In [1]:
"""
Notebook for development and testing of the SAMIR Pixel model.
"""
import xarray as xr
import os
import pandas as pd
import numpy as np
from tqdm import tqdm
data_path = '/mnt/e/DATA/DEV_inputs_test'
# data_path = './DEV_inputs_test'
size = 10
# Original sets
ndvi_path = data_path + os.sep + 'ndvi_' + str(size) + '.nc'
# Validation sets
val_ndvi_path = data_path + os.sep + 'xls_NDVI_' + str(size) + '.nc'
val_weather_path = data_path + os.sep + 'xls_weather_' + str(size) + '.nc'
val_outputs = data_path + os.sep + 'xls_outputs_' + str(size) + '.nc'
# Modspa excel file
xls_file_path = '/home/auclairj/GIT/modspa_pixel/SAMIR_xls/SAMIRpixel_Reference_Simonneaux2012.xls'
# Scaling dict
additional_outputs = {'Zr': 10, 'Dei': 100, 'Dep': 100, 'Dr': 100, 'Dd': 100, 'Kei': 1e4, 'Kep': 1e4, 'Ks': 1e4, 'W': 1e4, 'Kcb': 1e4, 'fewi': 1e4, 'fewp': 1e4, 'TDW': 100, 'TAW': 100, 'FCov': 1e4, 'Tei': 1000, 'Tep': 1000, 'Diff_rei': 1e4, 'Diff_rep': 1e4, 'Diff_dr': 1e4}
additional_outputs = {'Dr': 100, 'Dd': 100}
# additional_outputs = {}
normal_outputs = {'E': 1000, 'Tr': 1000, 'SWCe': 1000, 'SWCr': 1000, 'DP': 100, 'Irr': 100, 'ET0': 1000}
additional_outputs.update(normal_outputs)