Skip to content
Snippets Groups Projects
Select Git revision
  • da5b6f6324312090dc5a9fee94d0ee0fd1ff2918
  • main default protected
  • multiannot
  • syntegroup
  • inferences
  • 1.0.2
  • 1.0.1
  • 1.0.0
8 results

Functions.py

Blame
  • lib_era5_land_pixel.py 36.99 KiB
    # -*- coding: UTF-8 -*-
    # Python
    """
    Functions to call ECMWF Reanalysis with CDS-api
    
    - ERA5-land daily request
    - request a list of daily variables dedicated to the calculus of ET0
     and the generation of MODSPA daily forcing files
     
     heavily modified from @rivallandv's original file
    
    @author: auclairj
    """
    
    import os  # for path exploration and file management
    from typing import List, Tuple  # to declare variables
    import numpy as np  # for math on arrays
    import xarray as xr  # to manage nc files
    from datetime import datetime  # to manage dates
    from p_tqdm import p_map  # for multiprocessing with progress bars
    from dateutil.rrule import rrule, MONTHLY
    from fnmatch import fnmatch  # for file name matching
    import pandas as pd  # to manage dataframes
    import rasterio  as rio  # to manage geotiff images
    import geopandas as gpd  # to manage shapefile crs projections
    from rasterio.mask import mask  # to mask images
    from shapely.geometry import box  # to extract parcel statistics
    import netCDF4 as nc  # to write netcdf4 files
    from tqdm import tqdm  # to follow progress
    from multiprocessing import Pool  # to parallelize reprojection
    from psutil import virtual_memory  # to check available ram
    from modspa_pixel.config.config import config  # to import config file
    from modspa_pixel.source.modspa_samir import calculate_time_slices_to_load  # to optimise I/O operations
    import re  # for string comparison
    import warnings  # to suppress pandas warning
    
    # CDS API external library
    # source: https://pypi.org/project/cdsapi/
    import cdsapi  # to download cds data
    import requests  # to request data
    
    # FAO ET0 calculator external library
    # Notes
    # source: https://github.com/Evapotranspiration/ETo
    # documentation: https://eto.readthedocs.io/en/latest/
    import eto  # to calculate ET0
    
    
    def era5_enclosing_shp_aera(area: List[float], pas: float) -> Tuple[float, float, float, float]:
        """
        Find the four coordinates including the boxbound scene
        to agree with gridsize resolution
        system projection: WGS84 lat/lon degree
       
        Arguments
        =========
           
        1. area: ``List[float]``
            bounding box of the demanded area
            list of floats: [lat north, lon west, lat south, lon east] in degree WGS84
        2. pas: ``float``
            gridsize
            
        Returns
        =======
        
        1. era5_area: ``Tuple[float, float, float, float]``
            coordinates list corresponding to N,W,S,E corners of the grid in decimal degree
            
        .. note:: 
        
            gdal coordinates reference upper left corner of pixel, ERA5 coordinates refere to center of grid. To resolve this difference an offset of pas/2 is applied
            
        """
        
        lat_max, lon_min, lat_min, lon_max = area
    
        # North
        era5_lat_max = round((lat_max//pas+2)*pas, 2)
        # West
        era5_lon_min = round((lon_min//pas)*pas, 2)
        # South
        era5_lat_min = round((lat_min//pas)*pas, 2)
        # Est
        era5_lon_max = round((lon_max//pas+2)*pas, 2)
    
        era5_area = era5_lat_max, era5_lon_min, era5_lat_min, era5_lon_max
    
        return era5_area  # [N,W,S,E]
    
    
    def call_era5land_daily(args: Tuple[str, str, str, str, List[int], str]) -> None:
        """
        Query of one month of daily ERA5-land data of a selected variable
        according to a selected statistic
    
        Documentation:
        `cds_climate <https://datastore.copernicus-climate.eu/documents/app-c3s-daily-era5-statistics/C3S_Application-Documentation_ERA5-daily-statistics-v2.pdf>`_
    
    
        Arguments
        =========
        
        (packed in args: ``tuple``)
        
        1. year: ``str``
            year at YYYY format.
        2. month: ``str``
            month at MM format.
        3. variable: ``str``
            user-selectable variable
            cf. Appendix A Table 3 for list of input variables availables.
        4. statistic: ``str``
            daily statistic choosed, 3 possibility
            daily_mean or daily_minimum or daily_maximum.
        5. area: ``List[int]``
            bounding box of the demanded area
            area = [lat_max, lon_min, lat_min, lon_max]
        6. output_path: ``str``
            path for output file.
    
        Returns
        =======
        
        ``None``
        """
        year, month, variable, statistic, area, output_path = args
        
        # set name of output file for each month (statistic, variable, year, month)
        output_filename = \
            output_path+os.sep +\
            "ERA5-land_"+year+"_"+month+"_"+variable+"_"+statistic+".nc"
    
        if os.path.isfile(output_filename):
            print(output_filename, ' already exist')
        else:
            try:
    
                c = cdsapi.Client(timeout=300)
    
                result = c.service("tool.toolbox.orchestrator.workflow",
                                   params={
                                       "realm": "c3s",
                                       "project": "app-c3s-daily-era5-statistics",
                                       "version": "master",
                                       "kwargs": {
                                           "dataset": "reanalysis-era5-land",
                                           "product_type": "reanalysis",
                                           "variable": variable,
                                           "statistic": statistic,
                                           "year": year,
                                           "month": month,
                                           "time_zone": "UTC+00:0",
                                           "frequency": "1-hourly",
                                           "grid": "0.1/0.1",
                                           "area": {"lat": [area[2], area[0]],
                                                    "lon": [area[1], area[3]]}
                                       },
                                       "workflow_name": "application"
                                   })
    
                location = result[0]['location']
                res = requests.get(location, stream=True)
                print("Writing data to " + output_filename)
                with open(output_filename, 'wb') as fh:
                    for r in res.iter_content(chunk_size=1024):
                        fh.write(r)
                fh.close()
            except:
                print('!! request', variable, '  failed !! -> year', year, 'month', month)
                
        return None
    
    
    def call_era5land_daily_for_MODSPA(start_date: str, end_date: str, area: List[float], output_path: str, processes: int = 9) -> None:
        """
        request ERA5-land daily variables needed for ET0 calculus and MODSPA forcing
        `reanalysis_era5  <https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview>`_
    
        Information on requested variables
        ----------------------------------
        
        called land surface variables :
            * **2m_temperature**
            * **2m_dewpoint_temperature**
            * **surface_solar_radiation_downward**
            * **surface_net_solar_radiation**
            * **surface_pressure**
            * **mean_sea_level_pressure**
            * **potential_evaporation**
            * **evaporation**
            * **total_evaporation**
            * **total_precipitation**
            * **snowfall**
            * **10m_u_component_of_wind**
            * **10m_v_component_of_wind**
    
        Arguments
        =========
        
        1. start_date: ``str``
            start date in YYYY-MM-DD format
        2. end_date: ``str``
            end date in YYYY-MM-DD format
        3. area: ``List[float]``
            bounding box of the demanded area
            area = [lat_max, lon_min, lat_min, lon_max]
        4. output_path: ``str``
            output file name, ``.nc`` extension
        5. processes: ``int`` ``default = 9``
            number of logical processors on which to run the download command.
            can be higher than your actual number of processor cores,
            download operations have a low CPU demand.
    
        Returns
        =======
        
        ``None``
        """
    
        # list of first day of each month date into period
        strt_dt = datetime.strptime(start_date, '%Y-%m-%d').replace(day=1)
        end_dt = datetime.strptime(end_date, '%Y-%m-%d').replace(day=1)
    
        periods = [dt for dt in rrule(
            freq=MONTHLY, dtstart=strt_dt, until=end_dt, bymonthday=1)]
    
        dico = {
            '2m_temperature': ['daily_minimum', 'daily_maximum'],
            '10m_u_component_of_wind': ['daily_mean'],
            '10m_v_component_of_wind': ['daily_mean'],
            'total_precipitation': ['daily_mean'],
            'surface_solar_radiation_downwards': ['daily_mean'],
            '2m_dewpoint_temperature': ['daily_minimum', 'daily_maximum']
        }
    
        args = []
        
        # loop on variable to upload
        for variable in dico.keys():
            # loop on statistic associated to variable to upload
            for statistic in dico[variable]:
                # loop on year and month
                for dt in periods:
                    year = str(dt.year)
                    month = '0'+str(dt.month)
                    month = month[-2:]
                    # Requete ERA5-land
                    args.append((year, month, variable, statistic, area, output_path))
                    
        # Start pool
        p_map(call_era5land_daily, args, **{"num_cpus": processes})
        
        return None
    
    
    def filename_to_datetime(filename: str) -> datetime.date:
        """
        filename_to_datetime returns a ``datetime.date`` object for the date of the given file name.
    
        Arguments
        =========
    
        1. filename: ``str``
            name or path of the product
    
        Returns
        =======
    
        1. date: ``datetime.date``
            datetime.date object, date of the product
        """
    
        # Search for a date pattern (yyyy_mm_dd) in the product name or path
        match = re.search('\d{4}_\d{2}', filename)
        format = '%Y_%m'
        datetime_object = datetime.strptime(match[0], format)
        return datetime_object.date()
    
    
    def concat_monthly_nc_file(list_era5land_monthly_files: List[str], list_variables: List[str], output_path: str) -> List[str]:
        """
        Concatenate monthly netcdf datasets into a single file for each given variable.
    
        Arguments
        =========
    
        1. list_era5land_monthly_files: ``List[str]``
            list of daily files per month
        2. list_variables: ``List[str]``
            names of the required variables as written in the filename
        3. output_path: ``List[str]``
            path to which save the aggregated files
    
        Returns
        =======
    
        1. list_era5land_files: ``List[str]``
            the list of paths to the aggregated files
        """
        
        if not os.path.exists(output_path): os.mkdir(output_path)
        
        list_era5land_monthly_files.sort()
        
        list_era5land_files = []
        
        # concatenate all dates into a single file for each variable
        for variable in list_variables:
            curr_var_list = []
            dates = []
            for file in list_era5land_monthly_files:
                # find specific variable
                if fnmatch(file, '*' + variable + '*'):
                    curr_var_list.append(file)
                    dates.append(filename_to_datetime(file))
            
            curr_datasets = []
            for file in curr_var_list:
                # open all months for the given variable
                curr_datasets.append(xr.open_dataset(file))
    
            # Create file name
            try:
                concatenated_file = output_path + os.sep + 'era5-land_' + dates[0].strftime('%m-%Y') + '_' + dates[-1].strftime('%m-%Y') + '_' + variable + '.nc'
            except:
                print(variable)
            
            # Concatenate monthly datasets
            concatenated_dataset = xr.concat(curr_datasets, dim = 'time')
            
            # Save datasets
            concatenated_dataset.to_netcdf(path = concatenated_file, mode = 'w',)
            
            # Add filename to output list
            list_era5land_files.append(concatenated_file)
        
        return list_era5land_files
    
    
    def uz_to_u2(u_z: List[float], h: float) -> List[float]:
        """
        The wind speed measured at heights other than 2 m can be adjusted according
        to the follow equation
    
        Arguments
        ----------
        u_z : TYPE float array
            measured wind speed z m above the ground surface, ms- 1.
        h : TYPE float
            height of the measurement above the ground surface, m.
    
        Returns
        -------
        u2 : TYPE float array
            average daily wind speed in meters per second (ms- 1 ) measured at 2 m above the ground.
        """
    
        u2 = u_z*4.87/(np.log(67.8*h - 5.42))
        return u2
    
    
    def ea_calc(T: float) -> float:
        """
        comments
        Actual vapour pressure (ea) derived from dewpoint temperature '
        
        Arguments
        ----------
        T : Temperature in degree celsius.
    
        Returns
        -------
        e_a :the actual Vapour pressure in Kpa
        """
    
        e_a = 0.6108*np.exp(17.27*T/(T+237.15))
        return e_a
    
    
    def load_variable(file_name: str) -> xr.Dataset:
        """
        Loads an ERA5 meteorological variable into a xarray
        dataset according to the modspa architecture.
    
        Arguments
        =========
    
        1. file_name: ``str``
            netcdf file to load
    
        Returns
        =======
    
        1. variable: ``xr.Dataset``
            output xarray dataset
        """
        
        # Rename temperature variables according to the statistic (max or min)
        if fnmatch(file_name, '*era5-land*2m_temperature_daily_maximum*'):  # maximum temperature
            variable = xr.open_dataset(file_name).rename({'t2m': 't2m_max'}).drop_vars('realization')  # netcdfs from ERA5 carry an unecessary 'realization' coordinate, so it is dropped 
            
        elif fnmatch(file_name, '*era5-land*2m_temperature_daily_minimum*'):  # minimum temperature
            variable = xr.open_dataset(file_name).rename({'t2m': 't2m_min'}).drop_vars('realization')
            
        elif fnmatch(file_name, '*era5-land*2m_dewpoint_temperature_daily_maximum*'):  # maximum dewpoint temperature
            variable = xr.open_dataset(file_name).rename({'d2m': 'd2m_max'}).drop_vars('realization')
            
        elif fnmatch(file_name, '*era5-land*2m_dewpoint_temperature_daily_minimum*'):  # minimum temperature
            variable = xr.open_dataset(file_name).rename({'d2m': 'd2m_min'}).drop_vars('realization')
            
        # Other variables can be loaded without modification
        else:
            variable = xr.open_dataset(file_name).drop_vars('realization')
        
        return variable
    
    
    def combine_weather2netcdf(rain_file: str, ET0_tile: str, ndvi_path: str, save_path: str, available_ram: int) -> None:
        """
        Convert the Rain and ET0 geotiffs into a single weather netcdf dataset.
    
        Arguments
        =========
    
        1. rain_file: ``str``
            path to Rain tif
        2. ET0_tile: ``str``
            path to ET0 tif
        3. ndvi_path: ``str``
            path to ndvi cube
        4. save_path: ``str``
            save path of weather netcdf dataset
        5. available_ram: ``int``
            available ram in GiB for conversion
    
        Returns
        =======
    
        ``None``
        """
        
        # Open tif files
        rain_tif = rio.open(rain_file)
        ET0_tif = rio.open(ET0_tile)
        
        # Open ndvi netcdf to get structure
        ndvi = xr.open_dataset(ndvi_path)
        
        # Create empty dataset with same structure
        weather = ndvi.drop_vars(['NDVI']).copy(deep = True)
        
        weather['Rain'] = (ndvi.dims, np.zeros(tuple(ndvi.dims[d] for d in list(ndvi.dims)), dtype = np.uint16))
        weather['Rain'].attrs['units'] = 'mm'
        weather['Rain'].attrs['standard_name'] = 'total_precipitation'
        weather['Rain'].attrs['description'] = 'Accumulated daily precipitation in mm'
        weather['Rain'].attrs['scale factor'] = '1000'
    
        weather['ET0'] = (ndvi.dims, np.zeros(tuple(ndvi.dims[d] for d in list(ndvi.dims)), dtype = np.uint16))
        weather['ET0'].attrs['units'] = 'mm'
        weather['ET0'].attrs['standard_name'] = 'Transpiration'
        weather['ET0'].attrs['description'] = 'Accumulated daily reference evapotranspiration in mm'
        weather['ET0'].attrs['scale factor'] = '1000'
        
        # Create encoding dictionnary
        for variable in list(weather.keys()):
            # Write encoding dict
            encoding_dict = {}
            encod = {}
            encod['dtype'] = 'u2'
            encod['_FillValue'] = 0
            file_chunksize = (1, ndvi.dims['y'], ndvi.dims['x'])
            encod['chunksizes'] = file_chunksize
            # TODO: check if compression affects calculation speed
            encod['zlib'] = True
            encod['complevel'] = 1
            encoding_dict[variable] = encod
    
        # Save empty output
        print('\nWriting empty weather dataset...')
        weather.to_netcdf(save_path, encoding=encoding_dict)
        weather.close()
    
        # Get geotiff dimensions (time, x, y)
        dims = (rain_tif.count, rain_tif.height, rain_tif.width)
        
        # Determine the memory requirement of operation
        nb_bits = 2  # int16
        nb_vars = 1  # one variable written at a time
        memory_requirement = ((dims[0] * dims[1] * dims[2]) * nb_vars * nb_bits) / (1024**3)  # in GiB
        security_factor = 0.8  # it is difficult to estimate true memory usage with compression algorithms, apply a security factor to prevent memory overload
        
        # Get the number of time bands that can be loaded at once
        time_slice, remainder, already_written = calculate_time_slices_to_load(memory_requirement, dims[0], security_factor, available_ram)
        
        print('\nApproximate memory requirement of conversion:', round(memory_requirement, 3), 'GiB\nAvailable memory:', available_ram, 'GiB\n\nLoading blocks of', time_slice, 'time bands.\n')
        
        # Open empty dataset
        weather = nc.Dataset(save_path, mode = 'r+')
        
        # Create progress bar
        progress_bar = tqdm(total = dims[0], desc='Writing weather data', unit=' bands')
    
        # Data variables
        for i in range(dims[0]):
            
            if time_slice == dims[0] and not already_written:  # if whole dataset fits in memory and it has not already been loaded
                
                weather.variables['Rain'][:,:,:] = rain_tif.read()
                weather.variables['ET0'][:,:,:] = ET0_tif.read()
                already_written = True
            
            elif i % time_slice == 0 and not already_written:  # load a time slice every time i is divisible by the size of the time slice
                if i + time_slice <= dims[0]:  # if the time slice does not gow over the dataset size
                    
                    weather.variables['Rain'][i: i + time_slice, :, :] = rain_tif.read(tuple(k+1 for k in range(i, i + time_slice)))
                    weather.variables['ET0'][i: i + time_slice, :, :] = ET0_tif.read(tuple(k+1 for k in range(i, i + time_slice)))
                
                else:  # load the remainder when the time slice would go over the dataset size
                    
                    weather.variables['Rain'][i: i + remainder, :, :] = rain_tif.read(tuple(k+1 for k in range(i, i + remainder)))
                    weather.variables['ET0'][i: i + remainder, :, :] = ET0_tif.read(tuple(k+1 for k in range(i, i + remainder)))
            
            progress_bar.update()
        
        progress_bar.close()
    
        rain_tif.close()
        ET0_tif.close()
        weather.close()
        
        return None
    
    
    def calculate_ET0_pixel(pixel_dataset: xr.Dataset, lat: float, lon: float, h: float = 10) -> np.ndarray:
        """
        Calculate ET0 over the year for a single pixel of the ERA5 weather dataset.
    
        Arguments
        =========
    
        1. pixel_dataset: ``xr.Dataset``
            extracted dataset that contains all information for a single pixel
        2. lat: ``float``
            latitudinal coordinate of that pixel
        3. lon: ``float``
            longitudinal coordinate of that pixel
        4. h: ``float`` ``default = 10``
            height of ERA5 wind measurement in meters
    
        Returns
        =======
    
        1. ET0_values: ``np.ndarray``
            numpy array containing the ET0 values for each day
        """
        
        # Conversion of xarray dataset to dataframe for ET0 calculation
        ET0 = pixel_dataset.d2m_max.to_dataframe().rename(columns = {'d2m_max' : 'Dew_Point_T_max'}) - 273.15  # conversion of temperatures from K to °C
    
        ET0['Dew_Point_T_min'] = pixel_dataset.d2m_min.to_dataframe()['d2m_min'].values - 273.15  # conversion of temperatures from K to °C
        ET0['T_min'] = pixel_dataset.t2m_min.to_dataframe()['t2m_min'].values - 273.15  # conversion of temperatures from K to °C
        ET0['T_max'] = pixel_dataset.t2m_max.to_dataframe()['t2m_max'].values - 273.15  # conversion of temperatures from K to °C
        
        ET0['Rain'] = pixel_dataset.tp.to_dataframe()['tp'].values*1000  # conversion of total precipitation from meters to milimeters
        
        # Conversion of easward and northward wind values to scalar wind
        ET0['U_z'] =  np.sqrt(pixel_dataset.u10.to_dataframe()['u10'].values**2 + pixel_dataset.v10.to_dataframe()['v10'].values**2)
        
        ET0['RH_max'] =  100 * ea_calc(ET0['Dew_Point_T_min']) / ea_calc(ET0['T_min'])  # calculation of relative humidity from dew point temperature and temperature
        ET0['RH_min'] =  100 * ea_calc(ET0['Dew_Point_T_max']) / ea_calc(ET0['T_max'])  # calculation of relative humidity from dew point temperature and temperature
        
        ET0['R_s'] = pixel_dataset.ssrd.to_dataframe()['ssrd'].values/1e6  # to convert downward total radiation from J/m² to MJ/m²
    
        ET0.drop(columns = ['Dew_Point_T_max', 'Dew_Point_T_min'], inplace = True)  # drop unecessary columns
        
        # Start ET0 calculation
        eto_calc = eto.ETo()
        warnings.filterwarnings('ignore')  # remove pandas warning
    
        # ET0 calculation for given pixel (lat, lon) values
        eto_calc.param_est(ET0,
                            freq = 'D',  # daily frequence
                            # Elevation of the met station above mean sea level (m) (only needed if P is not in df).
                            z_msl = 0.,
                            lat = lat,
                            lon = lon,
                            TZ_lon = None,
                            z_u = h)  # h: height of raw wind speed measurement
    
        # Retrieve ET0 values
        ET0_values = eto_calc.eto_fao(max_ETo=15, min_ETo=0, interp=True, maxgap=10).values  # ETo_FAO_mm
        
        return ET0_values
    
    
    def convert_interleave_mode(args: Tuple[str, str, bool]) -> None:
        """
        Convert Geotiff files obtained from OTB to Band interleave mode for faster band reading.
    
        Arguments
        =========
        
        (packed in args: ``tuple``)
        
        1. input_image: ``str``
            input image to convert
        2. output_image: ``str``
            output image to save
        3. remove: ``bool`` ``default = True``
            weather to remove input image
    
        Returns
        =======
    
        ``None``
        """
        
        input_image, output_image, remove = args
        
        # Open the input file in read mode
        with rio.open(input_image, "r") as src:
    
            # Open the output file in write mode
            with rio.open(output_image, 'w', driver = src.driver, height = src.height, width = src.width, count = src.count, dtype = src.dtypes[0], crs = src.crs, transform = src.transform, interleave = 'BAND',) as dst:
    
                # Loop over the blocks or windows of the input file
                for _, window in src.block_windows(1):
    
                    # Write the data to the output file
                    dst.write(src.read(window = window), window = window)
        
        # Remove unecessary image
        if remove:
            os.remove(input_image)
        
        return None
    
    
    def era5Land_daily_to_yearly_pixel(list_era5land_files: List[str], output_file: str, raw_S2_image_ref: str, ndvi_path: str, h: float = 10, max_ram: int = 8, remove: bool = True) -> str:
        """
        Calculate ET0 values from the ERA5 netcdf weather variables.
        Output netcdf contains the ET0 and precipitation values for
        each day in the selected time period and reprojected
        (reprojection run on two processors) on the same grid as the
        NDVI values.
    
        Arguments
        =========
    
        1. list_era5land_files: ``List[str]``
            list of netcdf files containing the necessary variables
        2. output_file: ``str``
            output file name without extension
        3. raw_S2_image_ref: ``str``
            raw Sentinel 2 image at right resolution for reprojection
        4. ndvi_path: ``str``
            path to ndvi dataset, used for attributes and coordinates
        5. h: ``float`` ``default = 10``
            height of ERA5 wind measurements in meters
        6. max_ram: ``int`` ``default = 8``
            max ram (in GiB) for reprojection and conversion. Two
            subprocesses are spawned for OTB, each receiviving 
            half of requested memory.
        7. remove: ``bool`` ``default = True``
            weather to remove temporary files
    
        Returns
        =======
    
        1. output_file_final: ``str``
            path to ``netCDF4`` file containing precipitation and ET0 data
        """
        
        # Test if memory requirement is not loo large
        if np.ceil(virtual_memory().available / (1024**3)) < max_ram:
            print('\nRequested', max_ram, 'GiB of memory when available memory is approximately', round(virtual_memory().available / (1024**3), 1), 'GiB.\n\nExiting script.\n')
            return None
        
        # Load all monthly files into a single xarray dataset that contains all dates (daily frequency)
        raw_weather_ds = None
        for file in list_era5land_files:
            if not raw_weather_ds:
                raw_weather_ds = load_variable(file)
            else:
                temp = load_variable(file)
                raw_weather_ds = xr.merge([temp, raw_weather_ds])
        del temp
        
        # Create ET0 variable (that will be saved) and set attributes 
        raw_weather_ds = raw_weather_ds.assign(ET0 = (raw_weather_ds.dims, np.zeros(tuple(raw_weather_ds.dims[d] for d in list(raw_weather_ds.dims)), dtype = 'float64')))
    
        # Loop on lattitude and longitude coordinates to calculate ET0 per "pixel"
        # Fast enough for small datasets (low resolution)
        for lat in raw_weather_ds.coords['lat'].values:
            for lon in raw_weather_ds.coords['lon'].values:
                # Select whole time period for given (lat, lon) values
                select_ds = raw_weather_ds.sel({'lat' : lat, 'lon' : lon}).drop_vars(['lat', 'lon'])
    
                # Calculate ET0 values for given pixel
                ET0_values = calculate_ET0_pixel(select_ds, lat, lon, h)
                
                # Write ET0 values in xarray Dataset
                raw_weather_ds['ET0'].loc[{'lat' : lat, 'lon' : lon}] = ET0_values
        
        # Get necessary data for final dataset and rewrite netcdf attributes
        final_weather_ds = raw_weather_ds.drop_vars(names = ['ssrd', 'v10', 'u10', 't2m_max', 't2m_min', 'd2m_max', 'd2m_min'])  # remove unwanted variables
        final_weather_ds['tp'] = final_weather_ds['tp'] * 1000  # conversion from m to mm
        
        # Change datatype to reduce memory usage
        final_weather_ds['tp'] = (final_weather_ds['tp']  * 1000).astype('u2').chunk(chunks={"time": 1})
        final_weather_ds['ET0'] = (final_weather_ds['ET0']  * 1000).astype('u2').chunk(chunks={"time": 1})
        
        # Write projection
        final_weather_ds = final_weather_ds.rio.write_crs('EPSG:4326')
        
        # Set variable attributes 
        final_weather_ds['ET0'].attrs['units'] = 'mm'
        final_weather_ds['ET0'].attrs['standard_name'] = 'Potential evapotranspiration'
        final_weather_ds['ET0'].attrs['comment'] = 'Potential evapotranspiration accumulated over the day, calculated with the FAO-56 method (scale factor = 1000)'
    
        final_weather_ds['tp'].attrs['units'] = 'mm'
        final_weather_ds['tp'].attrs['standard_name'] = 'Precipitation'
        final_weather_ds['tp'].attrs['comment'] = 'Volume of total daily precipitation expressed as water height in milimeters (scale factor = 1000)'
    
        # Save dataset to geotiff, still in wgs84 (lat, lon) coordinates
        output_file_rain = output_file + '_rain.tif'
        output_file_ET0 = output_file + '_ET0.tif'
        final_weather_ds.tp.rio.to_raster(output_file_rain, dtype = 'uint16')
        final_weather_ds.ET0.rio.to_raster(output_file_ET0, dtype = 'uint16')
        
        # Reprojected image paths
        output_file_rain_reproj = output_file + '_rain_reproj.tif'
        output_file_ET0_reproj = output_file + '_ET0_reproj.tif'
        
        # Converted image paths
        output_file_final = output_file + '.nc'
        
        # otbcli_SuperImpose commands
        OTB_command_reproj1 = 'otbcli_Superimpose -inr ' + raw_S2_image_ref + ' -inm ' + output_file_rain + ' -out ' + output_file_rain_reproj + ' uint16 -interpolator linear -ram ' + str(int(max_ram * 1024/2))
        OTB_command_reproj2 = 'otbcli_Superimpose -inr ' + raw_S2_image_ref + ' -inm ' + output_file_ET0 + ' -out ' + output_file_ET0_reproj + ' uint16 -interpolator linear -ram ' + str(int(max_ram * 1024/2))
        commands_reproj = [OTB_command_reproj1, OTB_command_reproj2]
        
        with Pool(2) as p:
            p.map(os.system, commands_reproj)
        
        # Combine to netCDF file
        combine_weather2netcdf(output_file_rain_reproj, output_file_ET0_reproj, ndvi_path, output_file_final, available_ram = max_ram)
            
        # remove old files and rename outputs
        os.remove(output_file_rain)
        os.remove(output_file_ET0)
        os.remove(output_file_rain_reproj)
        os.remove(output_file_ET0_reproj)
    
        return output_file_final
    
    
    def era5Land_daily_to_yearly_parcel(list_era5land_files: List[str], output_file: str, h: float = 108) -> str:
        """
        Calculate ET0 values from the ERA5 netcdf weather variables.
        Output netcdf contains the ET0 and precipitation values for
        each day in the selected time period.
    
        Arguments
        =========
    
        1. list_era5land_files: ``List[str]``
            list of netcdf files containing the necessary variables
        2. output_file: ``str``
            output file name without extension
        3. h: ``float`` ``default = 10``
            height of ERA5 wind measurements in meters
    
        Returns
        =======
    
        1. output_file_rain: ``str``
            path to ``Geotiff`` file containing precipitation data
        2. output_file_ET0: ``str``
            path to ``Geotiff`` file containing ET0 data
        """
        
        # Load all monthly files into a single xarray dataset that contains all dates (daily frequency)
        raw_weather_ds = None
        for file in list_era5land_files:
            if not raw_weather_ds:
                raw_weather_ds = load_variable(file)
            else:
                temp = load_variable(file)
                raw_weather_ds = xr.merge([temp, raw_weather_ds])
        del temp
        
        # Create ET0 variable (that will be saved) and set attributes 
        raw_weather_ds = raw_weather_ds.assign(ET0 = (raw_weather_ds.dims, np.zeros(tuple(raw_weather_ds.dims[d] for d in list(raw_weather_ds.dims)), dtype = 'float64')))
    
        # Loop on lattitude and longitude coordinates to calculate ET0 per "pixel"
        for lat in raw_weather_ds.coords['lat'].values:
            for lon in raw_weather_ds.coords['lon'].values:
                # Select whole time period for given (lat, lon) values
                select_ds = raw_weather_ds.sel({'lat' : lat, 'lon' : lon}).drop_vars(['lat', 'lon'])
    
                # Calculate ET0 values for given pixel
                ET0_values = calculate_ET0_pixel(select_ds, lat, lon, h)
                
                # Write ET0 values in xarray Dataset
                raw_weather_ds['ET0'].loc[{'lat' : lat, 'lon' : lon}] = ET0_values
        
        # Get necessary data for final dataset and rewrite netcdf attributes
        final_weather_ds = raw_weather_ds.drop_vars(names = ['ssrd', 'v10', 'u10', 't2m_max', 't2m_min', 'd2m_max', 'd2m_min'])  # remove unwanted variables
        final_weather_ds['tp'] = final_weather_ds['tp'] * 1000  # conversion from m to mm
        
        # final_weather_ds.to_netcdf(output_file + '.nc', encoding = {"tp": {"dtype": "u2"}, "ET0": {"dtype": "u2"}})
        
        # return output_file + '.nc'
        
        # Change datatype to reduce memory usage
        final_weather_ds['tp'] = (final_weather_ds['tp']  * 1000).astype('u2').chunk(chunks={"time": 1})
        final_weather_ds['ET0'] = (final_weather_ds['ET0']  * 1000).astype('u2').chunk(chunks={"time": 1})
        
        # Write projection
        final_weather_ds = final_weather_ds.rio.write_crs('EPSG:4326')
        
        # Set variable attributes 
        final_weather_ds['ET0'].attrs['units'] = 'mm'
        final_weather_ds['ET0'].attrs['standard_name'] = 'Potential evapotranspiration'
        final_weather_ds['ET0'].attrs['comment'] = 'Potential evapotranspiration accumulated over the day, calculated with the FAO-56 method (scale factor = 1000)'
    
        final_weather_ds['tp'].attrs['units'] = 'mm'
        final_weather_ds['tp'].attrs['standard_name'] = 'Precipitation'
        final_weather_ds['tp'].attrs['comment'] = 'Volume of total daily precipitation expressed as water height in milimeters (scale factor = 1000)'
    
        # Save dataset to geotiff, still in wgs84 (lat, lon) coordinates
        output_file_rain = output_file + '_rain.tif'
        output_file_ET0 = output_file + '_ET0.tif'
        final_weather_ds.tp.rio.to_raster(output_file_rain, dtype = 'uint16')
        final_weather_ds.ET0.rio.to_raster(output_file_ET0, dtype = 'uint16')
    
        return output_file_rain, output_file_ET0
    
    
    def extract_rasterstats(args: tuple) -> List[float]:
        """
        Generate a dataframe for a given raster and a geopandas shapefile object. 
        It iterates over the features of the shapefile geometry (polygons). This
        information is stored in a list.
    
        It returns a list that contains the raster values, a feature ``id``
        and the date for the image and every polygon in the shapefile geometry.
        It also has identification data relative to the shapefile: landcover (``LC``),
        land cover identifier (``id``) This list is returned to be later agregated
        in a ``DataFrame``.
    
        This function is used to allow multiprocessing for weather extraction.
        
        Arguments (packed in args: ``tuple``)
        =====================================
    
        1. raster_path: ``str``
            path to multiband Geotiff 
        2. shapefile: ``str``
            path to shapefile
        3. config_file: ``str``
            path to config file
    
        Returns
        =======
    
        1. raster_stats: ``List[float]``
            list containing weather values and feature information for every
            polygon in the shapefile
        """
        
        # Open arguments packed in args
        raster_path, shapefile, config_file = args
        
        # Open config file
        config_params = config(config_file)
        
        # Create dataframe where zonal statistics will be stored
        raster_stats = []
        
        # Get dates
        dates = pd.to_datetime(pd.date_range(start = config_params.start_date, end = config_params.end_date, freq = 'D')).values
    
        # Open ndvi image and shapefile geometry
        raster_dataset = rio.open(raster_path)
    
        # Get input raster spatial reference and epsg code to reproject shapefile in the same spatial reference
        target_epsg = raster_dataset.crs
    
        # Open shapefile with geopandas and reproject its geometry
        shapefile = gpd.read_file(shapefile)
        shapefile['geometry'] = shapefile['geometry'].to_crs(target_epsg)
    
        # Get no data value
        nodata = raster_dataset.nodata
        
        # Get the number of bands
        nbands = raster_dataset.count
        
        # Create progress bar
        progress_bar = tqdm(total = len(shapefile.index), desc='Extracting polygon values', unit=' polygons')
    
        # Loop on the individual polygons in the shapefile geometry
        for index, row in shapefile.iterrows():
            
            # Get the feature geometry as a shapely object
            geom = row.geometry
            
            # id number of the current parcel geometry
            id = index + 1
            
            # Get land cover
            LC = row.LC
            
            # Create a bounding box around the geometry
            bbox = box(*geom.bounds)
            
            # Crop the raster using the bounding box
            try:
                cropped_raster, _ = mask(raster_dataset, [bbox], crop = True, all_touched = True)
            except:
                print('\nShapefile bounds are not contained in weather dataset bounds.\n\nExiting script.')
                return None
            
            # Mask the raster using the geometry
            masked_raster, _ = mask(raster_dataset, [geom], crop = True, all_touched = True)
            
            # Replace the nodata values with nan
            cropped_raster = cropped_raster.astype(np.float32)
            cropped_raster[cropped_raster == nodata] = np.NaN
            
            masked_raster = masked_raster.astype(np.float32)
            masked_raster[masked_raster == nodata] = np.NaN
            
            # Calculate the zonal statistics
            raster_stats.extend([[dates[i], id, np.nanmean(masked_raster[i]), LC] for i in range(nbands)])
            
            # Update progress bar
            progress_bar.update(1)
        
        # Close dataset and progress bar
        raster_dataset.close()
        progress_bar.close()
    
        return raster_stats
    
    
    def extract_weather_dataframe(rain_path: str, ET0_path: str, shapefile: str, config_file: str, save_path: str) -> None:
        """
        Extract a weather dataframe for each variable (Rain, ET0) and merge them in one
        dataframe. This dataframe is saved as ``csv`` file.
    
        Arguments
        =========
    
        1. rain_path: ``str``
            path to rain Geotiff file
        2. ET0_path: ``str``
            path to ET0 Geotiff file
        3. shapefile: ``str``
            path to shapefile
        4. config_file: ``str``
            path to config file
        5. save_path: ``str``
            save path for weather dataframe
    
        Returns
        =======
    
        ``None``
        """
        
        # Generate arguments for multiprocessing
        args = [(rain_path, shapefile, config_file), (ET0_path, shapefile, config_file)]
        
        print('\nStarting weather data extraction on two cores..\n')
        
        # Extract weather values for both weather varialbes
        with Pool(2) as p:
            results = p.map(extract_rasterstats, args)
        
        # Collect results in a single dataframe
        weather_dataframe = pd.DataFrame(results[0], columns = ['date', 'id', 'Rain', 'LC'])
        weather_dataframe['ET0'] = pd.DataFrame(results[1], columns = ['date', 'id', 'ET0', 'LC'])['ET0']
        
        # Reorder columns
        weather_dataframe = weather_dataframe.reindex(columns = ['date', 'id', 'Rain', 'ET0', 'LC'])
        
        # Format datatypes
        weather_dataframe['Rain'] = np.round(weather_dataframe['Rain']).astype(int)
        weather_dataframe['ET0'] = np.round(weather_dataframe['ET0']).astype(int)
        
        # Change date type
        weather_dataframe['date'] = pd.to_datetime(weather_dataframe['date'])
        
        # Save dataframe to csv
        weather_dataframe.to_csv(save_path, index = False)
        
        return None