# RNAja [](https://www.python.org/downloads) [](https://snakemake.readthedocs.io) [](https://sylabs.io/docs/) ## About RNAja RNAja is a pipeline written in snakemake, allowing to analyse RNAseq data, perform differential expression analysis using several mappers and counters. RNAja is the only pipeline able to compare method effects over DE genes.  ## 1. Install dependencies and clone RNAja Check dependencies for RNAja : Python < 3.12.0 and Snakemake >= 7.32.4 Here, you can install RNAja from the gitlab source code such as : ``` bash git clone git@forge.ird.fr:phim/rnaja-pipeline.git cd rnaja-pipeline python3 -m pip install . # in edition mode (for developpers and debuging) #python3 -m pip install -e . ``` Don't forget to export RNAja into the $PATH environment path by ``` bash export PATH=/home/$USER/.local/bin/:$PATH` ``` ### 1.1 Installing in local mode ```bash RNAja install_local --help RNAja install_local ``` ### 1.2 Installing in cluster mode Install RNAja in cluster mode using **singularity** container from rnaja_utilities https://itrop.ird.fr/RNAja_utilities/ ```bash RNAja install_cluster --help RNAja install_cluster --scheduler slurm --env singularity ``` Please run command line 'RNAja edit_cluster_config' before the first run of RNAja see https://forge.ird.fr/phim/rnaja-pipeline/README.md and configure by default threads and memory resources. Feel free to modify resources (RAM, CPU number and partition) using the rules names found above. ``` rule hisat2_index rule hisat2_map rule star_index rule star_map_count rule star_to_diffex rule samtools_stats rule multiqc rule stringtie_discovery rule stringtie_gtf_list_discovery rule merge_stringtie_gtf_discovery rule stringtie rule stringtie_gtf_list rule merge_stringtie_gtf rule list_for_prepDE rule prepDE_stringtie_table rule htseq_count rule htseq_to_diffex rule diff_exp_analysis ``` In the `cluster_config.yaml` file adapt ressources as in this example adapted: ``` _default__: cpus-per-task: 4 mem-per-cpu: 3G partition : normal output: '{log.output}_cluster' error: '{log.error}_cluster' job-name: '{rule}.{wildcards}' rule stringtie_discovery nodelist: node4 cpus-per-task: 8 mem-per-cpu: 6G partition: highmem ``` ## 2. Running a datatest Running a test to be sure of RNAja installation. RNAja `test_install` download an available dataset from a distant server (RNAja_utilities i-Trop). Pipeline tests are launched in a repertory (option -d DIR_NAME) created by RNAja. ```bash RNAja test_install --help RNAja test_install -d TEST ``` ### 2.1 Running your data in LOCAL mode launching suggested command line done by RNAja, in LOCAL mode: ```bash RNAja run_local --help RNAja run_local -t 8 -c TEST/data_test_config.yaml --singularity-args "--bind $HOME" ``` In local mode, it's possible to allocate threads to some rules using `--set-threads` snakemake argument such as ``` RNAja run_local -t 8 -c TEST/data_test_config.yaml --set-threads hisat2_index=4 hisat2_map_paired=2 ``` ### 2.2 Running your data in CLUSTER mode Now you can launch suggested command line done by RNAja in `cluster` mode BUT before you need to configurate cluster parameters running command line `RNAja edit_cluster_config` before the first run and modify threads, ram, node and computer resources. RNAja does a copy of `cluster_config.yaml` file into your home `"/home/$USER/.config/rnaja_pipeline/cluster_config.yaml"` ```bash RNAja run_cluster --help RNAja edit_cluster_config ``` If singularity was selected in installation of RNAja, it could be needed to give argument `--singularity-args \"--bind $HOME\"` to RNAja, by using : ```bash RNAja run_cluster --help RNAja run_cluster -c TEST/data_test_config.yaml --singularity-args "--bind $HOME" # here a example adapted to @IFB HPC RNAja run_cluster -c TEST/data_test_config.yaml --singularity-args "--bind /shared:/shared" #you can also use snakemake parameters as RNAja run_cluster -c TEST/data_test_config.yaml --singularity-args "--bind $HOME" --rerun-incomplete --nolock ``` **Important Note** : In IRD "i-Trop" cluster, run RNAja using ONLY a node, data has to be in "/scratch" of chosen node. Use `nodelist : nodeX` parameter inside of `cluster_config.yaml`̀ file. ## 3. Running your data ### 3.1.create a pipeline by configuring the `config.yaml` file Before to run RNAja, create a `config.yaml` by using before to adapt it. ``` RNAja create_config ``` Three sections are needed for RNAja into the `config.yaml` file: section DATA, MODE and PARAMS. ### DATA section Adapt `config.yaml` file with path to fastq files, reference and annotation file in the `DATA section` as well as the output directory. ``` DATA: fastq_dir: "/path/to/FASTQ" reference: "/path/to/reference/ref.fna" annotation: "/path/to/reference/ref.gtf" output_dir: "RNAJA_OUTPUT" ``` ### MODE section Five pipelines can be running in parallel by using RNAja ! We have included for instance two mappers (STAR and HISAT2) and 3 counters (STRINGTIE, HTSEQCOUNT,STAR). You can activate or deactivate pipelines you would run in the MODE section such as ... ``` MODE: HISAT2_STRINGTIE: true HISAT2_HTSEQCOUNT: true STARmap_STARcount: true STARmap_HTSEQCOUNT: true STARmap_STRINGTIE: true ``` ### PARAMS section In the PARAMS section, tools parameters can be modified and adapted. ``` PARAMS: HISAT2: indexation: prefix: "REF" STAR: indexation: params: "--sjdbOverhang 100 --genomeSAindexNbases 10" mapping: params: "--readFilesCommand zcat" # --outFilterMismatchNoverLmax 0.03 STRINGTIE: discovery_mode : false HTSEQCOUNT: params: "-r pos -s reverse -m union -t gene " ``` You can modify `HISAT2` indexation, `STAR` indexation and mapping options, change `STRINGTIE` mode (discovery or not) as well as `HTSEQCOUNT` params. Feel free to check documentation of these tools before to run RNAja! #### output Here an example of `output_dir` if you have activated all five pipelines proposed by RNAja. ```commandline RNAJA_OUTPUT/ ├── COUNT │ ├── HTSEQCOUNT │ │ ├── HISAT2 │ │ └── STAR │ ├── STAR │ │ ├── Batch-rep1Aligned.out.bam │ │ ├── Batch-rep1Aligned.toTranscriptome.out.bam │ │ ├── Batch-rep1Log.final.out │ │ ├── Batch-rep1Log.out │ │ ├── Batch-rep1Log.progress.out │ │ ├── Batch-rep1ReadsPerGene.out.tab │ │ ├── Batch-rep1SJ.out.tab ... │ │ ├── CENPK-rep1Aligned.out.bam │ │ ├── CENPK-rep1Aligned.toTranscriptome.out.bam │ │ ├── CENPK-rep1Log.final.out │ │ ├── CENPK-rep1Log.out │ │ ├── CENPK-rep1Log.progress.out │ │ ├── CENPK-rep1ReadsPerGene.out.tab │ │ ├── CENPK-rep1SJ.out.tab ... │ └── STRINGTIE │ ├── HISAT2_Batch-rep1.gtf │ ├── HISAT2_Batch-rep1.tsv ... │ ├── HISAT2_CENPK-rep3.gtf │ ├── HISAT2_CENPK-rep3.tsv │ ├── STAR_Batch-rep1.gtf │ ├── STAR_Batch-rep1.tsv ... │ ├── STAR_CENPK-rep3.gtf │ ├── STAR_CENPK-rep3.tsv ├── LOGS ├── MAPPING │ ├── HISAT2 │ │ ├── Batch-rep1.bam │ │ ├── Batch-rep1.bam.csi │ │ ├── Batch-rep1_HISAT_summary.txt ... │ │ ├── CENPK-rep3.bam │ │ ├── CENPK-rep3.bam.csi │ │ └── CENPK-rep3_HISAT_summary.txt │ └── STAR │ ├── Batch-rep1.bam │ ├── Batch-rep1.bam.csi ... │ ├── CENPK-rep3.bam │ └── CENPK-rep3.bam.csi ├── REF │ ├── HISAT2 │ │ ├── GCF_000146045.2_R64_genomic.fasta -> /scratch/rnaja_test/TEST/DATA_TEST/REF/GCF_000146045.2_R64_genomic.fna │ └── STAR │ ├── chrLength.txt │ ├── chrNameLength.txt │ ├── chrName.txt │ ├── chrStart.txt │ ├── exonGeTrInfo.tab │ ├── exonInfo.tab │ ├── GCF_000146045.2_R64_genomic.fasta -> /scratch/rnaja_test/TEST/DATA_TEST/REF/GCF_000146045.2_R64_genomic.fna │ ├── geneInfo.tab │ ├── Genome │ ├── genomeParameters.txt │ ├── Log.out │ ├── SA │ ├── SAindex │ ├── sjdbInfo.txt │ ├── sjdbList.fromGTF.out.tab │ ├── sjdbList.out.tab │ └── transcriptInfo.tab └── slurm_logs ``` ----------------------- ### Authors * Aurore Comte (IRD), Christine Tranchant (IRD), Julie Orjuela (IRD) Some parts of RNAja code and documentation were inspired or came from the pipelines below. - Culebront (Julie Orjuela *et al.*) https://github.com/SouthGreenPlatform/culebrONT - sRNAmake (Sebastien Cunnac *et al.*) https://github.com/Aucomte/sRNAmake - BulkRNA (Camille Cohen) https://github.com/CamilleCohen/ProjetTuteur-_BulkRNA RNAja uses really nice python package **SnakEcdysis** https://snakecdysis.readthedocs.io/en/latest/package.html to perform installation and execution in local and cluster mode. SnakEcdysis is developed by Sébastien Ravel (CIRAD). ----------------------- ## Acknowledgements Thanks to Ndomassi Tando (i-Trop IRD) by administration support. The authors acknowledge the IRD i-Trop HPC <https://bioinfo.ird.fr/> (South Green Platform <http://www.southgreen.fr>) at IRD Montpellier for providing HPC resources that have contributed to this work. Thanks to Alexis Dereeper for his help and the development of diffexDB <https://bioinfo-web.mpl.ird.fr/cgi-bin2/microarray/public/diffexdb.cgi>. ----------------------- ## License Licenced under MIT https://opensource.org/license/mit/. Intellectual property belongs to IRD and authors.