# -*- coding:utf-8 -*- """ Download L1C product by identifier provided by a csv file peps and scihub hub limits can be adjusted (line 31) - usually PEPS is faster for recent data (limit max 8) - scihub is better for a few months old products (limit max 2) """ import logging import pandas as pd from sen2chain import DataRequest, DownloadAndProcess, Tile import datetime import os import time logger = logging.getLogger("L1C Downloading") logging.basicConfig(level=logging.INFO) fwd = os.path.dirname(os.path.realpath(__file__)) # Tile process list tiles_file = fwd + "/download_tiles_by_identifier.csv" tiles_list = pd.read_csv(tiles_file, sep = '_', na_values="", comment='#') for index, row in tiles_list.iterrows(): row.starttime = datetime.datetime.strptime(row.starttime, '%Y%m%dT%H%M%S').strftime('%Y-%m-%d') row.endtime = (datetime.datetime.strptime(row.starttime, '%Y-%m-%d') + datetime.timedelta(days=1)).strftime('%Y-%m-%d') row.tile = row.tile[1:] tuile = Tile(row.tile) req = DataRequest(start_date=row.starttime, end_date=row.endtime).from_tiles([row.tile]) DownloadAndProcess(req, hubs_limit={"peps":0, "scihub":2}, process_products=False, indices_list=[], nodata_clouds=False, quicklook=False, max_processes=8) time.sleep(1) tuile = Tile(row.tile)