function [error] = corTsgLinear(hMainFig, PARA, dateMin, dateMax) % Correct the TSG salinity time series with the Water sample. % Use a linear fit to the water sample/tsg difference % % Input % hMainFig ..... Handle to the main GUI % PARA ......... Parameter % dateMin ...... the correction is applied between dateMin and date Max % dateMax ...... the correction is applied between dateMin and date Max % % Output % Error ........ 1 everything OK % ........ -1 dateMax <= date Min % Get application data % -------------------- tsg = getappdata( hMainFig, 'tsg_data'); SAMPLE = tsg.preference.sample; % ------------------------------------------------------------------------- % Get from the checkbox the QC code on which the correction will be applied % ------------------------------------------------------------------------- % get list of keys from hashtable tsg.qc.hash, defined inside % tsg_initialisation.m % ----------------------------------------------------------- qc_list = get(tsg.qc.hash); % iterate (loop) on each key store inside hastable % ------------------------------------------------ keptCode = []; nKeptCode = 0; for i=1:numel(qc_list) % get key and some values in hashtable % ------------------------------------ key = qc_list{i}; % get handle of checkbox % ---------------------- hCb = findobj(hMainFig, 'tag', ['TAG_CHECK_CORRECTION_' key]); if get( hCb, 'value' ) nKeptCode = nKeptCode + 1; keptCode(nKeptCode) = get(tsg.qc.hash, key, 'code'); end end % Get PROBABLY_GOOD, PROBABLY_BAD and VALUE_CHANGED codes % ------------------------------------------------------- PROBABLY_GOOD = get(tsg.qc.hash, 'PROBABLY_GOOD', 'code'); PROBABLY_BAD = get(tsg.qc.hash, 'PROBABLY_BAD', 'code'); VALUE_CHANGED = get(tsg.qc.hash, 'VALUE_CHANGED', 'code'); % intialisation % ------------- if isempty( tsg.([PARA '_ADJUSTED']) ) tsg.([PARA '_ADJUSTED']) = tsg.(PARA); tsg.([PARA '_ADJUSTED_QC']) = tsg.([PARA '_QC']); end % If only calibration have been applied ERROR is empty % --------------------------------------------------- if isempty( tsg.([PARA '_ADJUSTED_ERROR']) ) tsg.([PARA '_ADJUSTED_ERROR']) = NaN* ones(size(tsg.(PARA))); end if dateMax > dateMin % Find samples within TIME_WINDOWS with Good, probably Good, , probably bad QC % --------------------------------------------------------------- ind = find( tsg.DAYD_EXT >= dateMin & tsg.DAYD_EXT <= dateMax &... tsg.([SAMPLE '_EXT_QC']) <= PROBABLY_BAD); if ~isempty(ind) % detect NaN in sample.SSPS_DIF due to bad QC code for tsg.SSPS % ------------------------------------------------------------- ind2 = find(~isnan(tsg.EXT_DIF(ind))); % Compute linear fit of the TSG/SAMPLE difference % ----------------------------------------------- if ~isempty(ind2) if ~isempty(tsg.EXT_DIF(ind(ind2))) % Linear fit applied to the difference tsg-sample % ----------------------------------------------- X = tsg.DAYD_EXT(ind(ind2)); Y = tsg.EXT_DIF(ind(ind2)); [p, S, mu] = polyfit( X, Y, 1); % The correction is applied to the TSG between dateMin and dateMax using % a linear interpolation only on measurements better than % PROBABLY_BAD QC % ---------------------------------------------------------------------- for icode = 1 : length( keptCode ) dtTsg = find( tsg.DAYD >= dateMin & tsg.DAYD <= dateMax &... tsg.([PARA '_QC']) == keptCode( icode )); [tsg.([PARA '_ADJUSTED'])(dtTsg), tsg.([PARA '_ADJUSTED_ERROR'])(dtTsg)] =... polyval( p, tsg.DAYD(dtTsg), S, mu); tsg.([PARA '_ADJUSTED'])(dtTsg) = ... tsg.(PARA)(dtTsg) + tsg.([PARA '_ADJUSTED'])(dtTsg); end % Line commented - We do not used anymore the VALUE_CHANGED code for % the ADJUSTED variable % ------------------------------------------------------------------ % tsg.([PARA '_ADJUSTED_QC'])(dtTsg) = VALUE_CHANGED; end end end % Update tsg application data % --------------------------- setappdata( hMainFig, 'tsg_data', tsg); % everything OK % ------------- error = 1; else % DateMax <= DateMin % ------------------ error = -1; end