():
#            feedback.pushInfo(f'Target CRS: {crs.authid()}')
#        else:
#            feedback.pushInfo(f'Target CRS in WKT format: {crs.toWkt()}')
#        feedback.pushInfo(f'Target resolution: {self.res} {target_units}')
#        feedback.pushInfo(
#            (f'Processing extent: minx:{extent.xMinimum():.6f}, maxx:{extent.xMaximum():.6f},'
#             f'miny:{extent.yMinimum():.6f}, maxy:{extent.yMaximum():.6f}'))
#        feedback.pushInfo(
#            (f'Processing image size: (width {img_width_in_extent}, '
#             f'height {img_height_in_extent})'))

#        self.rlayer_path = rlayer.dataProvider().dataSourceUri()

#        feedback.pushInfo(f'Selected bands: {self.selected_bands}')

#        ## passing parameters to self once everything has been processed
#        self.extent = extent
#        self.rlayer = rlayer
#        self.crs = crs


#    # used to handle any thread-sensitive cleanup which is required by the algorithm.
#    def postProcessAlgorithm(self, context, feedback) -> Dict[str, Any]:
#        return {}


#    def tr(self, string):
#        """
#        Returns a translatable string with the self.tr() function.
#        """
#        return QCoreApplication.translate('Processing', string)

#    def createInstance(self):
#        return RFAlgorithm()

#    def name(self):
#        """
#        Returns the algorithm name, used for identifying the algorithm. This
#        string should be fixed for the algorithm, and must not be localised.
#        The name should be unique within each provider. Names should contain
#        lowercase alphanumeric characters only and no spaces or other
#        formatting characters.
#        """
#        return 'Random_forest'

#    def displayName(self):
#        """
#        Returns the translated algorithm name, which should be used for any
#        user-visible display of the algorithm name.
#        """
#        return self.tr('Random_forest')

#    def group(self):
#        """
#        Returns the name of the group this algorithm belongs to. This string
#        should be localised.
#        """
#        return self.tr('')