Skip to content
Snippets Groups Projects
triangulate.c 50.9 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
#include "triangulate.h"
#include "adssub.h"
#include <sys/time.h>
#include <string.h>
#include <math.h>
#include <R.h>
#define CROSS_SINE(v0, v1) ((v0).x * (v1).y - (v1).x * (v0).y)
#define LENGTH(v0) (sqrt((v0).x * (v0).x + (v0).y * (v0).y))
#ifdef __STDC__
extern double log2(double);
#else
extern double log2();
#endif

node_t qs[QSIZE];		/* Query structure */
trap_t tr[TRSIZE];		/* Trapezoid structure */
segment_t seg[SEGSIZE];		/* Segment table */

static int q_idx;
static int tr_idx;

static int choose_idx;
static int permute[SEGSIZE];

static monchain_t mchain[TRSIZE]; /* Table to hold all the monotone */
				  /* polygons . Each monotone polygon */
				  /* is a circularly linked list */

static vertexchain_t vert[SEGSIZE]; /* chain init. information. This */
				    /* is used to decide which */
				    /* monotone polygon to split if */
				    /* there are several other */
				    /* polygons touching at the same */
				    /* vertex  */

static int mon[SEGSIZE];	/* contains position of any vertex in */
				/* the monotone chain for the polygon */
static int visited[TRSIZE];
static int chain_idx, op_idx, mon_idx;


static int triangulate_single_polygon(int, int, int, int**);
static int traverse_polygon(int, int, int, int);

/* Function returns TRUE if the trapezoid lies inside the polygon */
static int inside_polygon(t)
     trap_t *t;
{
  int rseg = t->rseg;

  if (t->state == ST_INVALID)
    return 0;

  if ((t->lseg <= 0) || (t->rseg <= 0))
    return 0;

  if (((t->u0 <= 0) && (t->u1 <= 0)) ||
      ((t->d0 <= 0) && (t->d1 <= 0))) /* triangle */
    return (_greater_than(&seg[rseg].v1, &seg[rseg].v0));

  return 0;
}


/* return a new mon structure from the table */
static int newmon()
{
  return ++mon_idx;
}


/* return a new chain element from the table */
static int new_chain_element()
{
  return ++chain_idx;
}


static double get_angle(vp0, vpnext, vp1)
     point_t *vp0;
     point_t *vpnext;
     point_t *vp1;
{
  point_t v0, v1;

  v0.x = vpnext->x - vp0->x;
  v0.y = vpnext->y - vp0->y;

  v1.x = vp1->x - vp0->x;
  v1.y = vp1->y - vp0->y;

  if (CROSS_SINE(v0, v1) >= 0)	/* sine is positive */
    return DOT(v0, v1)/LENGTH(v0)/LENGTH(v1);
  else
    return (-1.0 * DOT(v0, v1)/LENGTH(v0)/LENGTH(v1) - 2);
}


/* (v0, v1) is the new diagonal to be added to the polygon. Find which */
/* chain to use and return the positions of v0 and v1 in p and q */
static int get_vertex_positions(v0, v1, ip, iq)
     int v0;
     int v1;
     int *ip;
     int *iq;
{
  vertexchain_t *vp0, *vp1;
  register int i;
  double angle, temp;
  int tp=0, tq=0;

  vp0 = &vert[v0];
  vp1 = &vert[v1];

  /* p is identified as follows. Scan from (v0, v1) rightwards till */
  /* you hit the first segment starting from v0. That chain is the */
  /* chain of our interest */

  angle = -4.0;
  for (i = 0; i < 4; i++)
    {
      if (vp0->vnext[i] <= 0)
	continue;
      if ((temp = get_angle(&vp0->pt, &(vert[vp0->vnext[i]].pt),
			    &vp1->pt)) > angle)
	{
	  angle = temp;
	  tp = i;
	}
    }

  *ip = tp;

  /* Do similar actions for q */

  angle = -4.0;
  for (i = 0; i < 4; i++)
    {
      if (vp1->vnext[i] <= 0)
	continue;
      if ((temp = get_angle(&vp1->pt, &(vert[vp1->vnext[i]].pt),
			    &vp0->pt)) > angle)
	{
	  angle = temp;
	  tq = i;
	}
    }

  *iq = tq;

  return 0;
}


/* v0 and v1 are specified in anti-clockwise order with respect to
 * the current monotone polygon mcur. Split the current polygon into
 * two polygons using the diagonal (v0, v1)
 */
static int make_new_monotone_poly(mcur, v0, v1)
     int mcur;
     int v0;
     int v1;
{
  int p, q, ip, iq;
  int mnew = newmon();
  int i, j, nf0, nf1;
  vertexchain_t *vp0, *vp1;

  vp0 = &vert[v0];
  vp1 = &vert[v1];

  get_vertex_positions(v0, v1, &ip, &iq);

  p = vp0->vpos[ip];
  q = vp1->vpos[iq];

  /* At this stage, we have got the positions of v0 and v1 in the */
  /* desired chain. Now modify the linked lists */

  i = new_chain_element();	/* for the new list */
  j = new_chain_element();

  mchain[i].vnum = v0;
  mchain[j].vnum = v1;

  mchain[i].next = mchain[p].next;
  mchain[mchain[p].next].prev = i;
  mchain[i].prev = j;
  mchain[j].next = i;
  mchain[j].prev = mchain[q].prev;
  mchain[mchain[q].prev].next = j;

  mchain[p].next = q;
  mchain[q].prev = p;

  nf0 = vp0->nextfree;
  nf1 = vp1->nextfree;

  vp0->vnext[ip] = v1;

  vp0->vpos[nf0] = i;
  vp0->vnext[nf0] = mchain[mchain[i].next].vnum;
  vp1->vpos[nf1] = j;
  vp1->vnext[nf1] = v0;

  vp0->nextfree++;
  vp1->nextfree++;

#ifdef DEBUG
  Rprintf("make_poly: mcur = %d, (v0, v1) = (%d, %d)\n",
	  mcur, v0, v1);
  Rprintf("next posns = (p, q) = (%d, %d)\n", p, q);
#endif

  mon[mcur] = p;
  mon[mnew] = i;
  return mnew;
}

/* Main routine to get monotone polygons from the trapezoidation of
 * the polygon.
 */

int monotonate_trapezoids(n)
     int n;
{
  register int i;
  int tr_start;

  memset((void *)vert, 0, sizeof(vert));
  memset((void *)visited, 0, sizeof(visited));
  memset((void *)mchain, 0, sizeof(mchain));
  memset((void *)mon, 0, sizeof(mon));

  /* First locate a trapezoid which lies inside the polygon */
  /* and which is triangular */
  for (i = 0; i < TRSIZE; i++)
    if (inside_polygon(&tr[i]))
      break;
  tr_start = i;

  /* Initialise the mon data-structure and start spanning all the */
  /* trapezoids within the polygon */

#if 0
  for (i = 1; i <= n; i++)
    {
      mchain[i].prev = i - 1;
      mchain[i].next = i + 1;
      mchain[i].vnum = i;
      vert[i].pt = seg[i].v0;
      vert[i].vnext[0] = i + 1;	/* next vertex */
      vert[i].vpos[0] = i;	/* locn. of next vertex */
      vert[i].nextfree = 1;
    }
  mchain[1].prev = n;
  mchain[n].next = 1;
  vert[n].vnext[0] = 1;
  vert[n].vpos[0] = n;
  chain_idx = n;
  mon_idx = 0;
  mon[0] = 1;			/* position of any vertex in the first */
				/* chain  */

#else

  for (i = 1; i <= n; i++)
    {
      mchain[i].prev = seg[i].prev;
      mchain[i].next = seg[i].next;
      mchain[i].vnum = i;
      vert[i].pt = seg[i].v0;
      vert[i].vnext[0] = seg[i].next; /* next vertex */
      vert[i].vpos[0] = i;	/* locn. of next vertex */
      vert[i].nextfree = 1;
    }

  chain_idx = n;
  mon_idx = 0;
  mon[0] = 1;			/* position of any vertex in the first */
				/* chain  */

#endif

  /* traverse the polygon */
  if (tr[tr_start].u0 > 0)
    traverse_polygon(0, tr_start, tr[tr_start].u0, TR_FROM_UP);
  else if (tr[tr_start].d0 > 0)
    traverse_polygon(0, tr_start, tr[tr_start].d0, TR_FROM_DN);

  /* return the number of polygons created */
  return newmon();
}


/* recursively visit all the trapezoids */
static int traverse_polygon(mcur, trnum, from, dir)
     int mcur;
     int trnum;
     int from;
     int dir;
{
  if ((trnum <= 0) || visited[trnum]) return 0;
  trap_t *t = &tr[trnum];
  int mnew;
  int v0, v1;
  int retval=0;
  int do_switch = FALSE;

  //if ((trnum <= 0) || visited[trnum]) return 0;

  visited[trnum] = TRUE;

  /* We have much more information available here. */
  /* rseg: goes upwards   */
  /* lseg: goes downwards */

  /* Initially assume that dir = TR_FROM_DN (from the left) */
  /* Switch v0 and v1 if necessary afterwards */


  /* special cases for triangles with cusps at the opposite ends. */
  /* take care of this first */
  if ((t->u0 <= 0) && (t->u1 <= 0))
    {
      if ((t->d0 > 0) && (t->d1 > 0)) /* downward opening triangle */
	{
	  v0 = tr[t->d1].lseg;
	  v1 = t->lseg;
	  if (from == t->d1)
	    {
	      do_switch = TRUE;
	      mnew = make_new_monotone_poly(mcur, v1, v0);
	      traverse_polygon(mcur, t->d1, trnum, TR_FROM_UP);
	      traverse_polygon(mnew, t->d0, trnum, TR_FROM_UP);
	    }
	  else
	    {
	      mnew = make_new_monotone_poly(mcur, v0, v1);
	      traverse_polygon(mcur, t->d0, trnum, TR_FROM_UP);
	      traverse_polygon(mnew, t->d1, trnum, TR_FROM_UP);
	    }
	}
      else
	{
	  retval = SP_NOSPLIT;	/* Just traverse all neighbours */
	  traverse_polygon(mcur, t->u0, trnum, TR_FROM_DN);
	  traverse_polygon(mcur, t->u1, trnum, TR_FROM_DN);
	  traverse_polygon(mcur, t->d0, trnum, TR_FROM_UP);
	  traverse_polygon(mcur, t->d1, trnum, TR_FROM_UP);
	}
    }

  else if ((t->d0 <= 0) && (t->d1 <= 0))
    {
      if ((t->u0 > 0) && (t->u1 > 0)) /* upward opening triangle */
	{
	  v0 = t->rseg;
	  v1 = tr[t->u0].rseg;
	  if (from == t->u1)
	    {
	      do_switch = TRUE;
	      mnew = make_new_monotone_poly(mcur, v1, v0);
	      traverse_polygon(mcur, t->u1, trnum, TR_FROM_DN);
	      traverse_polygon(mnew, t->u0, trnum, TR_FROM_DN);
	    }
	  else
	    {
	      mnew = make_new_monotone_poly(mcur, v0, v1);
	      traverse_polygon(mcur, t->u0, trnum, TR_FROM_DN);
	      traverse_polygon(mnew, t->u1, trnum, TR_FROM_DN);
	    }
	}
      else
	{
	  retval = SP_NOSPLIT;	/* Just traverse all neighbours */
	  traverse_polygon(mcur, t->u0, trnum, TR_FROM_DN);
	  traverse_polygon(mcur, t->u1, trnum, TR_FROM_DN);
	  traverse_polygon(mcur, t->d0, trnum, TR_FROM_UP);
	  traverse_polygon(mcur, t->d1, trnum, TR_FROM_UP);
	}
    }

  else if ((t->u0 > 0) && (t->u1 > 0))
    {
      if ((t->d0 > 0) && (t->d1 > 0)) /* downward + upward cusps */
	{
	  v0 = tr[t->d1].lseg;
	  v1 = tr[t->u0].rseg;
	  retval = SP_2UP_2DN;
	  if (((dir == TR_FROM_DN) && (t->d1 == from)) ||
	      ((dir == TR_FROM_UP) && (t->u1 == from)))
	    {
	      do_switch = TRUE;
	      mnew = make_new_monotone_poly(mcur, v1, v0);
	      traverse_polygon(mcur, t->u1, trnum, TR_FROM_DN);
	      traverse_polygon(mcur, t->d1, trnum, TR_FROM_UP);
	      traverse_polygon(mnew, t->u0, trnum, TR_FROM_DN);
	      traverse_polygon(mnew, t->d0, trnum, TR_FROM_UP);
	    }
	  else
	    {
	      mnew = make_new_monotone_poly(mcur, v0, v1);
	      traverse_polygon(mcur, t->u0, trnum, TR_FROM_DN);
	      traverse_polygon(mcur, t->d0, trnum, TR_FROM_UP);
	      traverse_polygon(mnew, t->u1, trnum, TR_FROM_DN);
	      traverse_polygon(mnew, t->d1, trnum, TR_FROM_UP);
	    }
	}
      else			/* only downward cusp */
	{
	  if (_equal_to(&t->lo, &seg[t->lseg].v1))
	    {
	      v0 = tr[t->u0].rseg;
	      v1 = seg[t->lseg].next;

	      retval = SP_2UP_LEFT;
	      if ((dir == TR_FROM_UP) && (t->u0 == from))
		{
		  do_switch = TRUE;
		  mnew = make_new_monotone_poly(mcur, v1, v0);
		  traverse_polygon(mcur, t->u0, trnum, TR_FROM_DN);
		  traverse_polygon(mnew, t->d0, trnum, TR_FROM_UP);
		  traverse_polygon(mnew, t->u1, trnum, TR_FROM_DN);
		  traverse_polygon(mnew, t->d1, trnum, TR_FROM_UP);
		}
	      else
		{
		  mnew = make_new_monotone_poly(mcur, v0, v1);
		  traverse_polygon(mcur, t->u1, trnum, TR_FROM_DN);
		  traverse_polygon(mcur, t->d0, trnum, TR_FROM_UP);
		  traverse_polygon(mcur, t->d1, trnum, TR_FROM_UP);
		  traverse_polygon(mnew, t->u0, trnum, TR_FROM_DN);
		}
	    }
	  else
	    {
	      v0 = t->rseg;
	      v1 = tr[t->u0].rseg;
	      retval = SP_2UP_RIGHT;
	      if ((dir == TR_FROM_UP) && (t->u1 == from))
		{
		  do_switch = TRUE;
		  mnew = make_new_monotone_poly(mcur, v1, v0);
		  traverse_polygon(mcur, t->u1, trnum, TR_FROM_DN);
		  traverse_polygon(mnew, t->d1, trnum, TR_FROM_UP);
		  traverse_polygon(mnew, t->d0, trnum, TR_FROM_UP);
		  traverse_polygon(mnew, t->u0, trnum, TR_FROM_DN);
		}
	      else
		{
		  mnew = make_new_monotone_poly(mcur, v0, v1);
		  traverse_polygon(mcur, t->u0, trnum, TR_FROM_DN);
		  traverse_polygon(mcur, t->d0, trnum, TR_FROM_UP);
		  traverse_polygon(mcur, t->d1, trnum, TR_FROM_UP);
		  traverse_polygon(mnew, t->u1, trnum, TR_FROM_DN);
		}
	    }
	}
    }
  else if ((t->u0 > 0) || (t->u1 > 0)) /* no downward cusp */
    {
      if ((t->d0 > 0) && (t->d1 > 0)) /* only upward cusp */
	{
	  if (_equal_to(&t->hi, &seg[t->lseg].v0))
	    {
	      v0 = tr[t->d1].lseg;
	      v1 = t->lseg;
	      retval = SP_2DN_LEFT;
	      if (!((dir == TR_FROM_DN) && (t->d0 == from)))
		{
		  do_switch = TRUE;
		  mnew = make_new_monotone_poly(mcur, v1, v0);
		  traverse_polygon(mcur, t->u1, trnum, TR_FROM_DN);
		  traverse_polygon(mcur, t->d1, trnum, TR_FROM_UP);
		  traverse_polygon(mcur, t->u0, trnum, TR_FROM_DN);
		  traverse_polygon(mnew, t->d0, trnum, TR_FROM_UP);
		}
	      else
		{
		  mnew = make_new_monotone_poly(mcur, v0, v1);
		  traverse_polygon(mcur, t->d0, trnum, TR_FROM_UP);
		  traverse_polygon(mnew, t->u0, trnum, TR_FROM_DN);
		  traverse_polygon(mnew, t->u1, trnum, TR_FROM_DN);
		  traverse_polygon(mnew, t->d1, trnum, TR_FROM_UP);
		}
	    }
	  else
	    {
	      v0 = tr[t->d1].lseg;
	      v1 = seg[t->rseg].next;

	      retval = SP_2DN_RIGHT;
	      if ((dir == TR_FROM_DN) && (t->d1 == from))
		{
		  do_switch = TRUE;
		  mnew = make_new_monotone_poly(mcur, v1, v0);
		  traverse_polygon(mcur, t->d1, trnum, TR_FROM_UP);
		  traverse_polygon(mnew, t->u1, trnum, TR_FROM_DN);
		  traverse_polygon(mnew, t->u0, trnum, TR_FROM_DN);
		  traverse_polygon(mnew, t->d0, trnum, TR_FROM_UP);
		}
	      else
		{
		  mnew = make_new_monotone_poly(mcur, v0, v1);
		  traverse_polygon(mcur, t->u0, trnum, TR_FROM_DN);
		  traverse_polygon(mcur, t->d0, trnum, TR_FROM_UP);
		  traverse_polygon(mcur, t->u1, trnum, TR_FROM_DN);
		  traverse_polygon(mnew, t->d1, trnum, TR_FROM_UP);
		}
	    }
	}
      else			/* no cusp */
	{
	  if (_equal_to(&t->hi, &seg[t->lseg].v0) &&
	      _equal_to(&t->lo, &seg[t->rseg].v0))
	    {
	      v0 = t->rseg;
	      v1 = t->lseg;
	      retval = SP_SIMPLE_LRDN;
	      if (dir == TR_FROM_UP)
		{
		  do_switch = TRUE;
		  mnew = make_new_monotone_poly(mcur, v1, v0);
		  traverse_polygon(mcur, t->u0, trnum, TR_FROM_DN);
		  traverse_polygon(mcur, t->u1, trnum, TR_FROM_DN);
		  traverse_polygon(mnew, t->d1, trnum, TR_FROM_UP);
		  traverse_polygon(mnew, t->d0, trnum, TR_FROM_UP);
		}
	      else
		{
		  mnew = make_new_monotone_poly(mcur, v0, v1);
		  traverse_polygon(mcur, t->d1, trnum, TR_FROM_UP);
		  traverse_polygon(mcur, t->d0, trnum, TR_FROM_UP);
		  traverse_polygon(mnew, t->u0, trnum, TR_FROM_DN);
		  traverse_polygon(mnew, t->u1, trnum, TR_FROM_DN);
		}
	    }
	  else if (_equal_to(&t->hi, &seg[t->rseg].v1) &&
		   _equal_to(&t->lo, &seg[t->lseg].v1))
	    {
	      v0 = seg[t->rseg].next;
	      v1 = seg[t->lseg].next;

	      retval = SP_SIMPLE_LRUP;
	      if (dir == TR_FROM_UP)
		{
		  do_switch = TRUE;
		  mnew = make_new_monotone_poly(mcur, v1, v0);
		  traverse_polygon(mcur, t->u0, trnum, TR_FROM_DN);
		  traverse_polygon(mcur, t->u1, trnum, TR_FROM_DN);
		  traverse_polygon(mnew, t->d1, trnum, TR_FROM_UP);
		  traverse_polygon(mnew, t->d0, trnum, TR_FROM_UP);
		}
	      else
		{
		  mnew = make_new_monotone_poly(mcur, v0, v1);
		  traverse_polygon(mcur, t->d1, trnum, TR_FROM_UP);
		  traverse_polygon(mcur, t->d0, trnum, TR_FROM_UP);
		  traverse_polygon(mnew, t->u0, trnum, TR_FROM_DN);
		  traverse_polygon(mnew, t->u1, trnum, TR_FROM_DN);
		}
	    }
	  else			/* no split possible */
	    {
	      retval = SP_NOSPLIT;
	      traverse_polygon(mcur, t->u0, trnum, TR_FROM_DN);
	      traverse_polygon(mcur, t->d0, trnum, TR_FROM_UP);
	      traverse_polygon(mcur, t->u1, trnum, TR_FROM_DN);
	      traverse_polygon(mcur, t->d1, trnum, TR_FROM_UP);
	    }
	}
    }

  return retval;
}


/* For each monotone polygon, find the ymax and ymin (to determine the */
/* two y-monotone chains) and pass on this monotone polygon for greedy */
/* triangulation. */
/* Take care not to triangulate duplicate monotone polygons */

int triangulate_monotone_polygons(nvert, nmonpoly, op)
     int nvert;
     int nmonpoly;
     int **op;
{
  register int i;
  point_t ymax, ymin;
  int p, vfirst, posmax, posmin, v;
  int vcount, processed;

#ifdef DEBUG
  for (i = 0; i < nmonpoly; i++)
    {
      Rprintf("\n\nPolygon %d: ", i);
      vfirst = mchain[mon[i]].vnum;
      p = mchain[mon[i]].next;
      Rprintf ("%d ", mchain[mon[i]].vnum);
      while (mchain[p].vnum != vfirst)
	{
	  Rprintf("%d ", mchain[p].vnum);
	  p = mchain[p].next;
	}
    }
  Rprintf("\n");
#endif

  op_idx = 0;
  for (i = 0; i < nmonpoly; i++)
    {
      vcount = 1;
      processed = FALSE;
      vfirst = mchain[mon[i]].vnum;
      ymax = ymin = vert[vfirst].pt;
      posmax = posmin = mon[i];
      mchain[mon[i]].marked = TRUE;
      p = mchain[mon[i]].next;
      while ((v = mchain[p].vnum) != vfirst)
	{
	 if (mchain[p].marked)
	   {
	     processed = TRUE;
	     break;		/* break from while */
	   }
	 else
	   mchain[p].marked = TRUE;

	  if (_greater_than(&vert[v].pt, &ymax))
	    {
	      ymax = vert[v].pt;
	      posmax = p;
	    }
	  if (_less_than(&vert[v].pt, &ymin))
	    {
	      ymin = vert[v].pt;
	      posmin = p;
	    }
	  p = mchain[p].next;
	  vcount++;
       }

      if (processed)		/* Go to next polygon */
	continue;

      if (vcount == 3)		/* already a triangle */
	{
	  op[op_idx][0] = mchain[p].vnum;
	  op[op_idx][1] = mchain[mchain[p].next].vnum;
	  op[op_idx][2] = mchain[mchain[p].prev].vnum;
	  op_idx++;
	}
      else			/* triangulate the polygon */
	{
	  v = mchain[mchain[posmax].next].vnum;
	  if (_equal_to(&vert[v].pt, &ymin))
	    {			/* LHS is a single line */
	      triangulate_single_polygon(nvert, posmax, TRI_LHS, op);
	    }
	  else
	    triangulate_single_polygon(nvert, posmax, TRI_RHS, op);
	}
    }

#ifdef DEBUG
  for (i = 0; i < op_idx; i++)
    Rprintf("tri #%d: (%d, %d, %d)\n", i, op[i][0], op[i][1],
	   op[i][2]);
#endif
  return op_idx;
}


/* A greedy corner-cutting algorithm to triangulate a y-monotone
 * polygon in O(n) time.
 * Joseph O-Rourke, Computational Geometry in C.
 */
static int triangulate_single_polygon(nvert, posmax, side, op)
     int nvert;
     int posmax;
     int side;
     int **op;
{
  register int v;
  int rc[SEGSIZE], ri = 0;	/* reflex chain */
  int endv, tmp, vpos;

  if (side == TRI_RHS)		/* RHS segment is a single segment */
    {
      rc[0] = mchain[posmax].vnum;
      tmp = mchain[posmax].next;
      rc[1] = mchain[tmp].vnum;
      ri = 1;

      vpos = mchain[tmp].next;
      v = mchain[vpos].vnum;

      if ((endv = mchain[mchain[posmax].prev].vnum) == 0)
	endv = nvert;
    }
  else				/* LHS is a single segment */
    {
      tmp = mchain[posmax].next;
      rc[0] = mchain[tmp].vnum;
      tmp = mchain[tmp].next;
      rc[1] = mchain[tmp].vnum;
      ri = 1;

      vpos = mchain[tmp].next;
      v = mchain[vpos].vnum;

      endv = mchain[posmax].vnum;
    }

  while ((v != endv) || (ri > 1))
    {
      if (ri > 0)		/* reflex chain is non-empty */
	{
	  if (CROSS(vert[v].pt, vert[rc[ri - 1]].pt,
		    vert[rc[ri]].pt) > 0)
	    {			/* convex corner: cut if off */
	      op[op_idx][0] = rc[ri - 1];
	      op[op_idx][1] = rc[ri];
	      op[op_idx][2] = v;
	      op_idx++;
	      ri--;
	    }
	  else		/* non-convex */
	    {		/* add v to the chain */
	      ri++;
	      rc[ri] = v;
	      vpos = mchain[vpos].next;
	      v = mchain[vpos].vnum;
	    }
	}
      else			/* reflex-chain empty: add v to the */
	{			/* reflex chain and advance it  */
	  rc[++ri] = v;
	  vpos = mchain[vpos].next;
	  v = mchain[vpos].vnum;
	}
    } /* end-while */

  /* reached the bottom vertex. Add in the triangle formed */
  op[op_idx][0] = rc[ri - 1];
  op[op_idx][1] = rc[ri];
  op[op_idx][2] = v;
  op_idx++;
  ri--;

  return 0;
}


/*teste le sens du polygone*/
int testclock(double *x,double *y,int last) {
	double ymi;
	int i,rang;
	double d,ang1,ang2;

	ymi=y[1];
	rang=1;
	for(i=1;i<=last;i++)
	{	if(y[i]<ymi)
		{	ymi=y[i];
			rang=i;
		}
	}

	if(rang==1)
	{	d=sqrt((x[1]-x[last])*(x[1]-x[last])+(y[1]-y[last])*(y[1]-y[last]));
		ang1=bacos((x[1]-x[last])/d);

		d=sqrt((x[1]-x[2])*(x[1]-x[2])+(y[1]-y[2])*(y[1]-y[2]));
		ang2=bacos((x[1]-x[2])/d);
	}
	else if(rang==last)
	{	d=sqrt((x[last]-x[last-1])*(x[last]-x[last-1])+(y[last]-y[last-1])*(y[last]-y[last-1]));
		ang1=bacos((x[last]-x[last-1])/d);

		d=sqrt((x[last]-x[1])*(x[last]-x[1])+(y[last]-y[1])*(y[last]-y[1]));
		ang2=bacos((x[last]-x[1])/d);
	}
	else
	{	d=sqrt((x[rang]-x[rang-1])*(x[rang]-x[rang-1])+(y[rang]-y[rang-1])*(y[rang]-y[rang-1]));
		ang1=bacos((x[rang]-x[rang-1])/d);

		d=sqrt((x[rang]-x[rang+1])*(x[rang]-x[rang+1])+(y[rang]-y[rang+1])*(y[rang]-y[rang+1]));
		ang2=bacos((x[rang]-x[rang+1])/d);
	}

	if (ang1>ang2) return 1; /*clockwise order*/
	else return 0; /*anti-clockwise order*/
}


/* Generate a random permutation of the segments 1..n */
/*int generate_random_ordering(int n) {	
	int lig, i,j, k;
	double z;
	choose_idx = 1;
	for (i = 1; i <= n; i++)
		permute[i]=i;
	lig = permute[0];
	for (i=1; i<=lig-1; i++)
	{	j=lig-i+1;
		k = (int) (j*alea()+1);
		if (k>j) k=j;
		z = permute[j];
		permute[j]=permute[k];
		permute[k] = z;
	}
	return 0;
}*/
int generate_random_ordering(int n) {	
	int lig, i,j, k;
	double z;
	GetRNGstate();
	choose_idx = 1;
	for (i = 1; i <= n; i++)
		permute[i]=i;
	lig = permute[0];
	for (i=1; i<=lig-1; i++)
	{	j=lig-i+1;
		k = (int) (j*unif_rand()+1);
		if (k>j) k=j;
		z = permute[j];
		permute[j]=permute[k];
		permute[k] = z;
	}
	PutRNGstate();
	return 0;
}

/* Return the next segment in the generated random ordering of all the */
/* segments in S */
int choose_segment() {
#ifdef DEBUG
  Rprintf("choose_segment: %d\n", permute[choose_idx]);
#endif
  return permute[choose_idx++];
}

#ifdef STANDALONE
/* Read in the list of vertices from infile */
int read_segments(filename, genus)
     char *filename;
     int *genus;
{
  FILE *infile;
  int ccount;
  register int i;
  int ncontours, npoints, first, last;

  if ((infile = fopen(filename, "r")) == NULL)
    {
      perror(filename);
      return -1;
    }

  fscanf(infile, "%d", &ncontours);
  if (ncontours <= 0)
    return -1;

  /* For every contour, read in all the points for the contour. The */
  /* outer-most contour is read in first (points specified in */
  /* anti-clockwise order). Next, the inner contours are input in */
  /* clockwise order */

  ccount = 0;
  i = 1;

  while (ccount < ncontours)
    {
      int j;

      fscanf(infile, "%d", &npoints);
      first = i;
      last = first + npoints - 1;
      for (j = 0; j < npoints; j++, i++)
	{
	  fscanf(infile, "%lf%lf", &seg[i].v0.x, &seg[i].v0.y);
	  if (i == last)
	    {
	      seg[i].next = first;
	      seg[i].prev = i-1;
	      seg[i-1].v1 = seg[i].v0;
	    }
	  else if (i == first)
	    {
	      seg[i].next = i+1;
	      seg[i].prev = last;
	      seg[last].v1 = seg[i].v0;
	    }
	  else
	    {
	      seg[i].prev = i-1;
	      seg[i].next = i+1;
	      seg[i-1].v1 = seg[i].v0;
	    }

	  seg[i].is_inserted = FALSE;
	}

      ccount++;
    }

  *genus = ncontours - 1;
  return i-1;
}

#endif


/* Get log*n for given n */
int math_logstar_n(n)
     int n;
{
  register int i;
  double v;

  for (i = 0, v = (double) n; v >= 1; i++)
    v = log2(v);

  return (i - 1);
}


int math_N(n, h)
     int n;
     int h;
{
  register int i;
  double v;

  for (i = 0, v = (int) n; i < h; i++)
    v = log2(v);

  return (int) ceil((double) 1.0*n/v);
}


/* Return a new node to be added into the query tree */
static int newnode()
{
  if (q_idx < QSIZE)
    return q_idx++;
  else
    {
      Rprintf("newnode: Query-table overflow\n");
      return -1;
    }
}

/* Return a free trapezoid */
static int newtrap()
{
  if (tr_idx < TRSIZE)
    {
      tr[tr_idx].lseg = -1;
      tr[tr_idx].rseg = -1;
      tr[tr_idx].state = ST_VALID;
      return tr_idx++;
    }
  else
    {
      Rprintf("newtrap: Trapezoid-table overflow\n");
      return -1;
    }
}


/* Return the maximum of the two points into the yval structure */
static int _max(yval, v0, v1)
     point_t *yval;
     point_t *v0;
     point_t *v1;
{
  if (v0->y > v1->y + C_EPS)
    *yval = *v0;
  else if (FP_EQUAL(v0->y, v1->y))
    {
      if (v0->x > v1->x + C_EPS)
	*yval = *v0;
      else
	*yval = *v1;
    }
  else
    *yval = *v1;

  return 0;
}


/* Return the minimum of the two points into the yval structure */
static int _min(yval, v0, v1)
     point_t *yval;
     point_t *v0;
     point_t *v1;