
Introduction to UNiX/Linux
commands

ISI network

27-28 November
Montpellier

Communities of Practice (CoP) network open in February 2024

ISI network (IRD Scientific Computing)

104 members

IRD staff or partners who produce, manage or use
scientific digital tools

Exchange Share Mutualize

2 first CoPs :

● Collaborative software development
● Health research data management

Organisation:

● Shared training WG
● Coordination: Coordination Committee (network

coordinator, coordinators for each of the CoPs),
videoconferences, annual seminar, etc.

volunteering
collegiality
sharing information
respect for others

issues
needs

training
documentation

Collaborative space: discussion forum, wikis

skills development

hugo.catherine@ird.fr

mailto:hugo.catherine@ird.fr

Join us! https://copnumeriquescientifique.ird.fr/

https://copnumeriquescientifique.ird.fr/

Training material

Session 2024

Python : https://e-formation.ird.fr/course/view.php?id=264

● 18th to 20th of november

GIT : https://e-formation.ird.fr/course/view.php?id=265

● 25th of november

UNIX/Linux : https://e-formation.ird.fr/course/view.php?id=267

● 27th and 28th of november

The educational material used for these teachings is made available
under the terms of the Creative Commons Attribution - NonCommercial
- ShareAlike (BY-NC-SA) 4.0 International license."
http://creativecommons.org/licenses/by-nc-sa/4.0/

with the support of the IRD's SDTQVT department ISI

https://e-formation.ird.fr/course/view.php?id=264
https://e-formation.ird.fr/course/view.php?id=265
https://e-formation.ird.fr/course/view.php?id=267
http://creativecommons.org/licenses/by-nc-sa/4.0/

UNIX/Linux Trainers

Ndomassi TANDO
System Engineer

Alexis Dereeper
Bioinformatics

Jacques Dainat
Bioinformatics

Vincent Manzanilla
Bioinformatics

Laurent Demagistri
Scientific computation
and geomatic

UNIX/Linux course materials

The educational material used for these teachings is made available
under the terms of the Creative Commons Attribution - NonCommercial
- ShareAlike (BY-NC-SA) 4.0 International license."
http://creativecommons.org/licenses/by-nc-sa/4.0/

Content licensed under CC BY-NC-SA 4.0 & created in 2011 by :

● Christine Tranchant

● Bruno Granouillac

updated by

● Gautier Sarah 2018

● Christine Tranchant 2024

● Ndomassi Tando 2024

● Alexis Dereeper 2024

● Jacques Dainat 2024

http://creativecommons.org/licenses/by-nc-sa/4.0/

The objective

Run your own analysis using Linux !

After this course, you will be able to :

• Know the main Linux commands

• Move into the Linux file tree : pwd, ls, cd, mkdir etc.

• Connect to a Linux server and transfer data : ssh, wget

• Work with text files: head, tail, sort, cut, wc, grep...

• Chain and combine commands

• Run programs from the command line

• Create a basic script

Learning objectives

Introduction

▪ Operating system known for :
- its security and stability
- its frequent updates
- its (no) fees and (mostly)openSource

 softwares

▪Created in 1991 by Linus Torvalds

▪Based on Unix (1969)

▪ Linux source code opensource and free : copy, modify, redistribute

What is Linux?

▪ Robust et multi-plateform OS
(computer, server, android….)

▪ Multi-users system

 Several users can work simultaneously

▪ Multi-tasking system (processes/programs)

Every user can run several programs at the same time

What is Linux?

Distribution : Kernel + Shell + Softwares

SHELL

KERNEL

SOFTWARES

Linux distribution

Graphical User Interface

personal computer

2 ways

How to use Linux?

Graphical User Interface

personal computer

2 ways

Command-Line Interface
through a terminal

personal computer, server

No graphical interface

How to use Linux?

▪ Numerous fast and powerful programs

▪ Easy to link commands and programs (workflow)

▪ Numerous scientific softwares available

▪ 90% of servers under Linux

Why using Linux?

No graphical interface

Command line

▪ Numerous fast and powerful programs

▪ Easy to link commands and programs (workflow)

▪ Numerous scientific softwares available

▪ 90% of servers under Linux

Why using Linux?

Need to practice

⬄ Need important investments to get good results quickly

Why using Linux?

Linux File tree

/

bin etc lib usr home

▪ Directory structure starts at the root directory called “/” (slash)

Root directory (slash)

The file tree - Filesystem

Main directories

/

bin etc lib usr home

Root directory (slash)

/bin Main commands, shell, programs
/usr, /opt Applications and user libraries
/usr/bin Other commands
/home User directory (one per user, name= login)

The file tree - Filesystem

Path location of a file/directory in the LINUX file system

File Path

● Absolute Path

● Relative Path

Path location of a file/directory in the LINUX file system

File Path

Relative
Path

Path location of a file/directory in the LINUX file system

Absolute
Path

✓Complete path of a file starting
from the root directory /

File Path: Absolute path

Absolute
Path

Relative
Path

Path location of a file/directory in the LINUX file system

✓Complete path of a file starting
from the root directory /

 Always starts with /

 Always right wherever the user is

Absolute
Path

File Path: Absolute path

Absolute
Path

Relative
Path

Path location of a file/directory in the LINUX file system

✓Complete path of a file starting from
the root directory /

 Always starts with /

 Always right wherever the user is

Absolute
Path

File Path: Relative path

✓ Path related to the present
working directory - where
the user is working

Absolute
Path

Relative
Path

Path location of a file/directory in the LINUX file system

✓Complete path of a file starting from
the root directory /

 Always starts with /

 Always right wherever the user is

Absolute
Path

File Path: Relative path

✓ Path related to the present
working directory - where
the user is working

 Never starts with /

 Depends on where the user is
working

bin etc lib sbin usr

script

blast.pl

sequence.fasta

/

home

data

fasta

tranchantgranouill

▪Always starts with / (root directory)

▪ Always works wherever user is working

Absolute path of the file sequence.fasta
 ???

Example 1 of absolute Path

bin etc lib sbin usr

script

blast.pl

sequence.fasta

/

home

data

fasta

tranchantgranouill

▪Always starts with / (root directory)

▪ Always works wherever user is working

Absolute path of the file sequence.fasta

/home/granouill/data/fasta/sequence.fasta

Example 1 of absolute Path

bin etc lib sbin usr

script

sequence.fasta

/

home

data

fasta

tranchantgranouill

Absolute path of the directory script
 ???

blast.pl

▪Always starts with / (root directory)

▪ Always works wherever user is working

Example 2 of absolute Path

bin etc lib sbin usr

script

blast.pl

sequence.fasta

/

home

data

fasta

tranchantgranouill

▪Always starts with / (root directory)

▪ Always works wherever user is working

Absolute path of the directory script

/home/granouill/script

Example 2 of absolute Path

bin etc lib sbin usr

script

blast.pl

sequence.fasta

/

home

data

fasta

tranchantgranouill

▪ Path related to the present working directory

▪ Never starts with /

Working directory = data

Relative path of the file sequence.fasta
 ???

Example 1 of relative Path

bin etc lib sbin usr

script

blast.pl

sequence.fasta

/

home

data

fasta

tranchantgranouill

▪ Path related to the present working directory

▪ Never starts with /

Working directory = data

Relative path of the file sequence.fasta

fasta/sequence.fasta

Example 1 of relative Path

bin etc lib sbin usr

script

blast.pl

sequence.fasta

/

home

data

fasta

tranchantgranouill

▪ Path related to the present working directory

▪ Never starts with /

Working directory = fasta

Relative path of the file sequence.fasta

Example 2 of relative Path

???

bin etc lib sbin usr

script

blast.pl

sequence.fasta

/

home

data

fasta

tranchantgranouill

▪ Path related to the present working directory

▪ Never starts with /

Working directory = fasta

Relative path of the file sequence.fasta
sequence.fasta

Example 2 of relative Path

bin etc lib sbin usr

script

blast.pl

sequence.fasta

/

home

fasta

tranchantgranouill

data

▪ Path related to the present working directory

▪ Never starts with /

Working directory = script

Relative path of the file sequence.fasta

Example 3 of relative Path

???

bin etc lib sbin usr

script

blast.pl

sequence.fasta

/

home

fasta

tranchantgranouill

data

▪ Path related to the present working directory

▪ Never starts with /

Working directory = script

Relative path of the file sequence.fasta

../data/fasta/sequence.fasta

Example 3 of relative Path

Prompt and first commands

pwd, ls commands

Prompt

Always on the terminal, just before where user types commands

][

The prompt

Prompt

Always on the terminal, just before where user types commands

][

User name Server
name

Current
directory

The prompt

command [-options] [arguments]

Command syntax

pwd
Present Work Directory

Print the name of the current directory
(the full path)

Name of the
current directory

Command
Without option and

argument

Your first command “ pwd”

ls
list

List the content of the current directory

List all the files in the current
directory (by default)

Command without
option and argument

Second command “ ls”

1 Go to the set up environment practice on our
website

set up environnement,
prompt, pwd

Practice

https://isi.pages.ird.fr/isi-formation-unix/pages/bash/bash-3-navigating/#setup

ls -l
list long

ist files with more information about each file

Command with the option –l and a
directory name gived as argument

Display the long format listing of
all files in the directory

Second command + option “ ls
-l”

How to get help about one command

▪with the ’option --help ou -h ls --help blastn -h

▪with the command man man ls

▪with the command whatis whatis ls

 Few basic commands

Basics

pwd Display the full path of the current directory
ls List all files/directories
ls –l Display all files (Long listing)

 Few basic commands

Commands to navigate into
the file system

cd command

cd
Change Directory

Move from the current directory into a new
directory

cd DIRECTORY_NAME
absolute ou relative path

The “cd” command

/

home

granouill

blast.pl

sequence.fasta

fasta

datascript

Absolute path of the directory fasta

cd DIRECTORY_NAME - absolute path

The “cd” command: example 1
absolute path

/

home

granouill

blast.pl

sequence.fasta

fasta

datascript

cd DIRECTORY_NAME - absolute path

Absolute path of the directory fasta

cd /home/granouill/data/fasta

The “cd” command: example 1
absolute path

/

home

granouill

blast.pl

sequence.fasta

fasta

datascript

cd DIRECTORY_NAME - absolute path

Absolute path of the directory script

The “cd” command: example 2
absolute path

/

home

granouill

blast.pl

sequence.fasta

fasta

datascript

cd DIRECTORY_NAME - absolute path

Absolute path of the directory script

cd /home/granouill/script

The “cd” command: example 2
absolute path

/

home

granouill

blast.pl

sequence.fasta

fasta

datascript

cd DIRECTORY_NAME - relative path

Relative path of the directory fasta

The “cd” command: example 1
relative path

/

home

granouill

blast.pl

sequence.fasta

fasta

datascript

cd DIRECTORY_NAME - relative path

Relative path of the directory fasta

cd data/fasta

The “cd” command: example 1
relative path

/

hom
e

granouill

blast.pl

sequence.fasta

fasta

datascript

cd DIRECTORY_NAME - relative path /

home

granouill

blast.pl

sequence.fasta

fasta

datascript

Command Go to
cd home directory

cd .. Parent directory

cd ../.. ?

cd - ?

One folder up

Go to home
directory

The “cd” command: shortcuts
relative path

/

hom
e

granouill

blast.pl

sequence.fasta

fasta

datascript

cd DIRECTORY_NAME - relative path /

home

granouill

blast.pl

sequence.fasta

fasta

datascript

Command Go to
cd home directory

cd .. Parent directory

cd ../.. ?

cd - ?

One folder up

Go to home
directory

2 folders up

The “cd” command: shortcuts
relative path

/

hom
e

granouill

blast.pl

sequence.fasta

fasta

datascript

cd DIRECTORY_NAME - relative path /

home

granouill

blast.pl

sequence.fasta

fasta

datascript

Command Go to
cd home directory

cd .. Parent directory

cd ../.. ?

cd - ?

One folder up

Go to home
directory

2 folders up

Go back to previous directory

The “cd” command: shortcuts
relative path

✓ Linux is case sensitive

✓ Only ROMAN letters, numbers and _ -

✓ No space, accent or special symbol

& ~ # ” ' { ([| ` \ ^ @)] } $ * % ! / ; , ?

✓ No need to use filename extension (.txt), just to improve readability of
filenames.

Sequence.fasta sequence.fasta

Rules for files and directories
naming

SEQUENCE.fasta

<Ctrl> + C Stop the current process/command

<Tab> Auto-complete commands, files or directories you are typing

<Tab>
twice

List all possible completions

Up arrow Show the previous command. Press it multiple times to walk
back through the history

Down
arrow

Show the next command.

<Ctrl> + R Search command history (backward search) matching the
characters you are typing.

TIPS - Useful terminal shortcuts

2 Go to the navigating practice on our website

ls,cd

Practice

https://isi.pages.ird.fr/isi-formation-unix/pages/bash/bash-3-navigating/#list-files-and-directories-ls

pwd Print the full path of the current directory
ls Display the list of files in a directory
cd DIR_NAME Change the working directory

Basics commands to know

mkdir rep_name Create a new directory

rm nom_fichier Remove a directory
cp file1 file2 Make a copy of file1 and call it file2

cp FILE_NAME DIR_NAME Copy the file FILE_NAME in the directory
 DIR_NAME, keeping the same name

cp FILE DIR/NEW_FILE Mix of 2

pwd Print the full path of the current directory
ls Display the list of files in a directory
cd DIR_NAME Change the working directory

Basics commands to know

Allow to attribute another path to a file by pointing to a file name.

It is a shortcut ln
ln -s theright thewrong

Example: ln -s /opt/jdk-7.01 /opt/jdk

Save disk space on a system: only the "real" file weights

symbolic links

Commands to display texts

touch <file_name> Create the file called file_name

“touch” command

cat <file_name>
Cat

Displays the content of a file on the screen

Don’t use it with big files!!

“cat” command

less <file_name>
less

writes the contents of a file one page at a
time.

less Data/Fasta/EST-68566-Coffeacanephora.fasta

[space-bar] to see another page
[q] to quit reading
[/] followed by the word

to search
Up Down

“less” and “more” command

more <file_name> writes the contents of a file

“nano” command

nano <file_name> creates or edit a file called file_name

3 Go to the working with files and directories on
our website

mkdir, cp, touch,cat

Practice

https://isi.pages.ird.fr/isi-formation-unix/pages/bash/bash-4-working_with_files_and_directories/

Working with wildcard

Metacharacters : *, []

✓Can be used with all linux commands to increase the efficiency and

flexibility of searches in Linux.

generally used as a substitute for any string or

character

a symbol or set of symbols representing

others characters

Why do we use the wildcards
for?

✓Allow to perform actions on more than one file at a time !

○ to execute commands used to display the result

○ to select part of files

○ to find part of phrase in a file text

○ many uses…

=> regular expressions to match the patterns

* []
? +

.

Why do we use the wildcards
for?

Star

wildcard

*

KYVF-01.R1.fastq
KYVF-01.R2.fastq

KYVF-02.R1.fastq
KYVF-02.R2.fastq

ZO16.fastq
ZO16.bam

KYVF.sam
KYVF.bam

How to list only the fastq files ?

matches one or more occurrences of any character,

including no character.

The “*” wildcard

KYVF-01.R1.fastq
KYVF-01.R2.fastq

KYVF-02.R1.fastq
KYVF-02.R2.fastq

ZO16.fastq
ZO16.bam

KYVF.sam
KYVF.bam

ls *fastq

Star

wildcard

*

matches one or more occurrences of any character,

including no character.

The “*” wildcard

KYVF-01.R1.fastq
KYVF-01.R2.fastq

KYVF-02.R1.fastq
KYVF-02.R2.fastq

ZO16.fastq
ZO16.bam

KYVF.sam
KYVF.bam

ls *fastq

KYVF-01.R1.fastq
KYVF-01.R2.fastq

KYVF-02.R1.fastq
KYVF-02.R2.fastq

ZO16.fastq

Star

wildcard

*

matches one or more occurrences of any character,

including no character.

The “*” wildcard

Star

wildcard

*

matches one or more occurrences of any character,

including no character.

KYVF-01.R1.fastq
KYVF-01.R2.fastq

KYVF-02.R1.fastq
KYVF-02.R2.fastq

ZO16.fastq
ZO16.bam

KYVF.sam
KYVF.bam

ls KYVF*fastq

The “*” wildcard

Star

wildcard

*

matches one or more occurrences of any character,

including no character.

KYVF-01.R1.fastq
KYVF-01.R2.fastq

KYVF-02.R1.fastq
KYVF-02.R2.fastq

ZO16.fastq
ZO16.bam

KYVF.sam
KYVF.bam

ls KYVF*fastq

KYVF-01.R1.fastq
KYVF-01.R2.fastq

KYVF-02.R1.fastq
KYVF-02.R2.fastq

The “*” wildcard

Square Brackets represent any of the characters enclosed in the
brackets.

KYVF-01.R1.fastq
KYVF-01.R2.fastq

KYVF-02.R1.fastq
KYVF-02.R2.fastq

ZO16.fastq
ZO16.bam

KYVF.sam
KYVF.bam

ls *.[sb]am

The “[]” wildcard

Square Brackets an represent any of the characters enclosed in the
brackets.

KYVF-01.R1.fastq
KYVF-01.R2.fastq

KYVF-02.R1.fastq
KYVF-02.R2.fastq

ZO16.fastq
ZO16.bam

KYVF.sam
KYVF.bam

ls *.[sb]am

KYVF.sam
KYVF.bam

ZO16.bam

The “[]” wildcard

Square Brackets an represent any of the characters enclosed in the
brackets.

KYVF-01.R1.fastq
KYVF-01.R2.fastq

KYVF-02.R1.fastq
KYVF-02.R2.fastq

ZO16.fastq
ZO16.bam

KYVF.sam
KYVF.bam

ls *.[sb]am

KYVF.sam
KYVF.bam

⇔ ls *.[!f]*

ZO16.bam

The “[]” wildcard

4 Go to the wildcards practice on our website

*, []

Practice

https://isi.pages.ird.fr/isi-formation-unix/pages/bash/bash-4-working_with_files_and_directories/#jokerswildcards

Remote server

Connect a remote server from your computer with the ssh
protocol

ssh
Maria’ PC

REMOTE SERVER

ssh

ssh

Julia’ PC

Ezechiel’
PC

SSH for Secure Shell protocol used to set up
encrypted connections between two machines

=> a secure connection between your
computer & the remote server, enabling you to
work remotely

How to work on a remote
server?

with the terminal
& ssh command

Where ?
name of the remote

server

Who ?
account : login &

pass

How to work on a remote
server?

5 Go to the ssh practice on our website

ssh

Practice

https://isi.pages.ird.fr/isi-formation-unix/pages/bash/bash-connecting_remote/#connecting-a-remote-server-ssh

How to transfer files between
your pc and a remote server?

Graphical interface Command line

● “scp” command

● “rsync” command

How to use “scp” command?

server.ird.frYour PC

scp -r <source> <destination>

How to use “scp” command?

server.ird.frYour PC

/projects/download

/home/user/

scp -r <source> <destination>

How to use “scp” command?

server.ird.frYour PC

/projects/download

/home/user/

scp -r <source> <destination>

How to use “scp” command?

server.ird.frYour PC

/projects/download

login:
formation

/home/user/

scp -r <source> <destination>

How to use “scp” command?

server.ird.frYour PC

/projects/download

login:
formation

scp -r formation@server.ird.fr:/projects/download

/home/user/

source

connection

scp -r <source> <destination>

mailto:formation@server.ird.fr

How to use “scp” command?

server.ird.frYour PC

/projects/download

login:
formation

scp -r formation@server.ird.fr:/projects/download /home/user

/home/user/

source destination

connection

scp -r <source> <destination>

mailto:formation@server.ird.fr

How to use “scp” command?

server.ird.frYour PC

/projects/upload

/home/user/data

scp -r <source> <destination>

How to use “scp” command?

server.ird.frYour PC

/projects/upload

login:
formation

/home/user/data

scp -r <source> <destination>

How to use “scp” command?

server.ird.frYour PC

/projects/upload

login:
formation

scp -r /home/user/data formation@server.ird.fr:/projects/upload

/home/user/data

destinationsource

connection

scp -r <source> <destination>

mailto:formation@server.ird.fr

”wget” command

wget <file_url> allows to retrieve a file from an url

Compressing files: tar,gzip
tar –zcvf tarfile.tar.gz dirToCompress
gzip fileToCompress

Decompressing archives: gunzip, tar
gunzip file.gzip
tar –xvf file.tar
tar -zxvf file.tar.gz

 gzip -d file.gz

Displaying the contents of an archive: zcat
zcat data.txt.gz

Searching for an expression/pattern in a compressed file: zgrep
zgrep ‘NM_000020’ data.gz

Manipulating compressed files

6 Go to the filezilla, scp practice on our website

filezilla,scp

Practice

https://isi.pages.ird.fr/isi-formation-unix/pages/bash/bash-connecting_remote/#transfering-files-using-filezilla

Search patterns and
manipulate files

head writes the first ten lines of a file to the
screen

head –n 20
script.pl

tail writes the last ten lines of a file to the
screen

tail –n 5 script.pl

wc Count for word, lines, characters in a
file

wc script.pl
wc –l script.pl

Useful commands

sort sort the content of a text file, line by line

sort -t SEPARATOR -k … fileName

sort –k2 fileName Alphabetical sorting based on the second
column

sort –k2r

fileName

Reverse Alphabetical sorting based on the
2nd col

sort -t: -k3g

fileName -t option defines the field separator (by
default :)

sort –k2g –k1r

fileName

Numeral sorting on the 2nd column then
the 1st column

“sort” command

cut Extracts columns/fields from a file

cut -d SEPARATOR -f fieldsNumber fileName

“cut” command

cut Extracts columns/fields from a file

cut -d SEPARATOR -f fieldsNumber fileName

cut –d “:” -f1,5 /etc/passwd

Picked up the FIRST and FIFTH columns of FILE,
separated by :

“cut” command

grep searching a word, a pattern in a file

grep [options] pattern_searched file1 file2

“grep” command

grep searching a word, a pattern in a file

grep [options] pattern_searched file1 file2

grep "ATTCG"
allSeq.fasta

“grep” command

grep searching a word, a pattern in a file

grep [options] pattern_searched file1 file2

Don’t forget to enclose it
with single/double quotes

grep ">" allSeq.fasta

“grep” command

7 Go to the manipulation files practice on our
website

head,tail,cut, grep

Practice

https://isi.pages.ird.fr/isi-formation-unix/pages/bash/bash-extracting_from_files/

Select lines in a file using a regular expression
AND apply a modification o/treatment to these lines

sed “s/pattern search/new pattern/” file

searched patternsubstitution new pattern file to parse

Substitution/Replacement in lines

separator

“sed” command

A few examples

Example Description

sed "s/day/night/" file Change the 1st occurrence of “day”
by “night” per line

sed "s/[lL]inux/LINUX/g”
file

Change all occurrences of “linux”
by “LINUX”

“sed” command

Input/output redirection

To save the output of a command in a file

✓Redirection ?

to save the output of a command in a file instead of

printing it on our terminal

simply use the “>” character

command 1 > file_path

Output redirection

Redirection
Action

✓ Overwrite Redirection >

Replace all the existing content of that file ⇔

the file will be overwritten and will contain only the output

of the redirected command

✓ Append Redirection >>

 To add few lines to the end of an existing file.

cut -d: -f1 /etc/passwd >> userName.txt

Output redirection: use it with
caution

cut -d: -f1 /etc/passwd > userName.txt

Chaining commands

Redirection
Action

The standard output of a first command can be sent as standard
input to another command with the | operator

To connect several commands together
(without using temporary files)

cmd1 | cmd2 | cmd3

Chaining commands

Redirection
Action

; command2 will be executed regardless of whether command1
has been executed successfully or not

&& command2 will execute if command1 has been executed successfully.

cd ~/LIIINUX_TP && ls

Chaining commands

cd ~/LINUX_TP; ls right
cd ~/LIIINUX_TP; ls wrong

cut -d: -f1 /etc/passwd
Root
troot
iroot
ctroot
//

Chaining commands: example

cut -d: -f1 /etc/passwd
Root
troot
iroot
ctroot
//

cut -d: -f1 /etc/passwd | sort
abate
adm
adroot
ais
#albar
alvaro-wis
anthony
apache

Chaining commands: example

cut -d: -f1 /etc/passwd
Root
troot
iroot
ctroot
//

cut -d: -f1 /etc/passwd | sort
abate
adm
adroot
ais
#albar
alvaro-wis
anthony
apache
cut -d: -f1 /etc/passwd | sort | head

Chaining commands: example

cut -d: -f1 /etc/passwd
Root
troot
iroot
ctroot
//

cut -d: -f1 /etc/passwd | sort
abate
adm
adroot
ais
#albar
alvaro-wis
anthony
apache
cut -d: -f1 /etc/passwd | sort | head > /etc/passwd.sort

Chaining commands: example

8 Go to the chaining commands practice on our
website

>, >>,|, &&, ;

Practice

https://isi.pages.ird.fr/isi-formation-unix/pages/bash/bash-extracting_from_files/#redirecting-an-output

Scripting in bash

What is a bash script?

● A way to group your command in a single file

● Commands are executed in an sequential mode

● Allows you to automate your work

• Always start with : #!/bin/sh

• One instruction per line

• Each instruction should end with ;

• Use the # to comment your script

Rules to create a bash script

• Always start with : #!/bin/sh

• One instruction per line

• Each instruction should end with ;

• Use the # to comment your script:

○ script ignore what is after the #
○ Add infos for you and your colleagues

Rules to create a bash script

• Use “echo” command to display informations along your
script:

echo 'text'; To display on output (screen)

echo -e “text \n”; To go the line after

Additional Tip

Variable...

name=“Hello World”;

echo $name;

A box into which you can store
an object or a information.

Rules

• Variable names only with alpha-numeric characters

(A-Z, a-z, 0-9) or underscore

• Case sensitive , non space in the name!

CIBiG - 9 September - 4 October 2024

Variables

variable
name

variable
value

variables : results from
command

● To store the value of a command, use the following
syntax $(command)

result_command=$(ls /home/user);

echo $result_command;

● Make it executable:

● Execute the script:

● Execute the script with arguments :

Execute a bash script

chmod +x <script name>

sh <script name>

sh <script name> arg1 arg2

bash script arguments

● Used to give input values at the runtime for the script
● No need for hard coded values in the script
● scripts more dynamic and reusable
● The script uses special variables:

○ $0 : the script itself
○ $1 : first argument, $2 : 2nd argument etc
○ $#: number of arguments passed to the script
○ $@: contains all the input arguments

sh <script name> arg1 arg2

example bash script
arguments

sh example .sh arg1 arg2 arg3

○ $0 : example.sh
○ $1 :arg1, $2 : arg2, $3: arg3
○ $#: 3
○ $@: arg1 arg2 arg3

9 Go to scripting practice on our website

sh

Practice

https://isi.pages.ird.fr/isi-formation-unix/pages/bash/bash-9-scripting/

Conditions

if…
If the variable condition

against the value is true

then the action is

executed

if [[variable condition value]]
then

instruction1
 instruction2
else

instruction3
fi

“if” loop

if TEST-COMMAND

then

 STATEMENT 1

fi

if…
If the variable condition

against the value is true

then the action is

executed otherwise the

else condition is applied

if [[variable condition value]]
then

instruction1
 instruction2
else

instruction3
fi

“if” loop

if TEST-COMMAND

then

 STATEMENT 1
else
STATEMENT 2
fi

for…

• To parse a directory

• To run the same

instruction on each file of

the directory

for file in * ;
do

instruction1
instruction2

done

Instruction1;

instruction2;

Instruction3;

“for” loop

10 Go to the 2nd scripting practice on our
website

sh

Practice

https://isi.pages.ird.fr/isi-formation-unix/pages/bash/bash-9-scripting/

Other useful commands

Disk (free) size: df disk free
df occupied space in bytes
df -h human-readable

Directory size: du disk usage
du
du -h
du -h *

Searching for a file by its name find
find -name “transcritsAssembly.fasta”

Disk space and file size

 history displays all the last commands that have
been executed in all the previous sessions

The entire history is saved into the file .bash_history

“history” command

 history displays all the last commands that have
been executed in all the previous sessions

The entire history is saved into the file .bash_history

history | grep “blastn”

displays only the commands including the search keyword “blastn”

history | tail

displays the commands recently used

history | grep “blastn” | tail -n 5

history | head -n 5

displays the oldest commands

Filtering the History Output

“history” command

rename

Example Description
rename ‘s/.txt/.fasta/’ * rename the extension of all files

rename ‘y/a-z/A-Z/’ * rename files in uppercase

renaming files

Thank you for your
attention !

Le matériel pédagogique utilisé pour ces enseignements est mis à
disposition selon les termes de la licence Creative Commons Attribution
- Pas d’Utilisation Commerciale - Partage dans les Mêmes Conditions
(BY-NC-SA) 4.0 International:
http://creativecommons.org/licenses/by-nc-sa/4.0/

http://creativecommons.org/licenses/by-nc-sa/4.0/

awk: Language for manipulating a tabulated file line by line

• Authors' names : “Aho, Weinberger, and Kernighan”

• A programming language that makes it easy to manipulate
tabulated files (blast, sam, vcf) and extract part of the data.

• A language used to search for patterns and perform
associated operations and actions.

awk

Syntax : awk [-F] 'program' file

Option Description

-F specifies field separators

awk

Syntax : awk [-F] 'program' file

Option Description

-F specifies field separators

Variable Description

$0 Line

NR Line number read

NF Number of fields in line

Predefined variables used by awk

awk

Helene 56 edu hcyr@sun.com

jean 32 ri jeanc@inexpress.net

julie 22 adm juliem@sympatico.ca

michel 24 inf michel@uqo.ca

richard 25 inf rcaron@videotron.ca
File: contact.txt

awk

Helene 56 edu hcyr@sun.com

jean 32 ri jeanc@inexpress.net

julie 22 adm juliem@sympatico.ca

michel 24 inf michel@uqo.ca

richard 25 inf rcaron@videotron.ca

awk '{print $0}' contact.txt

print each line
read

Helene 56 edu hcyr@sun.com

jean 32 ri jeanc@inexpress.net

julie 22 adm juliem@sympatico.ca

michel 24 inf michel@uqo.ca

richard 25 inf rcaron@videotron.ca
File: contact.txt

awk

1 Helene 56

2 jean 32

3 julie 22

4 michel 24

5 richard 25

$awk '{print NR,$1,$2}' contact.txt

Displays the number of the line read
then the 1rstr field

then the 2e field of the tabulated file

Helene 56 edu hcyr@sun.com

jean 32 ri jeanc@inexpress.net

julie 22 adm juliem@sympatico.ca

michel 24 inf michel@uqo.ca

richard 25 inf rcaron@videotron.ca
File: contact.txt

awk

Helene 56

Jean 32

Julie 22

Michel 24

Richard 25

5 lines read in the file

$awk '{print $1,$2};
END { print NR “lines read in the file” }' contact.txt

Instruction executed at
the end of file reading

Helene 56 edu hcyr@sun.com

jean 32 ri jeanc@inexpress.net

julie 22 adm juliem@sympatico.ca

michel 24 inf michel@uqo.ca

richard 25 inf rcaron@videotron.ca

awk

Helene edu

jean ri

julie adm

michel inf

richard inf

Sum of all ages equal to 159

$awk '{print $1,$3; sum+=$2}
END { print “Sum of all ages equal to ”, sum }' contact.txt

149

Helene 56 edu hcyr@sun.com

jean 32 ri jeanc@inexpress.net

julie 22 adm juliem@sympatico.ca

michel 24 inf michel@uqo.ca

richard 25 inf rcaron@videotron.ca

We add the age ($2) to the sum
variable for each line read.

Then we display the sum
calculated at the end of file

reading

awk

Mean age = 31,8

$awk '{sum+=$2}
END { print “ Mean age = “, sum/NR }' contact.txt

We add the age ($2) to the sum
variable for each line read

Then we display the mean age
once the file has been read

Helene 56 edu hcyr@sun.com

jean 32 ri jeanc@inexpress.net

julie 22 adm juliem@sympatico.ca

michel 24 inf michel@uqo.ca

richard 25 inf rcaron@videotron.ca
File: contact.txt

awk

Helene’s age between 24 and 50 : equal to 56

jean’s age between 24 and 50 : equal to 32

richard’s age between 24 and 50 : equal to 25

if (Condition) {Instr-1; Instr-2; ...; Instr-n}

awk '{if ($2 > 24 && $2 < 50) { print $1 “‘s age between
24 and 50 : equal to ”, $2 }}' contact.txt

With 2
conditions

we can apply conditions!

awk

jean 32 ri jeanc@inexpress.net
julie 22 adm juliem@sympatico.ca

michel 24 inf michel@uqo.ca
richard 25 inf rcaron@videotron.ca

awk '{if ($3 == “inf") {print $0} }' contact.txt

awk '/j/ {print $0}' contact.txt

awk

jean 32 ri jeanc@inexpress.net

Helene 46
Jean 12
Julie 12
Michel 14
Richard 15

awk '{print $1, $2-10}' contact.txt

awk '{if($2 > 30 && $3 == “ri") {print $0}}' contact.txt

These commands can be used with standard output or a tabulated file
(such as .gff, blast m8 file, .vcf) as input.

awk

Command: ls –l

$ ls –l filename
drwxrwrwx 3 user user 4096 2012-02-11 20:21 file_name

Type

Permissions Owner Group Size Last modification date and time

Permission legend / interpretation

- : standard file
d : directory
l : symbolic link

File attributes and
permissions

ls –l command

drwxrwrwx 3 user user 4096 2012-02-11 20:21 file_name

3 types of permissions :

Permission File Directory

Read r Open and read List and et copy files

Write w Modify and remove Manipulate contents: copy, create, modify,
overwrite

Execution x Execute file Access to contained files for execution

Permissions

other
group
user

3 classes

File attributes and
permissions

permission managment command: chmod

chmod <perm> file_name

Each permission = 1 value

R 4
W 2

X 1

none 0

Example
chmod 740 script.sh # Owner=rwx Group=r–- Other=---
chmod 755 script.sh # Owner=rwx Group=r-x Other=r-x

File attributes and
permissions

chmod, ls

Provide owner name, group name and permissions for files contained in
directoty “~/Data/454-projet1/raw”

Modify permissions on file
Scripts/blast.pl to set them as
follows:
read and write for the group
read, write, execute for the owner
read for others (public)

Visualize and modify
permissions

