# Working on multiple tiles : Library The _Library_ class offers the possibility to get information and perform some actions on all or a group of tiles. Initialization: ```python >>> from sen2chain import Library >>> l = Library() ``` ## Database information and management ### Information - This function returns tiles in the L1C library folder ```python >>> l.l1c ``` - This function returns tiles in the L2A library folder ```python >>> l.l2a ``` - This function returns tiles in the indices library folder ```python >>> l.indices ``` ### Cleaning The _clean_ function performs the _clean_lib_ function (See Tile Section/link) for each tile present in L1C database or in the provided list. Use the _remove = True_ parameter to effectively remove products (default value False) ```python >>> l.clean() # All L1C database, nothing removed >>> l.clean(clean_list = ["40KCB", "38KND"]) # 2 tiles analysed, nothing removed >>> l.clean(clean_list = ["38KQE"], remove = True) # 1 tile analysed, error SAFE folders removed ``` ## Computing products ### Computing L2A You can compute L2A products for multiple provided tiles using multiprocessing ```python >>> # Compute all missing L2A products for the 2 provided tiles, >>> # after the specified date, >>> # and using 6 CPU cores >>> l.compute_l2a(tile_list = ["40KCB", "38KND"], date_min = "2020-01-01", nb_proc = 6) ``` ### Computing cloudmasks You can compute cloudmasks products for multiple provided tiles using multiprocessing, with specific parameters (see Tile for description). ```python >>> l.compute_cloudmasks(tile_list = ["40KCB", "38KND"], cm_version = "cm001", probability = 1, iterations = 5, reprocess = False, date_min = None, date_max = None, nb_proc = 4) ``` ### Computing indices You can compute index products for multiple provided tiles using multiprocessing, with specific parameters (see Tile for description). ```python >>> l.compute_indices(tile_list = ["40KCB"], indice_list = ["NDVI", "NDWIGAO"], reprocess = False, nodata_clouds = True, cm_version = "cm001", probability = 1, iterations = 5, date_min = None, date_max = "2021-12-31", nb_proc = 4) ``` ### Computing L1C and L2A quicklooks You can compute quicklooks for multiple provided tiles for L1C and/or L2A products. If no tile is provided, whole L1C + L2A product database is used. You can set specific output QL resolution (default 750m/px) and specific output format (JPEG by default or TIFF). ```python >>> l.compute_ql(tile_list = ["40KCB"], product_list = ["l1c", "l2a"], resolution = 750, jpg = True) ```