import netCDF4 as nc from netCDF4 import Dataset import numpy as np import matplotlib.pyplot as plt import matplotlib.dates as dplt from pylab import * import os, sys mask = Dataset('/ccc/scratch/cont005/legos/nivertfl/VALIDATION_F01/INPUT_SAISON/HOFF-MULLER/total.nc', mode='r') trop = Dataset('/ccc/scratch/cont005/legos/nivertfl/VALIDATION_F01/INPUT_SAISON/HOFF-MULLER/sst_tropflux_1d_2000-regrid.nc', mode='r') mask1 = mask.variables['votemper'][:,0,:,:] trop1 = trop.variables['sst'][:,:,:] zbla=np.zeros(shape=(301,1)) zblo=np.zeros(shape=(301,1)) zbla2=np.zeros(shape=(301,366)) zblo2=np.zeros(shape=(301,366)) time = mask.variables['time_counter'][:] lon = mask.variables['nav_lon'][0,:] mask1[mask1 == 0] = np.NaN for y in range(0,365): for x in range(0,300): result1= np.nanmean(mask1[y,78:86,x]) zbla[x,:]=result1 zbla3=np.squeeze(zbla) zbla2[:,y]=zbla3 zbla2=transpose(zbla2) for y in range(0,365): for x in range(0,300): result2= np.nanmean(trop1[y,78:86,x]) zblo[x,:]=result2 zblo3=np.squeeze(zblo) zblo2[:,y]=zblo3 zblo2=transpose(zblo2) plt.clf() units=mask.variables['time_counter'].units from datetime import datetime buf=mask.variables['time_centered'][:]; time=list() time.extend(buf.tolist()) dates=nc.num2date(time,units,'gregorian').tolist() nt=len(dates) im1 = plt.figure(figsize=(6, 18)) im1 = plt.contourf(lon,dates,zbla2, np.linspace(23,30,21), extend='both', cmap=cm.RdBu_r) plt.colorbar(im1,orientation='horizontal') im1 = plt.title("Modele annee 2000") plt.savefig('modele2000.png') plt.clf() im2 = plt.figure(figsize=(6, 18)) im2 = plt.contourf(lon,dates,zblo2, np.linspace(23,30,21), extend='both', cmap=cm.RdBu_r) plt.colorbar(im2,orientation='horizontal') im2 = plt.title("TropFlux annee 2000") plt.savefig('obs2000.png')