From ff30d4c02a85bb9f7b3d038b777001bf707cfcb9 Mon Sep 17 00:00:00 2001 From: "lea.douchet_ird.fr" <ldouchet@hotmail.fr> Date: Fri, 25 Nov 2022 17:16:40 +0700 Subject: [PATCH] kulldorf scan statistics --- 07-basic_statistics.qmd | 214 +++++++++++--- public/.07-basic_statistics.html.swp | Bin 20480 -> 0 bytes public/01-introduction.html | 2 +- public/07-basic_statistics.html | 262 +++++++++++++---- .../figure-html/MoransI-1.png | Bin 0 -> 17107 bytes .../figure-html/distribution-1.png | Bin 0 -> 20163 bytes .../figure-html/inc_visualization-1.png | Bin 53636 -> 53661 bytes .../figure-html/incidence_visualization-1.png | Bin 0 -> 53684 bytes .../figure-html/kd_test-1.png | Bin 0 -> 15737 bytes .../figure-html/plt_clusters-1.png | Bin 0 -> 44495 bytes public/search.json | 250 ++--------------- public/search.json.orig | 263 ------------------ 12 files changed, 410 insertions(+), 581 deletions(-) delete mode 100644 public/.07-basic_statistics.html.swp create mode 100644 public/07-basic_statistics_files/figure-html/MoransI-1.png create mode 100644 public/07-basic_statistics_files/figure-html/distribution-1.png create mode 100644 public/07-basic_statistics_files/figure-html/incidence_visualization-1.png create mode 100644 public/07-basic_statistics_files/figure-html/kd_test-1.png create mode 100644 public/07-basic_statistics_files/figure-html/plt_clusters-1.png delete mode 100644 public/search.json.orig diff --git a/07-basic_statistics.qmd b/07-basic_statistics.qmd index a685dda..c93cb0f 100644 --- a/07-basic_statistics.qmd +++ b/07-basic_statistics.qmd @@ -11,18 +11,19 @@ This section aims at providing some basic statistical tools to study the spatial In this section, we load data that reference the cases of an imaginary disease throughout Cambodia. Each point correspond to the geolocalisation of a case. ```{r load_cases, eval = TRUE, echo = TRUE, nm = TRUE, fig.width=8, class.output="code-out", warning=FALSE, message=FALSE} +library(dplyr) library(sf) #Import Cambodia country border -country = st_read("data_cambodia/cambodia.gpkg", layer = "country", quiet = TRUE) +country <- st_read("data_cambodia/cambodia.gpkg", layer = "country", quiet = TRUE) #Import provincial administrative border of Cambodia -education = st_read("data_cambodia/cambodia.gpkg", layer = "education", quiet = TRUE) +education <- st_read("data_cambodia/cambodia.gpkg", layer = "education", quiet = TRUE) #Import district administrative border of Cambodia -district = st_read("data_cambodia/cambodia.gpkg", layer = "district", quiet = TRUE) +district <- st_read("data_cambodia/cambodia.gpkg", layer = "district", quiet = TRUE) # Import locations of cases from an imaginary disease -cases = st_read("data_cambodia/cambodia.gpkg", layer = "cases", quiet = TRUE) -cases = subset(cases, Disease == "W fever") +cases <- st_read("data_cambodia/cambodia.gpkg", layer = "cases", quiet = TRUE) +cases <- subset(cases, Disease == "W fever") ``` @@ -42,7 +43,7 @@ mf_map(x = cases, lwd = .5, col = "#990000", pch = 20, add = TRUE) ``` -In epidemiology, the true meaning of point is very questionable. If it usually gives the location of an observation, its not clear if this observation represents an event of interest (e.g. illness, death, ...) or a person at risk (e.g. a participant that may or may not experience the disease). Considering a ratio of event compared to a population at risk is often more informative than just considering cases. Administrative divisions of countries appears as great areal units for cases aggregation since they make available data on population count and structures. In this study, we will use district as the areal unit of the study. +In epidemiology, the true meaning of point is very questionable. If it usually gives the location of an observation, its not clear if this observation represents an event of interest (e.g. illness, death, ...) or a person at risk (e.g. a participant that may or may not experience the disease). Considering a ratio of event compared to a population at risk is often more informative than just considering cases. Administrative divisions of countries appears as great areal units for cases aggregation since they make available data on population count and structures. In this study, we will use the district as the areal unit of the study. ```{r district_aggregate, eval = TRUE, echo = TRUE, nm = TRUE, fig.width=8, class.output="code-out", warning=FALSE, message=FALSE} # Aggregate cases over districts @@ -50,21 +51,21 @@ district$cases <- lengths(st_intersects(district, cases)) ``` -The incidence ($\frac{cases}{population}$) is commonly use to represent cases distribution related to population density but other indicators exists. As example, the standardized incidence ratios (SIRs) represents the deviation of observed and expected number of cases and is expressed as $SIR = \frac{Y_i}{E_i}$ with $Y_i$, the observed number of cases and $E_i$, the expected number of cases. In this study, we computed the expected number of cases in each district by assuming infections are homogeneously distributed across Cambodia, i.e. the incidence is the same in each district. +The incidence ($\frac{cases}{population}$) is commonly use to represent cases distribution related to population density but other indicators exists. As example, the standardized incidence ratios (SIRs) represents the deviation of observed and expected number of cases and is expressed as $SIR = \frac{Y_i}{E_i}$ with $Y_i$, the observed number of cases and $E_i$, the expected number of cases. In this study, we computed the expected number of cases in each district by assuming infections are homogeneously distributed across Cambodia, i.e. the incidence is the same in each district. The SIR therefore represents the deviation of incidence compared to the averaged average incidence across Cambodia. ```{r indicators, eval = TRUE, echo = TRUE, nm = TRUE, fig.width=8, fig.height=4, class.output="code-out", warning=FALSE, message=FALSE} # Compute incidence in each district (per 100 000 population) -district$incidence = district$cases/district$T_POP * 100000 +district$incidence <- district$cases/district$T_POP * 100000 # Compute the global risk -rate = sum(district$cases)/sum(district$T_POP) +rate <- sum(district$cases)/sum(district$T_POP) # Compute expected number of cases -district$expected = district$T_POP * rate +district$expected <- district$T_POP * rate # Compute SIR -district$SIR = district$cases / district$expected +district$SIR <- district$cases / district$expected ``` ```{r inc_visualization, eval = TRUE, echo = TRUE, nm = TRUE, fig.width=8, fig.height=4, class.output="code-out", warning=FALSE, message=FALSE} @@ -90,8 +91,8 @@ mf_layout(title = "Incidence of W Fever") # Plot SIRs # create breaks and associated color palette -break_SIR = c(0, exp(mf_get_breaks(log(district$SIR), nbreaks = 8, breaks = "pretty"))) -col_pal = c("#273871", "#3267AD", "#6496C8", "#9BBFDD", "#CDE3F0", "#FFCEBC", "#FF967E", "#F64D41", "#B90E36") +break_SIR <- c(0, exp(mf_get_breaks(log(district$SIR), nbreaks = 8, breaks = "pretty"))) +col_pal <- c("#273871", "#3267AD", "#6496C8", "#9BBFDD", "#CDE3F0", "#FFCEBC", "#FF967E", "#F64D41", "#B90E36") mf_map(x = district, var = "SIR", @@ -115,54 +116,201 @@ In this example, we standardized the cases distribution for population count. Th ## Cluster analysis -Since this W fever seems to have a heterogeneous distribution across Cambodia, it would be interesting to study where excess of cases appears, i.e. to identify clusters of the disease. The first question is to wonder if data are auto correlated or spatially independent, i.e. study if neighboring districts are likely to have similar incidence. +Since this W fever seems to have a heterogeneous distribution across Cambodia, it would be interesting to study where excess of cases appears, i.e. to identify clusters of the disease. The definition of clusters emcompass many XXXXXXX -In statistics, problems are usually expressed by defining two hypothesis : the null hypothesis (H0), i.e. an a priori hypothesis of the studied phenomenon (e.g. the situation is a random) and the alternative hypothesis (HA), e.g. the situation is not random. The main principle is to measure how likely the observed situation belong to the ensemble of situation that are possible under the H0 hypothesis. +The first question is to wonder if data are auto correlated or spatially independent, i.e. study if neighboring districts are likely to have similar incidence. -### Spatial autocorrelation (Moran's I test) +### Test for spatial autocorrelation (Moran's I test) A popular test for spatial autocorrelation is the Moran's test. This test tells us whether nearby units tend to exhibit similar incidences. It ranges from -1 to +1. A value of -1 denote that units with low rates are located near other units with high rates, while a Moran's I value of +1 indicates a concentration of spatial units exhibiting similar rates. -Here the statistics hypothesis are : +::: callout-note +## Statistical test -- H0 : the distribution of cases is spatially independant, i.e. Moran's I value is 0. +In statistics, problems are usually expressed by defining two hypothesis : the null hypothesis (H0), i.e. an *a priori* hypothesis of the studied phenomenon (e.g. the situation is a random) and the alternative hypothesis (HA), e.g. the situation is not random. The main principle is to measure how likely the observed situation belong to the ensemble of situation that are possible under the H0 hypothesis. -- H1: the distribution of cases is spatially autocorrelated, i.e. Moran's I value is different than 0. +The Moran's statistics is : -We will compute the Moran's statistics using `spdep` and `Dcluster` packages. `spdep` package provides a collection of functions to analyze spatial correlations of polygons and works with sp objects. `Dcluster` package provides a set of functions for the detection of spatial clusters of disease using count data. +$$I = \frac{N}{\sum_{i=1}^N\sum_{j=1}^Nw_{ij}}\frac{\sum_{i=1}^N\sum_{j=1}^Nw_{ij}(Y_i-\bar{Y})(Y_j - \bar{Y})}{\sum_{i=1}^N(Y_i-\bar{Y})^2}$$ with : + +- $N$: the number of polygons, + +- $w_{ij}$: is a matrix of spatial weight with zeroes on the diagonal (i.e., $w_{ii}=0$). For example, if polygons are neighbors, the weight takes the value $1$ otherwise it take the value $0$. + +- $Y_i$: the variable of interest, + +- $\bar{Y}$: the mean value of $Y$. + +Under the Moran's test, the statistics hypothesis are : + +- **H0** : the distribution of cases is spatially independent, i.e. $I=0$. + +- **H1**: the distribution of cases is spatially autocorrelated, i.e. $I\ne0$. +::: + +We will compute the Moran's statistics using `spdep` and `Dcluster` packages. `spdep` package provides a collection of functions to analyze spatial correlations of polygons and works with sp objects. In this example, we use `poly2nb()` and `nb2listw()`. These function respectively detect the neighboring polygons and assign weight corresponding to $1/\#\ of\ neighbors$. `Dcluster` package provides a set of functions for the detection of spatial clusters of disease using count data. ```{r MoransI, eval = TRUE, echo = TRUE, nm = TRUE, fig.width=8, class.output="code-out", warning=FALSE, message=FALSE} library(spdep) # Functions for creating spatial weight, spatial analysis -library(DCluster) # Package with functions for spatial cluster analysis) +library(DCluster) # Package with functions for spatial cluster analysis -qnb <- poly2nb(district) -q_listw <- nb2listw(qnb, style = 'W') # row-standardized weights +queen_nb <- poly2nb(district) # Neighbors according to queen case +q_listw <- nb2listw(queen_nb, style = 'W') # row-standardized weights # Moran's I test -moranI.test(cases ~ offset(log(expected)), +m_test <- moranI.test(cases ~ offset(log(expected)), data = district, model = 'poisson', R = 499, listw = q_listw, - n = 159, - S0 = Szero(q_listw)) + n = length(district$cases), # number of regions + S0 = Szero(q_listw)) # Global sum of weights +print(m_test) +plot(m_test) ``` +The Moran's statistics is here $I =$ `r signif(m_test$t0, 2)`. When comparing its value to the H0 distribution (built under `r m_test$R` simulations), the probability of observing such a I value under the null hypothesis, i.e. the distribution of cases is spatially independent, is $p_{value} =$ `r signif(( 1+ (sum((-abs(as.numeric(m_test$t0-mean(m_test$t))))>as.numeric(m_test$t-mean(m_test$t)))) + (sum(abs(as.numeric(m_test$t0-mean(m_test$t)))<as.numeric(m_test$t-mean(m_test$t)))) )/(m_test$R+1), 2)`. We therefore reject H0 with error risk of $\alpha = 5\%$. The distribution of cases is therefore autocorrelated across districts in Cambodia. + +::: callout-note +## Statistic distributions + +In mathematics, a probability distribution is a mathematical expression that represents what we would expect due to random chance. The choice of the probability distribution relies on the type of data you use (continuous, count, binary). In general, three distribution a used while studying disease rates, the binomial, the poisson and the Poisson-gamma mixture (a.k.a negative binomial) distributions. + +The default Global Moran's I test assume data are normally distributed. It implies that the mean However, in epidemiology, rates and count values are usually not normally distributed and their variance is not homogeneous across the districts since the size of population at risk differs. to be the same since more variability occurs when we study smaller populations. + +While many measures may be appropriately assessed under the normality assumptions of the previous Global Moran's I, in general disease rates are not best assessed this way. This is because the rates themselves may not be normally distributed, but also because the variance of each rate likely differs because of different size population at risk. For example the previous test assumed that we had the same level of certainty about the rate in each county, when in fact some counties have very sparse data (with high variance) and others have adequate data (with relatively lower variance). + +```{r distribution, eval = TRUE, echo = TRUE, nm = TRUE, fig.width=6, class.output="code-out", warning=FALSE, message=FALSE} + +# dataset statistics +m_cases <- mean(district$cases) +sd_cases <- sd(district$cases) + +curve(dnorm(x, m_cases, sd_cases), from = -5, to = 16, ylim = c(0, 0.4), col = "blue", lwd = 1, + xlab = "Number of cases", ylab = "Probability", main = "Histogram of observed data compared\nto Normal and Poisson distributions") +points(0:max(district$cases), dpois(0:max(district$cases), m_cases),type = 'b ', pch = 20, col = "red", ylim = c(0, 0.6), lty = 2) +hist(district$cases, add = TRUE, probability = TRUE) + +legend("topright", legend = c("Normal distribution", "Poisson distribution", "Observed distribution"), col = c("blue", "red", "black"),pch = c(NA, 20, NA), lty = c(1, 2, 1)) +``` +::: + ### Spatial scan statistics -While Moran's indice focuses on finding correlation between neighboring polygons, the spatial scan statistic compare the incidence level of a given windows of observation with the incidence level outside of this windows. +While Moran's indice focuses on testing for autocorrelation between neighboring polygons (under the null assumption of spatial independance), the spatial scan statistic aims at identifying an abnormal higher risk in a given region compared to the risk outside of this region (under the null assumption of homogeneous distribution). The conception of a cluster is therefore different between the two methods. + +The function `kulldorf` from the package `SpatialEpi`is a simple tool to implement spatial-only scan statistics. Briefly, the kulldorf scan statistics scan the area for clusters using several steps: + +1. It create a circular window of observation by defining a single location and an associated radius of the windows varying from 0 to a large number that depends on population distribution (largest radius could includes 50% of the population). + +2. It aggregates the count of events and the population at risk (or an expected count of events) inside and outside the window of observation. + +3. Finally, it computes the likelihood ratio to test whether the risk is equal inside versus outside the windows (H0) or greater inside the observed window + +4. These 3 steps are repeted for each location and each possible windows-radii. + +```{r spatialEpi, eval = TRUE, echo = TRUE, nm = TRUE, class.output="code-out", warning=FALSE, message=FALSE} + +library("SpatialEpi") -The package `SpatialEpi` +``` + +The use of R spatial object is not implementes in `kulldorf()` function. It uses instead matrix of xy coordinates that represents the centroids of the districts. A given district is included into the observed circular window if its centroids falls into the circle. + +```{r kd_centroids, eval = TRUE, echo = TRUE, nm = TRUE, fig.width=6, class.output="code-out", warning=FALSE, message=FALSE} + +district_xy <- st_centroid(district) %>% + st_coordinates() +head(district_xy) -### Population-based clusters (kulldorf statistic) +``` + +We can then call kulldorff function (you are strongly encourage to call `?kulldorf` to properly call the function). The `alpha.level` threshold filter for the secondary clusters that will be retained. The most-likely cluster will be saved whatever its significance. -Kulldorff 's spatial scan statistic identifies the most likely disease clusters maximizing the likelihood that disease cases are located within a set of concentric circles that are moved across the study area. +```{r kd_test, eval = TRUE, echo = TRUE, nm = TRUE, fig.width=6, class.output="code-out", warning=FALSE, message=FALSE} -### Expectation-based cluster +kd_Wfever <- kulldorff(district_xy, + cases = district$cases, + population = district$T_POP, + expected.cases = district$expected, + pop.upper.bound = 0.5, # include maximum 50% of the population in a windows + n.simulations = 499, + alpha.level = 0.2) + +``` + +All outputs are saved into the R object `kd_Wfever`. Unfortunately the package did not developed any summary and visualization of the results but we can explore the output object. + +```{r kd_outputs, eval = TRUE, echo = TRUE, nm = TRUE, fig.width=6, class.output="code-out", warning=FALSE, message=FALSE} +names(kd_Wfever) + +``` + +First, we can focus on the most likely cluster and explore its characteristics. + +```{r kd_mlc, eval = TRUE, echo = TRUE, nm = TRUE, fig.width=6, class.output="code-out", warning=FALSE, message=FALSE} + +# We can see which districts (r number) belong to this cluster +kd_Wfever$most.likely.cluster$location.IDs.included + +# standardized incidence ratio +kd_Wfever$most.likely.cluster$SMR + +# number of observed and expected cases in this cluster +kd_Wfever$most.likely.cluster$number.of.cases +kd_Wfever$most.likely.cluster$expected.cases + +``` +`r length(kd_Wfever$most.likely.cluster$location.IDs.included)` districts belong to the cluster and its number of cases is `r signif(kd_Wfever$most.likely.cluster$SMR, 2)` times higher than the expected number of case. + +Similarly, we could study the secondary clusters. Results are saved in a list. + +```{r kd_sc, eval = TRUE, echo = TRUE, nm = TRUE, fig.width=6, class.output="code-out", warning=FALSE, message=FALSE} + +# We can see which districts (r number) belong to this cluster +length(kd_Wfever$secondary.clusters) + +# retrieve data for all secondary clusters into a table +df_secondary_clusters <- data.frame(SMR = sapply(kd_Wfever$secondary.clusters, '[[', 5), + number.of.cases = sapply(kd_Wfever$secondary.clusters, '[[', 3), + expected.cases = sapply(kd_Wfever$secondary.clusters, '[[', 4), + p.value = sapply(kd_Wfever$secondary.clusters, '[[', 8)) + +print(df_secondary_clusters) + + +``` + +We only have one secondary cluster composed of one district. + + +```{r plt_clusters, eval = TRUE, echo = TRUE, nm = TRUE, fig.width=8, class.output="code-out", warning=FALSE, message=FALSE} + +# create empty column to store cluster informations +district$k_cluster <- NA + +# save cluster informations from kulldorff outputs +district$k_cluster[kd_Wfever$most.likely.cluster$location.IDs.included] <- 'Most likely cluster' + +for(i in 1:length(kd_Wfever$secondary.clusters)){ +district$k_cluster[kd_Wfever$secondary.clusters[[i]]$location.IDs.included] <- paste( + 'Secondary cluster ', i, sep = '') +} + +# create map +mf_map(x = district, + var = "k_cluster", + type = "typo", + cex = 2, + leg_title = "Clusters") +mf_layout(title = "Cluster using kulldorf scan statistic") + + + +``` +This cluster analysis was performed solely using the spatial -In many case, population is not specific enough to -### To go further ... diff --git a/public/.07-basic_statistics.html.swp b/public/.07-basic_statistics.html.swp deleted file mode 100644 index fd7d5cafee353be3dacb5819006d3bf0b628ff15..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 20480 zcmeHNON<;x8SXeh0*QG92^4{#(k9qzyXUdH-pB0BDE8V88!NW)8%S`fyK8ou?HAoO zJG(3n7UF;qK_Lfj2@eSl+(6<GP9Q-zAdnD3LP7`$Avhpj7XritzN)UC?Vg_5ovgzl zqDT66cIvPC>#wi=`s-=duB<#t7AkcOpSNn-=YRgB^~2ge?be-|cKNJxMkMd{xqNoz zjB&1Z<;?Vznc0QqvDu##3acjrtLHJF$JGnh`$4o8S642atX_yi${p%fBlVBb2_hr# zS(j0lcdKE~bRDZ&n>S1vJJ$7>BYVspE3S08=Z>wj6qF2<41j?i?-&dFFV9TZYl4ph z`UB+c_gyZjDH$jkC>bajC>bajC>bajC>baj_&;KRhxclqLVNeAHeXWTcMN_1M|~bq z>FLfP&G)jBKcwVe9xDHDC7)91zZsI>Qu6nz^t+YfRR2p#{x&5)I3$0aO21!yFAT~5 zsmiDF4-U!yq2%vS<v%tge^JR#EBVbK`QMe?R`M5y<Ty@|AC;^fR)nX&mAL#W87LVj z87LVj87LVj87LVj87LVj87LVj8Tg+tK(S$c5SqUzHln!yPxt?SeT$}j1Nb`d1>kYu zF<>8X2cQ9;eY2+B1T0_?xC{98eogxda1*!+JPaHJ_5=3-KfV_-;1S>;@Y{Pd?R&u2 zfM<XJ@PLm32JrhgY1;3Ap90?mo&p{Q?gRevMooJT=mCqsoxm^d*0k>cUj?28P5?8& z5#U|G3wLSS4}i}AM}U95LDPN$JO^9@jsmw{uW8Q%PXO-({(!@U=YdV&8gK-72^;$F z0#5+%0sf5r{P%&UfDZ!?0xyEo9|3~frv<;0e5}A`1aBbx%6d$;h!wa&)F20DYx6Z) zTOv0|^)R`@A`{Oayo)??{8e(es%1*iOsV=}eSY3bOVP-orpxmAW1h*Mt7Vk-IBSz> z&dn_>DD4+RX5szD$U@fGDw0CWT^i-B3d2kh)0(HXwC(337Dj=^;y4&86J%Rb17Fi= znRC3$hBId?n3EsXkaHo6C?8h7*3TG}D(?h7H~P$3?eYdO1J_n6&ah3qY_aoAa{P>j zIdrB8^G0ZpNipAaS%Wy7;?;}Ny5i$WjE8;?{2|R=MsuyUP!nX0&@6pt#S4Ro=M{8% zSp{>`3-e6XdAjFY#R@xaCjTs&GM_Si+70NCa<+lYvg%VCocVFVe00sWpLaU2eh2eU zMbU8A*z1|{IcrWb>k4)AZMCyrvIrj;c-BeE>7~tZXnfc~M!QL;>(g~b?x;RWA2*HY zB`a&@UiyDI@Wi{RE5l>O%37FHJjz0)B~OZ#_00w0Kxv0A2R@!!`9pnbbu*;of<|#D zTb)ea-9`?o<5A$kjrw^D&76xWAD3QrqUX4LWoSs4*#_l&;slM^*}QIe?6w2W+i;3S z<^IPxBCOftLq0*X+H;KOgTdILeBAc~@qlf3B*R&^E!k}-9CukVkZ)*V#7G-+h0Q8) z(2Fd#EM}3moJa6Q8yzQ#xnXr3*KRaShCsql6K5OTu$dJg;K7y#>G?K`T*nu~Uwg=7 zwnIs5MU0`r8bJwyblX|a)FSGx_&v{L(M4G`a(Ogbb$r8R9mK^M<}D#OM$oKM>fr{7 z1J|+10V+RBgoM<#F_)<vv*CuYK-7jR2a}-6Ez?wi2B{I5yYJY%+aR;3P09@~HhMAY zjG4<U*x}<b;Swn(CArtcE5cC)3@`Y^i1egXpP6e8H+ayqx`stvH|Py&!o(njV`@wo zNzJmIICSYIBEB!^H%vFM){=&VLF^>G6EPS4w2oFJ%o=q;t?Wch6RYUINK8dbWF3y- zz#Ky*<H;nGy$Y*^fBA^Ru+s{9_%Aw?xQrokOf41rQ?4y`_9dxz2SY`#q}3UY504U& ztN||&&MIpb{atXSOx4PCX|WNpnB|KT5wJ!p&~_OgY8*K5ePNSvOc<N@N0~HE%@*l* z9nK6a+APf3XoS&^XqXv7A(m-~F)$=QcF-9C`l^Fy*C4dVgG`yhuoI+Y26Z~R;P@hU zL18lX8U((P<QNkb264vmu{d(zHHBy}klfJn7Hk{6?!*q3l#2VYF{r`3kZ+>7UA0)M zSEdEa<0w_$wnavd3nIrzM%S_Ns*1gX&K)tNZlHHaVdQv@ZKHXRq`cNht+F7v6)hk} zy)uV}K(6AC6fS8!x58<>2G7R&+I29j!yf+#$LgY`TU}<YnZbtsI9wu|aZBVj)TAxL zRnos*>LZ-4V&Di5-O5GRdPVxC?7M*nCy7a6Y#@4`ztwTsM(Sf}_ZewQHfOvw;9Qhh zBC9lP5YO=s&93*45~+G>>4qk^D6xl_XVEa;l2hHf*kQ<VEz%JX!x%Y*18$8TA~&?A zY;Id?a)-OD{U{AXv8AEDEhaDVA{_rycQa-&NF*1qu8qh!pOFv9ci|-FJ==lIAoK6{ z%^0H&6TD*~9fjrla9JX+%ZZ!Sq(1D(njYhn_|!w!tUIhPmdAP;BwM=d*OtxJ9Rw=* z<0uS4L`Hax5o1}aUa1{b^9p{89ad|T#d<rhdX@Rfz9OUh<2@Sj06v7_aIB6Ji7ghk zLx^uJUB20sip1<hHayplTY8uCuu-k{`~6CPrV>P})%xP%Vs%60(TNLZY3a<@MfS$v zSG$Ra^fqdE;N-dGOCLIaiiqrOP3-@FhQ0jX#GW4e|8$!wev31J@>4QUGEg#5GEg#5 zGEg#5GEg#5GEg#5GEg#5GVmH?pjkBod$ZlFZtwqpiDq0A8-MKo)A#Yu;x7M700$1^ z-u@Zf)xV7U_@{yUfzRRo{TA-qJ>XZkS3e1SQr)S43wP-620o3u^FQLQ{1U)%NB(Wx ziBsTDs7us$H9c&24br%q$xU%SMjRW*edfF|J*~H!lyoE3Y3T=43K6GeMi(cH%x~#D z>M@;gYKl|5jh1fUJg8Zv?L?8~(ilfSR-m^J5FDRVTuGVuT8rgT8H53D-#N2!aD@j0 zIKFln=d4*3W<Zbp!eLv^C{aV+sJgyqqt3gyf4{hL0Y_^))mbalS(~)Zk&UP?4l6{; z9vac<>20rb9d|Ie!ck2)l;fUqy)6$7NlVE|P98(9ulSaO?z9*QI^-%j&2YT0tL#(i zd#D@g3xyUeOxOaFd~#+8GhMcN{S}z1?8>Q$ExrAiKT?7U4&jXisn>88UaL***1q{d z`{r-6eemv`I^hDdV=|MPb#x5va|N^JZqqDryuXuORyT-(-OM^xFzeWDnuSyOovgxj zT;j63SvFg+Y<5D+a-O9|nny#`F~woFv28CdBX9+8@o~L4Q!r{~FGeMSRmQLZA0+ku z(SfHB((BWc);wBaAspBD6pmk|NOo3U>5DLC;r2Lw1@Wv9;_H)!c#@B(6Nj>8VPWdN zW5R4<o|tr+7-1CV*liEZIk%hy4lFK;7c{9sM^i@{3jBq*KY7^C)hQ>YT|y6@%!LDc zMhC<~n4UaJ7tC3w?sbo5hH);3y{@;9)sz)u26iDjPad3ebqR8I34qeScOj<`l_w9% z1#>dA45Hf@7b%3?S1aO<j6j80x~EXOxA;CahJiwqojAzKwQg?REW>;9RB1b|^<r_~ zEXD`!eenniON)5Z!(-0WpuuRtQwyT>W!__0Ox$$iid#=t`<RjNW@ALw2#a%DTq1Kk z77D^mWE2Ubazd0_s~6{nN#~j@4Wes88mSf)=UuN8;oaTn<*g`djVvjKb3Gl+`3NpV zGfFhI9hfsr3i@<n<LRa0dukViTk0yZ;48zyoPp^uw_lMdlP&erah4m4Vu|}cWgIpx zdCLRDjR6t67Eh+gg7&J?E}pT-RZJmAT0h&sOK5E0RDotyI7YjPr-vMG1m#-3r7y#0 s2oK1z>x5=NBO6Z%(tRQPO1PAflmJmqDl;AYsyaX-!#{9O{FM~{7k&RGS^xk5 diff --git a/public/01-introduction.html b/public/01-introduction.html index e455ef1..203c6aa 100644 --- a/public/01-introduction.html +++ b/public/01-introduction.html @@ -2,7 +2,7 @@ <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head> <meta charset="utf-8"> -<meta name="generator" content="quarto-1.1.251"> +<meta name="generator" content="quarto-1.1.189"> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes"> diff --git a/public/07-basic_statistics.html b/public/07-basic_statistics.html index 4123e0b..9887eb5 100644 --- a/public/07-basic_statistics.html +++ b/public/07-basic_statistics.html @@ -218,11 +218,8 @@ code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warni <li><a href="#import-and-visualize-epidemiological-data" id="toc-import-and-visualize-epidemiological-data" class="nav-link active" data-scroll-target="#import-and-visualize-epidemiological-data"><span class="toc-section-number">7.1</span> Import and visualize epidemiological data</a></li> <li><a href="#cluster-analysis" id="toc-cluster-analysis" class="nav-link" data-scroll-target="#cluster-analysis"><span class="toc-section-number">7.2</span> Cluster analysis</a> <ul class="collapse"> - <li><a href="#spatial-autocorrelation-morans-i-test" id="toc-spatial-autocorrelation-morans-i-test" class="nav-link" data-scroll-target="#spatial-autocorrelation-morans-i-test"><span class="toc-section-number">7.2.1</span> Spatial autocorrelation (Moran’s I test)</a></li> + <li><a href="#test-for-spatial-autocorrelation-morans-i-test" id="toc-test-for-spatial-autocorrelation-morans-i-test" class="nav-link" data-scroll-target="#test-for-spatial-autocorrelation-morans-i-test"><span class="toc-section-number">7.2.1</span> Test for spatial autocorrelation (Moran’s I test)</a></li> <li><a href="#spatial-scan-statistics" id="toc-spatial-scan-statistics" class="nav-link" data-scroll-target="#spatial-scan-statistics"><span class="toc-section-number">7.2.2</span> Spatial scan statistics</a></li> - <li><a href="#population-based-clusters-kulldorf-statistic" id="toc-population-based-clusters-kulldorf-statistic" class="nav-link" data-scroll-target="#population-based-clusters-kulldorf-statistic"><span class="toc-section-number">7.2.3</span> Population-based clusters (kulldorf statistic)</a></li> - <li><a href="#expectation-based-cluster" id="toc-expectation-based-cluster" class="nav-link" data-scroll-target="#expectation-based-cluster"><span class="toc-section-number">7.2.4</span> Expectation-based cluster</a></li> - <li><a href="#to-go-further" id="toc-to-go-further" class="nav-link" data-scroll-target="#to-go-further"><span class="toc-section-number">7.2.5</span> To go further …</a></li> </ul></li> </ul> </nav> @@ -251,18 +248,19 @@ code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warni <h2 data-number="7.1" class="anchored" data-anchor-id="import-and-visualize-epidemiological-data"><span class="header-section-number">7.1</span> Import and visualize epidemiological data</h2> <p>In this section, we load data that reference the cases of an imaginary disease throughout Cambodia. Each point correspond to the geolocalisation of a case.</p> <div class="cell" data-nm="true"> -<div class="sourceCode cell-code" id="cb1"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(sf)</span> -<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a></span> -<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a><span class="co">#Import Cambodia country border</span></span> -<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a>country <span class="ot">=</span> <span class="fu">st_read</span>(<span class="st">"data_cambodia/cambodia.gpkg"</span>, <span class="at">layer =</span> <span class="st">"country"</span>, <span class="at">quiet =</span> <span class="cn">TRUE</span>)</span> -<span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a><span class="co">#Import provincial administrative border of Cambodia</span></span> -<span id="cb1-6"><a href="#cb1-6" aria-hidden="true" tabindex="-1"></a>education <span class="ot">=</span> <span class="fu">st_read</span>(<span class="st">"data_cambodia/cambodia.gpkg"</span>, <span class="at">layer =</span> <span class="st">"education"</span>, <span class="at">quiet =</span> <span class="cn">TRUE</span>)</span> -<span id="cb1-7"><a href="#cb1-7" aria-hidden="true" tabindex="-1"></a><span class="co">#Import district administrative border of Cambodia</span></span> -<span id="cb1-8"><a href="#cb1-8" aria-hidden="true" tabindex="-1"></a>district <span class="ot">=</span> <span class="fu">st_read</span>(<span class="st">"data_cambodia/cambodia.gpkg"</span>, <span class="at">layer =</span> <span class="st">"district"</span>, <span class="at">quiet =</span> <span class="cn">TRUE</span>)</span> -<span id="cb1-9"><a href="#cb1-9" aria-hidden="true" tabindex="-1"></a></span> -<span id="cb1-10"><a href="#cb1-10" aria-hidden="true" tabindex="-1"></a><span class="co"># Import locations of cases from an imaginary disease</span></span> -<span id="cb1-11"><a href="#cb1-11" aria-hidden="true" tabindex="-1"></a>cases <span class="ot">=</span> <span class="fu">st_read</span>(<span class="st">"data_cambodia/cambodia.gpkg"</span>, <span class="at">layer =</span> <span class="st">"cases"</span>, <span class="at">quiet =</span> <span class="cn">TRUE</span>)</span> -<span id="cb1-12"><a href="#cb1-12" aria-hidden="true" tabindex="-1"></a>cases <span class="ot">=</span> <span class="fu">subset</span>(cases, Disease <span class="sc">==</span> <span class="st">"W fever"</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> +<div class="sourceCode cell-code" id="cb1"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(dplyr)</span> +<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(sf)</span> +<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a><span class="co">#Import Cambodia country border</span></span> +<span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a>country <span class="ot"><-</span> <span class="fu">st_read</span>(<span class="st">"data_cambodia/cambodia.gpkg"</span>, <span class="at">layer =</span> <span class="st">"country"</span>, <span class="at">quiet =</span> <span class="cn">TRUE</span>)</span> +<span id="cb1-6"><a href="#cb1-6" aria-hidden="true" tabindex="-1"></a><span class="co">#Import provincial administrative border of Cambodia</span></span> +<span id="cb1-7"><a href="#cb1-7" aria-hidden="true" tabindex="-1"></a>education <span class="ot"><-</span> <span class="fu">st_read</span>(<span class="st">"data_cambodia/cambodia.gpkg"</span>, <span class="at">layer =</span> <span class="st">"education"</span>, <span class="at">quiet =</span> <span class="cn">TRUE</span>)</span> +<span id="cb1-8"><a href="#cb1-8" aria-hidden="true" tabindex="-1"></a><span class="co">#Import district administrative border of Cambodia</span></span> +<span id="cb1-9"><a href="#cb1-9" aria-hidden="true" tabindex="-1"></a>district <span class="ot"><-</span> <span class="fu">st_read</span>(<span class="st">"data_cambodia/cambodia.gpkg"</span>, <span class="at">layer =</span> <span class="st">"district"</span>, <span class="at">quiet =</span> <span class="cn">TRUE</span>)</span> +<span id="cb1-10"><a href="#cb1-10" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb1-11"><a href="#cb1-11" aria-hidden="true" tabindex="-1"></a><span class="co"># Import locations of cases from an imaginary disease</span></span> +<span id="cb1-12"><a href="#cb1-12" aria-hidden="true" tabindex="-1"></a>cases <span class="ot"><-</span> <span class="fu">st_read</span>(<span class="st">"data_cambodia/cambodia.gpkg"</span>, <span class="at">layer =</span> <span class="st">"cases"</span>, <span class="at">quiet =</span> <span class="cn">TRUE</span>)</span> +<span id="cb1-13"><a href="#cb1-13" aria-hidden="true" tabindex="-1"></a>cases <span class="ot"><-</span> <span class="fu">subset</span>(cases, Disease <span class="sc">==</span> <span class="st">"W fever"</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> </div> <p>The first step of any statistical analysis always consists on visualizing the data to check they were correctly loaded and to observe general pattern of the cases.</p> <div class="cell" data-nm="true"> @@ -292,24 +290,24 @@ Projected CRS: WGS 84 / UTM zone 48N <p><img src="07-basic_statistics_files/figure-html/cases_visualization-1.png" class="img-fluid" width="768"></p> </div> </div> -<p>In epidemiology, the true meaning of point is very questionable. If it usually gives the location of an observation, its not clear if this observation represents an event of interest (e.g. illness, death, …) or a person at risk (e.g. a participant that may or may not experience the disease). Considering a ratio of event compared to a population at risk is often more informative than just considering cases. Administrative divisions of countries appears as great areal units for cases aggregation since they make available data on population count and structures. In this study, we will use district as the areal unit of the study.</p> +<p>In epidemiology, the true meaning of point is very questionable. If it usually gives the location of an observation, its not clear if this observation represents an event of interest (e.g. illness, death, …) or a person at risk (e.g. a participant that may or may not experience the disease). Considering a ratio of event compared to a population at risk is often more informative than just considering cases. Administrative divisions of countries appears as great areal units for cases aggregation since they make available data on population count and structures. In this study, we will use the district as the areal unit of the study.</p> <div class="cell" data-nm="true"> <div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Aggregate cases over districts</span></span> <span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>cases <span class="ot"><-</span> <span class="fu">lengths</span>(<span class="fu">st_intersects</span>(district, cases))</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> </div> -<p>The incidence (<span class="math inline">\(\frac{cases}{population}\)</span>) is commonly use to represent cases distribution related to population density but other indicators exists. As example, the standardized incidence ratios (SIRs) represents the deviation of observed and expected number of cases and is expressed as <span class="math inline">\(SIR = \frac{Y_i}{E_i}\)</span> with <span class="math inline">\(Y_i\)</span>, the observed number of cases and <span class="math inline">\(E_i\)</span>, the expected number of cases. In this study, we computed the expected number of cases in each district by assuming infections are homogeneously distributed across Cambodia, i.e. the incidence is the same in each district.</p> +<p>The incidence (<span class="math inline">\(\frac{cases}{population}\)</span>) is commonly use to represent cases distribution related to population density but other indicators exists. As example, the standardized incidence ratios (SIRs) represents the deviation of observed and expected number of cases and is expressed as <span class="math inline">\(SIR = \frac{Y_i}{E_i}\)</span> with <span class="math inline">\(Y_i\)</span>, the observed number of cases and <span class="math inline">\(E_i\)</span>, the expected number of cases. In this study, we computed the expected number of cases in each district by assuming infections are homogeneously distributed across Cambodia, i.e. the incidence is the same in each district. The SIR therefore represents the deviation of incidence compared to the averaged average incidence across Cambodia.</p> <div class="cell" data-nm="true"> <div class="sourceCode cell-code" id="cb6"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Compute incidence in each district (per 100 000 population)</span></span> -<span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>incidence <span class="ot">=</span> district<span class="sc">$</span>cases<span class="sc">/</span>district<span class="sc">$</span>T_POP <span class="sc">*</span> <span class="dv">100000</span></span> +<span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>incidence <span class="ot"><-</span> district<span class="sc">$</span>cases<span class="sc">/</span>district<span class="sc">$</span>T_POP <span class="sc">*</span> <span class="dv">100000</span></span> <span id="cb6-3"><a href="#cb6-3" aria-hidden="true" tabindex="-1"></a></span> <span id="cb6-4"><a href="#cb6-4" aria-hidden="true" tabindex="-1"></a><span class="co"># Compute the global risk</span></span> -<span id="cb6-5"><a href="#cb6-5" aria-hidden="true" tabindex="-1"></a>rate <span class="ot">=</span> <span class="fu">sum</span>(district<span class="sc">$</span>cases)<span class="sc">/</span><span class="fu">sum</span>(district<span class="sc">$</span>T_POP)</span> +<span id="cb6-5"><a href="#cb6-5" aria-hidden="true" tabindex="-1"></a>rate <span class="ot"><-</span> <span class="fu">sum</span>(district<span class="sc">$</span>cases)<span class="sc">/</span><span class="fu">sum</span>(district<span class="sc">$</span>T_POP)</span> <span id="cb6-6"><a href="#cb6-6" aria-hidden="true" tabindex="-1"></a></span> <span id="cb6-7"><a href="#cb6-7" aria-hidden="true" tabindex="-1"></a><span class="co"># Compute expected number of cases </span></span> -<span id="cb6-8"><a href="#cb6-8" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>expected <span class="ot">=</span> district<span class="sc">$</span>T_POP <span class="sc">*</span> rate</span> +<span id="cb6-8"><a href="#cb6-8" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>expected <span class="ot"><-</span> district<span class="sc">$</span>T_POP <span class="sc">*</span> rate</span> <span id="cb6-9"><a href="#cb6-9" aria-hidden="true" tabindex="-1"></a></span> <span id="cb6-10"><a href="#cb6-10" aria-hidden="true" tabindex="-1"></a><span class="co"># Compute SIR</span></span> -<span id="cb6-11"><a href="#cb6-11" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>SIR <span class="ot">=</span> district<span class="sc">$</span>cases <span class="sc">/</span> district<span class="sc">$</span>expected</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> +<span id="cb6-11"><a href="#cb6-11" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>SIR <span class="ot"><-</span> district<span class="sc">$</span>cases <span class="sc">/</span> district<span class="sc">$</span>expected</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> </div> <div class="cell" data-nm="true"> <div class="sourceCode cell-code" id="cb7"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a><span class="fu">par</span>(<span class="at">mfrow =</span> <span class="fu">c</span>(<span class="dv">1</span>, <span class="dv">3</span>))</span> @@ -334,8 +332,8 @@ Projected CRS: WGS 84 / UTM zone 48N <span id="cb7-20"><a href="#cb7-20" aria-hidden="true" tabindex="-1"></a></span> <span id="cb7-21"><a href="#cb7-21" aria-hidden="true" tabindex="-1"></a><span class="co"># Plot SIRs</span></span> <span id="cb7-22"><a href="#cb7-22" aria-hidden="true" tabindex="-1"></a><span class="co"># create breaks and associated color palette</span></span> -<span id="cb7-23"><a href="#cb7-23" aria-hidden="true" tabindex="-1"></a>break_SIR <span class="ot">=</span> <span class="fu">c</span>(<span class="dv">0</span>, <span class="fu">exp</span>(<span class="fu">mf_get_breaks</span>(<span class="fu">log</span>(district<span class="sc">$</span>SIR), <span class="at">nbreaks =</span> <span class="dv">8</span>, <span class="at">breaks =</span> <span class="st">"pretty"</span>)))</span> -<span id="cb7-24"><a href="#cb7-24" aria-hidden="true" tabindex="-1"></a>col_pal <span class="ot">=</span> <span class="fu">c</span>(<span class="st">"#273871"</span>, <span class="st">"#3267AD"</span>, <span class="st">"#6496C8"</span>, <span class="st">"#9BBFDD"</span>, <span class="st">"#CDE3F0"</span>, <span class="st">"#FFCEBC"</span>, <span class="st">"#FF967E"</span>, <span class="st">"#F64D41"</span>, <span class="st">"#B90E36"</span>)</span> +<span id="cb7-23"><a href="#cb7-23" aria-hidden="true" tabindex="-1"></a>break_SIR <span class="ot"><-</span> <span class="fu">c</span>(<span class="dv">0</span>, <span class="fu">exp</span>(<span class="fu">mf_get_breaks</span>(<span class="fu">log</span>(district<span class="sc">$</span>SIR), <span class="at">nbreaks =</span> <span class="dv">8</span>, <span class="at">breaks =</span> <span class="st">"pretty"</span>)))</span> +<span id="cb7-24"><a href="#cb7-24" aria-hidden="true" tabindex="-1"></a>col_pal <span class="ot"><-</span> <span class="fu">c</span>(<span class="st">"#273871"</span>, <span class="st">"#3267AD"</span>, <span class="st">"#6496C8"</span>, <span class="st">"#9BBFDD"</span>, <span class="st">"#CDE3F0"</span>, <span class="st">"#FFCEBC"</span>, <span class="st">"#FF967E"</span>, <span class="st">"#F64D41"</span>, <span class="st">"#B90E36"</span>)</span> <span id="cb7-25"><a href="#cb7-25" aria-hidden="true" tabindex="-1"></a></span> <span id="cb7-26"><a href="#cb7-26" aria-hidden="true" tabindex="-1"></a><span class="fu">mf_map</span>(<span class="at">x =</span> district,</span> <span id="cb7-27"><a href="#cb7-27" aria-hidden="true" tabindex="-1"></a> <span class="at">var =</span> <span class="st">"SIR"</span>,</span> @@ -359,58 +357,216 @@ Projected CRS: WGS 84 / UTM zone 48N </section> <section id="cluster-analysis" class="level2" data-number="7.2"> <h2 data-number="7.2" class="anchored" data-anchor-id="cluster-analysis"><span class="header-section-number">7.2</span> Cluster analysis</h2> -<p>Since this W fever seems to have a heterogeneous distribution across Cambodia, it would be interesting to study where excess of cases appears, i.e. to identify clusters of the disease. The first question is to wonder if data are auto correlated or spatially independent, i.e. study if neighboring districts are likely to have similar incidence.</p> -<p>In statistics, problems are usually expressed by defining two hypothesis : the null hypothesis (H0), i.e. an a priori hypothesis of the studied phenomenon (e.g. the situation is a random) and the alternative hypothesis (HA), e.g. the situation is not random. The main principle is to measure how likely the observed situation belong to the ensemble of situation that are possible under the H0 hypothesis.</p> -<section id="spatial-autocorrelation-morans-i-test" class="level3" data-number="7.2.1"> -<h3 data-number="7.2.1" class="anchored" data-anchor-id="spatial-autocorrelation-morans-i-test"><span class="header-section-number">7.2.1</span> Spatial autocorrelation (Moran’s I test)</h3> +<p>Since this W fever seems to have a heterogeneous distribution across Cambodia, it would be interesting to study where excess of cases appears, i.e. to identify clusters of the disease. The definition of clusters emcompass many XXXXXXX</p> +<p>The first question is to wonder if data are auto correlated or spatially independent, i.e. study if neighboring districts are likely to have similar incidence.</p> +<section id="test-for-spatial-autocorrelation-morans-i-test" class="level3" data-number="7.2.1"> +<h3 data-number="7.2.1" class="anchored" data-anchor-id="test-for-spatial-autocorrelation-morans-i-test"><span class="header-section-number">7.2.1</span> Test for spatial autocorrelation (Moran’s I test)</h3> <p>A popular test for spatial autocorrelation is the Moran’s test. This test tells us whether nearby units tend to exhibit similar incidences. It ranges from -1 to +1. A value of -1 denote that units with low rates are located near other units with high rates, while a Moran’s I value of +1 indicates a concentration of spatial units exhibiting similar rates.</p> -<p>Here the statistics hypothesis are :</p> +<div class="callout-note callout callout-style-default callout-captioned"> +<div class="callout-header d-flex align-content-center"> +<div class="callout-icon-container"> +<i class="callout-icon"></i> +</div> +<div class="callout-caption-container flex-fill"> +Statistical test +</div> +</div> +<div class="callout-body-container callout-body"> +<p>In statistics, problems are usually expressed by defining two hypothesis : the null hypothesis (H0), i.e. an <em>a priori</em> hypothesis of the studied phenomenon (e.g. the situation is a random) and the alternative hypothesis (HA), e.g. the situation is not random. The main principle is to measure how likely the observed situation belong to the ensemble of situation that are possible under the H0 hypothesis.</p> +<p>The Moran’s statistics is :</p> +<p><span class="math display">\[I = \frac{N}{\sum_{i=1}^N\sum_{j=1}^Nw_{ij}}\frac{\sum_{i=1}^N\sum_{j=1}^Nw_{ij}(Y_i-\bar{Y})(Y_j - \bar{Y})}{\sum_{i=1}^N(Y_i-\bar{Y})^2}\]</span> with :</p> <ul> -<li><p>H0 : the distribution of cases is spatially independant, i.e. Moran’s I value is 0.</p></li> -<li><p>H1: the distribution of cases is spatially autocorrelated, i.e. Moran’s I value is different than 0.</p></li> +<li><p><span class="math inline">\(N\)</span>: the number of polygons,</p></li> +<li><p><span class="math inline">\(w_{ij}\)</span>: is a matrix of spatial weight with zeroes on the diagonal (i.e., <span class="math inline">\(w_{ii}=0\)</span>). For example, if polygons are neighbors, the weight takes the value <span class="math inline">\(1\)</span> otherwise it take the value <span class="math inline">\(0\)</span>.</p></li> +<li><p><span class="math inline">\(Y_i\)</span>: the variable of interest,</p></li> +<li><p><span class="math inline">\(\bar{Y}\)</span>: the mean value of <span class="math inline">\(Y\)</span>.</p></li> </ul> -<p>We will compute the Moran’s statistics using <code>spdep</code> and <code>Dcluster</code> packages. <code>spdep</code> package provides a collection of functions to analyze spatial correlations of polygons and works with sp objects. <code>Dcluster</code> package provides a set of functions for the detection of spatial clusters of disease using count data.</p> +<p>Under the Moran’s test, the statistics hypothesis are :</p> +<ul> +<li><p><strong>H0</strong> : the distribution of cases is spatially independent, i.e. <span class="math inline">\(I=0\)</span>.</p></li> +<li><p><strong>H1</strong>: the distribution of cases is spatially autocorrelated, i.e. <span class="math inline">\(I\ne0\)</span>.</p></li> +</ul> +</div> +</div> +<p>We will compute the Moran’s statistics using <code>spdep</code> and <code>Dcluster</code> packages. <code>spdep</code> package provides a collection of functions to analyze spatial correlations of polygons and works with sp objects. In this example, we use <code>poly2nb()</code> and <code>nb2listw()</code>. These function respectively detect the neighboring polygons and assign weight corresponding to <span class="math inline">\(1/\#\ of\ neighbors\)</span>. <code>Dcluster</code> package provides a set of functions for the detection of spatial clusters of disease using count data.</p> <div class="cell" data-nm="true"> <div class="sourceCode cell-code" id="cb8"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(spdep) <span class="co"># Functions for creating spatial weight, spatial analysis</span></span> -<span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(DCluster) <span class="co"># Package with functions for spatial cluster analysis)</span></span> +<span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(DCluster) <span class="co"># Package with functions for spatial cluster analysis</span></span> <span id="cb8-3"><a href="#cb8-3" aria-hidden="true" tabindex="-1"></a></span> -<span id="cb8-4"><a href="#cb8-4" aria-hidden="true" tabindex="-1"></a>qnb <span class="ot"><-</span> <span class="fu">poly2nb</span>(district)</span> -<span id="cb8-5"><a href="#cb8-5" aria-hidden="true" tabindex="-1"></a>q_listw <span class="ot"><-</span> <span class="fu">nb2listw</span>(qnb, <span class="at">style =</span> <span class="st">'W'</span>) <span class="co"># row-standardized weights</span></span> +<span id="cb8-4"><a href="#cb8-4" aria-hidden="true" tabindex="-1"></a>queen_nb <span class="ot"><-</span> <span class="fu">poly2nb</span>(district) <span class="co"># Neighbors according to queen case</span></span> +<span id="cb8-5"><a href="#cb8-5" aria-hidden="true" tabindex="-1"></a>q_listw <span class="ot"><-</span> <span class="fu">nb2listw</span>(queen_nb, <span class="at">style =</span> <span class="st">'W'</span>) <span class="co"># row-standardized weights</span></span> <span id="cb8-6"><a href="#cb8-6" aria-hidden="true" tabindex="-1"></a></span> <span id="cb8-7"><a href="#cb8-7" aria-hidden="true" tabindex="-1"></a><span class="co"># Moran's I test</span></span> -<span id="cb8-8"><a href="#cb8-8" aria-hidden="true" tabindex="-1"></a><span class="fu">moranI.test</span>(cases <span class="sc">~</span> <span class="fu">offset</span>(<span class="fu">log</span>(expected)), </span> +<span id="cb8-8"><a href="#cb8-8" aria-hidden="true" tabindex="-1"></a>m_test <span class="ot"><-</span> <span class="fu">moranI.test</span>(cases <span class="sc">~</span> <span class="fu">offset</span>(<span class="fu">log</span>(expected)), </span> <span id="cb8-9"><a href="#cb8-9" aria-hidden="true" tabindex="-1"></a> <span class="at">data =</span> district,</span> <span id="cb8-10"><a href="#cb8-10" aria-hidden="true" tabindex="-1"></a> <span class="at">model =</span> <span class="st">'poisson'</span>,</span> <span id="cb8-11"><a href="#cb8-11" aria-hidden="true" tabindex="-1"></a> <span class="at">R =</span> <span class="dv">499</span>,</span> <span id="cb8-12"><a href="#cb8-12" aria-hidden="true" tabindex="-1"></a> <span class="at">listw =</span> q_listw,</span> -<span id="cb8-13"><a href="#cb8-13" aria-hidden="true" tabindex="-1"></a> <span class="at">n =</span> <span class="dv">159</span>,</span> -<span id="cb8-14"><a href="#cb8-14" aria-hidden="true" tabindex="-1"></a> <span class="at">S0 =</span> <span class="fu">Szero</span>(q_listw))</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> +<span id="cb8-13"><a href="#cb8-13" aria-hidden="true" tabindex="-1"></a> <span class="at">n =</span> <span class="fu">length</span>(district<span class="sc">$</span>cases), <span class="co"># number of regions</span></span> +<span id="cb8-14"><a href="#cb8-14" aria-hidden="true" tabindex="-1"></a> <span class="at">S0 =</span> <span class="fu">Szero</span>(q_listw)) <span class="co"># Global sum of weights</span></span> +<span id="cb8-15"><a href="#cb8-15" aria-hidden="true" tabindex="-1"></a><span class="fu">print</span>(m_test)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> <div class="cell-output cell-output-stdout"> <pre class="code-out"><code>Moran's I test of spatial autocorrelation Type of boots.: parametric Model used when sampling: Poisson Number of simulations: 499 - Statistic: 0.1264291 - p-value : 0.006 </code></pre> + Statistic: 0.1566449 + p-value : 0.014 </code></pre> +</div> +<div class="sourceCode cell-code" id="cb10"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(m_test)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> +<div class="cell-output-display"> +<p><img src="07-basic_statistics_files/figure-html/MoransI-1.png" class="img-fluid" width="768"></p> +</div> +</div> +<p>The Moran’s statistics is here <span class="math inline">\(I =\)</span> 0.16. When comparing its value to the H0 distribution (built under 499 simulations), the probability of observing such a I value under the null hypothesis, i.e. the distribution of cases is spatially independent, is <span class="math inline">\(p_{value} =\)</span> 0.014. We therefore reject H0 with error risk of <span class="math inline">\(\alpha = 5\%\)</span>. The distribution of cases is therefore autocorrelated across districts in Cambodia.</p> +<div class="callout-note callout callout-style-default callout-captioned"> +<div class="callout-header d-flex align-content-center"> +<div class="callout-icon-container"> +<i class="callout-icon"></i> +</div> +<div class="callout-caption-container flex-fill"> +Statistic distributions +</div> +</div> +<div class="callout-body-container callout-body"> +<p>In mathematics, a probability distribution is a mathematical expression that represents what we would expect due to random chance. The choice of the probability distribution relies on the type of data you use (continuous, count, binary). In general, three distribution a used while studying disease rates, the binomial, the poisson and the Poisson-gamma mixture (a.k.a negative binomial) distributions.</p> +<p>The default Global Moran’s I test assume data are normally distributed. It implies that the mean However, in epidemiology, rates and count values are usually not normally distributed and their variance is not homogeneous across the districts since the size of population at risk differs. to be the same since more variability occurs when we study smaller populations.</p> +<p>While many measures may be appropriately assessed under the normality assumptions of the previous Global Moran’s I, in general disease rates are not best assessed this way. This is because the rates themselves may not be normally distributed, but also because the variance of each rate likely differs because of different size population at risk. For example the previous test assumed that we had the same level of certainty about the rate in each county, when in fact some counties have very sparse data (with high variance) and others have adequate data (with relatively lower variance).</p> +<div class="cell" data-nm="true"> +<div class="sourceCode cell-code" id="cb11"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a><span class="co"># dataset statistics</span></span> +<span id="cb11-2"><a href="#cb11-2" aria-hidden="true" tabindex="-1"></a>m_cases <span class="ot"><-</span> <span class="fu">mean</span>(district<span class="sc">$</span>cases)</span> +<span id="cb11-3"><a href="#cb11-3" aria-hidden="true" tabindex="-1"></a>sd_cases <span class="ot"><-</span> <span class="fu">sd</span>(district<span class="sc">$</span>cases)</span> +<span id="cb11-4"><a href="#cb11-4" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb11-5"><a href="#cb11-5" aria-hidden="true" tabindex="-1"></a><span class="fu">curve</span>(<span class="fu">dnorm</span>(x, m_cases, sd_cases), <span class="at">from =</span> <span class="sc">-</span><span class="dv">5</span>, <span class="at">to =</span> <span class="dv">16</span>, <span class="at">ylim =</span> <span class="fu">c</span>(<span class="dv">0</span>, <span class="fl">0.4</span>), <span class="at">col =</span> <span class="st">"blue"</span>, <span class="at">lwd =</span> <span class="dv">1</span>, </span> +<span id="cb11-6"><a href="#cb11-6" aria-hidden="true" tabindex="-1"></a> <span class="at">xlab =</span> <span class="st">"Number of cases"</span>, <span class="at">ylab =</span> <span class="st">"Probability"</span>, <span class="at">main =</span> <span class="st">"Histogram of observed data compared</span><span class="sc">\n</span><span class="st">to Normal and Poisson distributions"</span>)</span> +<span id="cb11-7"><a href="#cb11-7" aria-hidden="true" tabindex="-1"></a><span class="fu">points</span>(<span class="dv">0</span><span class="sc">:</span><span class="fu">max</span>(district<span class="sc">$</span>cases), <span class="fu">dpois</span>(<span class="dv">0</span><span class="sc">:</span><span class="fu">max</span>(district<span class="sc">$</span>cases), m_cases),<span class="at">type =</span> <span class="st">'b '</span>, <span class="at">pch =</span> <span class="dv">20</span>, <span class="at">col =</span> <span class="st">"red"</span>, <span class="at">ylim =</span> <span class="fu">c</span>(<span class="dv">0</span>, <span class="fl">0.6</span>), <span class="at">lty =</span> <span class="dv">2</span>)</span> +<span id="cb11-8"><a href="#cb11-8" aria-hidden="true" tabindex="-1"></a><span class="fu">hist</span>(district<span class="sc">$</span>cases, <span class="at">add =</span> <span class="cn">TRUE</span>, <span class="at">probability =</span> <span class="cn">TRUE</span>)</span> +<span id="cb11-9"><a href="#cb11-9" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb11-10"><a href="#cb11-10" aria-hidden="true" tabindex="-1"></a><span class="fu">legend</span>(<span class="st">"topright"</span>, <span class="at">legend =</span> <span class="fu">c</span>(<span class="st">"Normal distribution"</span>, <span class="st">"Poisson distribution"</span>, <span class="st">"Observed distribution"</span>), <span class="at">col =</span> <span class="fu">c</span>(<span class="st">"blue"</span>, <span class="st">"red"</span>, <span class="st">"black"</span>),<span class="at">pch =</span> <span class="fu">c</span>(<span class="cn">NA</span>, <span class="dv">20</span>, <span class="cn">NA</span>), <span class="at">lty =</span> <span class="fu">c</span>(<span class="dv">1</span>, <span class="dv">2</span>, <span class="dv">1</span>))</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> +<div class="cell-output-display"> +<p><img src="07-basic_statistics_files/figure-html/distribution-1.png" class="img-fluid" width="576"></p> +</div> +</div> </div> </div> </section> <section id="spatial-scan-statistics" class="level3" data-number="7.2.2"> <h3 data-number="7.2.2" class="anchored" data-anchor-id="spatial-scan-statistics"><span class="header-section-number">7.2.2</span> Spatial scan statistics</h3> -<p>While Moran’s indice focuses on finding correlation between neighboring polygons, the spatial scan statistic compare the incidence level of a given windows of observation with the incidence level outside of this windows.</p> -<p>The package <code>SpatialEpi</code></p> -</section> -<section id="population-based-clusters-kulldorf-statistic" class="level3" data-number="7.2.3"> -<h3 data-number="7.2.3" class="anchored" data-anchor-id="population-based-clusters-kulldorf-statistic"><span class="header-section-number">7.2.3</span> Population-based clusters (kulldorf statistic)</h3> -<p>Kulldorff ’s spatial scan statistic identifies the most likely disease clusters maximizing the likelihood that disease cases are located within a set of concentric circles that are moved across the study area.</p> -</section> -<section id="expectation-based-cluster" class="level3" data-number="7.2.4"> -<h3 data-number="7.2.4" class="anchored" data-anchor-id="expectation-based-cluster"><span class="header-section-number">7.2.4</span> Expectation-based cluster</h3> -<p>In many case, population is not specific enough to</p> -</section> -<section id="to-go-further" class="level3" data-number="7.2.5"> -<h3 data-number="7.2.5" class="anchored" data-anchor-id="to-go-further"><span class="header-section-number">7.2.5</span> To go further …</h3> +<p>While Moran’s indice focuses on testing for autocorrelation between neighboring polygons (under the null assumption of spatial independance), the spatial scan statistic aims at identifying an abnormal higher risk in a given region compared to the risk outside of this region (under the null assumption of homogeneous distribution). The conception of a cluster is therefore different between the two methods.</p> +<p>The function <code>kulldorf</code> from the package <code>SpatialEpi</code>is a simple tool to implement spatial-only scan statistics. Briefly, the kulldorf scan statistics scan the area for clusters using several steps:</p> +<ol type="1"> +<li><p>It create a circular window of observation by defining a single location and an associated radius of the windows varying from 0 to a large number that depends on population distribution (largest radius could includes 50% of the population).</p></li> +<li><p>It aggregates the count of events and the population at risk (or an expected count of events) inside and outside the window of observation.</p></li> +<li><p>Finally, it computes the likelihood ratio to test whether the risk is equal inside versus outside the windows (H0) or greater inside the observed window</p></li> +<li><p>These 3 steps are repeted for each location and each possible windows-radii.</p></li> +</ol> +<div class="cell" data-nm="true"> +<div class="sourceCode cell-code" id="cb12"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(<span class="st">"SpatialEpi"</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> +</div> +<p>The use of R spatial object is not implementes in <code>kulldorf()</code> function. It uses instead matrix of xy coordinates that represents the centroids of the districts. A given district is included into the observed circular window if its centroids falls into the circle.</p> +<div class="cell" data-nm="true"> +<div class="sourceCode cell-code" id="cb13"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1" aria-hidden="true" tabindex="-1"></a>district_xy <span class="ot"><-</span> <span class="fu">st_centroid</span>(district) <span class="sc">%>%</span> </span> +<span id="cb13-2"><a href="#cb13-2" aria-hidden="true" tabindex="-1"></a> <span class="fu">st_coordinates</span>()</span> +<span id="cb13-3"><a href="#cb13-3" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb13-4"><a href="#cb13-4" aria-hidden="true" tabindex="-1"></a><span class="fu">head</span>(district_xy)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> +<div class="cell-output cell-output-stdout"> +<pre class="code-out"><code> X Y +1 330823.3 1464560 +2 749758.3 1541787 +3 468384.0 1277007 +4 494548.2 1215261 +5 459644.2 1194615 +6 360528.3 1516339</code></pre> +</div> +</div> +<p>We can then call kulldorff function (you are strongly encourage to call <code>?kulldorf</code> to properly call the function). The <code>alpha.level</code> threshold filter for the secondary clusters that will be retained. The most-likely cluster will be saved whatever its significance.</p> +<div class="cell" data-nm="true"> +<div class="sourceCode cell-code" id="cb15"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb15-1"><a href="#cb15-1" aria-hidden="true" tabindex="-1"></a>kd_Wfever <span class="ot"><-</span> <span class="fu">kulldorff</span>(district_xy, </span> +<span id="cb15-2"><a href="#cb15-2" aria-hidden="true" tabindex="-1"></a> <span class="at">cases =</span> district<span class="sc">$</span>cases,</span> +<span id="cb15-3"><a href="#cb15-3" aria-hidden="true" tabindex="-1"></a> <span class="at">population =</span> district<span class="sc">$</span>T_POP,</span> +<span id="cb15-4"><a href="#cb15-4" aria-hidden="true" tabindex="-1"></a> <span class="at">expected.cases =</span> district<span class="sc">$</span>expected,</span> +<span id="cb15-5"><a href="#cb15-5" aria-hidden="true" tabindex="-1"></a> <span class="at">pop.upper.bound =</span> <span class="fl">0.5</span>, <span class="co"># include maximum 50% of the population in a windows</span></span> +<span id="cb15-6"><a href="#cb15-6" aria-hidden="true" tabindex="-1"></a> <span class="at">n.simulations =</span> <span class="dv">499</span>,</span> +<span id="cb15-7"><a href="#cb15-7" aria-hidden="true" tabindex="-1"></a> <span class="at">alpha.level =</span> <span class="fl">0.2</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> +<div class="cell-output-display"> +<p><img src="07-basic_statistics_files/figure-html/kd_test-1.png" class="img-fluid" width="576"></p> +</div> +</div> +<p>All outputs are saved into the R object <code>kd_Wfever</code>. Unfortunately the package did not developed any summary and visualization of the results but we can explore the output object.</p> +<div class="cell" data-nm="true"> +<div class="sourceCode cell-code" id="cb16"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb16-1"><a href="#cb16-1" aria-hidden="true" tabindex="-1"></a><span class="fu">names</span>(kd_Wfever)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> +<div class="cell-output cell-output-stdout"> +<pre class="code-out"><code>[1] "most.likely.cluster" "secondary.clusters" "type" +[4] "log.lkhd" "simulated.log.lkhd" </code></pre> +</div> +</div> +<p>First, we can focus on the most likely cluster and explore its characteristics.</p> +<div class="cell" data-nm="true"> +<div class="sourceCode cell-code" id="cb18"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb18-1"><a href="#cb18-1" aria-hidden="true" tabindex="-1"></a><span class="co"># We can see which districts (r number) belong to this cluster</span></span> +<span id="cb18-2"><a href="#cb18-2" aria-hidden="true" tabindex="-1"></a>kd_Wfever<span class="sc">$</span>most.likely.cluster<span class="sc">$</span>location.IDs.included</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> +<div class="cell-output cell-output-stdout"> +<pre class="code-out"><code> [1] 48 93 66 180 133 29 194 118 50 144 31 141 3 117 22 43 142</code></pre> +</div> +<div class="sourceCode cell-code" id="cb20"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb20-1"><a href="#cb20-1" aria-hidden="true" tabindex="-1"></a><span class="co"># standardized incidence ratio</span></span> +<span id="cb20-2"><a href="#cb20-2" aria-hidden="true" tabindex="-1"></a>kd_Wfever<span class="sc">$</span>most.likely.cluster<span class="sc">$</span>SMR</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> +<div class="cell-output cell-output-stdout"> +<pre class="code-out"><code>[1] 2.303106</code></pre> +</div> +<div class="sourceCode cell-code" id="cb22"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb22-1"><a href="#cb22-1" aria-hidden="true" tabindex="-1"></a><span class="co"># number of observed and expected cases in this cluster</span></span> +<span id="cb22-2"><a href="#cb22-2" aria-hidden="true" tabindex="-1"></a>kd_Wfever<span class="sc">$</span>most.likely.cluster<span class="sc">$</span>number.of.cases</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> +<div class="cell-output cell-output-stdout"> +<pre class="code-out"><code>[1] 122</code></pre> +</div> +<div class="sourceCode cell-code" id="cb24"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb24-1"><a href="#cb24-1" aria-hidden="true" tabindex="-1"></a>kd_Wfever<span class="sc">$</span>most.likely.cluster<span class="sc">$</span>expected.cases</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> +<div class="cell-output cell-output-stdout"> +<pre class="code-out"><code>[1] 52.97195</code></pre> +</div> +</div> +<p>17 districts belong to the cluster and its number of cases is 2.3 times higher than the expected number of case.</p> +<p>Similarly, we could study the secondary clusters. Results are saved in a list.</p> +<div class="cell" data-nm="true"> +<div class="sourceCode cell-code" id="cb26"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb26-1"><a href="#cb26-1" aria-hidden="true" tabindex="-1"></a><span class="co"># We can see which districts (r number) belong to this cluster</span></span> +<span id="cb26-2"><a href="#cb26-2" aria-hidden="true" tabindex="-1"></a><span class="fu">length</span>(kd_Wfever<span class="sc">$</span>secondary.clusters)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> +<div class="cell-output cell-output-stdout"> +<pre class="code-out"><code>[1] 1</code></pre> +</div> +<div class="sourceCode cell-code" id="cb28"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb28-1"><a href="#cb28-1" aria-hidden="true" tabindex="-1"></a><span class="co"># retrieve data for all secondary clusters into a table</span></span> +<span id="cb28-2"><a href="#cb28-2" aria-hidden="true" tabindex="-1"></a>df_secondary_clusters <span class="ot"><-</span> <span class="fu">data.frame</span>(<span class="at">SMR =</span> <span class="fu">sapply</span>(kd_Wfever<span class="sc">$</span>secondary.clusters, <span class="st">'[['</span>, <span class="dv">5</span>), </span> +<span id="cb28-3"><a href="#cb28-3" aria-hidden="true" tabindex="-1"></a> <span class="at">number.of.cases =</span> <span class="fu">sapply</span>(kd_Wfever<span class="sc">$</span>secondary.clusters, <span class="st">'[['</span>, <span class="dv">3</span>),</span> +<span id="cb28-4"><a href="#cb28-4" aria-hidden="true" tabindex="-1"></a> <span class="at">expected.cases =</span> <span class="fu">sapply</span>(kd_Wfever<span class="sc">$</span>secondary.clusters, <span class="st">'[['</span>, <span class="dv">4</span>),</span> +<span id="cb28-5"><a href="#cb28-5" aria-hidden="true" tabindex="-1"></a> <span class="at">p.value =</span> <span class="fu">sapply</span>(kd_Wfever<span class="sc">$</span>secondary.clusters, <span class="st">'[['</span>, <span class="dv">8</span>))</span> +<span id="cb28-6"><a href="#cb28-6" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb28-7"><a href="#cb28-7" aria-hidden="true" tabindex="-1"></a><span class="fu">print</span>(df_secondary_clusters)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> +<div class="cell-output cell-output-stdout"> +<pre class="code-out"><code> SMR number.of.cases expected.cases p.value +1 3.767698 16 4.246625 0.012</code></pre> +</div> +</div> +<p>We only have one secondary cluster composed of one district.</p> +<div class="cell" data-nm="true"> +<div class="sourceCode cell-code" id="cb30"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb30-1"><a href="#cb30-1" aria-hidden="true" tabindex="-1"></a><span class="co"># create empty column to store cluster informations</span></span> +<span id="cb30-2"><a href="#cb30-2" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>k_cluster <span class="ot"><-</span> <span class="cn">NA</span></span> +<span id="cb30-3"><a href="#cb30-3" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb30-4"><a href="#cb30-4" aria-hidden="true" tabindex="-1"></a><span class="co"># save cluster informations from kulldorff outputs</span></span> +<span id="cb30-5"><a href="#cb30-5" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>k_cluster[kd_Wfever<span class="sc">$</span>most.likely.cluster<span class="sc">$</span>location.IDs.included] <span class="ot"><-</span> <span class="st">'Most likely cluster'</span></span> +<span id="cb30-6"><a href="#cb30-6" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb30-7"><a href="#cb30-7" aria-hidden="true" tabindex="-1"></a><span class="cf">for</span>(i <span class="cf">in</span> <span class="dv">1</span><span class="sc">:</span><span class="fu">length</span>(kd_Wfever<span class="sc">$</span>secondary.clusters)){</span> +<span id="cb30-8"><a href="#cb30-8" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>k_cluster[kd_Wfever<span class="sc">$</span>secondary.clusters[[i]]<span class="sc">$</span>location.IDs.included] <span class="ot"><-</span> <span class="fu">paste</span>(</span> +<span id="cb30-9"><a href="#cb30-9" aria-hidden="true" tabindex="-1"></a> <span class="st">'Secondary cluster '</span>, i, <span class="at">sep =</span> <span class="st">''</span>)</span> +<span id="cb30-10"><a href="#cb30-10" aria-hidden="true" tabindex="-1"></a>}</span> +<span id="cb30-11"><a href="#cb30-11" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb30-12"><a href="#cb30-12" aria-hidden="true" tabindex="-1"></a><span class="co"># create map</span></span> +<span id="cb30-13"><a href="#cb30-13" aria-hidden="true" tabindex="-1"></a><span class="fu">mf_map</span>(<span class="at">x =</span> district,</span> +<span id="cb30-14"><a href="#cb30-14" aria-hidden="true" tabindex="-1"></a> <span class="at">var =</span> <span class="st">"k_cluster"</span>,</span> +<span id="cb30-15"><a href="#cb30-15" aria-hidden="true" tabindex="-1"></a> <span class="at">type =</span> <span class="st">"typo"</span>,</span> +<span id="cb30-16"><a href="#cb30-16" aria-hidden="true" tabindex="-1"></a> <span class="at">cex =</span> <span class="dv">2</span>,</span> +<span id="cb30-17"><a href="#cb30-17" aria-hidden="true" tabindex="-1"></a> <span class="at">leg_title =</span> <span class="st">"Clusters"</span>)</span> +<span id="cb30-18"><a href="#cb30-18" aria-hidden="true" tabindex="-1"></a><span class="fu">mf_layout</span>(<span class="at">title =</span> <span class="st">"Cluster using kulldorf scan statistic"</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> +<div class="cell-output-display"> +<p><img src="07-basic_statistics_files/figure-html/plt_clusters-1.png" class="img-fluid" width="768"></p> +</div> +</div> </section> diff --git a/public/07-basic_statistics_files/figure-html/MoransI-1.png b/public/07-basic_statistics_files/figure-html/MoransI-1.png new file mode 100644 index 0000000000000000000000000000000000000000..6e841a94cb233b4ffd4a279d30121824c07592d9 GIT binary patch literal 17107 zcmeHv2V7HWy8ag;0Tsm#2!f8Qh=pRI2?WPc9F-;tA|(+8EL7<wMV%1^1x7?vlwcV^ zse<$p6cFh+5ULOaL+GJH5|Z2#YNC7huDf%8yZ`^){0@Y3zWP4z^Oo<N^Kr{SPiNVZ z^-BN%%YHuc(+L0&(4X*pVL0?v*!JU5=<AEY@so$3ZvfN*umS4oKppxW3~bV%bLfP7 zf%~yhw}Fmeb?AC<vkg>L9Xh73+5m0|_Y-Ur3>|4UP=z$;-~_9KU>oRA4~ELPh0rH0 zIJlYnD=jTJ4f=x<+}s@8%t^BWX*TL<!O&sDErg1vf6~&L)0&}!lg8oH)YLQwt2YPR zG^asFaPv$V)S6ob`f#9H(643=2kMT~9L#A>n?8e@a<46BZ*7F6T<mnj)CGVIe%v2e z5M{_3fQ{hipAMY#eB9sSb8dD0{U~R(6&jm1ncD=`Nd4%N<+Ih*Z*PtB#(wz2tD|U< zb|#MSTb$XhmzSEYPjzEr>qeNeZ<XuHS}!MB_nvs<3j;6q8VUh$K@sX$4g&lyMF8Mm zhyxJ32EzTW6#&{NL;yJA4+G$5rT<h?0(a@28V`>LViTAnRG}fG)Yhrgde03H@}_Lq zw8?QCwt-!~ok{N-2}$(O!fdWT^F}YPWXyzJG)4A^Chrv<K-1F2kpb%1-z!&qyr8 z8Cdv{&ón{}Qz+4Qz@gWA0UzE})_COS0hATXu4mVB_bp&tBybvHE02W-X1#e4! z4Hb@@;*gh|snE)SRXb25K!!Zj^RF<c-#3ZiQ%Z)(d+x~4E(6zVFt8FTkV9zey4V8O zFhs{&aO4IoA2g^edw(73E>#BZ$qb{X$jN%pG*MGtE>y<(;f~?Ut(xJuig;339J}** z<3!HbWI?+RO8HsJAvlw%5};r1>+Ll$T=~dRCUN~xKvBHD0&=K-gp&S9$MaKdY`P=y z(d#CVo}9>)#jBde5g`vv4zG)qiDlQMt=qD*X&)O#8rqA=vMkLQZa!v|GMuWU;MiLi zBI*X;h>h{~$(A&v+Z}9;63#AzyNKY=C#Zos{iw&882Zx|<<X(foyU}Au^(mSi8bS3 z(t0GFlSgOklu^?a7*z6(s`ebu47PD9=iZZM$9;fJRxpF*`DS`%v6E?+Z&VIEs};ew zBiq#BXxoeK#(Bz}j5G&gf&>WrNMx|e^lm@8lTis`0u0hM6pO);PH%Wy&XxONGR+qc z+L9DZ$;j7U>pQ=6;fi2R9z&nKBwsPJ!&oB&ozGDmvhGc{-d8bn>3Bpw(t+h;B@~+( z5MyKLE~HJDak>LbVpcU-(wiQHib`WrSTu4^YbdhTzHlEx+v1ld%2hQ;RrTvZsC=GQ zd$WC)2DT*G>o~yyld&5pqr@4-ulDCPu*0*-xvvJsn?>;bIC3S?o2fUNb*NDSm`uSF zq`|&pDWQ4FHU(LZCmp>;dbRrxn`?reA8Hju%OUbMst+%1h6qIQ9dk_KFh|Q?(R^=- z9+IzQew+&IP$>?ly}n?a&arn1D;x(8a4i&-ESC4!p{F=3hZ@#RR3MIz$C5nA7iE{F z<5)sh#mE@h{Es1`s3;O{^bG4+-*WsP$hIDsLH6EF82j=ffhyW!vlg|KeZU=Cl2PM% z*+dkdCA@4O+>xu&eW3CctFulNxl5+2+5TW?_5pcj;j^E2VuQ`u24^;avg`m4Y+H+K zXlcuVrxyo437y0-?GgFy0m`r*voD9C;ilDC3Ns+?C5@&k#rEdq^!KCC%H;OpfTii~ z6cBT#+F;M%dq{^2c-sZ)OQ~l23z*_^dQbSt@Va5qP*~DHSq+lyKA}fp+99;Z@`foB zYKf9ySvuJU?95|6i;t%vvyABDX6dHHZO!n=DbWmu3cl(0mr;p#8s7}84X5T=VzDcq zjn^eefz*}jFCkjRL5cZg5SQ0gCrUhJ*6l8N#^ZyV*fJSQ-#5F#rGYgK(xA-7i1m^< z9=Ze?#|rEuc625h6Rk!L4iA(T9cq*Y6kL941R^VYFUc-dDZDP%%Eg65AoV)*L!wGP zeQMKohikafixRY6c)HTYdM@t}!o^l4M0koLbG+2s83N1Rj<z5%DGx<RvI@qMXZpc~ z4Awe0nj~*RXuycOT}G1>O2@%A4m?2<wEtm8#-*%Ix!B@yzprw5e<9hSJ>Fs;=-Irt zRwM`FOlE71HWC>pO=~Xe$k7DKnl@v_4L6lhZ+wvKqB5Ou@}V9f?J>0-sc`hfxZ~i_ zws)X`A(!cHcoe!I;}j1|%HB(XIT5{DVvVa<YC(jS+*C;sJX3epvgto2b(i&69Llab zlvx5|-cVGA0%OjK;F}J0`-0kCy0UQekS^Ao745azK^62|o`INirJ7)gP0^|da7d<F zXooAH@(>dPqC{4G-8leRpQQ(kB#MtsNKZ-GrXmBzCbH_~D=I-lphTiWt<$c^q9Ary zdMe|OCbP@ppf~5&(583^&vW1}H3KZr%Ax6m`DG5Di0>4-ipyy~(B^jijD|4N7Za`` z4v~Xc3^Le)_3xg!YJi@wsO|%83`z`ch3D8WPf$VW>#V4C3G0DL+{w7<9$j*Uu99<o zN6FY$`n6aB;*9;7{rd1b$fw3ceI_i4Q={#H(5@kyzeL@0hetNW?9e~l;v2&FU2bY% z%$j;x5@G@))?-JkDef}q*tOcu_<2%84(y}Iz{xx`RR#Y@%*vj)@gntCbnJb@+@(*4 zr>c$Nk)OvWBtSr3=9D0{E4w(cUFG8Gdl2?TNRLd7*A(TQy89qAjdBZ0Bg<!gu1gcj z*K5rZ)}6J_G0FU4x4046D>;~qZgGYCGMEYKtHo>N1&17{CssHEDNR$<-nOmWQOe-x zhq+j=lS3loCU>)ZS}3wTV!yY5(^1$w(}*lsQp&VLpkyJ*S&MX9euyJptcmZ>(ejja zwD{%5qpK>A<5S5J|CD?#F0spn$nYE7@_WGBBHNcI?HROGA?<>GmF4(L<2PVQto51k z_3<QyquCIzG|b2^uor)1G(9k}6mbZ-#7wT<pKgq?xPpPim~%4|8wcwa6H)Z0F+yUF z)TjyPT+2->vxIT~?A~LC)1|n^z8Ab|ltkp$3EuILro>rr_26w?^_&>je4f?SvQyU_ za@i!?&$x7Yz{lZiawB7;F8&lj#DI{l{3E6!UlNMim$jC5wVP7DAWbntJ-be>+wjGn zvdmPOoHTyt=d`9_M!b1ogk3^bjXS6%V>=FJhW6>g(IL5vpw<|(d-vh!kwRuOk`OO> z$!)Z5S4CZE{rkrW1udM0y};e_Hw&N3pBvGsUcH-Z>qX+YHaT9St-$Uc&ee6mFmwLU z6{D$7w)EUZiQ&w0wsgcgtqw!&#T_f`w595k%ZYSK_QChjXVWA=YC3t!JVJN;JuJyP zq~!TvP(o{4<+C>%07{EBTrrHeB&6N{hi@Y{MA77lUxo;%M?%^Zbtlw%$6a*?ETDLt zx({wE0!BNVs^Ww;z6IKTQTnuqsW({mU*G`pwAz06^>@Z;XcEHUusm_l^~Z4hVrmrv zrQz~;?n))I!bx;RTL28NXP=vPGwiy+d#Ivu#=EJBQCz+_99Z};!^&*0%V3z3`fh8$ zmj5K6e@_msieH@jenq%I8xRM94Qqf<K5#0G0;&Lk->fW{4^sqEujRmUJgn`eF3bst z03Ev}csLrUS{VT;XrZ+-T;RV+@hi4k)|SC;FY{ZXTg$@wc^|;P{%r8H<oqx}PaG7y zXRBEmRsRCRFMo}L#@%}sL>}xTKtt+6T3x}U-qby?8UfS`zpom&Ed>oH4)Q-Z$3UI` zeW%|sT+D>-!#qyM=;&zrgbX8Zlk1%s0T?a!JgT-zPFRk4n{};+gAG<3sj*BsF;Ur% z{RE$!eRK7^KiwPY@TwvDBo9_hiRvK7JzVCir^^v!%Ga|;N`+c05${Zh6Yf6TGVx6I za#EvSHX-O2W^Rjg)_VXBC!`<Thf#lMNB-=h_0YE><tpMjB&)fj-=*;mb|p*GP3HP8 z1W>#p0w7$$=6Wd7=`>d{zQ{)&m_8>z^?qH`PZeGIsk?u?dLOqcYs0Ic;*`aMS;JQY zOgUuw?|^HEkRoD=b=9(cyX#Bzqg{ydmW$t~Xba7%jq&N8O0ikkHC69FI^v&R76Gm| zSuVA`QO8lnI{6>ZNdxIMGb-%yF^Zz;p&}kX*3iNnnvhxl-)i=GfnDinPz{-_@nP4~ z{j)uiqkO%Im*|dSjv_9jnxb%#C9??Qc13n8gi~QdSjB_yxVUg&gI29{;(j%+y)v-l zc-XYGOrT0gWfftNBgYOnDOJy1^n9HOK22FUnJ=|c<uYbW6TFkW?yS}|gV6*KrooJ` z2OpFq<h}c>&aL4k3IcOhaa97>KqPsI;)9C&r3E`b98&_-o5rgQ6XEDqdesimsWglT z{_by9)0BR$C6r$tkMkT0>P5jiWiE~F+<5e`{|s%srNPp$3FdJQ_S3i<xOW>`Jx?<y zL$1a{L1u#^BH#CiH@?Tv^9>ldgAW?loL+`+PE4F)ER0cLUpk6BlZHEb`1VZCaVo#g zO<;4c?$h(o;+(6@58g)GB%l?$;*~l-|IG@}vi)!+!@&8=?_BXrWwr<AKvNJ`>pfWX zTNt#8-|P{5?7;D~geA`XPEuZ5cqv7Gn&tTch%3)3c*M%dhbW}6Wpfea%Nvk77>A>t z2PeZL=LU|c*Oem*4U(ou=UR1-hf(E3_UfB+vwV(Kv1Yg?qF@U(yo|IW9#8dFaFn-f zwpIb<F%!1v(~3HE;XjrfQ39p4%sq-bAIwPChrp{J&~{EMyr!1iy5{KN(u9szs~4@2 zJ)EEAuXgT)`v#LI8zWVf1nN$eON1o%X7ntA72R5ylwei);GRYCDOurddbjazYhB*I z=u=PN_GGmvF80Bmt=9F<q{RaMt2d)9iXJP;We3LUtuS~j4(r|CdHd%^H*>dZ_;$Nn zf-dKC<?h{{?Wywq+$8^X75;H)3WZObDA^wWdjM=)wX}1FP_ww~dW{a8Cf+Q<|B4Fy zy7>-izJm@aTh^8THWp>DdyZIUR&S+D9hX2fo#D&BqQd_Ux%mOKJvMJ}GiLI&!Tl>L ze21y>OY<Gx;orfgznQ~7EY0_Lhkpl~{(27IVXA-AbN@{M{~c`l>pA@6(tL+^;M#N# z21?jCs+yXtewLr)l*N2R<r+8?swpigCGT@h>^bUuKF^R4er3pMRSP?_MFk4|v$1r# zLuaGPAgV5BpyZv(2vUmG(6gW4eU5#d{-)E{@rP8Fed%l(Y@a8{KdfW;?uB%?rL$3+ zzh$m{X<sqx3Dc)X%NWWXc*1fa&|W<k)URsM1k{_bb+R6?W&U$Xfi~{clvQ+dmCU+~ znoct(p8UW)){|kTLZ){N*$Lz%__kTqaXhec+uG;zf<oaw;~}b0h@%<m&C|+8$}yrI zR{aUnZRlu{ag~5IxG+19LgCuwcu9*4+xqa1_+tm8G%rd7?uj}-mw6Z%6*-E94XR~L zcu%<W&!pBJX(o#(JOkAl4~<e(%I>qMd1M@8V3bl)QqoalqLLxKcRrL)Yc5LHv;uDy zkF%q#;79PRk=8C+ekRL&9~?@+c;b0!c=BUdKP{Ksw&5+JY$mOm?y5a1$Ab9OB%4Z0 z9127qv{{IJh9glqm^V4_uH*pnd4a(|bOCQ+LDWv%II4A`hOvHmn5RzC)s&fZjGHXP zI2ajwe6q6?9vsS`_;_JHZ+Ls7if7Cy69Ih(WRT2dO#rog%G(kP?2!Go<FAeDo!Rg9 zU%P{!*I)~X$wU+~>&O`_$#=&uy~#6mEuK#gyEeQP2R8FbpQn!E-q&;K;f0v?Zq7rM zo+=It<-lHrZe3~DHDB{m>}31L_Jl`OqFZ%vx!oR}&{Qkux{XZmuQJhZAo?D@kgYQG ziVNLBS(HB&nI(h4dC@AOQ4YQmkqSAR8>)Foc``-rb0t$uB~!R?2~Ak}!ff`+bq4(o zM|~NUef3w<6kq}5J06Q9ck<}!5^AxzS29~yUf`nypT%xQfJY4r+3HCjF$2mETK1@H zk{n;X=Z|#NVl_r=*|#Glk)p1S{ARQ-{0hB~<5NW@;yA@qcVMnWV6giP&+JI{rNx6^ zDkO;_XdHjjv9N0mIblrAmMYG@+YjbdQ&ZH&o@|E5Dq7{($_{hfnHEnn@>k_a*fDuB z0FG{$hn*4I9^fZ}KRc`XTPwR>`%@LRHPGZ<@Z{%L8Qb%G7ojPB;aV#UCh`X3c?~zg zcm0JjANy;V#LaJc76TVNk$4A0{?w1Fn4cCG&KFG6l6_)Dh$GIMI8Ln~GDo{Di30r2 zi-Zyx=%m3?C><pw#MUWCBfiX#WV!r|7u|0=Kh&|UqT2p<f8$A&W5(q-B0!!ZDBU(4 z>&HX|Xk&e>fv?6Q%HT^9p~WKaa$}joqW#`e>^4JpL;j()gg-SdeLMcsyw@ufRs_|B z^F*})8d;K<GVq~f?$URxn6!=7;?$uKQ4rQGZ6eSQ=6#Lq;mACHvTus#cokJB9VMe` zuy(#|+IckT(yhlv^@l<a$nklb9%XBGpkg|Q?x_qqY0C!3bjhnczv9v|$HnyX;{}{4 zL9`Dsk!i{AuP!N5iYWW9?SeFEf!XillT`OrIaw5qC33ESa_olc7NG@TxXZZO$v|`& zY-6tSUOw-*5)O2EVp+TV#yKZ3!;S-O%wCw&`|J4^7hL+uA^Pw>^axCmiHksZYp+)5 z*(%vkWGJ>YDgDv*2;>B(i|z}Kb1?6gzFmH#h2{|xZig1rv5?Pi?Rlk|BP$NwRgubG z7p=DfY7_=FYT6#bS)No_)VBOXLeb0Bi`<=SDFS`*PyH1lDiVdfU1_AVHFhQL@B7X? zRzEP?Q(UZSvqZ{e=blAZEu`EsfzKVqi1@j80a6m$?QF~E``SITmM$^g?Y>Lz$;PCB z=kj4!&%Tu+<*b@?l>I0QeQ7WB4KKK+_9}OsL18L>c@cjf2>i<Vd6(rUp#vd})G$L) z1l_=h9L~t#%lpZpw=DvUWQF_MW6G?#D|!>V(&CPikb*@oL*mc#50Z7ssPbO@wGUrU z%OX`S1qI8H8hzT3s_J$vUp_F)9C1U?#g!BV1stLC_3gEb1+rCpuE56K?~tK;n|@Zj zm&VS4oGoA8F0{qxu7%<`79yVp!fD$)1Y&4M6XJ^7wy+HgQx<G!4u!YftcOYQUNfrz zo~|Ap&Ba;uusxvgrqSJaRi&eKrylp;ZseOGbgQ88=zD(5dUe0S-PG}D+TGXlx)TwB zq9YVz*sAd(;cXQ3*IhinoU`fnfc@ETuoVHD=cSoZXsh7pu;*_2Ky*zF?h$K3+JjfP zX??hbU%_h7v5f;&TSI7~k7U0=pJaE`Q}lsYNJ)^;?bX&hB<2-9&2Fq=F1y)oy^~tk z!36<;Pb_9d#xP!iChV>~KO+cV-U&jd`>F)I&*V099(yd>&u0LSwrj;|baUF@p1;D0 zy!tBni4yOq3|kn)uPTlsqw_R<DS&GSsBUTWU;X?fQypJ)8Ap@1giSHp9@g<Tn_;I4 zrGJRAWCdy|6PNWh;Af3m+16TchZdtWj_;Op^9+&@pS}Tbo=5WO&f-+In3XJ$ic84a zH*y5|M2;G3B=T$;FI3YFdQ>PCDgho~a;i;PR6r(>-!4+ahs%0)p|y}Pmf{0#->4Q+ zlX5S6)>(%A+V(42h<}QP1v{=1%CVCKl;{tZ;$79eJqR|K^)q4R<P|nbpfhnvUJ7%I z&|O}x;&Vxs%Uq{j<=_oPK8vcG#DX$dJ`*MtJU?N<21$7SP2N)vm;|5taVsX--r(`j z#=*}E5J98NdrI780J+Kq<C~$YUFlRNN2iJkM>A-vEqTc^Q*K`h<=D&Q1)WvrSv6DO zP&(y--y)CjSfJZ<!9Kgvq7?d=cF;hsy4|B)Ut1D%L-8A9B-xcJq!VPcbmHy4Vu4}D z(zjCI@L;`y;OC8BGvOpt65?gSyyZjQJIeoe6Pz$FCm{pM+KzS6$Yj+puj@31ex;F5 zf}`mn#N)5{9UlaumaxWIaD)$65xkDab4Ljv#OwKNEQ%T{AMmIt+-<Gx{&W1${T1H> z-RI+F&$OE$=_+Lj7ykH-n>q`8y*bf;(YyDxGk+xmwi1_qgO)fr%<uHAfcOG)xSsDO z3|%;n+jOMjjWSD<RQ|lv^mv%lXifL0#Nt>^IKBV+PV?kFHuHuL8&88?aTvTG%o9$y z&R``k_h-R*$aX&Cm;FtA{44bOJMpdyzxy?!$*uRkW+ZfD@*9M|@=N$!QxoSjKC%8M zUO=Att626AbTVyzf0D2^wIrXloL?ly^5kkJMpPb6^|N$aO?EFBorK$%WfAi1VU|N_ zwr!|D?!>EpRMl)6u~F|9$8<>l!OZ=NUfX-k$aE%x>j|P`Rxc`)8$#}2FW%Gh?L7-F zvJubpR;-9F<it(Nmd6lv=~L*sL4t|apu6&lJVtIsIyYKs9(uBIqu$SHDc2lEO_Xi- z_hYqI4M2A^8vUDQhbVD3uD;V+YQu2d-I!NE_1#U+f}Z0guT8bkH<T5I(ue-INXgvL ziuoHCcjIIFz5StQ6OZrO*$TFxAsgwHgPvnJA5DI;*7bQ+Ha;+oFjiurZT;2g3hr5~ zsk2x2+vgohdzQxAhL{Y!l^6~ZcgSQs7~?!aE%9F%za3{hwc4h(BkHk5-e~Wa=$cHF zSmL6~V>_!|As1)_WmoO@CJECT$dq#oOotrs=!+JW1>t8APK0jFm~MdS1T|Z(+zV-E zYz_3xM0E?>ma7|#W9ev1cUeeCNO5$cgOg?#m(09<OW2pLNOW%9#RvL_3r6B#R>+xA zKAu&!W)ycj;?g*mztN(jkyb7$bt*kT<%Sv~Lg;E)-wceaI4SJ}#pmoq!M!Z&5sgT9 znovl>`Pss0jJt3k=Ya>Crl%)ep#x~b##XbFJHLNN*I^pG&9`n`Y=Tv;AozCwwa_`y z8Y`D%ePn{U$BQ|ePhaKLDMl1O_#SP(Jgc0S33)==o}%KdE24O>F5|kj8M^(Y+4O+Q z@<H+ZPEDXCy$2lS7s65~KWBtsB0Wh_!tdq-E2avj=+Y}=$?9O3;OTyz>kQ^*Gpped za5^K0Y|EH9XDMW0!-xJD-*ZTxV{PB4o^wMnMJ{PQNJpXQV+Wu}FiWqgDu3L&+so7C zYB(1f*&|TGKf~&oF=ta?UR#@WWW2hcaTGj!Ey%K4;ODe`)LDn{TSbz5xZNRp9xdH) zYdpW>5-*5xWn0Y*n`ddr)zw)GWqz|<)|*^nT+2tWS*OZt`m+)7pOk9`s2TsvXBsok zo|mb!iOGy>nc+R(w5BQYozhKvsMBG({Ep#!fu8XLeERwm<(l!de-7MSSNXltagF^y zH2RxH@*f&;qxJuz-l!CI)TaGV%V8*>HxzZV;`&OU$XplxhfhfileOGUa`8<gE3s&5 zO0o)+Zkalk!Vq}ICq$v#CcRrYpE3OhkP}h_FZe4hfouD#ZgF?^*4iPyr8gN`nyid2 zl-H}W6?}f)LRkdJO^-#7L*I)ly8+vH=<%v-RZYU$+jrd>7y7zpm@F@ez^`#W+Sfkn zYpi&*&bj~u|Dbov;&DXPlEWogcH-bfq1@|$ni12+a46nD?;gze6`D(zEr*=OpIYTy z=U}vi3OZMARstoL$(q}eNv&(9XL-};9S|4p)t#317u7AU%&SSQvb;qYD=rXFkqG{u zFX{z|ceC<s(pwBiZ=4gq{hs3gZcz(%W8B28X{cw%B22?PJB@#`Xi%LC&R>Ug8n?fr zX!q+HmmLz@d)?-A(c?~xr5f)(S=alHOQFTiM=!M>S-l&qKb^RAnyZC!XMxBsV_DPm z`|<Ir6jc%Y)`i;T?TX;hLS3bR0&u}9SALoY&|+Zca(Lvef3Wc{^)TLn5&7B+<M7Yv z&nfze*1H?SDems>cBCOcwb7*8?zI21FB7_9#<l5{@W=zi-r)h$-|Jg_NaKlnxTZaa z2PUDcs36|Khe>rOM^5~(dxuf`y%i9j4~gIrnh9m}p`32Ars<>&+wZxI8AfQ9`c~`w zVAU^(Zr`kw(6iQH<IElb6I*2t7h7Z%!<^D;2B@1qW5XTa&Z>$F{(2v~da@JriWu*5 zX_j@jOr_E_RDx=(gYx=bTi^;p8-tkpCnjn!ajOJ@LA4tJ+RT@)?b;H}%vsuXfoV#x zrwIrsuG3gqY={dVo_oC8+z(TH51eYDw+%HSbn*3}qUPlcPNjk%I03!x%3Tb0dYEo_ zGUcj1(c2!1j*k#rg5C?gG&}Paq$pZSvwNrxh@XS%x*0_&#BOfuQW6DlQzalZmJ7Ym z7p<TVEhGqe&zSIA&^73-+W%>{oD;}d&V9l5JKoLp4_%DciU~@St1G(6xDB5FuJtME zwAkj87Z=AGz3W-?T4UM&?X!R7o<w|8QA$V2m#)^{8~QlxAc-ba(eW%v-ejjK;-s$O z$nbGg>yzVK(@%)$uZ3&(Rm7d32C~mEySr<Cu6%BOI&8=No$yytF<xHAgonrTOcsq4 zfNFI@9P9K*cXz;7Rkjlze){;!9w=NgrqH`HHJSFKEd@=R_cMQ%ry9z~m90H?A9l*9 zHb*0j;5BAF^zu335IqiZeU)275|QN`TkHjzBW}E(LW`9Mx^mW{^w@oY>FU&80+UK; zH^D22fOu1h1nhFUXHHyGYCxmDT!@e89%;(EtTkafg`jyRX(%X9EVkYiVJ`xHZ%lj< zyFKn+{~vuq51-4b$yDx$JLX(+CGwJgg2|@P#G`j$k*=0>&C#Oq&BnGmWZV&kZ{S={ zUEXWofzxQP?TN|2bB*Q%lKu#z-0R-b-V^4@QZbL7^`82m76dc50^3gYj^vDQs(7rE z38AXc*k!oyQ2ndmMg<^8)B5xl7_@JzKL_p^Kv!P|(|2r{6hsHYA`1-@iov$0&`b<B zHKOE9`0AaJ9sp;ofK<~I>1M#v(5Z4mhy0n!<`GLR5jk&x>YE;r!C1UhEogU@z;<po zXCmlhZ4S{EPwYkT2b-ZCJsQ?(RKrd;u;rxg$F*fH%EVRM62a-SV4DT&S<z#ihb97H z(3~g~y7k==Y{6Ctu2==TkdbXJyCPRXKxSyzeqzZefformZ>;}#UQW_J21)&H__6+0 z)Q~0mln8i95-gQea3G9s6RV??ZjnSz)5McSTaLijRfdb%lP=Uj3=(TydHa>zW%G!X zpVy|eL1AxzX6A@0HMHCoS2iBK>e(g#_4ld6@qdT|7+kx*y)o`g&_Mja!!O$u*4A0~ z8c9HKj+Lcg5z27%9oYZfjlCPgyPI{2LrT8Xi6*MZWP7%bk^-uZ6ZG;JtiuGM+e#p~ zJltynHR-J;5JfybP>&nx*`vFR{i+IHCk{SPd{4Z#Yf1^)CxR#0K3YF@iXa5-%n9Z` z#3<>f%Ghuw*pxn#tBF*O#~oPpmzh>aD0ZY#Tdm5i`9UL`v(tO7Pk1S*F}zrQje9fp za1`L&Js819#R2qCbiht}ZN`*!TTNMZ3P+PMKAfo;UKK~{Amly7vFkdJl3GaSHAfp9 zr?t0V5+TAJym26?j|2r?uN&2VSqP3ZYt1tz>XJ}?v0s4b29{?RPNG^G4qle;pPazm z5Iu#+kK&-*C!ZjYIAO13`fv*@iGHnAVLg5a0$j=L8`2@OPHqs0^%<u2Gq0%U_+<FT zdG=n6NFn+%Nqs?L`n^aFrKryb`4GeYJp55GAKK+m5{D8V?;j!6Ts5|z@@+}8C2liU z9*swEtmsGHW_@<VV3iN7L(&sDLQc?bA?2EMQ4^0E4a?j37V2>MdQXe%$mSgH$zzk@ zWmS$_KQvxC3839UAG%t~bb9@~JrMcP&~{CYmm2^zfEmQL9*aF#fsgDzrw!HVX>UC5 zQeSli>{M8jo_GAG3d~d)dBeJ(O?{sZ6>dO^uR?&~ro3q4@Xo3mFhz_+gitBSPl8Y@ z3GkGu7!D#qPae0X=dnIVb6(*@&;$J`lScsp+<-PJ9j|P!*;CaH9w5tHhQu8UuIC>k zU@>W4FU5mk=nQD=^KQ{q@8axH?7}>|j##9;)`>k}`#H4Qru78DHyNdipdFj|<2HA^ z#}2Z?%48a1?Xi1+ymT!RF=)lQ;LHLKQdtxa&(|a6C-Oxh{g`W&`_M>!q%xSXD8*7s zX0*skeW!G{1<S#S{;;%0yIx@}^qh}Q+Hp0Sc--%dZYlsU4EO&6ydqu%QCxCXytw47 zQqf+5M85Y}nk@xltL%`=T*r1k?XNPCUstFA28)6A?$}<pN}nl|n9L)xl568@oGG$` z)7}306UnwtACAdlWT)fUCr0RHvEU;|X^jYYF*4BD{)iJUHmXOh>Y-!Dk&aY_6?xF+ zaK`6P6kBCcPM(jud2V2JB~<}>J!5zmO$fgU{r~?z5#Y#ds<@U}Sbg&|fIdGT()%gl INA$J-0v^7IivR!s literal 0 HcmV?d00001 diff --git a/public/07-basic_statistics_files/figure-html/distribution-1.png b/public/07-basic_statistics_files/figure-html/distribution-1.png new file mode 100644 index 0000000000000000000000000000000000000000..036188ef50e949526f41eb9d6831f975e06bd90c GIT binary patch literal 20163 zcmeFZcT`kOw>L;P4Kzubj3CgGMFGhf4oa3NNwP?4a!^!|(4vBX1j!OxkQ^mS7LlB@ zfPj)DBRRvI7T@RI_q*Skxij;}th?5*u&q9)cGb@NS9R(Tq@|%mN<>eDgM&k=qAY(G z2M316!NL6u#|5u=1#Jc6;6R{SYPt&GR~#G(92^@QoO2ur2^<L<9Ek`V8yg&(3h*lU z9eWM?V<RCEAz@=9VFP|vNJK<PM1Y?YAeoH>_zT_viNH_rC&DHI{H?G7?^aaURDhr7 z5fV5NAiWJvgbn!l=YB**M8pL4qoN|B0&JW|OjJZnOhinaSJ>cG*ho}FfWJ1_`(O`n zm_PqjR7_y|PJsV|jq{50iHh^{!NI|a2#JXZn~4hW7aRt>362DQf<NbAFYsgH{QMl0 zu)^kiA_7Z<y#SJ8FL#G8Pk=fgbX7Kdh=aozi2Vl%pWn2`!9n7v$jj+IO<GGP^&1jP z!I%nJv{BG}BmF7i(}i$eTAEmJh9_3B*AYw@B=5j%uCnR+oEN$KR$6ts=<(k1Tk`a6 zc*hZT<4)|(*I27-Mz}clSW1#{aNx8s7|sX);M^zuAJ?EZ-%sZ<s^vdDS<5-Q&Pwa| z-ENEHzQ-Q2y|wB5uu67S;L_#EX`ciyu{Cu?KRBU+V9M3Q$ILL@kI87>@U$jIPFLdr z687)JcK~Rx4K5<W#gP@0XyAs^>fo6WghG|?DgqS2Hk21P%0$G>I*W+UNmR2%p^;ib ziD<NU`fZ?2IeR|mZsbWmeqe=p1GyFhyiL>}(HF6v%3XGP6p9`PfcocX`uA(2F0dhd z=vHW>4-hxanLgIvI6FGltM^NlDtXSL(2U(;oklKLFtyoj%I8cxM6y7-GvDWA4|%N6 zwKgVqRI>Bi^J>W8>T=!=Et&Z*ZFZHXQwvc?yTd~C_D+ITuh0W4Qo5zuy}sm4z6lsj zBbY+VnL<tBV@U?i*s7Z2nTO8=1p~9EYi#<3Hk?COc}FRSYUOZ=tlyc6B%Wd>n{2of zcJB{LvJ$~``L%%g`;WWKys`~D8<_Oua=j|O-Z2~3<`6GBdF;99orHKFsp^mV=_vNQ zgmq-UF|;#j&;c^%Y@pmlr3NNh?@nJP#?3c!rpCa7-<<Bx<x4i?y4m(V2%sF*Ti=r@ z6Do~GggzVPqHmfUzL%^A$%Vah?nB>dhdt7UjU8)!wN+L~XL5XM`|>%OJAiP}$PRt@ zQIW?ySFWS=+@4O#=p>I9^J3L?;FkKYOpjBHgx7|P9!rOQ!Ts0icYv0;OoIJrHe1n_ zh|_ZCj2Rxy&ToG8H(WHX&O}vE4!;N?$b?nCLfL#U6IzJOxmTy_=cnmmcbX4*6`Atn zd#!2a!Se3?CP`LOP!GyLutG<!cG3K(S43^Vl1ELx^c`u8{zh<uw~=h=<(lB7BSxqI z=MzK81or0W)0X~B(o5x+vWw<tBR0RrGGz2od~w~dSFo(D;Vzf-`R4WlpDOr}DM3d& zkAPw7vKtZ;Y*g2lP0UsB=E)hw`HILhlb*BOJn3Y^NkcZit+B!VTb|kz$9HzGn9^!d z@P=}E>i0sevlcu~+p~6;r?-lqZG?PdnC##gby<1oOqh~&U8Q4KyZ?q!NouCc=FGNN z#+4z#%=)kTrxT2v97Ph%#;*_G7Lb2=x>1(KADG?Nv1oSXhd>>5Fgt@N3V2Vo|J%cG zA+R9l=J1QnCyH0#*$*PnvGyMI$4$MS1QzMBzdR)KYE?YC&b+Ms*0vg~a?x9(-Wka@ z?K$+H_5uxZeuT=-F051%WwRgLt<s2jY`NF%-Y=N>{k>4dvRjF7npgVP_mKp{JMir~ zosdj+`86{u&mQQNifIhw)r0!L1>Lfd7yM5YnZSuZp=pX%evLSI9zJ+vDxWrduu71T z9BX#(^lY}#hdo6Vuy44<)LZUe`(ggb32IMVpRb{NiJ{c5K<JfFwUA2r8`C)1jCY#n z)>0qW6!pqp-JFtKb9o{D(w8q-DwXNv_jYR-gAhh*sHuaYj-UEyZTxpn8!kkTghGpa zah<FoTiq~czM8tE!6>l2X-r!I*p+Qw$wUv;Pf9V(s%6BkR1#+Me4?pV3*kRDqU2+C zvA>+>m6DgmH5=q4n#<naf^dQg1fr^FrLl^=kw`d9Ie^f5iy_^3BZbgv#%Q3*nO!$O zT`|z(Rx3!RP0u*`X-}f}Y=Fzq^z=|pk9C;bpqz#tZ^->r1X7MS%E1yF+8TXoGm4tO z%<iV}((bnq?gHh6v#xO@!_}Q<wiH@C^6lj`ZoQ=RT3i7yxe5Dq-cJ^)UrbhPap0n4 zU(S{JcnD8d@6C)--QG~OYFR_IsBLeqEq^I`=qFn`I$?B!D&p!V-`cL!tH%K&cV%u} zyL`Q+KDUy18!J+*)x*~db$OM~ZoiIw{R|te{NJ07opNqU@q{)AZUF!_E+<Q_&am2T zo<z8E&JOKS2*v>_VAXI3Sf1A?JxPikOE3X4pJfrZ(WSA^q%f4dLaXKU6^5d3Ssl1v zsk9~Q2!5;goX5N|_s5~`w-?O5htCSgP|;`(FT6np`Tk&sF;Nfac-}baqYssL8R>FU zvl|HBnF)>GqT5L3Kt8<SN(&-v-uNbG@zZqEh3ubp(K2VdhDM>$IsR+OeVo$CeMk4S zMLKjhUNUiGVpqbKUh>ws2G4f$8VesUI8U|Am-Ht+Io7*B8^rMBR^o<fIx6967r8kf z)9KFH!(&o<Zj2&lnK<?2sRHg_?P@IMmD-;F&Lqe9(V69K?pi$6X`avpbS^cC21JC8 zG4G)Cu83<zI$|AhH{j;9<gV)-_`|QwTn4{xp5Q=)*WZg%2khs80f+Vb*XR-nS98L? zr%(Ykle}IQ2Q_&iX|L<$PomLAg|ZJ=(gdUdb(b-^m9e6Q)r?-!-s#G&XO8(QPJjG7 z{&v~-nj;eB+pov#v}F1CHRbacOv%XmlF7!U9aUcW)`-;pvDJ$d^p<#$N^-SS?sAu% z@6NK0wx@(l^Cx@n;P=F+&9svN3ra}2NrO7T(^y)eeg5Wi(&_4A)F-!7eV^C&KbdSE z4h8vQ9?y83ehIa)A?bJDh)%O3?tgu7>UCPVd_5?ZLFgW^M4k8STO^T=!Qg=;>m{(} z_P1txGMdrIGUdvm<f>&9hneg2atWWk`0M5{mk(^xgGr}HR6P~EStoft_Ks6eXEK@7 z6E>2Kgm|t}y#bppeXbBaF6OGCqPsPwe{-lsa$k9ZTlUN0>pJPN*F*Pv{H{BMn{5u^ z`)cuy@!ti&^hg;Y{?tp$Q1w=_%_uydZ@}UTsjhog8U0|;xJkOw@!R+BF5iy-JB=c5 zE5AJOOwTB$V@O%y^s&=Z+YewN!VmM$n5d-^UREF%^GoP)_?l6I)}wy!CY*C*Uhl4* zM>}k*XNhN3@0*8y(>T}{&|KCv)*x<wMab0IP`GK2(vmcKRP4mw*`@{2@+^y5{SI9C z!K}YkCWFvZy0eDhGMfFq_}~_7B7$QR5mP|J;lpazp~=9an4?IZn8WM?jqQb2N5bCy zarTZ~^$FWw`Mi;BgL>kf>x2DJ0kZ~EAoIsN^bWO>WJzj~VRiPU1YQH5z;U++UN`F! zdu0oZ6W?8XxinQ!o@Ph*{()I!x#tVTF5Fx`2M5(xKe1BEKS!_j=^r<8R!5UvgQIx$ z`N+cje5b|xNu+QgyZ-0}7G@v4%&7S3<j>3qEj~C(Bvwz!N`$<vEJ^AB23^L3bSqlc z2~K_XCiv4mT?7&uyd(|JriBTyjtkt>%#NFSf%cLEO5G2AKC*6Poqa|!!iI>UP#gy& z5~mpdzumw<OitWT${w;+FUM$@5)W>*__XfwcwXAc2!4{9$*;S_9Q`^Ls^4Rp;M`WM zZ0KD`3>)g4@Bbb1tUi|kQdmc$^}%`Mrcy%7O;w-(uQn8&t4yv%3(pRGM4Rvyn(MSZ zUw}@K3|SXYx1_s@34>0V0QMi?+2ANmpN3~c^vFU2mTJ%vMO?Q5M!ec8^w3}OZkX<k z{nb?TmV<ZK{>H;c=G>M?lKy)%ziFWUya+9_L_*YFgYQG)?6%x=;uTipH6(^fgsSiR z#6}k%=7!o6z6fDN1QkMyb~NB@#IfOfO}KfYM)u?SHg1PW;_j$8L%q{AxeC1vI~ubI zg!tsQ{U22Vi$2fv^H;|wCMHR|l10Pv4BQ^jhRbq2FO_~{?#;x8aWDnC^Ot_|HE8-W zGonO$p7v20D5cd5PA9)Mf{YS1^%3Y!SQ(l=6rMO(`#^5z$B61R={((p!-f=e0Q2w; z+-Cu*?;Y!+0*dO&=`?zlPbOxP)PM%+{;wX#nPNG)O$~YmhC6B^{IKraXP2FJ1FNOV z_AScLYKA&ZdCw@;mR#J*Uo3nwqAa+t=J$l<4V0TW{VHae$R&D!fgQvD&Y?=y>^Zs` z1y`On%o-z#=8oD6L&fwyb@%#>kz%LrlcQdqnzrY!_&Ugf)aet_3Ex`@94_M<XsBU@ zS#>2)oEc3}@`N`%EoLvQkWbvGi#%JGkB8|}E1Ck&G<Qoy5q<Gp<=>eb0Kjwz@57m+ zBc2`Wr|pe-zTpmA8P6PM@lXk|{6g)wcI`KimVI6lTTO<?+Ls3i%1~0ux`YK^MhSio zayUqRqcOOXMr|}OoeYmc=dO(44b`6AgM_wYbwvUjx^1bbRHp2u!)vdT@=ySBYFkBG zd-u>tL*M?fJCe39N^@nnVLotwiq_Uj?<Q&F>hC1!((4~ZBP~f14EE>nez-TF*ynrt zH~SN7uRS4Nte(=PH_ZEzWwCL>em1%`u@&6%!pW_i&FDS*sdP{u@h5#cbqM>uz=VOM zWHT31r(h``ccH8N!>AzWW%hb^&lY}p<eV8?qwFghi)!^L*eXv-8eM&m_+>EH{nvR9 z@5dqIXEd6RFW<J+2@_u|r*PV(j}cBishTOX|GcoM&pf?uaLuXRh}t)2>T8Yc$%)<M z<6<7(hiTN~1JhCPbae0+6r8K3-aY3nls={^cE<}Jx-6HYY8Z3PtfnxgLpPF`tEh-G zloq|vZr{zz8z-7>ZAcp;8#q=oup!IDW$6gQW&*tlml*D5t!6S@n_Jh(KrbC0KT8|2 za{+Z7C*Hp+>7wkX$)W}o@KG++y;Gy_^#V_b_aV>HE~xGocVnms^Fxko?C}-$txv*_ zh=FaZVS(oPE&4iL4HZ@qnV*jc+vs$KZDTI+_>BGZg<Nw%1mx@4aUZ3vpZ&hG+lIQB zg~(}XL*=CkU~Msk_ej%6AUEYMJ~7H<!DwLRGCZ3ggL_zHT$ogk7TR&1%{X#)Mz1k) zR<`^$cenf+W_UQ2S$8c%2k_Do9#4Sp5_~j+toba~^64cEU7B%E3E8}FY_cGKy)2`F zlN=v%c~qc}gC$|Zr~%z#UC3US@*M4zO`L5XliB_;14PoN=LH5bP3_B;J>y7BZT&K| zTKw6F_)q2cmvxUNO>8t>uCxR-B%s$p^xAmk(~0()kMvy)p0Cytf7FE)<c_=!pl4C$ z`^LW30T)k5>fyp4!&vA*tjYTP=s1wumU@Y3-kru>UdTKD-2O1y2sw9LSeaRJ&NVyP zZ)1uKL4}-Y#=wHS5Ewu$`5=Dli8t#70BOeqqRdN6dky}f6k0Oc`#%EB&!$ERtVrw& z*T?(iQXfR`H27zHPm$(wX+N!ak?eBK6l#CR&xJ)1o_!E{NUgSHGciZql_Wl^zD)=Q zizeqIr<?c4wRXP@j6)1JT1?2uwMHxttE=T}&|PwpFd+;jsDq09%U}FXR!WtLO=Z8) zjNXKJJib-Q_TVMDOhKPMW0Vg=Drj44SC2+}eRHI%C(*)Rz7oL9ic$0*$FsTwa%R81 zL?0ju&-SD9_3+qRWuD@4<5UVIkW|X8fepo;rO3abh@kPgeQo*v5q{I}(0_%`BqjNZ zlP<N^p`pSATiMRsN9f%^bhN%j<n23svCD;ObDgc`0Yuq64%ScC%$5YH?Fo!$m#MXk zk7_7CGI1h>y{w6T2D$gYr6iva9F6^>J}b(HGWkU^F?V|QeS<giwr*d}ouBK5Mc*Ls zGxja7Tc^-sMcpy(8NYjU?Y7L3z&(Hm4E|patE1eKI@4#iu(7`j&Ug{}nt=UIplXkK z95X5#+QI77rNkWnHw53W-jUJudp$Isi8;^cc=5|=#CvPepx8_3Frq-^(gKFZ$#bVQ zn~_!`=aowrQo>FW%xVp2MZY&j4O2gHAbQ#6){m5Orz*g#tWsnP7N;Er{avD=5;pm3 zm|7xgr;(>yC`iuk)_qy~4F@OU@sZeJJI?TqzTL$xM)H<?;j^7lC>`13f_wefFtI!P z?6<D}V1h6jaMD`md$-je$Q+(WDSjAtVu-4WJ)Q;YZTQI=yGvMHhu2*vKGxwHFMa7w z5eEs+lbhaEABJZXj4Bg}$@JR!@tmAG^9-y_&n4~xE%`Y=T{=FM#(miXs|r56E$M7Z zJ{#{lD<;a_NKg2BvBVAs@!)IS1}95_QFp&uC}cOXU>ihF+`mEeq|m*eS-jhGt9-QI zdkdeE+<>+{!LU8yefh85%qwbglH*%?3B$iqN7C`EIue-97J8Rd&7YK$>V*=hyOEMd z@SoyRXj8kUqIWXf1)Zl`>`d9nbD?)x3Z}6ttCD4Uj>h>+4~OIA{|{>XtU$BixV~OW zJecFxc)eCbiX#zKxtYW2Xt8^I$d}rhQil7}pM=Yc^X+wvi)OlHLzr}s5#0@{x+o+P zjvG9s!bZ5bm)@aw1GB&BCmR~%e{mB|p>@(``C!NrQGW9tNG%5-@Ie|lMc>f_*<hMh zyy*?45T#8&KRQ7wMII8GKLeqBwgrOsWaec12uUq5i^=lQ=#iD_nbs6pn{#>KCO+8d zB_Yb^A(g`ZKp+wZ`_m@@J(A}alGYp|4E1-@+R<Rq09JNK53Vk5+QMMz*ikTGkIK#4 zeGY#q($FQ4L#1OlJm7Y}WRMyp19yw{7cx_e_{FQVClv3YsswZ72$Dds{Sj(3eIn*e z@rdX`3Qz~37#e(Hg$*`1{0kcF0fSip;2^FL4^8|8OF~Bk^gr$u;SIg~s}0(|qgdhh z76?!U%CvpT*{>RJ^-B^${cnQ&!60&USiZG@yzqw9)YS7Wx1A?+4)zwGSL+w!jz)t< zwI7LDtmefz&GJmADDKNV!TaRt6t=SB`>5gk%h=f3N0&e$h-uy3fFb4v=4TR6qF6)N z2N9G3tjuddxfKqfwq?b<v{FEY)``xt06?QaI65tAOUVFc^{>0}E2ke`lYx7aOl-0@ zG>$ZNu)RQ_qc2g39!F`m(m~dURG_LAil*5`rE%$_uv-`RIYQ9^NEM(nz?p(Qv|1X@ zb<c*pFa30xodiNE7lEFkc)iSLvbnZYy-$kJD(+&z+@24&8h&ID*E^$>9$2)U;6*<= z)=9AWoGeE|pLVlhKa%r!*l@L|hA;TQx%X0}MnK@$?FKnOv}nd$_RwSl*T|IZ*QC$c zHBE)+eRaK2y<@a<3cH0Y?dZL^y4=l;8Rfjvyv~&>mGGjT859VF^IKV!fy|Bi0~!*1 zQ0&Nt$U_~4YZ&)MwrPDSnns0jze5h~R=>I~U(b61HRg(OQD>n}L|kO98ynT=`gPi0 zjD;)Ej-os`7g@5W?Q67sl}gxotFOn~kD&Lz@PtK+oaZyrKvj<j-Ak&y=qD$8<)h$> z=3CP|XIlbyC*0;!Z=?jEJ8=B^U>{6)gOn+?+$L24KdxI@GnbJVFK2!0+&iJ6w<6Hd zH9B9e(~-zuJK7M*+$PFF=caVr0<zqi-k7@$?B^XHKDU3id7v`mb8>I9>}lqwuG{Pl zUXiu(ri=<L+Iwt(`>hg%82bC~n&X|XL{)@tspMBXvtzi!jvZd06PkYSe*XY9sy#?r zAE}gk@)ikU_beJy^!&ky4?0WkqUe4v0>bVg;1uXN7;5Z3l^x=zw=4Emd9Qax`Osi1 ze5J(3uUq7E9x=)=DFP)=-e<Q7(@(+>El%0)8Z^JN9yr1qYEzG#lrrsn8_KT`i5@u4 zc>IVxl6ik95bbZBX;7RSx}a`g7n?Qqc5qAODtVvEW>GDNs2BAXt}x_U;k}VmbeUor z;bO6rVWrAhjW0ylUFWDm!kQ`)7G1Z?8|EjY`82Lu{>pwIc03UX^{r359y&YS3r$nQ zZ&gJy{n)>somt9^6>uQg?@j&Q#<8pHp6S=jAku}*j~2jm=~$orSf<rt6%Ei)ys8R} z9T#@YD4eTsgAThusdc91YU-EGWwdDL`9TNB>$Fwy5GBq=t(99G45m3*&Hm0s2d{|8 zHlxaecriB4UnsOj_Vt#29ez7u!Q6kR2^{9BU&9PAR9ypitMl#-l0xqqJyQo%8MKen zyzs0lRBi+1-(eh>_~GHhvCYlR?d^Sr{MP57Ac_!cK8p!yh;`HC6Xvtu+tZ;wz?vq& zA6G<$y9t{^VA-S6I-(d^#qCh4z$Zi*_81F2xmCFbng3q@jM~me+Xmv)PcY=w!G%D) zY)pcxntwU_E<-fJhs-cFXE1M!CW|W5zR7-%$u<ieTwHZeW97EPZN)}JpDQ*TxiQ`e z?h{fNeyHjK*W(^sZVpPlUaml+)nsUghdX18PV{=50iy&N970L}!RxGrc2v943%(!3 zmsq4;6?%r(=@q>lJC#IuDw8N-${fI#rNt?7t%2qy5trAA%DWHAPq$T)M%=wTJS*%t z9{K9Qgs#A-Zfp~AC58>|@qEL9m?{x*K=iJjwM&thoA5DcNb(bBpU~V0sZm`?-O^Z} zSq*df7ppfgL%2@nO=On?{EXXvd5%mBp3uvrQX8Dp*B?neDmwToeJ9wB>IU;#Z&WOw z1U&(t;#hF0WPN}V&?E<@s!DWp^HwnRqpfL@q}TB&(fLC<mqdqQW%ZurE=FW1pIv*| zyCcj-?6Ve{;{iV@-+wRQ7@Dk~)QmE^wEfFgbQG66{nnq6{!7;OM<cPt@o#ziTM|KI zK>ni)T$G4^Pxk*kvYVa$R`c|^1cwzLNJ&<L)s-Fw7SoFsIS?dBzVwJlmUg;?HG4i( z^~#QtB{C6eRHql`s2e3H4>XU#QN&mq^I+@=WJwdD)nOInT23!gf&j1(m%_7MHL8oc z*X0KTO3X_MU!dJv;3%Vu!8$5R`DLJM6tFTy;0MR;;IlhlS`7MNx=sQTtZ-B)`m;Jd z)oEN3X%U7v`@2Hjw-ye;+hZ?Es>PHmC$A}XF3TqN7$-}=PHUbe3%xU48?45#gK{%7 zFxAO&EAAA_4P-7O^-9rW*b#a>k<;Vs+$YHP$_cACW2n9JT-K^Vg3D#p!PuiIztuPz zl!^HJdWH8)S-hB#M<3SJABKEU_?T!>gl_pzObzO_&wR(c-q9A*a{b=GDyi{h&U3v> zS)9XuBFP5YpWauywlE7phG&Lgk3@x=eFizY?dEV{LL9Hwu=8asuB03e+%i6(d6V3i z)xOY?I+|B{x*EjgQt$SyZhtde)GbdvN&9^4k(u{g^Diq2jRHXqez`3~r1Nk-Je%Bh zEF{X2!AH{vc_-C3SZu3vSX8QjtSMaiXYqq~@T^3!KdE)a-)>uTc3;{+3%0{Q_Cw6B z!fmCS!TqeL_ArIU!q`_NIj-SQx9-lcM`_`&qT>YgvYS1$dcW#%6?fQ)yEK$O>dPM^ z-zd7zZMUtP@L*3vUpo2wF(%dcyvogNQ&)T9g{fO}$r<cJbI#uc>QTi6301bB1tH4) zSdB$RzBapE-DpyeU)`c>cMYYEa!{GOsp`LmLn9~~o>S{EZBLh(+@{oGdd7}n=~&60 zcNhMLTpu#o-I^Jr_^whlgMfWoS7yEN+)=8?6le|yv*VF46@=PN_-|(9zqSemp-h)F zIlscGGk582H@3B!?zV*Tz0%Fv*oA_Vdz4zI^tZuHQj^=j3!QIxApD6x)Oqt}j}sH$ zX^_iUmYU@W%{70)iCjTq?tf%KmS=rfHPM#2Tj#US9UR?abml1G;>fHuOP>rKPb16b zdu56>q$Je-GM*0A+oSZeKNBUtkx7m=$b${NE;R-ez70M&yX%B<YU84VF5^P*LKq<) zUAP_QwF2Tppr4G6)OLCT?Qi6Lm?CIwE79)BCckE%%vY9)YIgri`Og_4cH6HUZqI2( ze$2^BFUuIcARK(xw=ufXIj**-m^At-=M6NN$uBokIP12Tri?8yLkv{)+#!K*^1_18 z*&*fL#QK-s(zdS1GW0k&O*KC;>X&^N_%lSTq*q<D3(DPq*E!XkyK;VQV~)3H9fT~9 zU9d_tN215;1BzrOzh9S;J@Hjc`qx>2QD2dy(WzR#lAn7=qrVp%u2j77pEqyXn2*XT z+P-?y^dP!GtY+5XDQt)UN<?D}<u>SU_v5Y!C^B198n&0{PG$JzA+(WrVAA9T?1~w* zKm8U}VR0bO)$9fESGMmvZq9dFoSm#LcmcQXe#8Gatoq+eUm!3hgl@&5>>X`U*I#l@ z8z3Tz)C!q@?rS{V^1*`~s#2Xc*pd5g{Jn)lGX8Aer-sd4hbt>x^dN!`kf(T?%K`QN z=tuu_ORkFaJ6x8dQh37Lz#Go>Y-*Ll`We%<%TBj|uCv+bC7~xPOGwEY={*f_LL@TT zGty7n8IO*~Y_8RWwr|<#<5M3G)F*UsDS02_rDz&I*hM^&SyVCRJ3%3s({7}Ln+*1e z)^9)-K?dHj9=3D;4&h{;^_xtIsZkMQ#fXqVJ1(<gNH6%ZQTDBmQCB<?iWX6a4MCt= z)UXew$8(&=L)lJl?>06A(GuVp08jv%G3wh6zuIL)RF1nVlAdNdi+=>OW<W=ZpOFJW z$J%v`*?3;&uLNd#l1@~{>O=k<#t-B>V(GY#Tsq9?*Or?zA8>Z)$)XaixvsgadTS?7 zf~-o-_Y~!oij9NWwmUHZ?TrUnT9rENU|JI&)gF7ZtzMbi{pR6TVBi)|f88M8KSb!H zLBAJySSY)TSqd@Nbt1~tI#z!VKV7aym*mykIn!2fJ*HWqj<8@YJO5V1dl&bQ4#qsU zW@!u=@PkvOA{TO<B@;x<tu_1eRrFQc(#1m8GXvMJ_fmIoblCS<Z_Y9=LvznL!rwpk zPzMh6)EP1}uQ4N$O#wO7&F$3iHqZ;gB2Q43)x55Z!>PcQZQ9V~_Sw%0^_xcm6P-Tb z5>S$T^84wo#Kdc9pC2j#gX<Y&h<WEgLq9cElov95qS(6jDA9y`H_xC>Y*<fkBIlZ@ zqs%?#0E5amy_zZu@;>@r^Txr}EJ=l#Ul{u75D^+NC*7xmoEWe0HM{YdNE?$&ZJcZS zWf7`VsOui{y=p42kJ!=%XFL_is&!|;t=$84-}0kjVaVih{#owZEnmnyq+BQM<f`*n z?QM9QF(RU;C&~q7mVpk|Ph`ADLq>01yfw_`(vvk`dh5II;A5s^j?zFTUH)4IWVMHh z%Y@1`)f|}R+-mi$>0M&wD&qNTs+tCtLYMxf+L{z}@Z-2wDv}yB;l3SYxlIO#xV?76 z<~3aj-XlE>au50DW%Iggz@a?v)K&9hPI6<=JJI{Zi@FRIf~jf#f2`hh72~xn!E=Nr z64dimG5o;#)4s@c$~0YS@oSb<uYCJkMXhFKFlR5gM4QpiFDIab^Zr6wBs;(ah2+3p z<ShX}LSLyd+9oOYhZ-ZH0e%JO=u?gEfkOV=PM{16E<}(e17==isX9HB+vV0{aGl9g zOCAb=EPYERh-S_?^E}Lbgnn<zjV0T%nSxihQ%3lDq@Wk%pR&^9LI*xdP#SHhv{(7; z=ROV1^;0S&;*vT2Al3)3mSfghTbBNl*LSHdl7MZBOXH9;YTmdw?PuyTGmlj)N=CvC z8tmuO@HEK|rguq5snNc{u9j^+Y?&$|)?K(wK!B)Ch$sN9dJ)!)dFD;OLboKi7a;Sv zgYTd-+v~d1db*}P)@4u5>LOHFQ8~%-ehZ#JvrDcm)!OnTbU-I1DT(our#(%C9TNh| zO+NLy1&w~RpzK@C)b|ifl-fH7I>O>&m*IYqZvb%d)x5J{Rrvd8&uOfO8j|trmnKUn zX36{4{>pBKCr8;4gEgI5otLn;Ey&;2mydb&Gahb#(Xj4c&2>edR8W(5^5q6=)~N<p zwXp{p;wS)1tt8FQ)LBuUKT?;c{fGT@Kzv=8LRyd<kEeUbQ<&_B=HWaR;o{u}*e|@i zN2<L+iaT+7M!{F@FjMN>zwQWl$mftaTHZS=49N&*wC>fEMtvkH|LJfr?$Tj#Fg{$G zN@lFsxDy>0C#zeNu_ZqCE<M4#i4{ZfGZaMvSGFyjGk^D_SvkSFoJs2nw_V$CnoORc z({rRLa72=B)MquEdOEU;-cw(J3>Vd_wlt-bkv5Iq^*w$pD_%~&(A(==NT93u>K|+T z_p<wcvk3e@>ZVYLF6{9;9AeH@1j-SRCAemN(QC@SR!7oEM~C#fQJ+Q!m@YASMA+}S z<KP>R$=Z%Mx9bKm-U7V-X#1-d#fY38<L%MboM=@(5!l*#JX{@(OPEc=a#6g%O_I18 znWqR@Tt@3Wsls4&7(OL<Is=gS618z1T+D6+MavLaJ3Qhfeh}^jBl?F<4$58WrCWin z4NK@Wc|!gVi9bx&`EhdLu(_m2#6KLo<-!~=W1p*jV3j(oXSo9yhHo$XT{*Elo66XT zAJY6sG;kA6;4o`ywl;q+pHcpw%gPje9+rKl3)j-`gUCA>{@rTJKSkn8<RjW;zkK|< zfen5|Qva*q{#qEnr<^9EMRR33*WGIG$e^Ivg{v$WS3H;oiz?7A7|x5SBb#LbvG7$S z0(}Frlz-N%e2N4Kov#`K3<xdOTL2OVThHMz@UR>n<T=itf{Z|e+hu;lBCYwjwsQaU z_)(5d05KZ^0S7*zM=F_>*19P#Mp%N<s{o<!f5>sLB^CxnaAAg9r+a&Q{SL+K8N-s$ z^yE+|M47U0_`0?7>E`jrEP{*SV$sfF_N88XEj$D-(FlatD=vs>ma!o76<aA~-+M`K zg0Er}U!nmV&_0Fe10!+QD(29{z}J7evO#zlst;Szb_$T7j7Ug~vEcP$;fGj}kbifU z^0CbPsqg@fKa8ruUs&YlPwGEc5o{PMhlK>ENaw2+HX<+n%&{Xp2G^Sm`n53sEtwG4 zULHG=3eYa*?U*#1+DkcQEl92u`h^wLq6WBCu@Z7Ro<$cz`=8Xz{!B3M$Wvx7<lsVL zIHgwC^76^*!NI}d;W6pR>|cXOL7Wu+H){LKDYg(J;5gVC1ce}xAjbONn(D8v|Idje z5q-21p3n`jR|zr1M^5f0&p*R=IKy5(zkm0_@c(7B#h3X1X>v7r81~yw9TLQU>G}Vj z*|E3idv9?wVUWX)!W8sPgc|(9kFZ>q${<N#gU>IVbOF(~9G6q{ksl8F+#Rs6g8SZq z8(H;THb~4G9w?234TV;hCG8cgH+}kg13b{F6!aXs;MFmAym3J^L|7;BEJA$oFe|4> zln5pSJ`v!stk*97BKIWKFXbq*iSSR<e9mwBU1@uq^J33z!d>gaS_>%z(UK^OC4R08 zw-h8^+|r9KeJZ&7D)1tv(BgQH4sZBDYP_sF0f;aQ=zsAb)+*IJTQB#ztgxR|zl8(+ z<5@Su(S=*0MfNOxqo<2KMLOoysc8Cs4ZN?q$oPOmn_I0#W=H(6GM&fASSwL1P-yvl zyDsy%_X|J=y#@TB*oL?LCT(fWDUyW4gx+G623@&unXVG1zKvfETt&tWsbj}<xR9$z z*PwSt=;%wfcP4u;!%^H23uHX>BKnIhA*YY8Y@hm;J$+>2N_7<@4gg3rBk|&juhr+4 zD~lvBp?9Ey?vEDT&%!@nHGGD13xLCu9*jbbl2cO~Ld+X|W%xb{;&Oq{_g<m_ob4yK zjM*=mGz*Y1wu@%h%f0^;iZ#?)BgavEt=f%Jn9K2UfEu2^6A0J^S}76u{ybwJ(J72l zC&Gt*$$@axJ{a6MKH$we%;3$n|JB<&q?&%y!7Cp8O25xRhnEQXk9e144iIg;c|vlN zk{$*yV^<shThB#@Yl91(f2BVh^QPktN9Y4?gySXbq|;cALjNo#030xIY*ul<0L9m~ z2~i#%zP@L^%Xy)&KkBW5J@SkWM@ygF+{J4}|8YJkaMR~5{!g;3`WZN)j~8o2ods}% zb~U*<J+<fjsLmP}o5^|kL(qkmD<=;t#J887^3z0h%pcyo@KhGe0c5fMFtADvkR(TZ z4*28m!+|M9$NhD^I_8hK{yLZn&@pO$q$zljl+ohg(*^N&Xnot>OH8M_(m-hFjSDM0 z+=V1Z%bK|K6YNa*N<=g~HRFOq%KbsBmBN*WU!I8xg;|ToWiKk+0<bytv(z@2p3~|^ z=Nm+Jdq)orZ8vsX!(F1zZQdd=`e4-G&vf!+VhiWl^ou(GKKV!*W4$>?X?#Nz0kyZb zf$&qqMdbQgUT$_8_s2w^2zro%m)AMLXl4NOb9u^#vg-^Nv-^+W4p>EHuOT2FH=kk6 zys1pBHNaZ;^aXkxoBZUUcaP8%g|h}#WbkaP9~HA;!V`UnD~7Uew#ZH$Ho&t(4+DSl zBi`6>KnkW9X|G6qd&KcTfNXIyYx&pUru6uQK3Op<rz#>GCL=vQA%8|j8^U(<_BD5& z4$h15?s-gqm1V`y#1oQ2;}wARsLt6Zn(57{Jz;4mw*eCV=;3*?gj#)<ee#IQ*s!(} z53}mg*i%0dDEY*685@&Sf`zX?sR`>csHMKUC;(lbSRT|P`b1VBPU;sa#D+?%p6<~J zrNgaW95B6iePVNPPEi?sxgOTFb9GhM;4#ymu~kMskY#Tnpb1!yj(4DwS=wt4Xe`XS zf<J3q{73hN!tW`U*iysm&nE^|B;UKp`Yw~{lK&~o=yx*B%A7YiS$`8cc1sa}W$fl) zYj&KH-F~n3aw@Hkxx3h3&+!xw>ztkal|J>3gX6+S{At*(-}5;+Jvljv3#FkZx<C+r z9%41*`pNF?{1uE7Gpu*=U0|F}LR6{TQ2H6`aVc0aV_`e&7NefHF7bDOxK|QPzTc#l z9ZgGLc-u8UDs6h}@C=CoQ_G#6o>Br|Fahc>hYbGA<mVg=qA7~Ojk6qOz5OS-FhSV! zM8Tt-kIqInD*5|L-Y0rLDJBoP4M<Y=#qrU>TW<c184*;uSIwrp{GjSB%Z3#IBsO`F z8Lk~u#HS&8O4YP8NjvTT$H76%#7FTF3o*fjh_D)UlM|TLWPNSkNYCd|>tBA0QwV;) z1+U#*#GGug%p&oFF>2`e%AY(728~`_Yhn>$vLoMP&1A(#+wP9xBGB=V==j(0^mqqp z%+`A)zbo{u0?A%aPqsb3)Hrg?eB$?kl{r8lZ!A(g0a2y?sg*7BM7}mJ?TH5-I|ED? z+W%I7u9uc<Q)bqmIp;X9diLAZ60e{~7mp_;oKb`Lq6mfI?F^Oio-AzKC(O&+E}aF9 z^=m_vu8Zu#E+CMI`{a6ou8hf0cP>iHzahHM-q31wj*XKC4;7Atu@ccdBwU<n3=n*h z`8Q7s5-t`9;O|+LguZM2n?k_HXWq9zKK1rJTh|i^cm0z5t`$5A0b)ilVxqkjj;vOw z$+M7uJw{(X$^Wlclri;DU1!md147$M(D$Nn1CS_%uh#(JAt4;M5%Cvk6y2|XU<}Z~ z@d3^<Y+C;8$UsR$iQ!9I*z@0h{wH^O8w+lno@~yxK2cJWPa<4_egXP=rNGCWz1KdD z;{GY_&1%#B1s&myG$OL#N()<(>gUCL&o@D=6=<GW|6L5x_XY}Ge1+Hk2i}5DKPS9( zZXRFY*!yQeul4`d`IFQK_x_~`X~<Q~7?^U<hDYdFeNN`wzui-`i$hMWSayaC#?ff{ zx5Ur~9EhEpo!7sGw@#M|Z-4)U1k;*y*AQX%)bCO(m@I`ajy><W4J&(=ga8wob3EbN zzhmuBS3!#8RWm@e-8mZs9tlSh3>UH&;_33j$_{3SXvbl&m*~&zk9jbI_P<YEm#;hF zKog7s9Mjc%KzrfuXGOBUwNfS3?B0Jd_~RRx!3TtkRsw0b;eWvg=wp%1i`&vqzaJol zFYE<Y-;?h;wNDKv5#@i&vm~w7=42d0UL@WhSpFZ-(@hcRg84rN4JXD5@(b?H{|k+- z!{NAc*DtW-{rzpUuZ*T=rTN+R39SRAKLP=T#(k?os}*zXkchE?l;COxONnOmBi=i% zA~b8X!2yfzy~tq$6AA=C{0}DmzlOZ6Fc2Z#1o2=qKg8ls<3E+}e_-QG0*Hv{{#Uf{ zcXT%m07o5^X%zsb?Y{LO4?sv8lS~XJY}^Cc9NWE4N8wKh(h4XsBPjfNu+YSSQ)t7o z7!Txg;R@bux#Fu>Fu)wZj6r5X<w!v&1%jR3>u}uXmp~S-Q<5K3fnbOLau}TPu5Xg) z7JzvHG7K&kO#juMsl3m4`vDzX2;}45DP6gq9Q;rF+Zp{-J_rlw!3i9RxpcHn>7Y>T z1bcW^`Uo@>9G(`05*PyTk_H@(CnpMT)2#P)lLrH;8UW0;ni(PQk&8GG&mbLa)DS_p z-tsvUf*rxvpOlg)BkZvp<3YE`_hBEnK^ubmz~r=ex|iV)Y?A_PUIVX!d!-bjc)E1p zRj^4ZiWkidHbF9Kuqh3*K(>KenaM`q1u@K@W-gin?{BjZ9ZyTj4)TA626TNa&g3QL zVkX4}H9AuPn&ks{)TA=&Z4h{1Mdb?AT^^_nki*I~iUsgI;KC}A6?`E13-7A~T^mK8 z*RDYDrOIFkqzdatX|QPeMXN+OA_6O2BkLVNMYb>7pilzd#sldmr;_*rK02IQ2TwVO zb0A5m#0J1s-%F=$_)D}2C8Ef}f>j+@DQay!ci1i^k9Y<Sag|jAn0SshA=fH#^w?CF z!Y85y8FmJXl*S$<J`oLUj&s_FQw5;ox`&8}^ZxY-UGLopM1U!l&90{e_SMxJgG7?4 zOqAS&SYU3F^J3QD^=G;m*s3M*l*Hap2W7(p)f!gID9MBI;w+1Ghr_|cCu}$n>VkV1 z^i8d&aPR=i-fR|s<0-AySimGr-#8{!7@vp?Tv`Y1LvxLaXQ9jLvM|sJL>Z^+0H8A% zg$oCl?v(Z`)ZCzmG*G;<ql4qa!$Ur1Sr^yBY3RWC`X!i<hc~V}Bn6b$peVWl6Fwa- zJ?Q{h;xWhvCsl5v(6TgtgFSTe+Yl&!eBA()4=GQ$=q3BMr_rtD#av+XC*fsj8m+ov zBG8CL1mNz;V-AyA{Yxh6;ooVxEFr?<`BtFB_aoRa*0)82A{7g?H}cRV=I+7R{&;dw z0Vkrzj0*cLZvs5Ik%Mt_C7^Yo;K>uUX`fA=d;T9k644?$AHIY@Bg3mQRB1sXs2nud zypd*C`-xejk-7dHxWLi2x9$1N3Ik6TjTfsA@I3NUqhcb;E{N$M2m8~hK#!`K85Uo- z|KQluoPD27c@7&ISM&iB?iLfsaLZ52*(>MXDZhCWgT$P(o^HT~rf%VZmFQIn7o>o1 z&mr}}4YM~PpG6@aWty^JP)RApg6EM0_2fc+SvI`hR|8B7bRt1@75|rY{O>zJveO_f zn1G7ja$*X8s{)feI?-U)Y$WpIPT3tl>}dE9m5d_24vN0Vo_OG)l=nLoDyiW0T0BVm zhXw^Nb|eY*c?uiuc)B_0h$;SPHh~YqUZC5~al)06FUHecphm1nW;tMsZtupAWc1C5 za3s==#G4kJvZo4Y61)@%00VU6B=ew5cyK61%MZoH_h2_aB+`(?#UBc4{0lBb<w2Lk zni&xs_YfaS@ip6r<%9}U5DAPe(9KCR4dmGsiR6Fd=vhzn`t%EUEKkM4v2<G>pljnq zL?9GJCEh~Ehr4kM<NyJ>={axEx?A`#Hh)t3q*0J-@Q^24vC6}3u%5SpZ)4(!*gK{W zgHu7E?y21g2^(M+Gc-EMwkd!^A9xWkQ~8Pi2L-&%L&VAE0m$AhC`7!cCG-XksL4Yl zvU038sGS-#EgUu{WGqyS1l9H71^S9jUU&+O81><~R>XZoM2+KU1r&6ENK&YKEDuAh z6(m#ujO|D{ps>WLlt>AnQ@#mr)2?vVO~VtSFl+kikN$3TOhXNtG6D?ZD7C&6e+rP` zt{lKCpx{8H1`=?<+vGUx?z{&z83cn=wF>cE69ah)LLz^~XEVM6S1oJ^*c`o1Im;%L zUX+##4>t%GBHm)<#3c`Qa|2nAFT@L??Nhvuv_K-`;@xFT<3ZWK0Kg^wCGRN!@9PJY zArko{zGD6*7`1FfusIUS%EbF%l8a|UM6jxzJ(0W*jwFsmipHPSUA2O2(sSU$=3tU2 zJ~>dKDq#Nm%xiS#8+1lk4GwREJRZ=$1qKZT1X|J)HbvtPwj*(%CEbNy*S*R6;$C(; zLm1`OU!ZT4mWs>-q3h=yACcXR*hV62RtsMtF))%jF?btC%?a^Z;Gc|U26inO6otW} zpFdB+hZtJ6GE%|00>hATazMp5j~W2LqieH3L@+*{<~l+2RV4Ra=4vxUL{QtH$l=Nm z+$thyN#m97MoNg2Ah|XkUKJrUA=Pu-pAVWqL^8()M?JQ&CxmBTB63H-ghU^fLt#TW zxK#wugt)_T9H;>Lxd|?$yW@@D3-Sm;CjTqom$v+JX2|76!1+0P!E&lP9BuR&;04<c z)@AG9*`#16D5U%AYWb8g#7UNi9JdM=nt(^FH)RQa<)_E1f<hB;8FnX)L9M0&KuxQL z^}YcRMF+>Lf<VW`W9_S3p$R<zSDOeN)p{>)UWOP&kGqMO!-1nJzva!E5u^Oy7gJGL zF~G|1IF7hLpb1HvPY7`h@gZxMYLZFdC_1h-ZaB)|+xjdO5@R<zv6I~MSnd@mbew#| zK^RI;LR3Nk9Vfgrgn|h{2|BK8A^I-4&hT+V>0c2m(6GQ!?n!-QQ2G$oW*T}p>OoRY zD;#yBhssnLiBWOOzQl^z6w~#7k4AHR%{dA|i!|o2kU(HUm&1llVP%)YsM9x)m>}1} zDHe>nTOpSZK1ALBg$E79DeOh_(seirnv`DzM=>PbxC`bF<5`p`sWvc}-~aX}>f;eU zbUbV$sUS;^2$g2-FYukmI2-^bez;RB02ABEop`GRaMZ)^g-OqeP)4{vF{UrjB3}=^ zg3y^zf;Gf*sL|imVR)*j*pq=A7H0z$n9x;dhcVXx?9r~O;qz_m2CrtM>E&{Ah<eDI zyR?Dee*KkU8pzZ$L0*3qnfO?3a$M@ZOB>noX>l*X9p4Sk0dcXOrx7Q`Vwb6#M8-}v zB78>RC{E>E909PtxM*7b#8#e`Th-eu@mv+gBKLHMiSGh}-woWT8=cq)QDc4TX&;*S zwH-^{{EH=M)6h26<y&X;RUt@7ftjNA>8llq;PueUq!W)eB%a6c$V0j-`{VORH-C0L zA?PI5NO_gRdgC?o6Z#F~OiR-@U4?V@0qDn*-fW|n1RqW}3PbIc?xj9_fxr{;d|CIz z(2J-4qbmU(A(t<n@sQHwlO3Xk+Xe3RK9Z@Q-zTe{DZ?TC6<~$OA=SkGT>uaFe@d6- zS!U>+q=#bD^~st)vdx_Ma!H}fb1S}%7_yG%iQi;H1Jg7Dh)|9LSH2$Zt$9P0$nt{X z5YT0tcRThx|D3cFCX$_<`aR<IXTs2yU4@45s~9HUJqMpv>}E7*N?nf1*{GZOHZ^y5 z(CDLk$vH$uQq0E+wcC34C6ZjGdpHpgbytF8K5<Wu%&_8?f7_vUttV0o++LeFgsmf6 z!x|E=V(nj%qvqWD%lD=B&b(wyY~-<ktKQqCCc^_MG7#aS7sQ;r*OkOhuTRdYCH{mE zQ-L6wyzfd@XzwZ9X~G(3(1s2&EO)`yL)k9~%5VEeoF>5JwEsIQS<9JKf$dZc97=e0 z%bTFm&Ms=w&+>gxdx{A3eaZSc5|R;GSJbC=)<;s$zu=YCpB~t$xx!$#FN=9e7mr=K zB<lInnNzD8t>}-w|KPjxAK4&|&7V0l8h_r<kS~h>uzx!N!G)x)u)#-Pi{Q9u1VykT zSBwR5KS#f&h?p#R2f1(0M%cD6(uGru3pS>(4N4ec+X%LC9c+BTHgpgOoO`z;&^F%_ zF5}pMSjJ`?+qfNxUKsn^_?B?_v!FcTYjDVuTd`>D*X!WH=x&gl>8d7R%-^kgj&qax z&pGZSiV0B$oJSlkvpPy*d{ea_Jfq0{+-KAklX`-hR2cj_D<4x$S$$1SdKyKZ^>D^@ zAmGPV0plyt%bT2>;Ps^>v81xApS&HEeyS^;v<Hb^c9Y<|#OVa*ogUW)N&f$#{#{o> zIKLVHKlwu%Kf#UQH>w(roHmxu-~pfhnN5O;rEfH{s<RV=k`4N@D!dHBoQ1KWt`MJR z%L`77&CR~C&zqT@vaIgZa)o}%;D$z;h!|;@@G$%Y4-0;;EwKC)oBHYsv#O;B{k3j= z_p!2tuQ~bPI%1%pri!pVHM8!3@O)XhfRAMpBQziyQ$oiU7n(w8+o|{ot<gLjg74P- zX<z(M>8|A^r!1T6b8#)!M=g2_w_L}D+-Dre+Gw;)_)3Ua;>3tUM8{+s);oJb4+cI3 zF+WOcRkGHJF&5cP`eZCpf=4CGGF_P*z!OxeHAIq8A0qE<_mxa4gjRL5;Co5VudkCO zZ+S2)2hDp6hBuA_i<~&Eb!Kiv3(pSq@9#W+%@;a9({Agrs_Z;A^l-)*oVHKE$UAj^ zRrc`~q%_qb<6+})*cWWS3AW*C^vhUvY0mZ7P)A5Iw`GWP{mfpP{;GqWbg~2!c>K(v z;!CF@bwsH(s}a!t?d#0pFRN;Mwjy6Ec+nh@Omxe*4y4LhBn@w8&2CKaQ?#fy>+PrP z2EX46jieB@O_q@JAYaLE`cL&=e`(+@_~4G^S`K<Aoi`>_3=%V4Hl(N!x5cd-{9AR( ze`w&|F(0zEqlE!Nn2)^Xu4GglVMOnssn~ee2sWobhD3I@B|8kf0{e~Pu~j)D`jX%$ z#4#*SDx7HV-mx^@sE#oaSu47KDJB#JzWP?GD%x;k&euh^H4r2qC}NKbol2ZXjlBkK zaD7WMDc@&ip^~=_el}y&8ZwaG%N%PWqN?$ohoK*;nq^RTkW?@_6FJfvQ7FD`wvZr5 zZx$WEiyX7oNqxO&g&l-tkHXClL&R28o%K_}Zc&;uty8f(2vn0XxC~Zmj*tH={EXO_ zvUa^VfHvd(lSx%x2A&I7EHH>`r^f|1rb?0{oFZzs{R7A{v>7BROhmjiuJAA{fv*HN zBL8o_8~i`NGtnDss>#FhqfLq6ORb8V9<tT4>JRj7$<k1pRtaqY3!Llb14zzMF*jzo zlWQOf_x*D;l$BiT(cLqY9x$5Y*TRW&0)gNua$}a+yK>PpW#5mbRMe2vFe<t`rv<GQ zXpN)W&wG)W&#xIy(@%4MvLcI#phRyz^)qv`T2!I+`O=#cSC#YQ=IRzF1`lNOLI||W z_9X~iX^dCaLs-6^?sk_R{Q5OdJhVK6^ey%}kdSqyPxZc>di?u^*V^!WDYuq4M2A+( ztG#)4t9GK4ZKk<tbo|x2%=wV}ybX@)Wsr{`bYy?l$>mHP;C#14>ua~RZe2AyH26FY zlN9|i?j0*l->akJXqLzu5r%;I_RWwefhuuB7j4h?Gi66H43N)u2(9~UP*r2QkuQ>X zJA9rxW+(I3{kfVY2tTgXx5;|tM<@NuLe(|q%ocp1QFsDG*+fwaCWoBFSzq5;V|?co zaa<WdHo%uGmR_4egHySuT6=jkLw<#Ho_2BBrE6X?nIniSZVwsH6+;kn`C1)f%*ACY zUQdq=#8n+D7-=L}m|69zDty(9d;*>aT_s1o%di8_t#Rw*m{u|2TmcWuD{^4w*l+l3 zEmCQX_!qIxo43nSKw|jh+wDfJEyH_NXT_aF&ZY8?iUQEVgCTw<alKlb;z9hHA%Zh7 zPFc}H6Ed8z7oc4!wXQwafLN<nmEGDZ`k-yVtulUWv2|{3uE{iQS4wPSSQkOv-~`X6 z&^R?X%!n%|$ZLsNfqZrY6?7x7CG~0M9pI2se%9Rc^~)i;CG=Rel%#f>T`7U0xbB-- zQP_|Guix=;__6lpSIUMD(nr@COtw49aehdEPDTWo=d)lS%6=NFa-Q?}WTD6*>*yfP z_tn6C(rG%48gKnaf>}XgJV)7s7LR9RhW~@;?gTOTVu&?ct`1<Gs<!!KfDb9Wyt7kA zTyuq5(8Q1orx27Zol0wuLZq28VoO#3W<RCY-phykKgndz>(ss;ZRuU3Yl_*u7?B&2 z!Dm6a3mGOzN`T%yMhDj~OvzxZ#T&F5TGna|mT<#=c6g!JpF#HIfaltTTt0-y56>*E z-&hL)fI_KeL1cVBe`?lMj9dEsrSzDz=9L|4HP7%ng9D%3r9b!8Kq~;?`Fl85s%;W6 zm&=i;W+3>gk9TtSJ&jCZ-@Y_aII2ww!>zWQtqQ2*Zg~Qp%cW&P|1!^Q@DX$KU8y(n z;CWxcV35-5Bqw1o>1*jz^3+GiBHSD-BCrqLFMG_wjBIZeO~ux$m^GG!&3oHC5EeeF z|JebGC<ba;7h+v%Gr*h&S(BA!L}Ip#i??2cMUFF=Dy$h7m#YA(@l8gx^HdHz6iqQJ z1`u$q{QNy3ms8<b_~_x{?$64rQ11GG-kR5)r6J$cpt(Mz4I({~H=3+AYkB6jr8d?K zV^W*f>-f#8$Z^0$H(mfQW-f^Jd~<Kjw<N#ED;|AUCwm2wY?t?&4o|m`;KPRu{!MXH zvTP$IE@{>(jWJp5>k$JZ=i+$<=Q?CKyf6L-zUBDeej)Rm8L1P)b0h8K|5z3S5O})! KxvX<aXaWFF<vkMs literal 0 HcmV?d00001 diff --git a/public/07-basic_statistics_files/figure-html/inc_visualization-1.png b/public/07-basic_statistics_files/figure-html/inc_visualization-1.png index 1a2440ffe6b9c03562d1a847f0bd173ed1be0dcd..f51d9d8ad227415eba0b327eb30d51e5bbb0ca9c 100644 GIT binary patch delta 17162 zcmb8Wc|27A`!{}_nK8ybcG+fZQ7WWD#Z1zkr6Sr;DpH{$vYjKcRH9V0F=-PmDx%0t zD{o2)5!oe?ExTFHeY|^rmhb($@5k?P&tK<p&h@%p+w*!}%j-2UH^|p+kaJVcpc;Q2 zy18%mg0Wvt?(5t)EpHs$8MUJ_{<n63CC_4AFJ#=>@Y;Be--0?$(wvV@<2e2{D00=_ zm60y4F5W?Jr4sA!JrKQb=kMOVd*wz0^q0EllwNuFO2qrJ%H=ImzzdyFEJK1nj@&V1 z7aE79Apx_%2}0)n7~Hm8+?ncN&qwVbpx|Chj_O;A<=6msF-eWuzBJ7Bf(l?mQ_+vg zk>Fq-6;e#m<G2}+N&+!V4l_bjL(iA0+sIPC*;@=4hJSJy;otj0##Efy-JNHzDPpFS z!L<?83NCzCoeycZ52}2!h2+FtJzb|s><{U@%Mg#yNAVrNq26{!bLhNISfA7ku-=~e ztW9-q)NmNSVkQ;SY)s|8wZfw7N`HJU%68wc17#+E)qI#ChF!LfT8I>@b9PHkM5l{x zAOYQZS2VHyPxx+t+cT@8$gPifFGwL(TZUS2TcBNgQCVy38vX3kWZ+#!SPBW|_3VwC z{b_b?vP|1Ll;*U)deJE#cQRP?-1v;dJaMIh<EP(^F~SP5l7vqTagflJKil2n9?C}= zX*^xA1J13n(eXbnj$BfL!yA+Gj#x>p7LcZ52g7@oMz~(s>xasK)7MSh;TBsMotVu} zC0qTM8c|cDT>VN=ndNzdWT9zy6V-?*+1l5F$3WT4s4Fz6<nN~?593BJw^5;7MYT>X z>xRE$VNnI`gD*sjVM80r8`pi2+iMUYgS?kC*(S6)iL7sMwJsRJll*pK-{ZMm6;u-A zg&MQr@Vy1Y+_g5483Z3iSGI@`?&4IM2fOU+8nXaX8+9_r4r(3iP)8>O%rE-KqM2&! zI}r<0Z{p}r6{_2riTx!9n1i=e$#&b$+}$dl5*}RPGY|6ak;@vMKX?)A>D2!A6Yw-_ zLmOk4nZ7lY05?Z9%ZG?`gKs`+IH#m)G`K{152b!_hVO3b?z4_OO+e+b9m*<8W$gBs z=mOhxM9%M9LL=(2X50NS|5u`Qlq&M7%Gmw7u;khg!(q8YY!c64=CADB)_u&a!^#L8 zzmD?Ww%?u<?RAxd)g!<1zpoTOMOn>9Erl#9Faa8DnP<)8)7@=tUnH(+@ILzC8~OYe zC?mHTM8vfitg;^RC53w%+jO79*EY{LJu8My+|p&DOWy)J0b|@)%>E{_{cO>)TpI>{ ze&s}_YL33ikr-6G+_-OMNVWqj(s;u_MyQt6jSFeYF+lHEHT_G~vgkRmccsA8nZwe_ zLpTO@l-Bi(6=ZlB{nKN|&Z<$mXTLVHXTA4cVaoF5??N(kjVl#fi;73GxN?^nE;lh# zHd_4HX)b)R#hx`Xf^Me(CmKxOg~@L@ln!qSS!c=Yi48knIoeR;T~)Hhcw1?v8u0sV zYi6bO&XK>KU-wUmVlN_}w%;~d^VdF3!??X>oAovoX!d<lu>UX0`-6bVEHMAPoC0^X zZ9Xj<@6SO%TWljeH+b9jvwK*ZfcXVwtRI%Cy!W+{q2Z$d6lCL$i2Tg764xeIGAxz6 z$@Cm}TButQc^l~d%G_6D8A_0FxavVlzc~5qjntFx<Y`zaq;0FQHO+e_H4$Y?g$+BM zsF;$&&D+8ZHR{^2ks#K!TyGx|wnOsv9zlz9_@=Mof=qe95GRFcA@qMpLA~qd`6B<> zC3k<3BR|oA2W3VndMg%PnlCsRIMB#EXBrlC0X#!-(M@!?%=Kwx%z9eu)qtg4%U`ou zO_UGj+^$6!a`jl3gp(>Ti-Jvag=lBz0~SN`*!?|*S=n#*QNd^GPQt7OE=)<J_$R&; zrPxXS@A5{<(vNT{iX~rlCx*af(Y{@h_R8_L;6KHZLr!GQY`-Dm3ayu6x^Q~DH{<AS zr%HT-uj`%g7bPWoVuB`?!p28Y#lsW+0muhGh`#%5`)o0F1r81K%zam>bn;hoG$sxj z;uHwj#5O}A^DgIif}%VWa8<g^E{0R+ivJSTr3!}Va#SplOoGB$95wjl>@@i%f##Xm z$1(%z;Y|~rBCeiF{PoMWi|A$IU_^nDE4?D|64~VbA05wc)JWM6%2Yl)0m+wpj!+;y zAoGh9C4MNqP6yaW{-SDzNUy$x79HC~26?ibdDH^PQV&dth(6-01GI-9_^3HtU9yB` zM=|ZNX4nGOrJyc;*o$5M?SrBQlr5J3w3NB}Gz`&`={v`Cls3kC<lCmTt`dXu`TT2P z?MmygH#?|HrLp4KbyKliR{+P_Ax|t8TaPkG&?@52p=tr#LP>L6n6nim*MMfNK(6ll zM!#`xvRKAA$2H=s206m5C8T)tsH9t_P^!{#3f&=e<oLClF-)~0i=~-8IK!_YbD3YJ zoO{G=ZP^WHomP`Pzp(JQ-q%tUudvVo+T8|wEO#%J=lT50GPwvU)GrT$suUY35kC87 zOe)vuR5a>=2$%L|Q43-aXZcn)2#LEZ&tOQj#_4<ZSb8R{qR=|XLHMd|>Y-bKGSj}N ztw9~T$M^JK{Wh*ohB5C{9<Bg`vYYg5Y!rBMYj~SSmuV-_=<mdPL?#FKb?-rPQ{7G0 zMsi;0#qQXHxH%pnd(vHWz)2YA3+E-E#tQ8`H}`W>$~!H=+RCxOF!i)s-b0G^W6G6T zV$z;j4I%>)`w}Eut+MY8*1-yF>*ok1f#V-}n#MVCn8N7$0w=*)xo4=4YvMmu<Z8`! zk$9zY!rY*>{dKoUD{^c_10Eqp(w*+>(h>H6K#IN+T93v^PwSW=&zAa*(n|8Sk&Q@n zNHde*EIRRYdmU7<8u9?BUgzy0>pnk)$(Di4XICU3Ch1cKl`h$xx|NKm{6wgJ+sIh< zbC!Xn8>w~K_0+MZ`V4Jw54{%7Kad?mr$QyU>dL1i!K+S@hg=<g`2LO1C#3^TtZzNO ztjx|k-!#}4L`zXYOS5UPc-$x9@1Kbm_v4GexmGyq<x2&Sle}y2u4iH38m1f!yl^Oq zSma_$Bf}3QUXvHT4318T5b*8om=A*?HeU;pu13y+i5#(C-7H&@aO0+k6GwcHl5_h! zNYJ13V`{9dqvB5YJXX0>boDygO^<Jk&bo(tND{$lT&hG`74E_kwoMJ*nJd%SKNR*O z@wYF;=i;6}$6||3Y)%hwm#=)Zou3L&FU%2ebyu32FMFMEU6Qnu-)qq>_q(@lepF1+ z>k7)8Zag|$e81mTSh{_j2BzyW*IGg6kNh!o0hA3J0rQE4e*<IPF3{JH*xZyglYL8w zavzW}lL`5QqIeJ0EC4z32^e&^{29NnEN4g%T~TBmIZzxCX#iuKaN&s;Is>QVI{3jp z4>7R@{DmLxOLA_&;}*ljZ%N8e*J@V$zcg&E!Ch=U7Va9i0#}tdX(a0e1dU~UV=}K$ z;=k;7L3oLRE5SQ9sG{c)=FPp0Y1@vG-0+8wP%C|NDr7}^w|`$wNz-923|r8HSA!Z0 zvP9`F560-yh0_DlZVrK8XE(iX7JY8`a6fw)XE8r@`Ft<Hb|GlhU&oE?uo<L{PgdO! zv1G7k;+UL#<~mXi?2W-q$XJ0kY?ONWZS4bfd^~v>3Y=ZX9i`y?XHO}ty?SsCbJoH# zKYthCJm#D9O{l?}E#68|lx4jAOHyey*L3u5OM`RCW-|DF)8<lOr3}(0(~$~1{!DN_ zir>;=kTJ{NU%So*yr>iZr^Q7XIIrz5=ZYl~;xKnUMTv~f5!?Bz*ssN802N<@Er#TE zA?v<qe`I_Qf?0P*H~-$O1wCWJP-`m8Pq;#blD<a%esO4;%upp<JkyTEUh@2(tx!z_ zjyweMBO}zvaOsUb8Mw+V%`8iZe;~Yzcy2vrQV?gpoIReJe+71aki~SUutoa8o;ni? zxATQd_LQSFI=h^V@<+xm$WSsDR!U>%vk}j|T{V1E55QlPE&;kE=)u<wC#_1jtx4MG zCCq-}cLds#t^qG?ALmpT#QH+oC96?U3k?<;W@!=wgc@A+i)fFU?wqBR-PEb0mZa`Q z;;n$q4w=m`5O94FHD`qRWLEJ&_op@J&qTB-#A)cRtC>U~;c*{-XC81#m&6%j;AH$X zTi~IZa0)o9V%o)Crp$~Qox}XfEwT+0D1h1{`hl-o*hVDmfECSL*MkK$!~j%j|1|O3 zJF!aYc&a@qXAApx``}*WSPG?Q!4e2iv9u_<v%9DB?%gAOZV`9URPBc&qk^UThUMYa zP2N@kdY#65ihjb40V`j!0GRb9b?2iN<sfBq_r1~tYcZc59p)3+)>G@Q)tQG0HiFMQ zG5I-S>0Dt;;~dk@r!kLawNi0^gl($6`>5t77JjYaL31q9FLwV~Dq@PxqRlAPf!43r zYqwJ2>7vL6^l^&u@m1G+CE$UA*iZanRliBUck-|SU4hJ$)>nhI^Q4yU?mC_+eIOsN zTTea_gG+ra#snx87zgb)q^hJV!fR1$U-RMnYw~}s^-LAho_}Q7C(SBf{NW|4qy#Qr z75uXhYkttIK_)F|<nE>UWSa!I&jrX^vUxs*U5ZwOi8f#DaT#2Hh5O`i-}t+69Z4D6 zYB`njI^9Ohd%Ia_V$!@b$lVo)7;ZuW$G>KgpmuOb$hxd)_rly-xH1kRw|Z`d_^s?G zh-ceYwx9IsxspZ`s62$Mb&!XwSjRM(iCOxj(FY^!<gNC<zAhniHXD&vCn49bvJpTp zS??AMCvV#H;@GRdK5bzyota2}p)Vt*;6DRa{w;Q?Ep0yGy#Ja-=Fyon$ozUe)6P!t z;M;pgf0?v$@_QQW{CouQ{OQa2KZ)Dos-^M4-}gqAXSkm%$fF-fMDbw~%->%yh!0cB z4xl=U=Uz2DA2*kQ@hj<FDdL#LC6^b<i87;W?o5$>)E)+KxfVBqey_bOc5FG?M1h4h z9pktL!hC@Tsgc6p)4^^J%?~w@0;k$zt8rKN9p*Ahljsgg>qp@X1bzw`ujs8g(nzP< zC-p|u0qSLKTzJ*J{2vldgj<`5+P(b@CSFbe>F;~|?Y$P%23y{^NP_yz#m+bb;jppI z&|NttFOP-aG9}SgML`j(fOU=tCH_l5ZHbK}FfwUOO)=6hQO-g9D*!p0BHzee5k1-d zIlaHhb*ni&sa;9+cvSFKKNa~9|1bTrUa}7iXs8<n9t#r<6koHbGF^=oLEUCB`!Vm! zbtzz`@Cf>IH`Rf`E2(Xj&Mj@HxBgpLUFNCfwg=0T5T~<ZPfNA~T%x>#_?{P&+sKv! z76T)L{@DWoD?i9#%dB>W_Rn<JV1Hd2<fjFh<ww3>;I$?x?`e<oaUuJl$G0psg_~>= z^wqCEgSYO`s;2SAJQm6*Z3#RAbZGT5DsW&T^ZZbqWMD5@bgqM?s#?EvQ{|aHuCKb$ z@7^vV^<pnAAGn?HxpnIf{znpMN!|L<?=;Unea?9+<39ZDF1D|-n*ki?X^7&nyn<AD zSNjGIm?7|Sv0|h)!T+6jvr0*TJ`hx*?(vvw4!W1df}f@V=6y|qB?nHwaVZo3FnuVq z_Fy|GObZwtYeXpX(z}1%fq;9sV!jsX<4o09`8&st^~wUp?>1lI$7g{xyGc~`Heo1Z zE#yscS%(azpxC<jtQ?kQcU66S*;k-~0S`ghbdvsJ{;dBg1GFbR&L+g~Y66m+tkHZd zXGx_BRUc7sX>PsWd$jJJnh_c9lahxcGr!`^CrKaizHQ0_GtFxAaHc0hR&(a-ZKDQA zc$|a00t+f!_i9wbsMw|0%i1K}>Jsc6q65$Ug$9j`uk%s0B5O?p33gbR7tj|!O+<Vk zP3ZY~Ia}n+7#?0n1hfbHSPW=4fXdQM4jF@}7w@|?yXg$KKWz~nc)In2pynd3QuTmG zA%}9Q7tJ68E|UJb9=Ujq&wH@j(#RwYUX1?hr|m3AyRLm&Dd0(@%}mIplIGNlt}pS9 zokD-+a?Hr|JqM#{yepcsQ^RfnWb+5a5WjEYTBn+a@><%Zw@N~^tIUGlVSn>k;LmvX z`DE0|WBBbl|BMvCwlS%GU51N0iy~u^{^FMI%TGq6Ev1sjC-0Oiu`e?u@L+)IAL1}P zd}AgwtH4`z&vbnXuf-hP5Jcqwim%P!X01nVPM#e^#lbWp5=>d#8VawG#Bn3PPl<tv z*<?(a-g+L&-jCfI3~cT9ss#dbYwVUe8=Xcr=*_>rJno4w;VVufdCIhy@RKuqB_lj2 zh7|VRr`|n<s-(_R?A)40GNf;xXiHQS1KuO*<)IEf-jZP5*@T8AUl!!Nd5*s=cwBj< znH^ckJ@4{LmX$p_`WhWBeNDgH;Z93tkk`&UDE9?zdnGqGHa3c2UWvJ{8F8dewJJeh zhH{DN7<-4B6p5+J_A5c#16uEGA!7DcHP~sFoHgU@Q^9BF>S}kA!CY^UM-C4Q_k)w0 znaU(LKR|$zA}`lJTpMHA;g8_*{-gnKYP_S_etx4mFKl#^^VC;s{${0f^|c4+k9YG| zsWh#{E}Aj3ZJ#_15RjU8NAg7e2p|r!1ur~a7#iBVO~6H?Cl29XH4d2<n>t9qt1f%- zC1)vTt}QH0R)8!d!{?z%`R`4ac22EsF@EJh1N2o_&|Z$87JJ^QWQ6VcIsFNlJ`0$Y z!?Rg2feAJ(;eFg_lgOQk9;+!7IqtC===qG+7+@Z7_onuIK{_APW)NvnA{nk*igAKZ zjO$7aOxixT%NRJ1;)P?3Lp!gkz@hb=A2NnZtphjnDoVE^AbNNV^wEcF7MR1$cvSv( zH|B@m%n|ou`|9Iru=K={C5kY(`~>$7U^MK9wLQMaS2)=3j__(iB8y+l82i|ApA62Q z7wqqCQ%hF=izxo6wvBNmU}Bx5;Ky*}p$AD_(~UMusp8FVRo|Thngkn`rC<0}tGHvo z(DE_Q>C4qkVI?(|Q#mv}R2ox1q1S0f@7(fiE&ZV$DJyVZP`?_4kEqPj*TpoUY|qPs zeR6xQKT(F50b}dt<KJ`zxBX7>Ry4A5yVYpF?`=1Tmy<`F7pE=`mWGmlHQPRyDNt8L zlVnumi%etr>z?IbMR$%+fa7RPW`@q@xy;xVR~jsT3uVq0Frsc!K}(TCM0^qIHXREk zFfz$@I4(q)cb3Qn)*>)s^m)SyowZjCi-bWjN)V{YIjX1_cB0AS)kFU}F+%5S?{Fr< z{QNv>a(S_2>uT6NhZTs21P$k*c-zs7kG}POm0Iq@@K7@(+^6V<!#W4jS`zOB>3LTk zY72WRlkMA{k~q7ve;V@`4=k?9!e48KFMUU5LAdJaUi6MU_)bMy1Cz>LN*XaMLpX`A z+-ELY=(7(ugWO}*O6}u|C`y)Lhd+n!J;s&<mRQFWYaa!>T;d@&UFuB&v5)Z<lGPQo zu4{4)B=DaJhjxyTVMIBRh(FxCQ|ZaKuVjmz|EsMM!3si=Vd<9cp&lv}3O4~w$UtDw zd=@k7>k<XA8^8%hOsiLz>kzr<%<9Hkk7^ox+i~4vlu=kWx$dq8w2nC<%n_6VypK0A z$O!+PZ~%8at{r9oBlBSIb05E&Ql!;d23vE7ln<@4{y4gPyIK>GG;P22`T4RI;eByv zi5k6D|5Ho1{TV)y8lvO&u5&*Ou8lLCdh%iLt@d?yXf0s%;WNOE6#rwg65-h_5Q8AO zWH1#y)JsqzL`^rf9}neEJ-NWWeH2=iFinyI+7o=up8SEt^G6$SbI7I8KMto56?1(< zw3i5wiBjhT_l*8V;2FPUih;TGg10Rw8NQv+i9>BrRd=;JWVZ8H#b5;U1WN3gjF|3x zV~Ft*`ec|E?I`yCX4fAw8`7*~&BLE`1kHz-TRQ2-#~u#hb(jRFGdAXUs<}-cEB`kt z30XK}k0LgPUa{po`Fx>|MMB~Ee#7Tsp*r>2q1$LGz?>s<NInlu#8Fre1{V4;z_CTV zJ~uy^-Dn8d6ux26%Z$kc^wGjI@#C!8=}}glctoZfla5PyEdwQAE566+M%(w|@Zg<S zhJjVR|5^EqVF7n0#?S7LN)p42HDrXh$QRAAvZ3YZh{MxuX#5@ovjvaP3By27{je(I zA%daH@f!<lLlx-Cq;6H`hg%O2RRPVr292x$K^5agN}tNEEfCJ>dA<d(ILuKn7A%iV zB$grMwXkYm%t*jL%|Zn&Xa(JAjTDJ<o;>gB!!Z6+^`s>i-HQ0-x1)tRj16UpBl}I! zIX=Lyox|}oxtjP#(BmY~pv?4jM$%pJkxx0%TAgQgf$lAT7^)1uR~-h*l{bbmHsi<s zOFF(ZynO>3KWusO!({ubd=>(SR$4>g8ml}_csX-u%{FdXEg4g9PiQu;(p!0ZiI!Ou z3Dal0J=d9sD(>EzadhwolAIXiaF6h(>g_rW+}-#-9G5-jSJE6fIJ<sNlM=_s<*GZC z=>;yEj)z1>WDQzhvxY1k?Mz{X5I>LOF-tAt$qOXD4TnBds6-xrOj(1(yk4H29%HW^ z#~7KQw@L&3IZFaQns2Izs1_x?iW$sxm&8g>prqBibA+vgPh~Tr5cZbCQzLggO<I4` zs)Fqbh>73<l5i;qb_RIrN?fxEFv`9!{RjcO+p7`Y@cMGRT93_|lq0MFRh$L8zaTL$ zqZ0H3r+C+W9+%U-r;}GZ?^|`TMCDhWNyYMoWqb+6kIfm|4DO|W+ik1{Gf;5qOX@f1 z<0g~KhG&+Ebw{rO{dLQ#Dn7K{nlV^Vol@cjyMdk0dY+nx+sg8+FH0iFw_}Tb>chEP z%<k`d2b-lQ8h@@K3ZhPNB_vp`0*f;)OTk(QQ63u+KH)himXmd@_R;JucY(Bs?j#1W zb71#sCv8$W9eZwqx{G1W<`P&|nr7OS!_V(FuZ%@ZCzi97LG3Xl>nuA)Gg=OkD~D#o zNcx&;xsz|A?yAgP8$0`e57iVN$2z>|_%*q83tn);<kQQ%h*G-IeVKL6lA|-{T)MDN z8jI0O>B~T{eRv1bYNARbLGgDY(ykYMFWSrv7x(}ZMI%Tfw-?DlrnFO=pdP<)MjRqd z4$ZO*H<W<``0pK!uUoY#s#tT)W+Yh(QAb)I^GZofRZ3yelXc{7t(V0HQlSb)BNlQ# z%gALXAQ4Q9!uEJ0-zA8CuH2I}I|%_f*oQ`{3@n49F<zMK<QU5pI&HC)0O2MVuAyS* z4M74MUq*pFQ0T(zIv8z5)&!oTJ!8`Pfjk^mru1-$V!(MvYjrqri1}No<+oPcM#Ti) z_t`Z8Rc}1{<+ql@ZvGOSB@1o+XKo<$n@Hf)7kOTVLD7TAVp+B0d)8CoBJ}LI)W#9G z2AzTAz5xMl32L~bB1Zv*W$NrZ{#r=!_W28YydqCE;5kf+(?GejxYp#32TG9DsGZnd zm2{n;?P4lKwe*sW@GELvj<wRi=X!XD>KqGYQ?c}!$LIM#*4E{n??$|Qz>*)VQEWj5 zlOg+?h%MBYl(^Em2YN_@Hrd;bNJr8*<0fSV_%jl?>_=(8SZ(oTm-g{hDQXg6y=v8c z(Qk*h(QMJ~%tCx%rRYUc&lk;T2B}*pbw<GV(1SNi%9RK1FqD+|2gYz$e=kxRhnZH& z=nU<sF?kw3B>nK}P{p|VRV^E}rv7a0DqAYEk+lb31BJ;t-|>8iKRdh|0e8)03Z_vR z#Y06m3KBn)#%>?;TK-7;y%mWa`RlyU5NWlIJ&)HB5hWIBepJuYVu!gHSX?DX30L`R zH0|@hY_UkwL(b;}IPEdb`gHX)-eGnl22TaLiCESC(&8z(`ceC&^zivXa`m6WzfIkm zU7ZG6`(}`x`ZBst--)v`f(em_1XehLW<3r!-y`lq+o<unB0(Sl-7;1_<E|NFUi#A5 z=hUD`!ag4!Snw3@Os0uJ3vP_iW8vNJAPTfIh<r_AEy5<;p{S=iQdxrB+U<WN0@Sug zSR7vC+Ah-=2kJKJV!(~D^UJ$!^u&Kd&BUc!<YkgO+Xu$f=GKq{N1M>@6VL97Z+X4) z3Az%PzfsnzQ>9Vt8FLU&G^ziXa-cK~d}vt$mun25y0#?F8NGA>ZH!*^kF@pgXbU3m zwJZ*l#-!MPHQVx6i3Vb^nG^Hsq~S2dNQ+e1U)X!p0^s0`y^H}diXJUlboh|zOBmb( z>@%Qji^7oGf=PUW#*-HEQzkNgo%-qEPJ_w9?02VVo-JK@P+u{AY>(fm`JCtKKKCzD z!HVQeL*96O>cl(rz<gw2fQIh$SYLqBU=3D2=174GGAQGz7SX+4W*{BP79Z`DmpW&S zRfX@=gjZYatit9^q7THrza8#z(J?@CSAcZGhesbSp3>{C&2v0VU+v|2lBgtHU!{Zf z)ZZ;oMVNJc!!3o!KGQ%s>EJ1_yFMP>&kED?E4TK@aQQ{Kk-wY2PHx4bZS&4>T&vy7 zmN65fX6eGg$>zPL{nun}3-zF;08KVM3Tf@94j{a1MQU$83{JU8g6Ct{i%PF#d>~<0 zFDv@#rv&fUfZ`PenF2pWm~E5YZM)muGa4X8%rqi2B9Az;doL<kBx$JtCym-Bq+e|~ zy6t%E!58m05wUv;nJrk+*vLH=eUy^(`Ej2=cs6qXtA*z(EZ_&D&8TSZvgQ1aHJLur zKKtMox|b+(9y2etxk$oFNCyx!*sYXYqvu0@2dkBRY0w&{^=bK5Fm-;)N!{ZK-D3sS z15G>YdL5QZ2adPwjf#LO3e%O;*d<r${k|!tG}_fMkOB=7K*a08K4D3(4?YsBDe*N{ zyS1m$gUtLUFm4e&=leh5*?<oz**L1N4jtbE(9s`LYAn)3uo<+ffT*RSwvSZk*&7lu zM-I$nv>D^KKesMf`#|)?@)(r_Wusa$@5mgY{GPB%8pL5|*2Ki7OyP$nN5_|Qsu;Zp z%nNnWKh(i;AIBx+nV}}#k3NV@en^YmV1K92pB=8G{3^h($Qmb-0<%Is8nUfGIqge3 z&|^;~d2}{<OwLOen~Jao-U_*s`oBHD3At>_>O9;MPdySlGebN^bx!r;hmVRLTS0_* zp^XX|3;huqrxG6Thlg`*nyHwLmc9D#ndi=kvk&%OUtGK4?ela2`e`G4?#sw-XtB-& z2$fzP+{ION)ILG!tU|d4Y~Qtu^Cq}QB1{Wjz9{(YwGCSP1oMu7>x(Wp-{_H-k4nIZ zT5|vUiao9yR<mV=+erG2+_$*+b|&ez1G$de+BQD$UM$l;wyyLQU_Q#u?Y%~_eWks5 z-NS?RTs@u})KDRM$4pNWL*S4kP%*51Om%7!jrCXI9Vi{6Vk5n8(wr1vSFVwT+Na-Z z?&JGOg%(7u;b_Q@@yH{vR<D6If?HBJ2vfM&Z030irgr^uws2aE({!pgW9Cq2Eff|# zvZh1~@3z7gDc>1aG<*}+d>fn;tu?>n(aoRhyPm&5uBX#-vyePvDmb4(qR>?aF#jhS zAN!6$-68iXk2QwxqE%6_BIA*=W~AzY8aP=|DI%>4P<B)Aa$`&73}p+1oA1RvKYhGY zF|S+Z`BwxUGdzMXt#eqPPS;+ql02BR`eQpDJ!45=!Dx=bkEPdER%oyrQ&-!;LLES2 z-l#d9*G<a~IzCo9aBGl9q&P|_mL?O5PZpIno{7V5HZ)|!gRd?2hC?@_D&3;(^+g5l zXCk_$G}(Ew%wiiAarSev^gDyTL_MTcjxVkQE|R-8;&L{c^Tc25fxMNU%^>?779YY< zBBdSKD^Vrzxf$R`hCpwJH^>sqd&oB9T&O>hWxIH>?Up)8BJWYF;XLlR-<gQVdm+nm zs7C7LNYNc`tDxblIxZ*2C$mMr&CX}u&&O{FTHXiOnxO9$?eDz}!{$=iQ|MxutBs7< z>>foDZ~ew=KfFGYup70<_==(o2l9`xxS^b>Dk!W<asDw`Z%AS<s~}^Q{5QhE?H5ER zmmJT$?%xs%sOj+X)FB-C(A=~LP99?gW-jXD33b8p7Bc8e!5l~*iQ^1WBbB|5zu!w% zz#?Ir)IoIxbn6eU2X-I#7|^rTKks{{x83Bxm(%hRQ6~h9i26h_XDfRWRRW4p76~?x zeU3t5QvM-umNLSVNEnE@0Mi#f$ig`KNDW>FC-=k}CK2a*p-5UPxhj~hoZ$P5YgnDW z@s1hx{GlSzNDuSbNbkm%5h+w2E2f(5y_U4VhYVQ<&~m(k#=NXVnL?9Em;~a~uS({O zb4M?bncCESeLX)agN;%989%Gq588ZD$Xty{6yY!S9U~`ugeS(`eTE7SicIE{JQbdY z@(d0iD_A@+t0sJ3Yv?uN;7}F6o-J$?dhDj~^aDq+b)CQcf(BP)O@8Jn`t|`$@%jw> zpoaQq#dyKXjKWiLPqXu^tQeH5{^O`+0#XyI_7h(L0^0Su9Oai;x>sjU4%*e;_M1Ct z8ds?W<)y|BHw9c8iVf(Dgy!o`y!syH@|SpoA%Zna1ndQ$^nnyITo|&y+O;RHnr6A5 zKcE5+^igw&JUuna=|aBFW5vWWgq2`v2HV$&_Ch#gw0GGD^5Y$mG#S>^iviYTJ{eTR zK+En;b+p|A`X#jbX1+@gg$iPFPhOknDW0J~;dT_ryq`*a9)M}3>-=J6P%07FJ`Y1$ z1Bp8ii>-PJuHq?v8CoP?F^s#_P2gM1J@lb`ZGJIgMAGMOUodC67<}+ztAmloFB8eV zFsDVtsA)cv5cbJQMgn_k#w5=EWX4p*%)tSH*VrK!#^E)s<#S(W^>rOAXYViZM>%@e zs1S?Pyhvwk+UvHSyb1>IkXH=b-0-jxH#G-oa#ol%>o(o#zrQTO8$Ff))nbizC=?%m zzD49W*dmT0)tduJWYZgbB6nB;zK7*VY}28P%hd8GSeHLO8&2!O!e`<LGi}1rp4=xG zKu3YT5p`H11%s8tD}XX&>!07Sw{Dg+d-VyZ(Yn5D6V*+fBAM};47EQ>EiHri8P*Wv zOk+36tB=GlV2@~OLzWHe-OIa;+$?hhBlUGcRYL1$CG<QID;`rCJbK|u)lXm_&13hy z>F*gX)+S?2NuCwfc^Q^RR~O(bA=wwj<;rfp_4oSCi&Sd8u*>1Tgy{my2)=3%p}PXH z_&|Q8oO+??hg+MRp#C@89PMuooKNO(_oXnX)+#Bcy!lXuFb})rjzy58FR_A8G=OJ? zu-T)$d?2Zy%1P#V(OBK&&MGgn&ZQi6NG7v8vpxIxR4SopRt-_^+JI{2rMC1aFV+pR zg)D{v?$5*)8?k=mY=l<jQ&07l<@kv91uZ6Xl1d^En!h=uY<a}T7nWKFJ)*ef$UtyI zKjVRatniM1Y>{d^*LU=bh+$JNeQ3K_rRHUVCscdgNcU=U4Q`eg<#k@X-h4JiHTsGg z5GC?NsNXf<(d~><+2s>quf{r)+x9=!_PGcPq5I~zNeu-Pehj4Kq9TU_a(atsgJTl& zvYw2&iqgBsE5`1e<JoPtG^3oS@V18Hwxdv`dO~D>nH$`h2U+DvU1~JoS(<hJz*8y0 zU$2p23SJ#dWqrqfA5S2`!d-MSycf+2B0A!;P|ow0`@SAw;Dg?sV{zO;<%1Gy^6)rK z&_|e(P-CI+kF49eanz@XeZJ4QPqu4-VKoan`I=H#*2XNgv8dM7PaC{7iRdgLtmY?i zFXnJ9u_s|zs)-jRUhinpDh9CMEB2M)!lu`&pA|eWdetO+?J*Hbq}3=Y2D$}t%i}Cp zVwS%z>_h(+-I0RJ-5n5**wlT%i~pd*KS}zI7_V_Q>81m1ZMcHBtzVsqiA3=ZoOKH+ zJjU*dUCCB}sjIn9@Qp@`Pp%WiQ5&A%1uz{J(1`=AhsGqHc((8fRQ-s#7O}8LURzi` zyFni-Cy!T)&=m_2-a$C<K*_(NTaoP9Ifvt#`D@s?`dJ<8^$?@1pRXYXPtazYpsnym zyq5GRP}Y<4j=x8muFX%I31Zk+mVdrF1O!J@1;M%n1@rz$?Iudt@uh#nX4`}0w2GfK zB<$L{iGKH(Rk0~@$gOwYCm{swef+}Cg7Hdk1>Cz!HofcM18ttSY%UXr?(^QgwpIc5 z1Re!M`LISb3L%9TTdtq{<x=Wry{6TfPZX#dS?c|d0AAs86eEOlXUrrUfx?1^M`K$i zQ(_!xSeqKKiDI5m@+_|SQGw(sN@~30;0@$`u>6%s7@)Hf#b!cr-m%<8@E$*uQ%gsr z=jC$o^+CTj&zA`-%R_JD{*EViK@hFEam=606EK1o*OGbLm278=VM(<6O0Zn8n&xLP zuoo}wsRZhd*=N>6h}^r$=2VmXVXm`8RNYrPbDpXNe&>E24Kx=A2QOB$v=iI!Mq6~V z5hw3JMLMCTmE$Go!)qRn(Sl?dr2X)rVYETQMGlT^h_B?Tt1Vb{+Cc)#PT)x3j922Z zq6~46gBjPVKp`heV8&cx9<MgX(i9@kn@c#CdT5$M2ywA1K%3bh#>tr;^VyzU;fufJ z4&VcAVYQ+Gd%gyQ6Vd$#v6JXgq&r)9%J+)c`MRG-Rf*2~wr;w$>?;j>aBF`(c2`yg zex1y%o2Pfx&9bK}DNSzy9GK}QVr7djs1w(`MVtf>pXKK1ZEq4ye^IOHH{CA_l{DD+ z0hkr57a)M~@vVjn!FF%9xFiB)63Y`x*WsxZZ+DR_M;mdpMFD7+##ZS7SnV_#3i*j2 ze&)6w?kJDrA7$bGl~;0X>s$nmS|@xu%*bbr?uG224GNq`i3ccy>aP}H!COoFxci9A zWR?4udeKbM1ngAjExF$@X43Nwl4ruR<5Fd%wPeqrKI@$4=Gd}>;{Ep+3L4@!wf%s8 z3+Y0`Dyn@Op{j4-f4mN>km?mca`qUV!3aO2D9bnttUC2$tcQdS&i>n5ss=+A>Z~Tc zVc?hg<~rUxNM`!sGnZ?O#4si3sKEPaL2+KCECfn3i%8MIF<FcYRLr8sOGVaX>h2d# zzqDrnDwwL<4A@mvRY4lL-~AD7g!o3TGGq&*bvVlT=mu{Z=+aETa-y4O4;bob2TvrB z=$Z4rJ<jl6*z*x$UrG&MMquVC9%NNXHgM&MWRfP0Nsf{*QyRODt+R=IG|;ervSaQm zl}UQ<rc`R{-GvgKjPEDF*cYW@cfROj5$9D&_s}fisl|?9bOXKRI%ylQYV2%iV5uzW zdOG(cvvMB<>>Bll?_-WOz9%HGD1`1C&d=~7d0K9R)n^lTe2v^7?HL@)%IV73Y;1}( zj3qf(P~5ig&4HBYk9OckigT)eUPahBN1ystjWX7QDPLpz!!Mpt+vorBT~hQy862gV zfvr}Z$a|qcFV7xo(tUsv$+*my)2Q~9_WVYUQ+|p{LBGktJr7^oKdMf#JbpBMHgRn^ z!k2{Iml1_X1t{-e^a92*VH(#?mR4JTd>}Neoh{9|E=-7fa9^ka%!0|y8sST~d;B$* zH71kK5%<FvW{ZJb-R(ucnugKfOqIZZh<jpSzqm*xV}r37HuHWl(JYrW@_l6U!@b6) z`F*SM3x#!eF3Rj|mC{1e4z?ff?U;k`vg@qWdF8cfWcmi4Co(t@Bs`jI`%Toli42js zVJmwx+D2bOePKO3S3G~hvE{D(j+aqd-<Arx7;V*5Y5@PCqrGZ8itt2}7Kgc<)+tXo zu>Alu&1xRCQKDi^9it+J$cQk#*kg>yqFC#wEndn80@lQnV0%K~hL8wTSTt`D)=xM} zt^UfNhuqD-ZPW9^NB3#M_UAMYhBTIVN`|u}A3T5b;W>Ey4ES+>1JGGB;GPrF$z23= zId$jEF$Z^PK3Tq>#d;D1a~y8~^ER$I@66!821CdN&+iD<`!Uv6OUlsVJ(*I10$j3I z77j(kpYXK!^sgyy+NLnE`Vc?mz)S0t4=-1xB)?Qc@2J2xk8*`1+oXcb_Z{wE#P7GL zr4w7H?kc-=2cs)ap6uDNi`?xX19S~!U^Lw`*yIgr%a0AMnqEaI(0=gYE$5+J@TJve z|4bGz&kR;=qoQ+`N&!AqLj<ki*YzMGqOig)0m(h|2njSalFE1>bQiefyg)@qKlWNs zI>tP%tItbjG`G#wk*kX<T7O;*G*mU%!N<9&od}!%LRj%de%UQzhYcr6ZoWz9NyBEN z>6N9zlexvhig!rl7GgY#WNhIjVlOu-!qLTIzaTek8EfubV#N~>-sSbvODYCSmb8`b z9q;e?fysUo?MG{jAV48)MFO!83yB-I=5?vn!~BMg@J(b)d>UNfq+&4L4`55IzIUt~ zn_@ipF3HeragCpbw>Xs8JUFJKR`GZ9O44G7=|xcl$z6Y7LUdbx@}I8%&(A0{{cj)I zIjJ1ttgU|f?Ee3!@&Bjo|C9V(8OSO`i;9n-v&y44pPHTz@H+0_7al8=IGjWCudt-@ z-o2$(UAqi}0evU=&02mZ=eCb$d~uEG8uQ3d2P_+Ju|^FGl6bDtWY6Jgl-Msh{!;ZR zs{sGn)+L%Ox^2C4+9*STBjmofk)Jp@Lk+I{y{(UbJ!2I=L4;@rLv-LMUbGjkKIt)` z=aF-tIaDd@z4^x`!{;QtM}9qc|Dj1oGE13&6UF0#9eCmbjcb~_AonV<*VUG=RL~sQ zcQoX5f&L%kYF%p>rv|-MuSa#x@9(ZiR3w0;E{+vxL>#G0CJ}?bv2rEMw0Z+>C(xt2 zD!+6bto9hD5x~5&0g{`<<U1@z@n^!iEMnaHxf3tJEvet+`_-nn-b-FUfMLOWagJa4 zrAV1}Vi|gnR(tXb^|8lCc;FV@pML4)i-{F-)IK@Z_aUvU6<T9FpJ~PNQ24|+yg!iX zWK4{au-G`>;H459!jw!MNDo)If5aVRTV4=BhecdQoW~o}hcx+LQA5*9dJrr({vj+P z#2L98*Q+}AH20WQf!D(&eBTh7mZdF$>pvI@5WNC5=ZUdjjr?`WuYZ2so@&v>lb=>X zn9F8qY&g{-_lV&)kN5p_O}e7>$YHJqdZcxF;)YZ(Hm35ZyU+2K6n>4?9+KxW=HTy) z#|&gOhZg_4gIwh2K8~(JawHzIUy=APkWDmlL08R~Sd%y4x#um^AOB{X%db#vuk&tM zTcK)>^~>UR7kS!hCjSwMc~hyKtrU~ihYKExXP~Ol_~-t&iK<gS4(&hjm7rlVc0u_c zGyZ>lo~9%JgJx{AeQcG)jX@;iw|!ijg#bGkVOAcyO;VGeOU3+QAcFNchq+;+!)X6x z(ZzGqTvnZRxT-y~D*ttWgxNp9Cm_B^P-Sp^RODDYz1J%b(!3&-gWgq@Z}^YIQ$d(u zD$(k*?lkslE+*S9d3MhyuD8_u4;@nWT-x-BG4a}8wBgK<4SxIXQYHaoXEZ7Vh+8!K z(Ur9&$t(YH1TQzOQGz#W1F!wL$`{DvGN)b>C^VdSe3Q6OD~=1*&i*s_L&PnpZ{I2s z*u@5&R{Iw~=Z9+r)wF*Tb$m*Ay9JeZEJquh6(%aL=)eDCO@z;@TELQTZXpsjK}5kX zrSd*5YEw(b3T=)zBV^Cz=OUs!uhR)*@kMyA^S5{Fg$6B2wphVGtT1t}7O;saT9<@5 zJiQUO|Jd9KsT0#gD+Oo%Vfjoo*zfXoyD3`UDqAwR$#&zvQNzm~N5kd{1|6i46Mwh* zv#*|wy6<104zC2SPy7eMxjQ84(C;-=L<0LW6vE0M6Kv{SGO0&%wsBtpqV=Z#0n^RZ z;}+6cq0|(zCj`#@2gDa1;l7kIN<gktJi+Q_;I_pKp57@IuA`jKcr%aEp&#(^AFcK$ z(0;Vq(uw&WjcG(tYd$Uh4Z(YAaPOWPG;X|)C+PyQD*rTEJ1X+f#r{HCcb)zB6mt#o zC(v|wu6A`U-FTWaw*nUMz@Lhl{2c}XJXa?u<d>ZAbv#n_tU<t91+LPvb>v+rVVoUf zWK#<=FZB(9*2D(6*0!mY=ZXIp{5oO=Q=9#U>biFY6zUpHb6A01TFDGj$=@_rbH?*I zh5b|k$Q+BaA`cJR0wc9jg3;6)l>8+h`o;EbQ}_e4m@tw@3x}~$8hfBjhQZ6gQK8)w zk5Ypix`2zGBN$mFeB(wE6fGZb5hfEHbFZpd;`JTbTj^(zT*>L>OBCZde2)(PYYQfg zl_*WJ7BcNL9pqcnQ+WI7gt^wPhF{M8!Q-<^7OR0)Metalb^KtuCWNT_jQau@MimfD z+L{y9L)_{J-Q0@L;v4p_r?cH9<?4!2`aS=JfZd7m+b{}j*VjUC|0+3SDx3SeKvX`7 zhM=$4ZXh<Nh6IVjMaE&~5WeOQ8Gai*Waus4)Xf-srUp&r!+5c9)t%GZB`f<{qPIdo z-n8GLg3?>)-kfYYu1+$A&2#?XV<zQhew{pq<nAKohE8LH^96WI4rY~*ro+I$`Nvbr zR~FXlU`FKli{Seof>fcz+^<u_3Q1#~o$UXB=J-r;EN!;hbTIb^Zi_gXc)@0Jgy8Z$ zIo`jaq(R>;<TePkKs$0cX>i|r!kM7|VovNFB;W3DVv0v)u4CUr(20Y2E6@LzJ|%dS z&8h{uZn@p#|L`>>uSF3-?19Sjefx)jvDHwu#O@2?iT`SB6CH6Euj2l}u?8K%oL4vv zge)f2BQ7(~5xVoC6&?DrD7z%#OwHf%3}C?vyRRX|eY$FJO|rc?B6PW0duoHtH2T|x z(@1ELW1o-RJg2Z@u8u254K9i89NJg=7MotU0ouEA-_A3hgC~mf@foYY*olHQXuTw8 z!ByBG+pHLplFelg)(*a2l5o6~CAfs-lFR^IWIVw#AVSBvg+>YAl-%Evii|6fd$z3_ zVf)sVwW_2>yFZ*B{~3aj23pKuvkn8^o(y<-Ng5j^BCGNqHTc#vIENF|O$2MPrpCmd z9xNq_R}kqxSN+ZRLvuG#if4u61cA87K<hrvHfL)P<V4jW_tpkbAjGj1Rn8HEIPGg` zwR6Wpt1L#7wjLs4ei>lbiIY9|OcT#su-y7@{~Kt$l<NG*Sk2~1B!wUs;zGsW<f0R@ zPz4f*l2`P97(phH%GL$beD>1+z-MJAjSZZjb*r~Yy_pV!b^-b~yV?Ck=QIe+ATp$M zIXh?Crj*H^#w2x^^!h1nO7>L#hk91BPb1HS9)k|1{ds{M=EQ3Jf%M+p;!)j?Ic*=- zQ{CeKF<JuGdhw84umAq)g>57vI63hT4mPgFJZ<O;CRk)otzGCJdR>DMcWRv{|9<u7 z%~~fpELMTOl9&(?G$$229l7!!n6QV4++)Nf3H0F|pQXV@+YeXWyZ7!w^zDaoRGwsv z1RH6k;ojtK$6_66<D3l|uk;@fAJp|#Mtb()#9>7Q`Lz0sy#)86#RmF>z&6{N(*lcc z9>?OLzcs5LC#>eWdU=>BJk6RSymr8%!^<%4RPWzka{Y*Pw=#pu)tor2cq2V~?6nWy zo9tFV%<!rjcpJ<R%W`5*az&$Q``Qk`eig&0EmnsVCcfSL)qHwbt5-zU;FZ6vW^b_? zLKjq-E1i|rBmxwd-nOmtdY=_N{)2*y{FBodAd;W@r-j0Txqo~7+=GYs{@aL1>T}0j zp7Okjp^&hY2+-hdA!xpF@dM!u$f;`@4j#{VvFwueBFz5ZulJ{>x1H(=eS{n!_^a{D z*}jk9Ruq_X1Fh9=C)K~M?dW59ygJ2y&25!G06z$VKiFF~<_-6D@PD+xH;O7xRBaK* z_}F5-J!hgyQG;jox8}#fYN$W;{&;PRh)?9UNAo9N5427$iQo^R?j%8V(YK%X67(B> zRy8+^4Svl0uwoTYFzoD2<TkzZ0{m&vZoVOk42JMM0=ff&7cLbnDyr}7?-^=&Z}22c zl-lNBAahD_%Z+@N;Hy?ceG#Oi!|iV5)-jI+Vm<EbHL@fy;S(0xPoJ0GDH_)NEN9~9 zv8Ksqmg6h+xkC#XB>^l6{m3Pi#2rOfA~>3!kR#GMG`3a&#cc(Oo9z9^@IlmYVzTWR zP8rMzj*CV^$NJj3KDMNZ3#NL}`AI6)SlbY*>Dlju&gG&|i40Ni;KYYp((<1ab656M zSv9iwi_)k^yHz#!5L3#LpPtfoqTm=1vUZZ!bU|QP|Cm3L)ZW!J%w4MOzHj{Jm7VzT z>kUt)T3f2p+OD^uliW9GSoM!=LwPyk3UNii^p)V!z6;}&duPv~*9u$Xd`DGR%^-4V zU&1vXBnluB5dY=u_n3aaPS(qSW5a7>XNZ>&7izeI8<9MrH~xFc)df>r^m(|bGCe2V z?zEnJOV*Q?G8-h6^krAJDfr>$M6mSKg^XRBvvkt-wzAzAidP+NFKx>xv(i)_MRQJ9 zp@RM&Cl|NtPL6z#-9e7qUv`zy6mvfGyzj#dZEIw|nTr}RpczEE)|d?#Y4p0#uKma0 z$4*T4pwSd5Q!ik`{^`IqyXTUsZJREf*gX8U|3THWIJ94<=M2I^_FG+$!5Z<aL|}Z- z1w0MC(UFr~k)nQo?j|kdlTYRhxlfHAtOz}{NKn`2Kl`?#*eq>)_e@etf@YNmE6l6X z#Zg!L_uv(lEE+L(zp#T9IXO3ywE4;GMJHz#D4S>yLsOq#EBntPeHdBY6xEqjFqq>n z+tzYla^MY@>;CE^uIn!|`-aKrga;Bint^)Ya-$U)^N`3%)guog6(*BkEX^F?Ir4m6 zi2L2f93Nt5_fLa$p*=qZJn!4;HD;_suKta{H4Pa^t~Fs&+X$0V`M;SeQDX6IY#(cR z`gcWv_jG#de@YbxiA6*k363W!I*rpCbAbw{-tKzz^v0=8TttO<ytY#HP9%8_@whl~ zo`aC;Mmz?o@3=Z8lS@4IE_iM^s^R&_ZO)f{frol5c)K3C-K*|yukptSEpB%{y}jG= jw?c>iyF!EiP2&`<^S0~0bkHRR5Wh7m9PA$0dLI8@xbkts delta 17134 zcmch;c{o(>|3CgbGh-}S#uBoQvb6{yyBSN-Vkx9WXcvmgmgF2#XrnBNWYQ)rq=cfG zqK!x)BH1EaNZDuR{Ek<z@B97vey{6yUBByh{jQ(Cj&q*(^S<xr{&?Q^WL+o6UMCkM zpGOzHJ9MRgN6^i2@dF7@PMH_7P9VoZO)pBAD0OU049A?l7ph6W)|phep1HV2d<4hO z406xEKg-Q~kXJi!TF%ocWbSX@`0Vc8-vy0&5|zp8QM(0g+8yg%Z4CSo*erokzjO>= z=KrAxdF+uefaL-p0)cx}qx}1@ThXp)o0TMdO&dQpek&c`@cDNaVLRyOA33}4M?gNG zA%8a@DD2r@HD<|@W9dlHVsL?QlAUl#-F=JCqlff5R&Hl!k2-p67<sf+0=Bv!*OKi+ zo!}*nlR01@&lk{UCm|feJ&)pLN!T(OgTPvCXt*bQPZ*Pj4ZL;%$lHMq+!sOCi*p+K z#DMc&SY3|$a#>K+2>V?nBpsL?+i-<!5`H}L%JIB`a)Jl<;`=hw>)`T8vp^Fw7Sz5> ziu%-s8iIIgXfnCZXeL{9j!AF_gf9yk0hQoQ+*xlSxb~>2G@{2>ugNU?>cE?W8-bJj z^vkWah9b*$+oDslB$@h@nuQrnz$u!^4TjF4RD^THkh^jRei#eP8GnN?V;t<%XFmD| zTKXs=n{Qy}L_Cks4jo*Ry#}G1k2{!OD#t3xb&4;4-|7D2>Yh=`H3H@yXI>RL4`~>@ zJLJ9cyZTmC3Do25>~d6j&x%zF&cU*coYevkOyf}pW1-{aE$w(Lyw!}(6oT4Wf1#w` zxb}-}RH%}bdn2D)KH^;Rv|6af4^9YRzcy60uKO&pS3O7!c`u}EK6^xloc=i9toRS^ ze9#B$iD&dyQ%Tun^7O5T?=}2pueE}lL!isgTp&2=$2xC7D7JUZ81$?Z$SgZ>cSf7E zask_4ZCu0HAj+zLp0Vx|&OS^gFSF<Bd#|KTRh>a{G~P6LN+w5!Rr@Z7$7jiJTb^D$ zCia3=dFDET$;JLj6Fb2=<17UQSM`Ft$nuXH{cxwvk=F)BA{SH%75t9OOIwhX97*bh zsS_}iThL)hJ2!nAz`CAM5~_tRM>P%<wXlU}btRd`N~Ver5+ES#YW90ZB_a%$(hIJ? zjHzcD_AVs>#SzD}&Sdt^W^T6x`i4hMX^KCWNzs4eJ0@{?zyN%OqwQ+xX63Q5PtUHY z+80{mNlw`UZ^<1-yjX7yd!t`|q{w~yBI{iFOOIA?>|~*<_%w=*Dv?2h6m_;2=^B%} z_<UM&45l0=spEIQ=W2R6V%aY3PW3Nb-DiH?v@1dfj_*#~l;c4oF-yES>fRkg10+aT zMe5V4(r3QL$t0R2W^i0a3@Ey{RG%hTH`!vP{#fpctp0K5m0}CJkDtG1;*5=qeY(%L z@{Mx4KzfP7uUeZT*gOyEU5>h4b|PWoB#!*Zs@<=Sl4w8qcH+=!e^Qt+El>ZpC07>w z)i?q0)|o2jJ}i9QxmIz;YJt#h15Wc}cgL(DYTohoO380u3So40X1Vt|O`n5g2w+`K zQ&|WOjiU)7PbWRaAZTe)40gPw>-3cg0|7vHa$gv>cf8Li=RS<qM3^+Xd!xsq)BXDz zj~D^xK2wA=vH#4{!z~|VpzCIr$7X&qiLS5w`0kC_7tHT{H`jCvQJ9wSUe<^vsxwTA zVkIF=Lw#*BQ$%ZHJ>S`otl>ZN^r};{fg!>X7pPys58NB+`bCg?OA;`|Mat<0dW)Cs zOI`c<Pl#n!!9HISG>2{a->H%|Xxg6+Sg~hne*d>gYxNzU2bLh520qUT?@bLH;!3Vi z!;ZW>lqn%bKK@kr^uDN?13)(U{a%{29GIaaK0br^+jrZKTQ&dQR2}N#exhC!Tqd2R zU48SIGNkY}6fYHym-#>GH!P9giOUHEP3XP^GBoh&D`hg4&`yHaBzlk}vMQv~ejJ@O zvBnm{*~vlnliMz}_y#|Z+mYo@pYMqcnX-V552GW;rUHYInuBoS@{v-*`MwSWb<Asp zR#)x9V-h442vDK{Cj>=aLHyI0Drv2SupHH?JFsk8h_1<$1nXVrelE5%oa)w85d}p- z3IuIu>O;;0)>vhNkk7duhCWaaZ<zW%!(K#<zh-(efSx1)E<(_E;VxhBxp>lpAKgdo z?-*xvC|>cNhtL}ve+Yp^x7~d?A=*#NKwH3iFN&E2DWXX$!j9}DgCyC`GTIPwP5U%w zsXrQQfaaAsiSGrIuuxjOkWb68t2V?CDL=u(2bfh~YZAoZyM^Qi2HoK?9Fk6=?U+!L z*?7v^$R@qRUI0>xW>b%K(bi#=u2c(AtZd1fnNx{N0edzOuE%s_-g+*9KoHN{iK+}J z+$1e?r)Q|kTm+N6Db)wnuBC1G{VStKB_bLwwaNFjMRfoAylt^h!kDfJqaP3XjgpEI zS|d4bQ@`}ETt3?TIGI{{-YWdh<p@)|<X9Uic*N(bK9C4prbTV=w|8h<PKq@$0IF+| zxL=<EaE9~9*zlh%qqwn}Mj7`cs-VQB_Wi!MYh{UsDC;!5A#qwAi>9U=fT4~UB$6k> z?Jzwnmk(&6tF7}qjB{g+rRO$s(r>F~u{+_#ZKIuq4%4~_1R6JXbuU7=NtB^`R&To{ zk(X0UOFT78Az}**-E2Cum{HdvS@Ga7X|wYYvJdT%4X~zF^AHzJ6kOgU**<Xyb5;l& zO&a>y|JhK__CuGn<HY>hTmey^+^u{K67w=7nXV2Q3{%65ZJI@SBET|ctfJJ}n8rAV z?uS+2Cp++~hpnqS^UTADX(Sz+B~!Z|ksDe4VPy1+++sX&zEC{4Xu|IENcos9Qy#&# zNv;6w8+XY<6qBuzjNEgH>O!G|-YzMoj>v)12M7y)OcVg3ueCG5#eBp$28<wn=Ab6f zp07p~nA)s%KQYSY8&vs{17eWZ%Uk^7g%lWzlt1y<g-1a6PxrB(Um9d=<iSLOsk@pn zHZOS)we-Y)7o8udQDBFmNAB*Mm2{1&DnihPhU_@JRqS_gfug0ZbKqmo>0*TC_bppW zX&Dl9JxO8by>GV8!rzgO>mKil_qn<X?SKvoxIj+V72-IxGk~dc+>;6iKWGh3T&UM2 z0@`Ej0MFimSYcj%kQ3p4Pq^!VGyco7P336hG;Mp2{m~sk5n|DQGH1_mXUfs_^v<iJ zD-h`!cHV7<r)pHor-Glv61|q@Q!$}giL`^p-;ew{$mJ@pINejlrVs|?-Gk59kLedy z2o-gw2~~T0$G5-DZ?C3E4GZf^7qD;%Kda4;_9LS~ZHs^-ny{n?lCqmx@Q*-Gybjp= zZ=R3a(<;HiVdh>-t|rR7$z$IqW4cq4I{f%{xm*Ba@<|vK&-jF=THl@Eo~V9i6g5&7 z5~TqXtVmvJThfPD&wl+jf4qr9>cKZ$LXD6mKk+-_@Vrbo=FhW!h8<v;(KZk+s55{s zxt1^Ta8?P+l#LTba-$(+BHNQr&!oh^_IF1(McmB0=!0~*6oh^wqBZ@#1#%B>YGwyq zTtEgxbYIs`TS~enz44e~9$pXf?T{PwVTs2vA?nvT`G^Htz{K0ddv($MKlk3vlgzE< z?@4|y53J3cz~Dl<h@?*j<~H&%m+wsW8K!pF#`az0EWs9Z;?>YmE{HWS^^7mxeT}1* zyJ?Wy*HKRb1H)z#D_mh%K>en|m!F#iV98zl)A>Y%c_n1EqyvpoR&+dpX}Ms<&MIK` z_!~jT>-)dffsdOs%}Xyz7$O5m%su1YEx+_3{!#66S>ZRwEWbRrV_g+p@Gt;af5MNI zkOL@sd5G@?O_n@-ccZ<o9sG>)#`sB;Tr!x(7VrLf2;ZP0m~>GgP@{MNT#ARATJ<4m z%~wMheG)hls0_h9s2319o+b=G`$BE4<VIe9&{aT~i(ue0FG7I~mn$8~;C(u9#9172 z{7^qg-}tS%r*pk@9dFOih0M*5$UgB1(}~(tIB>~-*;<P%bj2P&xsTc@3Ny2>sicqc z`>4#dji6_FWPryea-<ykfdY~UG~zd>-`uxzU5VUz66L<7*c5*4(gM9(ihVhz*fj;X zwa=*>HzqO1g_j8ar9WAO&OaqI<IU>bdfHcv^#)0BeCoYN8b1+XzJSAZd%tx3E8G zAM4Lc_5;h@@B#N=(sn}<HWW+?-E>t1R}}!4MNjg$-p*2T2(wt|6*)%Bku>PVEQ|^} z`FTnM^mfvl3(GMV3Vi9OuRjxcob0j)+`Q?zW2ogCPYTpmFcfHI0aBaCNf(Xdn&!P7 zRCl@k1;HM1O21iZxN1o_D*Lyh1M7<Zgx|>j@ncP9BG5DiK6l~sRuN8nhVPAlVYw|C zVtS6%7}o7Igi>|KbTaE1IJQxCzeXaD-uWG|_nfx~)VNwxY@>hZ;)yHgiI!^Y2oNcG zfo}uaW9sGkZyMUs+i7=;cVNeC{fGC!d&d0Ov)wcZ8maTsA%i(;9Mw{oyeP(A*-sb_ zYKnZq+gXj?U)$+F*3s3eOnC=ANb!^nfBQ#Z)q-X}JinhRB8<xw9z~{cQLy@Ax@!B@ za3>I*JyCqDqDZr`a8dO3ztqQ>cX{kvirVU2RVL$RHz}etB413%B@oZhWZikrIa&lz zH?a8~N`s%e`P17D<r<&Z*TT(8^=BJDm)PJ-%ZSoriCWtuJ2VDgEc1aUVh&;=+Eb_` zl&o`-1YdF0cKmv+bwg_Zu(26sw4U^c#C$Jcs0gxG=e;dL?pPxNxGo98-Yq6UO{er; za+F8{b9?GRp^euQERXGj29Z_JzmlGUN^1lC(W$ej(qX^6mCh!nW+L%THx9AlZd_w_ zS&}(I|B%%yxl*BHx#=E|Cs7b)gSp#!NlEY2!Rh{Ui0e^o0YYCNu^g6JDr%pGPY0N{ zOm7iDZ2RFV(4z>EusZyeRac(p2j}Ugb-&W6G53E>GIW7%5IPTMpw8HPsTFFA@7+I! z)<aNYuyM8pl-1rF*l4)2K`U!u-W88(1R91cZs1GvKQDW$IMb>Lxwll<{B|Me=LJ^K zI$TcyeebD`F^@t3BXfy<yy~w1)98hG{u$stXDkAGIlfpFd0tCnKAC_2A@>IbyWim| z9Uc*aTOfHT!hA2hLEn&5EiVI@`J<V2_41D6%C)&S0YWz_=kXK4h0a_G!Fzb|Ld@r` z@<{A`Cf1f+t-6K`LpRLac&Z4CiERRTb1M;W-aw%}At9l7V;UYnRJb)1$yWBN6VqLv zt`1vzC>YR+yJQ4oqQf>nkdq9T^Y@6;N6nk0D9cE&h5!0uLa*ux>hGUDOa92i{4G9% zbpk~2@ezfcI_Wf+>e^Fc&=_WNT^7NXp}XGM{Z3qcBI}Bd$F(<*`<ArLdpTh1NxQ)A zclq=>vdM_CN5quz9DT1Khjm4-ElfI5j1_Rz?1?yhe1D|p0;i*R{+_Nl)Ypyd8?(hi z4{k6?aKG8%3EttZTrb3#@NN{7*%EvNXwc!RZR|uxmM=%ul7P8%<;9;2Ik{#F*V^+x z*?EfEV}rdw2j<tRk*5itI<{_~{y+ldc{gW=U6y+dFH12c($lMVSc7)KT4-)4B1fZ@ z0|znF>h>=?NpKYn(d1eH^BrEU5!vYgL@;T5zFXA*7G53;dy)>=zARw|QP+;)^K=7` zsl!_%Z)T`eVd4TvDeD1}oU_}6E0}!76H1jyA2bC|Nyf#L1`7hoxc+#;k^OuH)^hZF zm))$h25jZEkCY?}fS1a*w}MQ=Rag8bt-k;j1q}{?dPwR^W*5Wb8Fu?2t$9#pQFcKB zgdTBNuE>L|1SBcR|J%|0rM0qDbwuh>*^6TyKOZd6ccFrU0DYEcSB{rU3S7lo*Uk4x z?(=IwX$2S}n#aAMLoSKcT>~wxie#+r;Q>)5nG<a5XpCIg@6CLN(V*=T|03Fx7_i`M zo65vR3ah+aAB2=!UxOjMkI?Jaq_giPPS4I)M+%;dWlO*>8vN*9eA{`7t>1B&$~ySU zyVyAsHCsIz5#?8nO8C0_#31GE<Z5}$8P-Mbc4a8b8t#Rhdk1Jpc*Tp|Vb^3}y{p7( zkrFRPwiIk8BeKizIyB3`kr%wVE**(4d}2-M2oX=MDBlR+&YO&Zrr{G4t2``z7Mq+% zBXK%vs2Stalb2<%V)0%3E19d<sOw<y4|V9E#zzlMCxlKvQ0?3`HgagI&Tb&rlD;43 zm#z><>a~A~D+8xt8sTtxH-xcE0?dch^yFBW@~6U5l+KCi@$UaEm%11;WJvKx0B+Sv zK<|i0283?`8Gp=ljS!Y^0GkoSNf=un_~ZKfTR_;`8ar#Z4<gQSHj1>yh0<oh&8^ve zyhJ*D9_8&<9oz1BZ6vdU=&AgfSpRd<28&d5S+V~Za30NLl!fL1VKPk1s7M@NiatD5 z_KbSx9eeG)SvGG|?eAN1NvgxTJ<E2)G29JKWYOUAx2tz}UP4KM<h7ayBtD~^FC|7l zPmCkju5$%1RpUsz73;V?+4G<4PcYl$=aJ|OnGe|L&ajSqTZp2)Lmqb6C8ZlIJTQIp z!L8fn0&BO{!a~ybnb{^_>Fr!LhNAwRQ(|1hhm56?U1!-8u2z{)S@r_D)vJ3wfj{8e zUG~mf*==V6U)f1L%Mh?hTZX^Q*(O}~iE39<cTY!&9o=+UwSY)=Of0$L$z+|m>9563 z+}S4M*F3qA%Dv&cu1G;_O{PfbLSZFy|MO}Z;38)AajSPq&+Qczf37~aM`MXC#?}nJ zXSSJOp0a9W0^(Ti6QpkhrqYiZF71=XOyuuWT>LqAn?KiPAw7I*+?;niGDez&6&%f4 zkgF(|RK0LF(9#XXA+}2f^P2zdjC$GclfemA?Tb-7e3;So+C&Gs(wUQrPT>)K_prFc zA`)=pj)J;slX?ca05;mqJNnr668fp}#7cVOMN|~7Ry@xVhN){Wy<LGx;qb2B!dDbU zO$FtHPj7fsS^0tqUB*2!xP3D8AKams<oAw21-Z^KHZjIlg!}ub#FfG8QO@<~<;IuE z=t!61t~C%#p=0#KwVwwP@`|FAO<%ZtzT)ctyuk#W$rM^7iYc7b`L0j<zM=Fo{o87a zOTXtpvp!6H7u)Dy2d0oz5z|_wT4iIu6olG6BFY3x?WP>tq@vHHp*|n~9d>mgDK~g| z$dEil_WV1nq!b%Hww`Ob@+*D#wLD=|pAPfSeUt{w>Ygap=Z5Xu6R(V_FjlP>*wBd! zsT)CGIw&L1S1~FXxCWGHv<yb&bvRGK!dwW%x9!6D44ItA;f340?Hv&28^q5@|KX-) zo(6XybUVO|USy@TFkJX7_FlDX1K5-3yQZ(rzPX-xo5zc*-tzkJ$i6_)YsVvZU7>;7 zY@*q+FT&cwAcu<dnckjH(mrx3K%{s+%-`<V4*a0<{$Owj&G;ZH;ed2JV{OOH&w)$Z z<RAk2&?U=qwiX8+nF+Ipxz_8Z6A`Rt@EVO>tjXehNzUpus332Isl~oc_!^=doa99S zQxq!^&^B4*rM+HaQF<}Mmx!=eq4L~E38+Io45{FgwcUo9anNr$YrS}wIFvP!)AvoS zPV_JaPER(8*@p`O_TdJ`iWqT_IZML41USKRHL(O3%~&7kfjTaNps<rF1F9t+)9dai zLdTdhLjQvjP;K8vCicN<c6}PY&-z@s6hzF2`t62I1Klusfy%kDJ$fskL2;LGwS#95 z0;c$2<Nh|*F#j7F8{y2X8TunGd8i%b(p7}g^rsb|>|<vFKfoaJp?$6#O!YX=qEtwO zE{k?kXufm{SXU7#c#VgsUm$^s@ZMV`tmWS5ld+}-akxTCa%6Vhj%wOsT(=CkW4Cz> zGOU9`SF@D}xJv)B#e1AY`X7U-iy?h4YjG4#H0z8{1@NbP;znPaC_~O=%R}=)h|2Wo zn^L#Cza60m4B8LIe(CA5?AAQ|#uefGIh5X+shppT(61<TnQG$-I65yK);?IH9d6!T z&%cw36Am?w6R7?%-YP@NN_~JX!zH24-F!n^J^95%T`RKyptFG{XFc6Cg-iR8v`aPB zC@^0{K6#=xFCZHr54Zn9VgJyI^7&!1@By0Fj*_A7+(R;L5h+G-mo>=r9-d&!7ssYc zfQ4eB<+{R$?F$!O8GfPM#jrmwU?mF&TYUR;l?$#QcIQ=RuA^ZE+ijN30~ylPry9mJ z@}e(U-((mYfW>93U39}7*`S6+*^WPWH5N$bT-aL3CBKp2eKc=gu9haikv7WD6o7D{ zsrS0591?GDCob<oG9iX#p2(#!+1DbPx=~!mk*T30gl!Zr2`YQ=v-L~(*XNbZZN@8= zhm5D=6TYGjY-&Xe72L*2BA;J=(T26A9WQ^~6v6-#HQ@5opIWPyn>VjkA<F1OvTA~0 zc~eP29P>$@y7A(Nl{2Iq=A7(aCkY7r%J^U*(kB>K-h4%Ox#zSr(Ciz?Oy|XMr^xhX zb*ue@a-|XA;%M>Fh}^bwcV4|DQFuF$Vo_J)%6iJ>Pq&r1zOZ{&mh_-Hurk8q$8^7- zEjZiuYG!tzS-9L#;e&ZDDNCFr$VvKGhHH!o`<wgJ)mjyBla|=P@0mfXaMb3iVkMG6 z87}+wEcQ4ybacgHB1AjXXzfUT(<x|aMKK{m?65P5^ZR{6Q2S&2x}MtC`*A3#BlH?b zefbhK`rHp#i5y@pGd(_aq(C;PRG`m1rzIOOwz&ZI-UQP#(Yp}qq-rA5SS$Jv0lQlc z2<P|uD!g8Y$(YuyML6tu8CcN`FFQDPQf9|HTnxXwr|lCa(w&|C%{Qm^aN8y6RIG^i zc2-#WgH^Vo#yzKlh3I@yOcZj*>_1$b@P3PYKPvs5^ru!GF1lLRRn&A8?H?^}OMbo! zb^|k&5s~&7w-M)*XNVv%p4iI%|Bzk(hb(F*utbgvz^P>rY-J<|DKM&euYcA)`ln`! zpj}}-Z6K%;<hhzG5fCNL1(H}_DJiHLjC)#$z;**+%y)&UUS{F5J6@|#A$n7e%=sW+ z2uW(zrNY{_AhP<GHU!t)=od_`jJ~Y1b^U_8f@=#n@K(Vr<kgq%qC$S)Ht(FQ{j=xQ zToe@3(ib-j7VKVqOCO}puTLXF#Vu~4Aja^d3&H3`vM~6}Uh=rF5;=qJ2D+*h`Dtzq z8B3?;21O3xYu^wpgmo74m7*?E;R$-QG1Rz3?u7vBOv@5Dtj1gfp0ZP$;d=~B28a4W z`NDML-PU2Gll&P(#}`UzEJ@fKk{_VUvOpZbC)r(XwIm#rDJTu70~)1Zmqgj!s!Mn& zi7rPnBtZvy?9RWWk)jJho6I>!T6syVS11U8VRZcaWXWoHyMdO=kCFiwt8rhDX^DPo z8(AHuv^GSYbm^{3jkPpdYVW(4oYXVI#Z4gguK9T?Gl^Q)zs(+WFAe3*{4((oI;Fn= zHj{GiuBfq|&L2=h=+*7h_#x2aXQP@-4Tv$soZ8Ju;ibFt8sAu)uEGcD6c>*@87Izj zmwSkS+kwQb!F^42FzV$+)F&h3;wiYJ;qTkMqGLMV`y$kihBK+yRkN7ozTo@h)Z26Y z1ZmL3h-`Qu6;!%19mugz5OO?lA&WpOoY~xi@AaqDFfTUUoBu-u1;cH&KDe;GUG4f- zHl5=DeO6|Ee=db-AEb<#OTQXNo5n_tyBYV&b7{<c@1XA^=sBQyq-2(5M{UsivhNYj zKB_9sp$J$r`1B^l+ffgD&KQ&(daavpWMUSn-!klH#X2d<Ohc>q$q=MwTZQ{0v_(I@ zkf6+jE(}fR6>>Ds{?fTmq|kcLW|u1xy@Yfaq5qRwlIeYRyU_cPru7KN=m*mW|G4M6 z*3Vm|1)WpV*d`$`5~DU|B>zIc?oAoRrJ(B?L=2@H<K)oeuGh7kZ(T)NGZNRa4XX_` znf6;>gWI&$lJ0&@NfCICdyr82)d;sO&-)8c>=oKLucG=qR~Y&POnoOkvL{^CMX^tp zLZZN>CqKaO3BEg7NC4XLr3md5ydDdoK$j{B^Alc+FfTEF@(1dpl!eJ1eSt@ggZx+S z!S6{ADg|0EfuEHE(UlcR@bq`wu(vHIchtaEFh=HOW&2P4t+`aRuQ%+vVDBxj-C~O4 z`~?X17UwDH926w&DWJgmG9QL>q0%lAOOrL`K`i7SzHZs?#)^%?8)o-WU?JY5!w9$b z5ydLDy@3))8PZ8XzvB;tePc!r*8qJR_DK!9d;XbU7?Gte?wA<&V(P^}zpk91v?zE} zVK+L@MU6tsUzLR?Cc^r9c6$Q;<@x0Y-%mnP{@o>I@i4LCwgAV=>qqJr*?Mf?3)8>I z5Z=nNY=r1uXUuR_RV4iuimsZPH@o*K*OrLrZfWR3*sKD+V`%Auuc~JdpE@zKT+PJI zN%xT0-g(_Xn^;)&<;Xkyh=z9HRbw<zWO1|($*1n%`2$ZZOk-3WXO}5P8&Yq@!%Nu+ z8B*@)tfyr{Q0kYBcJ|(oge6|BvPgWwH;JcsS5|Y1|MTa$n}t{VzZ<)xaysBIgJWv{ zGI-o`?97XjrHbpP?IBker|%d7y;pKyNSJw;L43_9f3pbqpoMTtZ1qSD(f7-cUap=T z=C254_S-f@6$`_BRd+YF6@dlTfW0H7o0Wgt1{~OX+*?sVNf=h86db2^YCl_MT~X-O z+hDC&_Z?_#-)FqRFyB=LOLVsJiQvVZ2lAYIBmUR1MF>0*5c1$lo-eGHGE89%tDkPc z(x@Dizi%ZeDYKLJPzL@e`)G}ZJqxj5mdC6lRN7!Ch5)x<QN)^gaH>k`PobzNZ0A3j zEpPql*OqW8`T@UnS%Cy(z;_3qZQLERXOCu#hL842D<fDaiMge(PkHON?gE`Oti?k| z;QHf$X@7`4gZ5N=d*BCTn+3rU4y&UDyqV{O9KL3ahQG>Q1bSpd;b796cA{O+JaB6A z%^1+yI(|jvFBOZ*`93gmE_ojvFwgdnJ{FM2Yaa}+gdm`uIz7qIs%p33ah3j%cn?*e zBS&zRR1?439nY3Ta{R6H4@{t6_G$YHEQw3{SZV*!PJY;@xVJqBU5qM(sRj<Fk?OZ9 z!AqB4{4<f$OWR+SGuioqP||08!EX5MU0g0662?@2;DsORzVonAY|qvS%TSM%f-K_` zv%B;mcWKko#~s^)r+*BN|5^cmI&<rjnl1!efZsZa8dv3-%}vR;uGxGnc=ku$SXjO` zU<b*cQm02M-(62av4ELkibKenI9WXGfy7?LuSKa|tt1HS3A;=#888xLedXueCyr29 ztyu6LFY#xmZAgXv?NanDd>uZcLwKRjfMJj&s6@@a_)3p3C}YS{!R|Us%G>_oeum2J zRjP5Vd}ZV{iM0~shx8EXsg9+VW81E{RVy$<rdw~@qIjY$D8Q$D=>s-vApUiZ=PtWy zts;KDaL4k!8)0a)YJ}GdDXUY^KKzgnlgyk6$#Eor%SRg{_vvkT6NPzKt|?pd(3l^5 zZEIGD`DU?2oaOjxm{*DXdN8>d8tf$Or*YOL!zZN&^R08WNXz`-=V=5|4=_6z8-y`* zy;;t+(Kzc5f;*~IXHk8MFNxDOKVr`a_<9g^NdTFIC#;3tpCoH~0%y;jcH~?N9lEq} z9v0`nMWEa|QyJ*9zd}+=zgK=oI%~gEr1;A|J(|LOTEyF)L>2GOzFqHol<Yezl_12@ zBoJtlFZuLFifgKq3x8^>h%V70MAsql-&m7u?r3-`agge^ZCYBA=_r)sE3>c#%aM7p zz9%uir`e$C$J{jz!b?ox(|jMj<@=2ZSlB+K8Ve0>wB#9dv~x7LZX1>9udYmH<%z|| z3$9heO!uZiP2y^iH!FeZ(QBtvKn|Cb__O%V<X9r&(nz(dB;TZ=93=zi>0=&8hTdf$ ztgcE|2}-?(Gx}os;Ugoy>hOdj#_imty=t33Za>ZLAIWRyr%OBDd*zSmP?<BRnb?(W zs;4p<wJ2Es4YLn#t_pzt-QQzcTt*hP_P#{-hXGr1hfUbVtRK6wg+M?@0?bCFn<|bx z`r~0Cxn5z0e;gHpdPeX9T-9Zy?EsmTK4~lHw@du1E(vp0fDfynPknSfaooc`0FP7H zD|<QkA~3m$1Z|*TP9)-J#EqXR2-os7v(mI){(8Chz5E5*=C}CAxHc2W6G*}B5hfP1 z1ZYQ~MjR#|t`x`o5aQ4bXe^=ztW;t?BBPw+%c#sz<r{gO?|2%3sX%WJ{E@CaYiBgk zp1j}rPQ5&{tw}fqe<R6kSS<7hrwf2#5hJ#Zxo<7W(3cFk%ZS>$TZld&LzzL7NSH9< zGAu`CO}5WeAvEI?k2j4UdGqW7d#^%&UDpAt&r&%KnDAY^eE(5$l6T~}IP}hQ?g75; z3X+f1)2A;q4j(l(n=);P+}{zAWeVTra5s1U&;R4|!nx1FMWGOzP<Ix8VkFitZWq<< z?D<O2{O)5@6IIHUz;V<h0cnVk@5fgGSLj;PUC9@|t4)l0Dh!N_Lk3eMj`V#+SdnF2 z%qkQ=15+wC`5ud6bUjrzJ5IB*)uGNDsTGA9-toi0TJb!gqHHKg0oiu|ZzFLW-?fWk zs@EedbEB9~swA#;+7rE4Eh?6Ik-Y%g?Z+crcvwKHs!c_r$|Nt@+Z=p0K%KSSS4#&w z@`Y*RkgeNpI{ARhs9vjutvS)~MX_oDJ-FhufiD2fy$fFQf3N9KB49sB9-Op@lT0mp z%c^Nc|HKzf)+U&`e)5%VH}Bl8O`Gz1#F&!w>7Jau3zmQ{5zm16#RqlKBl}E`p&R|p zHLtF6G*X9_7R(S_RyM23yay8j5GB8^nMqnl@>srLwT^M1D|IXS`#4#--w^afSy#uo z=_@LBDwvS4c4h5>$px0*l{oMJ*B2Y6zL*li84;HmpFOJ*%5Nq1Mr~TNF9OP<pL+2h z{Aw4(korx*B(mQ9Spqq%g1jRVBxc>O>;Y<3Io7L-FM+cQp|MmDq4!NWhme1AC)p8z z3N5~!MS$3zY2tQB__gBFmc31jMVSsKp+WkZwJUYAA4TLtCxYeu-lcTqDffd4*es#2 zt_q1o*eTG>;shbDHt|r<z?km9dSEflO(A$;Ny97EJqRa6MWD>HM>E(AlIH8UEPeQF z`slawM5|k%Ly38KJ$CIye>J)YP={1pdd2=<zUx(*6G>%v(p`6vM8%xE`Kz)7Vc;;w zk;pe^tE<|M+#6Ml8v4UDK!?8tuOPG7`;%3vZL-OFoE7kvN<ZvYFmarG;xZ%bWDEG* zo-Jpm7_b@NY$^ik+EUrI5+@FxQJX~?0SkbI_5%Lx#(L?~N1U%w0qx7|VwH0@<=3g) zktQ*Di>FaC(%>|0+MYrrp+etQsmG_gvNzo}fQXUS;+3{aA4vN`9mTL8KbD^Y|01Nr zsg+kTUQ>W`+kz(7ay{;UtHS%=?Tzo=(((Sm9VF<`!}DsKtzzqJ1~P5dEnhJ3({y@w zkTe-M8ws4W?H&)EmsJH03sC3gs{tz_*VPJUXfVaV><(|95#oazC?iAOQMBrccmYyb zNX)!}d)!pE)&Q@Ndq-XG!h9z~L<1>EYhk-s!XL+Ls%w5vPF#@%chioUembXpY3sNm z6ucV1gEo?d*g@NRoK0C}J92<oBwq>e==nNjFhlR~C49eiJRW+O$i^2Po~_W0T(!<d zss~RYW9ndsU^A<C0=A|7ra1T$qz8=S3y<Gyd%@*dY6)OvwGSbFugLrwE85Vz+KC1B z@CfZv2{9wb=Xr)e{8yEZ@j-cHXX5tZkAgts*_jjV=5f7^!yCgqN}i%qCy5#Zb({78 z`r%_HZt=S)@s{41W0M55XM8l8#*=2E>WojGU-@KY2|x5h&{inRU&tK5d`>%eIlR3; z)1whxJc!>mgeHl%0lpM<gq0|~bT<EFPI-70UdKE(fy;sgcY;j9HV=lZg7BOw#ymK_ ze)AUs_jZ2Ezn`;;lxq=$GJ3q-q~R-x)9dsr?W~nPtezl6EV^|(YS)s<nZRZ~`AZ0T z9egG}wBB}_hlSr(pr_R$qHf37XOWl3vp-Q-pf~&D{w6XEA9Oi^JAI${Ebx~~6e=YT z{U!6hEzCp+7Uo%7q2P#cd)wWh4?$y^EVtS9#DVI__9vHedu>Z@3t>j?pxG!aMi02x zaE$1bHNGk-eM15voIztzu&Y&U6_98eGk3dCp4WU|OZdtXTn2)s?Q1M$fjNaog9iL@ z<F7ITXqsrO8Z~Dpj|wAt#P!1Xr&G`3Xw!^CX*BqaezhVrB=10$mzo%fL+9y}43Una zniEBc4?l6+{Zm3dLD4*(T;9&&iw9Y@x3~u5=rI==a_;ugk7=kP^x`G;cZe)?i?(qw zQK|dh1o<uxn}XEH44&#;bF%y&w?n&0oMZa6lh32>XW>O_h01D9!LQ&$ztNV6bHKTF zIPCU`Xj`{}Q_()QPq}DzU%zUOTzBNio5Yss5aYME1B7VKa>n@WESGW6Gd`Kiy?e^~ z(VM;$$Q=;M7{%2hcl6;$A&8vxkr0%=!rMS{q2-DA*D+*rhy9miraSkQ6&Wi=0Dd4j z?(lR8z7mw~h*!7!&(Xad!&RPp^xz*;*a*iJARpCrc`U;8AdFy}F00H*0-F%nA$}~b zFNAi`5b;TnXuWM_2nCB?etUX0XlF<6AY<o59TZ&lnZ|vsSfy4S+6R=u$3E7w^lVVb zbp6~Hm%A1BOu=LkI2e(!E30#a0X*?0vpWcF#db^Lf*dncer=i83|ncrtTg8i+CGD) z0rPDNLj-}h;<gD*>+nkzuXd75?w9b<Q1IO@69oe&#h{>j&DpfsT;3gHvdhgg7vbEV z-HWhd+AXB4!fZM2NG34wSmEn2V@Zy5?0y(2IA6`qJwj#@;6!LS-P=O~YfPQIH&6@I zBBhc?Q4Y(Lk|IhGW(rD8AGvtD@d?7JZr{RCmlby?{|fZA<o99k<_&ToDdVTwH^!8b zmXg&%#HvZ*C?o%=0mkyXwWV$}qEXF(R2hh0{&`XB^Am)22~EBx_S80s65q}@Xw}fY z|A-9A<hOa8j-P71iEGIm|8aeCoE*>1-zAKySE9;}Y8C-BiDwg|$(qmO7K>pe+-(S} zis4Jzx?x%_gg91@fn+hWzVfjssjfpOv(v%m{k-C#A6w4N7+^a_UzY79fZ;+tSn@b# zERX`}%SdFFO*zm-Np+SkZyT@!Z3+JT@PvX@R+TdiH<55ZM^dxLQ8mu#s%)g=j*+mB zch5-_mM+0_YNes7uf1=>bDG74<2MhsJv_(E?af~pf5Z>2Z00F4OS#GUTX&Frd>~eV z=-Q-%e61{O+`Ypi&0B`toZ9&zZ|ZiVh$!m`_j-jGvS|}v6k~Q*w@=|p9wBB~2H@K` z@mVa7e?l1cvN_{^VpNyy{0U#K*=AStcOs2UZ#dM0ZmMC}v{INqqp2|PtIiW`PT#Z( zy1h*96>zsf5W0WggjvAp)T@;$kGovgc=88brD5o6M`AH}eB?b8hbbPZaAPX^we9y% z6}s{MOHioF4)1TNVk2<)a$phXO~rVs=h&`xJ-I)e9`@=Y=;&;DFLn%_96OOd&#Z*; znS^O(ZBO`+n<~#t-sHs>gJ#u%!x48p9?7I{ow&YrZpP{uz0sTJ;r)t3FL;O2z^8Fg zNzA9m?>!Q)?Nb2Z-0i%>Nj7tYWQZ#8Up>g~<h_9Al4f`+opMs5{f_MR7tzXJEx0oy z9lxp6py_;PN7OhT;qZHm50|q#_&yNe831jIy~eF%sMz-IalTYk$gxEkM^*WU#QaH* zUN70)aginfB~tx4qyLNgjxd;eX4U^JyH#4enwY%a1WJM>pEKk^QBIK==7(@<x8WXm z^8)yBpQyZv1HXGN#3XkRSjcL+h+1M^VzXq)Vf5(UZrFTvHNp(WO}{GrXXV6RhIhXn zSv~Qy^)6y%j>(NLhUNJDJZ0$O)5tFl=FFZz3JyI)f^R=jAHC2u=AE4ZE;O=F_fB%3 zlPGN3BnqE*|KC5O|4)eizoXHC5_XEKg^1<1)B9B>4@cFZGbcMsxlOkZ)mz`4t>EhK z{Hp>&Iy==m%DtqAhEu1UecSa^4KLv{4I~109x>>ft!UHSD2kmsBgQf}0{Z43&W#h4 z`FXE;*j7g1Bj`OK#B5g`Ub*34X2Ml3<NVojY`>z<?ZbO`F+QIBrEV2sV-<pB>ge}Q zeo%3O)V~57ZMtXyzU*RlfU>09>1y<N%*eX6_k`br&&fF%9ss@Sm#y9_#Yd~>BrOm3 z-c?fTvNE8cezA`r*0yx!@#7M1lNJ^HSIntI7KQ@iR5RP2-5nvD5%#v>I&jwb$ZD*_ zh8qBz)%D!YaGD(PUxyIiT!?RN%q=N|wf>{?ONokG2GNqVMUg>~-fGM7@jJ>e#V_fN z_F1MiH@<mZpUI)=WRz_w+J4b>9e@OT?oL2*0oxnBy%JdO+Io6<H`7%f|KmDjPzn6` zH9O8RY2B*ub+7ed<?=Zu6hffJr6X-ST$f3*@v^AZzH<{H;5&goyQKPkOmgb{4hZm? zv)BEr^rk+2{xQKY4;c22^4%(ZiV#npAZ*2}?@33Gq(>tKM~OXaX;-VDvlW7hbqqc~ zaql?WpUN@4%coi|h0Iw>o4(DzdV6vE;#(!oa8<yt_y*?vIiXEGRVTshrS`t>G&0sR zC)d|VM`!UZzv7AmWg3SFZ|w%~Ff*-$&2cIZB(8bdZa;X1kQU)^U)%a>w%dxNSEJ_? z79i;;!NF&KOM=z5#9~KwujHKSt^@t<yoIj=^Y9~t9>#&W#^+ZYQlQf2U1jx5qRHS5 z5S!e;Tby~I>S~nOoOTD0ju3LW!bIU=4s1R#?3I3_Je;L?Vj_-x7#D9~i9g%*cy4wf z`1(cCD$I<QJAckZ0kic%r)=6)chcpxqMH`x_o7;vBVNimF_{(Z737cam)cOC?JAqo zvLc+9`8y;>9*z%m&ZM@<uGF0k9SYgwZ6t9`**>1IZ++OjMIUOt<>7=#yI15f^v+I` zw#>n?*Fz>Y#EKITPSt57h(D$fIvhKD=9_X1Ip;bWr!pM2D^y91P;n*r?0E&v*m|jO zLE~d}I#yl3UW^5ny?b7He$ltM|4guw-X`W|NBT6P8hC)zvD$K<9&00I*DFE^gpuEq zhiyrULZRsNT8qeE_a8@oB=-%EI`0-9I{)iGp#^hvxHoj|Rt&A2hkEm;JAUW<@@^?_ z4!?=37;j4d&qSM(6aHU36Y1jDXD6z*nb_Mk*BdONQ|A<<0N8M1`H*hmC0mC!v6p`% zz3V*UP(7G^Y<zOKCoXOAwYlK3q2BsTrp*WCQ@3fm{u5t(Ur1PLJodux%=t%suE37> zw)!9B6-=xC<ulhXM-$n{_DwvFCoEl|Nc~2gllan>>$2e?xmr;rnZSg8b1zcJhHT zUH1MAm83bBU|XXW@YTCY|GM9HhecG*>p3ZQl&XtB&bi4>RrY)X!C^&e9ASpeqwZ@G zgqSP&v-%7F4M5#M4{rWieV$pS{@v8y5We@;ZrdOGZ-l2p<r=GB@kr1&!tYWk&wrZ< z8~p3Y01Y+Hv6Dn2jULsG>MT8Zm|#B+^x;HSC<mI8c5kQ4YtQ-ARu~P^5uAzN+9v+} zmbSMODZ5AkXzi-jj2%=?=${~+5doA%`<u8v{*^LOef!+c>zmgbw&3fFOHpebPXAYf z<NUypld4wnnyjFIM(u=x!ks7tY>O>zT9b~Nxct|KpDgX13B1xmrz12`ng5#2xhi9n z5?$4FSBNtr{Q5rzmnqZFKZUsO(=!Dsv*{nU5a6<4Hh(p?9t6oJ2?vrUW2y7WKF6wB z*>=on_0TzoJ0?rKM2WZlOWg3xmT1ykNFwf8EhY5ewu`t@&Q$-eQ>6LvP#NUEoLuuJ zaea!<|4N*g&Yf4dJq;svJ7<5g>n|-YPnc+!vj#tar;5Y6dqyO9Z{m@<(iSc|>z@Gf zH3IfZqd)IR5{_-?XNkoPD(VYh{9PYjLEpCf{A@K2!qa8g9s5E=j*|H={_HKFx^4K! z0EvHO;LBx@hw?jZcrqot<he*1Idx7@Vg_Yht2!HdE%kfCoaX8qo|x1F;mG4B_zwE; zbQ2Zs*IR2{i6++h0$-Yd6rlTG?9<SQ`eWWmDX`T+M6s(zCvgM#tVsys?n7w46FDj# zCglUc_fqg}fr0xeQis}?d+DV8tJZTAj#E!mSa$cb6G+`dsbmJ3#{#%O;Wz4#S*Q_U z$((I&mN44JY{VCU<(bjYmm`ZQHzG)fr0WzK0ESWO(^ZXRXcL?CF0)06=)pU!ckJn_ z+X`UUnDkegom<8Kls+rWoN=Cu{kN%5GTZI6QlY(%G2tnS9h^TM@wA3vWoVU^%aeAu zol8|D?E2pX&(fwci$%6u8f((c(oEV_!s*RR{*7|6k*>NAgf<a(Uv&Pf<rtFvhZZ!r z(&e~d!GDZFma--+Uk%7U<^P(NwJ3J~^gqG0K)|}Hm9R$Goc}lWDY`tvkG*l%`X81; z&LDmkC4>AY02d%g|KK=<buij|XS_B_xX-_Anat7%G7`Uy=%t*8&-A~RNOhwy2P2@O zdjx+=q?UhYq3!0eqfF(AGGhJ@*rfI^X$nz@Qn0OJobqKBofUx$J=k=OXe@kdDP@dn zwzw|(o3FpMu~7V~m>!t9i$EuOgV9;PhRBLRx~!1+CbG{SBR@;fH+sDDg|e=2DT%lR zw{;Q6;`GyKD^Ee`X#Y7M@sd27+W2<<i;i`rJ(B`EAb1Ijo8<);GYn(iAoo1Pjw*Xe zho2#W+i2V92|tqfObjvEd;#oxjGicVM2eezQ64g7JyYzKi{ztGxV1Np%FK@;YMLX+ zec~ix)225-ADZ_P`rP&5)1sGM#I6VD6TaF=-1(d(ctyBVu%{Yojk3Bzk9PjY#<<U{ zzpCu`hZj-Ixr;%^LDrn@ai2vKt6JN!?br@SAM`{M#p~f#2+IAK;MEr95sJFvcm5`0 z2u2BkX;L|>8~=CvF(bja4l@9Fe-mhd*fjAY2<A%YI0Scz@?$QpD2@?gnh&aJLh#;` ze)Yd$Vo{6|wA?=N`AGEC{|IB+!kFLhH!u}_`vmG0_ixseTnI*OwqGffekv>a2rQNS z%i4fMf`b#z781GUOSVsmV(tV8A<}rkf(>e5YVP7loHK6zmqqJ^MNrPfiZ_g+RF2ud zcAi8B=1yUUBMzZL@<gTcudS^)1$!Wcn~k6a;(yDAl^WT^W!gM$w#?sv-hDr7#xXF* z(&*p7UPho4-aJ1<?<M{PW~7}3YpVRd2G{)|VAJMkJ>vev*-3OI#;=_BvY=3*h`zpy z06q7tq3{Dk9q3nMkkv(^kLGMg>SAhRu7;ZQq#)Tx`Qiks8V8ynzlEpT3}$W>e^f*< zojg8u2V6Nv{MyA@lob!x@8V=d&eK=m(^E+_D}*VzpH&9&(}MQRjQ_q~dZ({;WTv}F z=qyc<lksYe&nBlU6f5IBEhpY2i1{>j9c10RQli+mz;DHGxt-+AMJf+^3a&m|`V75; zH=M4<@43(Ik3eCZCq(2p@VDkYaHbk<-3eDNsRSYqMq^bIi;cg?6(CnqOSr}Ny9s1o z5Ybl74Z>fUr}Xb2H>dpPb!flJ^W1!bSz0B*OnD1|v5VGSGE?}eb`Z1lwEV`e*C>0+ z;Lh`UK}Ca{y2jd{oL@$$tfdH@7UMVuk%t&)*wpW_ii)Ds5|$5<E6H=57gaOFu=2Od zHuHMe5{c~U^DEIQu`({JSQY=F!C^$cRj$o&$hjik^Ro?b^(s#{%6o=$2$ew4;)kXK zx7nwmQjl1T3&e?sc~n#|_6lZx-EPT8@0RWf)x{0DJx_K7E%bjp5trR|?QFSXM~`v- zc_RWorV=@<)vS=449)DRZe8V<uhtBsmu+V{Ykr#FIhWSIX7hE8=e-qj!&=dm*Skfr zYE<LzhKPorN?^YFugUyM#>d7#dvRkF%T}$O6~x$hQ1f)0T)WCjl#kYyb$GC61%LZ( zAj_-Z^~y_~)xF1ltefI`pL!Fxd{2D56G!2WZBGE+)yh(AzUCE_GKYW&^xXRS5OL#? z)0r}M^4Zd9=Yl<x)9i$rXP3|ji?aIR-(eN}A93Y-|GZ%5tgNtofp?(^{`GJ2lH)H8 zd2#ob5LW`iyC$m4QN;ho_k3yRscUO_jT`2qr7$P0H>oHIa)Q4H+k_d9W&4zTExWkm zb+oSEgKOU0%%~SUIh?C_#c+m=mPAg!P`T^0uthRIu;Js#?kvc{iqe-5a=_2dSyChT zXlY%I)TkF(IE!kV|N1fN{9Q@><P6(=bsr<@_YriJ@}cBN{=vB6=nBi-=iRj=)ovcV z*)mvvUAjQl^(3*^?1yvO7XfV-)hcK8C~<tfc%RFuoaOW-q&WM+$Px8V?j=Imcb7dL z&<zbcdESzHM0bO;=oIB%kK0N@e@A35;ZNKVENkfF($lj&acu5tcZ%J$gq;?4fheDg zW<>^1>sENXt=H1L5zal)FBGYDn2GYcvP?H+*_D0oY{FM^r(YF!CE!!9iV3cJ-IvKY zE??w2$J=PmHZpE-*Fay|Q}R32z|Il2X)Id2q)Zy;M+!6W<gW^DtGx$)u}NGW${$8^ z1<?}9)T`|G4`<ZJG>(<pGtg*fj-R{#bgMbb7d-j?G-9<zj?>BDbKhoBb@pwNiS(R4 zl2aH&^|q7T{DcsO&Oe26!GXCC|3E~a);W{=zw_U@MosIS6bNiXG<crqEXNNl6$9Bb ruXY}=N9Arm|K~Al_5Z(5xay0cpPQ~oG_o~-_*=8e$?k!TPt5-X7_?0$ diff --git a/public/07-basic_statistics_files/figure-html/incidence_visualization-1.png b/public/07-basic_statistics_files/figure-html/incidence_visualization-1.png new file mode 100644 index 0000000000000000000000000000000000000000..573c23b0e3e6d18f1b59f99d3f20f6d3aeab929c GIT binary patch literal 53684 zcmeFZc|29o*FV0_b<Oh>ks%Qw6d{F6DH)<NM5a<HG9;1=_h=$2Dnn(uWQtHIvwKTQ zROZZ)$eek0@A+MQKF{=hp5OC&J+IgAkKgz8dX96CyZ2h_eb!!kpS|~4d+mGI{ODm$ zHW4-e;5=e@@HhYy{VM~oFwp<CvDnc7knQFs76!7Kmv_75s%{)Ms;U91Ha4m@^lO4@ z0R1edXVKF(ssS6>HuP)4#w8%YCV>8>+$Mp3cAkx`y$Boue}w~7>9h^*0Got>jiWpu zAt4}ve(ek>FApfEUzeT&Jmr#zC-)}Us3!bHObAd-_$xqXO-QiWkVq(}|0R^uubm0y zO9`DzrCjRe0jlKzHsuNQlMY5dmNtl;o#mZN<x5LnwkUu3^5yHV>COb3&V+!@a{8Ij zS^k&aNk5k8T%Aix3;T^1P4yNR7njNdmdX>BI_YQm5}mw(LBB3xUe~bLVC-oUR`m}1 zR)PKK$1v=arHmTgaI9X2Hdg?|LN`80<j~AH07*D<P|xC8!bBx|r1W9$VH=fiobTQp z324mfEX=GCUzEIhA|UgWqQ~uvuD<M?<<BzPZ}j$my>Qah%9)JCm4r{nm6liTf4^<F zLa)1~eau7gB;M0DSaSTz_#dK4yt;c=(bma7%|a^lFBe;socW<8!!%w!%M|_+N$SX7 z%FQl3g-*}lbp0PQ#3GP!<mwKI#Pe~%6y~mUiOIrO#``XIt*9eT#l}?or2kv<KSF;^ z^%U_9ZMLS`uX!|?y7-Cgx<+xN{rUMb)NzkvW@VQUw{FP+N9|>|HK{HBt2;X+h%L0u zajWI~zc%O62D<wSb@UzYHjuFpg*K-aKkGA3Ptbm^g@#ICGs-;?*h_84mH1axIfkrx z10(s4>q^x6KC7wRrEL3g+v(-}odKJ3{AdePYGN@%{y~9?AYS!Q`Q0q*AgftqYN+e0 zwqRQ2+U)v3H#2e4aV6lXRO-pHHdRC=$ZzMJr1psES7e6A@yR<tJloCNR|LF1w#Sy= zBhOpX^j>%iLC?Y>6Ggd->g-(GXzN~*rYuey?Uv{XSso#G)Fl0_w`KoXVn}TnIIaG% zRn*RFAQP8~$yJa{4V@ASoks`<1P>FbH?o5khx_7I&*jZU=kIh^77t$U&K#c0BnOy_ zw}``fMENugR7&5rdA&)ha-=RxB#PpaPltz{nV%DQ$qyM*dDYFo!ikH@v5p>_pq?7^ znA`>^f7RQxAR1M|{`{XEEGvf;OPPT<{>@&Z&3ZiFcty5|+MT)lOQOG!?7zBXT`#-- zDYG4$P#S3nUYefHce9$Tk-*yfw3q7x3mh>&>|=!Drqu~$y8bidJTh(8Gbw!edTg`q z>bh0-?tO}u;}vW8kv`3-Dnky13SI?ngPs>X?sj8Svueg>AA`!1s~XKbXw{CxRo>jA zaYSsMaarR}zKpiY>b)=b>DB5sI(mMxN=V1@2JO)6<R%Ryh9y$Bvb=SL(Wrtng{SRK zoLMj~9!}e5Ure@klng$iJpX24EZ(Ee@k$mof=C;m7(3^G$nUYZ1Uu?kb@Eq)2w?7| zb7X36fVo-ntH6@+wQ2uq;z`e6FHVyBpY04d>F5&qRl?8akoDOY!v>0p)_1ug+R8i| zX8Uz9+CCO*vuoQd#lxtAtLtOx9*zf_pU)6OKJTctb}Tvcb9OfQJDD&~8Bz7RJ6b;e zX8xKk7Hqnk<U+My)Cga{SH;@t_&Q*Hq!$OZmdo`%b?wR-C~avWJ~U610fIJk_x-E; z!5=RVTPuH7trDGIz6P3&7I1Q8emv8ahNG>&$jfZkrR@n^Y^xsY*Ih4v<GCKc$9Tay zs~~gtv`e3|<xk3JO|=B=%u05yW0uU&a=mAAIK3qgQIy-u4_XdXd%saamd<DokIDrr zEY_AhNb;%7+xklDcIEwUp@%*>Kb5^M|M85=ydAhuv-;ImM3_vgn&0PlNPbt4U*#Q( zp@?%Fjk;7v@+@EB{wwnv#Uitoe25@vjRf$u7?tLDrCg~BHjq`R@@QqfM^1}d=?Z?R z>$dLoC?zLuaI^is;6NP2hTQ>*Mt{vU|2~(L@2TPe<mJUsMW*l%wo`)kmAVfis=Oeq zi7T5=VpEQ<(3D+4LgeG?Pc^0&w2tP_i28{#gc+8#O$&`Yv(r6WwR*;#a}_2-*F&0I z`uSS?+TA*n+leQ;9}t(><z@%IJ#T7Qjz^6vrXL1f*MR<r(0+%h?6UBi<lxcr`38)u zcQ#@RbjHo^cI;N3b-6Eb^qg`+!Ijy2`C_^{2)Ko?!GrPo+%i{tf%#j7JZF|+$HLKD z><;y*ISrnJg}T%wY-mbCzjiL4xFj2u8vCZs=VYFGph1EJ`Lhz^Cuf@>HyN75Z*?Xf zx^cI%imoRWU#w#1ZZ2kxdYq+N@K<5;j$|D@h{Wj=>B^48N5yzWN|48qe%qlAOMgMx zK<aw>`s$kQEu~bSUe<r=svlHs8O>nytBw7ys$Q(Xt~;iK_L(P7pIN!(C2AIW0rp!~ zgVSgc3vZ{3NA$QvFoR9Z=qtP2fZ^NRuYw8N3cNkf#^kTtNw5UaP0DgM(wxS=&NXmq zB;=vXpxO1+Kdzjvr%v5H8aUl2$3$4)epUtt&E+YXtr|v;>Ggb~D){HR@;Yx|uK?&D z|2?0-lNEZHr^)N`<=2lTwY>Sotb{nR3I)3}P)^*PczbFanosY+h_pE}_Lv7-A0@6# zadYbutj=jET9>yjej<*GH@lFjR4f5U=KEAKD<ePK>g?eRyhn<=TJZ<C?_InRV;VbJ zo})IH%+Z#@ElIuK%nM5I4#L*B`}S{CaTl=FnoF(LN^+F;%AGjP5jSHToV)woj;rjt zUQ+QvsDHd76c>HjIbIG(I^Z+9tRAfcgL#=<&5C5t_5g)XrNQD2!~EXU1D`N~)edZ# zJj5+fx;=kAM*@rVq!x!%-A4{e_qwhKg#}v5o^Cpj+K|<w8RQppCplkYz2tgr@rkCs z3$v=LbW5G#-#x_;=JrL>`gIT-4x&my@XXG!Z@%r7x!nDv{GFU=L-oX)h42}A{Z*uM zOMY{As9bdEYk}pN{GV}TUoP5=XZu4-U4i1Q4{)nPp1nND<f{>Gir?&2uaK`EU_2AE z{K{_9`!UA1FM-Aw$@sY<B;Rl6<^lcRf4imJSo-i{o#HaajK$Q73;QtzH`AXC*X0$R z_3GsP+Mi{)g9?`iu{BG2$3#u2Vzs&3aqD2;<Eb;v>C4~K^oIkf18Ca9^@4GSsW-j? zjmI2Mi9r21#kmyPyx&lp@kW!=*4Yg8LR&?BjXwxuJI}Y%_=bxc-TQg7R{CFDTh57M zT-z$K6rQaZT3yhVH?@4m3}5Xzc+>mX(DIf)|IpEDL&rA4r3vZTd+SHc`s{O3h6USk zY`^Bo_1K}u8{K`}bfj)Fb5z+rA|-F&H?n1MAp*QM?+EPu<FMclnSt(`A#l@ooUQD= zjqas1NE{`9^i^x0qBpdB6A8-hg$apXvHUB(*iUP7+Cs|S3!ToVWXE%d;`+qt!$0k- zNW5aY1Z_q+T)wdS%$r@sak4S;p8a*lyy|{@Os6TC75e0~IZDpPB!`!N*)!i)x6!$W z%W4PtrPJ#?*<tLC1GXYUeNH|$F+6Wdk$L~iY-$rw#6LJ@s8$7E+&(>Q9QOD{!}a`C zll~J`Z#f`I1S2L}F&J3q*I#+Ux<#U|hnwQ@cUGfBMY)TNb-P?n$6akMnsdkf|0{nd z1Eso%_nshX?ATFs;?gSdQhlHfqLO5a2zO^-pWd>f@7&oa9qLrwx2C}1aRNTR9mQU| z<D9(WaVl?3u}F7*xY;d$zILaJ#)EKA2HbOR!JNDClzw$ar%UlPiS7vi)Yz`S$oZ=x zv|t(+{}1vrP$475E<155RARu!jh-Sf$L{s`ydXM?br;cZm&*xrqFz_NOK*s~(8c2g z=`v7!@euNaMn1N24-sSo<h=U^h}#Cp=D#4%&-2qkPQBRx5!?WA{w}uxa()AZ^Dl_& z_6-o54UlJlLC)oFfSmfP32bOmc%FAdlfNKh8z3jX|1HS54G_k^AZ|<>Ag4D#)WIp3 z!Q*omqthxDyJ1jOAkAazxSmI&8@Tlwxb6sLovA0vorjJqT0mFMl$kJztuU5sJ+UE{ zv0=;>L}fC=)Dt;cer^MHJ1`aR0O#&`tb_gnQu5!|&sRLEOJj1_PhF<w2hU8V=UwU2 z`?o@TWkVZ+_mM&4-`Vdapvu36`nP}mYaZ8)l5K|RHoDrWHXACbZ>Xe->o3ICKCjSi za`WE|ONZ+VX4sHs`VZ1of?luL6R+O;ck&GVKbe=4>70vS<muH=ywMcm#Xy%PNTJ^; z;pxVmwr||2kj}Y8e&&dFs}_O@)|a-?(m3JT^7&xIqhVshkP-i=AeG6hU!|bMqy7J@ z*7`p(^#ANZ_+MyxegFHO;eQSCzXtj5$BzGPA^$hG5EiEOQzwAw6@7&JI)<^L-D*G+ zRblL3{5zVg5pn(MoPRRm-lb_xs&2u%UOc6dKDg0m8u#ea3TM$Cv%e%n<u9prF%4S^ z<nv;q<aR%%=^n)*-ON^rF7p_k@^$n6PCTXL?J^PPWOr&^7g2e&bBw5af>7O+N{duw zRC`HJYMdba>SBY_0v!Tq_gg{w_)|?!7GkpCL4n9s#;9)W1bBR7!|EroQ7pdjJ?6ck zVHpSES>fp%DYuy%gd%{t6^PRsY}Z|ZJ_MP5uf}X5964b-<b95&*<KNR!DW6OGQjTf z4(glV^2fzU^Yqcn@!zNDv=F8CT;FADRp#|A96qHUxz*%nG$I#MnO*VspN?O3&|xRi zgO1njm#6fPFdV0YMTBUb`Q-4)c^bP1N%#Meu>YHgG?@HxjFE{lEBFMi>1=uva9B_n za_A*Wy8lnghSi79L`k8OeW)b%5T~^P7^)WzSC_F}s>UX}s6;WQ9k`C4Sos&lT{U=$ zuQ0e)dgc!$73^gjT;+r}KZ@ID4Lj$t1<`*H9?%IRn>(~<vh_bM<=zI=r%nLPdF8uq z7F*eA%Z|Wk^eFZp)2!&Y3ZaWLzL`*8d<T!(wbKRunURCVGtehN|3d$pWJQf_er}R$ zSrV0399Oa2!`Q#uYK5HA_RZqt_tV*~tJr@?;`;TiKKQ3!)gU6m3&~J&T!Gq`)^#>0 zZPg6yUc}HmkGmJ>9H%DlgvExtRUTI!2hYVVR&ZKw&BXYj{enlcC#^ZDI7NPNo?h7^ zUrkrPI(E&eTii~d>FUDEM9KW5m(_K`)^3;Em_hQf#+?A617WOa&fAi)n@hS6OFcK* z-<5)YOXWg;TQ>ExM>L%NDz0<om&+WRBg4EP@7S@b!`6!6RlO5^b)Gx9bf(b%D{a_~ zSNZHJCbjAN#7|X?VD<b?EO6(*Z97pQHDWScngb_#$Z>1ItYwb3kad}lmBIciLd6UY zldE`mZ_iK>xH8MbZ6AX9_bR`KcUX#VLp`}fY}(a&662Q8>B;`j1SZso7Ql=Ihv1i} zvy;D!16ePDm((}QpKbOm+c+F&6!_t!Wgjb<fv~iiO!FUK#}+5MBUbwGAUj|u=+Jvx zWx!??t9H%7;*xvEiL1kp=det(WToFken<$rVtLJ1=zW+K<|qQbb7XCnsCu0vLuJ49 z`AnmB1VrxvbSpX>mvFFId9VxLe@?~h#_w+`HJImVDznv!BdgbDtQ(>5P?n@>k4RJX z^S)vdH~jhL7ctqBScoOf8fW(ry9z4!=}H!Fz9ZzQafEUs&=xy&2AZDcoZJ-t^wCV6 zUuMpcZ1=}Ac$J?YhNU5R<$c`kJ*x-ju<T{eho#oTYeZ#euG4#ex1kY}U>l#nEN67L zUdjKqggHQ3%*|W;$@~y&wKo&ngd^Bu9WKjZQmJ2(I(aTM5p6$l?s?)dY>Nj6Tso$l z%URTqMM~(-(ufKjr8LjRzYP18F(MdYx<#v4Z@FIurptOY4-=hF{(kuY=Om511!B*a zlCbfpM&^%tJaellm${po*D|b@cJ)D6`(|>6DFVJWy&k`{@J^;w{@G+b!XozRP2;CX z1>^!|ygIejtM+TnxCza(iD>khbI*QN>{FVV`*w_cioG(Rm=9efr(xo_&>p*rZ-dw- zYG!ngc{LN3%mHEAG!lc8Y46}RM=G~d=!rveB`%)4-3R`(EVY%Ny3j^+m5zMD)Lm(3 z4&IpRfW$t0Qg}rs6{7`3(|Yy`eE(i)fF-kudnf<Ej6c$NZ5NV7K09ase7cg%i*;;$ zm9=k@n7KUVI%j_J)Y2v@QT|$O&~;3C^V+_DLf_$}=?a0vn_p73k7&yHl2A=;`2lS? zvKohYW29BnM3b~(*ql(aG&b1frGcPBM=FA;*H^GJyAdlk&2*yNI!2><Cp2O_oXhw~ zJxl?77Ra7)#h-Oc)q70A$)8V`I^Qyj)ttq>6!0>_%$NJ#tguqKn^3c9;dwHSV2!O^ z^^aeF>{hMq2_>1Yzs&{R9yI!n?O`g3>`cr`=aqOA-1R25q?t=&BLD4A{W{SwYhLow z>cw_>_&N2{*JC?WEDcu?C4z}l_ZTUMA5XWe_SIt!E8RX44E?Vc$#m&8EVIW1SUMA< zNAKPbiiJ%-GZ)BlSmkW-s16gwev(Kn8poq86PD}t=lg^K4+oD(TRdtvEBqcS)Gf24 z$a1BLGwo7F<W>%NW#97|$McLDLnB)~B8bD$$v*3=JWwWm`>nh#6JehGPbS87a#m0} zrn}>aBsZOj8%KysYqT2r1YxwLUAGW;8?jFea?}M&6UUz5;E>Fzz9xgm6GV6N@Ynl9 z9|onKyGII#MG%X!J{}xT8Br0|@4fC_swkb2KzI(VAL!8hU3v&&{%G8SidqRg=sI6o z()RRNKMc2cF&^~?{;|ApYtyBai9G^ZIFe~VN=g6G-uGf)J{XncECDgg7g-T?gk*pj z<9z6Y&PTYI>^DI2Ng8ebwnzrJ5Ao2Lipd~a2C&Z=Eo#_z*<7o^=i)FTNngfrCksQ* zqvx-cakC0<$Fsbr%Iq|Lbj>lKa<mMd{!6g@=a=}>4+dC$m&5d*^AwoTIGIB|d#KzG z^&^b3jYi9*98&Va#=_U|A!QE5z0cBxI_P&|MWrxnUgWIz)X~Xb*dG{aWA#eH1Xsx6 zERv4{{9Gk4KW0MyQM3iXng!NVE}vuc`Mi*ls6qa!eh1oR;QAW&L<hA3C#*eGy>Fch zE^#9Ct}9>x+wvdt*ddjsJn(}ZE<DMSimq|F!(r+BS?m#E?IS{8I<TN>a4~3$fah!M zZkE%p-l--m9?)#;<7v`ihJOA<U0%UU6>Hk7#BDI0`XReK8?*WTJbJ}jYqNzX56;Fx ze``EHh?%x+OtYBK4Eo?!%z<ipB{CCE$a=}lU4D5s+l;?%m4O=l)90(Hk-RQg=E=y& za=ThOw5U+dA-{V!lO99Vx})mpHHHyx$gLZn#WJb?XJ*c3CJ`p$?(A{|ZhdKQbECUl zx%nj{G_>~P4e|_jcxrY9HifcN#;{^7dXaRQ!SgxxBFky*zz8So!I#Km#AbvvhV6xA z0jik+W4DC9CuD7<yfMK?JbgCAoIKief?%HE|LRNM75*>FUkfy$bu`^L6gXf|KG)v* zFgtumv{u4FHy?o!fpBdGt^Ids5S3FQg#`#!vcM%{5X6JrBFD(I@G1i#kM2t41~^+P ze6fb83R(UiEG8)tvNxqF)SEW#+M^wM)%lwRI90s5$tZc`1qa-uc`^_RX^#y@X0~WC z5Ll7CPne#;(io-=YU8?hZ;3ags6sT4(_?Infg~JR$N)<w8n|%fT0hN&H03jy&*~!2 zC@{PQ%6g)<6%-t-s}e^Gj}xSkvi;$?9340`XGZr?Q;;^eq@#v7AAf;Un_n?P_d4+) z{#D(vldC6is0kX7C#uH?j|mqU2yv`GPt6gwz^$<fp+Fz@=>ZtgLmg;S>}X=Vp4PrD zOo*Aljhmk(I>JN`M{_4DP>hLe(5QZ^lLZdRb_37i)(%YNt#G6aO<-<MA~W2DP1L?J zVLJ)j{3)R_A&|z|MPje-{iz3cdyYJAWHpz)mmT;J^;L`q26qHl^*avDd9&O0crrt! zkjXaqZkrw8Mzy*$$>ekZ<>IZk1d0G$!cz{9+(yTKJfo61A&`ag{9T}_H3BE#6)&7N zenMr*`jgv<bps_7_KSRJ_fdiDL%KqEC*-igyc4yL4UQAy5%c0~D$_hCceyH*^k<9) z_`ig+UG)u2>Z6zy_>3`2US+=`)zgnvfs_8r@XED+i3LE%XNegp<v27KMq0TE6Ptb? zEP00oA(UINZ=DFh@^C0!C>wX-qfp^9IUH!~gnj><ag30XH1Q1#gnxh9`dvA2_mwAF zT<-RpnAr&_Df<9k34*;8`UqaE^bTNEcu9mXA-SXT9ZgxyhZ)em#bXE|j)f#ma1AbA zCMzR`z_ZWL=&B-&#PnSQf}m8%0S^TMcVRj01EdswLX*q9U4*Zk_&u|V02YEonG_<o zr*(=IcEk7MqZ%idZuKSM#-3xIS1{+Vd)COxkoD^#rV^jX2D%@0-0@$)X=hCEO<%L+ z$sHt}RcyzS?sq%7FAj%lB`tCncBTMnPCIR$Dd)#+>tNMoX}^hsD%T&p3KEX0D#P6p zGp+wsuiBm*FdRbqP<eaUX|d@cj$)YaOyGiAjw3|r_Xhhye%)rqgmzvo#P%_eu5Y^} zaelGsHO=K#kqOhg&>qZibsMiz7wZ<~{mbMFcjKvjo1sng^qNXx<O4=X#{>{_o!i%x zS>me%4(@k!!&;Khnx9Et&iCyg?rJ@pN@Q9o{nF-jIL}#FQlU~1<}2atBI46Z3<Z6^ z>Z6sLuqA0o!FYmggM6|uf0>>8LfZZt7HOCm*O3;B>l!j_Q>Zz_NvjC?rcpN9Mv%#Q zMq4Sb3R^dMOLy5$4%OR-!Yi%o4zgZmU}1{crukw^3~<bPzqc68#dp5qXnzu9J)^xb z9H&h&Lu%f&L4Sn628J+Quh%ZJ<6exS(v2OmtV)(f0rIDK2n+;GZ!w$`6XjSn0r|1C z4K=Os#rzmhuR*PK&%e2G=M2kvDcgUPVdV%xb2b6c=C#?5El2j=9^$*S3srd`&!Nkw zBQDgQ9FZ$!mpLi9J+19X91yg{=T$(_b5a_X+3vk}pT=fZiM^2Z>83any3n#XR@Eok zoYl7Kyw?HC$HB*R-2=bRQuT!5&YA}|Sbs~hoMbf-m=QdAZVmN-3}&><V$Kp@&Ic#Y zp!cEUFvRs0kCT-u6X(e~Yz@K?E9|rl7I`T{OOvbl#-6g&{K)q)2*GYyHkT`8XhIka zWmorpGOAgiNK{qO>@Eq$w3EcY1?aqVD8ob63NYjPsY;-EQLqp*UG3w9p`RvLel_+o z+v6D<{jo{DicpT^JfV6vV;&&K?XpUo1j2ar>6I}~G^(Ogi{`LmzKWlGt@ge4d1gnE z<Tzg`7vdBxbQpM?Q3mKAelW?3JR2(WlYq#i_4|S6-^VN`yIF4gS?tG9#2_i{d6kD` zlNYdrOpko-t999KhrnP=pKGTU9?~q-JMS!(O;1lgJowT?)K7r@neq(`H@~2pQ+^VA zCyu)Wglm5L5cQ&VK}^Fc<Nm&I#;-z`ld!$VYDy&nSY9FUP;(d|2sj2v^D4A_6sx)M zJEEW3#}7_8Nc!PR+yZa;o$BwdS9@9$XYgN+r5>j2R$5U(c+`Z(vBwsPfKK8&cAq~y zOLR7vWxdeIy+@}1J#Bc8;OPGgmDG!gAuvmeJeKz8-cH@?k+?d6g3^WDpzTDyxgJrS zzN@9JEH*7MDvsy_THHawH<-jWgo}|9FhzeAQrmI0)!`e)X?gMnV^;7khtD(rV40Gl zv!ISQ&s5W*OvA<A#LW>82*x@g*^c+D-!GFzA#Im-e%(XrwdizTaZtWJ+jO4kQbMtT z&QffHx<E}>Kl83VLCETgqm`uqC`$R_fRFho!1MB*lf(nZ?y<aGPG48fk!OQV548}u z%ODGAQ*Z1dIYsUe{?z(zU~#|B2-nK5u|oE1Hp4CM2PlhQcozl(aFXQ7aU8n60PVse zx8g}cw^|ap-OTcNA(y42;=1T0c885484b4=0=0*Xtu!+GR;ZLr_)ITqk(ATin0pZ> zDz6fVlV9usSfLmhio88{TbvLx<V2D+e{=TC7nyOh)5*q>+}~s~Cp$L(=7Vcel(FQj z<7!|Pv+Z`}mT`vHPQU5nqdQB->&N?susbbnW0zlx?W?xKff@cJmESU)iIVNDpQBqB zNFuCjqahVhoA47IpA%<^)uXNpB^?hEPd@+x-&G~Zy7N-<h#NhK#!<j>+9;WYH<)+) z$Jq~so(Ote{l4e>@wD$X7A|6vP*!Diz$*JPX_uDDh;AM7E+Bu!gH0t)jm?87N*v_^ zqkvODiZ+Pnr6fT=4>n$A%VqQ8W5~x53JL2ZM{&&>N%SNI|10DDI<mJ<0C?d+<>pho z`Hqu@HPM3CSt>ueW9ovHvcK+piDnzDqh?%gVy8Ybt056DN?oZJB9&vCFYjbz|E`T= zp%(K%R92jp^1Mhtt^%8UWFO%<iNzMiloblC`#OYRoMmj|;>a!9DHgPwcJ2b{h8(lL z`_<2RHN}g>`c9+XPIj7B_j(^I7zPVNRAnI{!Gei>VK-^O{7Hr#w*k-GO5U}1Toh)B zI`^}!?5@}1l!FjNPP(?Wz#)m}DE3_A9$dq!VgooKYmiBBd#kz&bN@~5A@$ux_NG%F z^fg?-g!s<7+9;c`WMWOChrpZ)0avsque{xT6?B%(J+?h>ZJYnIIQesp0p**J&pfdB zEu(LmP1{iI#eGP-T4nEv1Z~gjx?VMVQD>`+qN!2R87xZyN9ZjpPPgI%(uF=(a60F3 z9|WkL3@GW32Y*N=?kcX9AM%93cl<|2F)NrCdF}z9lWbjYJ8oRMQC4n>Ph#s}l{ABE z>L918rB`|pKD@p1R-YROoqHt5^J+?pPMl(@RWoX{OE0-$Uwznd3!G&kFi5^hEYx_( zOTd7{39(CGERAf$&P%A2&5zRZrE57rYbq6o5?wr@kqPPpe#@u7<SOJAwlAx}n4#aH z>wR(So^y(_mBZyE?9iKYhsB>V{c3ODu}Kw&Zhkj7<_eUR=Y-mc2dr@K_YUBh@7sc0 z;s&pRI*Tu583~QAyKyM{ax%}$>-%+HxZUIM{7$@rf29qS&+;dBjX(3&|K!0A-y|3h zN)M#iu0HPh5+zo^AN)vaC+oQ&vDWRj^F0hNeph_+5|r|I22ol(wHof9*7un@qT;m7 zJ;vfp2kULGxom?8R??(4JhUaL{fP%?t`#41zUB4P2Wxp|DX(;!^=P#^&S~j_*{`!N z&8;r=XdsaGP`mXL%TN8sSR_ITvRzfJ6;1iDYHq>>htktlBgbuzE!;t}E~q-Gqo4o$ zbdZH<o87eOg?Ys5{zbxo*`U8PXLkqVt72wCoGX3iScsU|#Ob`3Nb}BZzg~vz?bQDV z&k3MZlK)Glt88Jy{dea%7H+EhINwQDgXIkGU@^-($uAcKPuyDviY|xD!hlWm!MMgT z<v!OHoX@nb!a;|%zTK<a4Ld&Spos`-fX#3pI8v$k(eP%gF||Q<Em=@1pPDQj#4l~a z1fsYJ4p3Z;Bnlgi)$BSXlIAc*^q9edVbCblTQ``%-Sf$j<9%%LOHqU}R-tZkSN{Am z{>qUkMFkgH<806Tz@Pxy_`q*<swn)z&J(hCLJL^oDwSx)S}KD*7fLY-r!~|))h*hu zQK{LBz2w<T^|Li7ihaRfeV`MM-Vv0L+gdzGoR_jV(uCRUoePZ}&Jc3RM7?6kmySJu zw<kmGYH72LDAcYn#1yd`Tjk&{2uoSuoT_bRo1!AZ^YggDF#6KP35#HMu)PkA*Mba! z3&&g7R17|M7Zd4)OREoUy&b3xgw(Uf&Y82Pps|?&{Wz{L8*iU%h3+u=QAK6w;E}Y~ zNmClU0{zF=Be0v(=Hpr#JJff1W$;2L`_V2xgkk~##KXt#oiPY}KYpNrJ5ToPuJ5Hd zc;Cg^<@MBcKGS!%3IqBZoDy$P93!v4)Bo)561x?#->k!8dC#{1yZwg0=;!XX5wr2L zPIFpbMlk*R^UD_^Cy>QE_x~Lu4y?pxP1ga=bFy6YNmnVpJApU9<M_MlbHRZ|?7>!w z74%py@!k@f?VTw6?0sx4#3ni#!);*&)A!3qLw3T+Bz=BZS5uSBC;ik>WXy$Yip-yI z{5oeJ8n*^JZIaP$#4>8GT)KD(e~<GY%vRI}7Ls4P$e$R+3yc)|y_%bzOmB^_OI>6r zl-n_d?F2as|0eO%vce9UHV;1x912&J&9vq~Gg_ijKlRP#oV9x8<)0F(OgW06+R(4& zK4;=ICyjD|;ps>QLd!+Nrl%9f1ox*`%dQcbLDRH*KYz!5R!Igp-th|>eMFA?Y!9$t zG#j06azl>s2l-Qn+e4ff&<ezab4X7{()d~9U<nRRHXJyjlsUANQt7yVE|vV;ZpSwo zW62gM0pM6|Kq!Y$Ql7E`ZVMxf`-dGoT3_0j(j%rbWu()B#Um6(aB3uSfjSQF8+3xV zUv2|V+S~TqZLXm|)Be`pH|b1-bE`q#wmfZ2VBy|v^vvz4EQ=Qlyv>_9@5m{&Z^t2I zA-t24^tS3P5m{s<2#>U6h2FYTqkkv8KkX@HJ1jTkSW8*{IXhnGvDhYA@K|!~=~DKb z#A22&!~8rZtI?QwjGL7+;x>ozyCbS0Us*|blo5IFYZP~>!g<Y=r}Ib@^-Dn83U_%+ z8FCdto3ZGG-xhnMUq@V3coB?ph>=>OS-91pb~XPfV+Rv@zr&C@M*B+EPmAx$6mcZ% zL?vo!*@&yDwX!I6%3bv|#t9+>22kf>=ncES-aos4{lT+y#jqz~Yzy{j`<}RL5@Yzo z+$`^RwhMi+czGPk1edljmGO$Myc_ag7TZ(rfw*eMv|(!qe3{xSg`T|5&!)sv?T9wM zjh>d&VtKM9Y8NyffR)LK=I(|w8AzjowOkv!V~7q8KAhneWXk%vc-tfWaoA5~Jf2`T z{Ye}lRBqO5xJ>dt?6J1D<`_%2Tp@R<*7!Bd`n~OGRK&w^#7gU~FioET%N$X>P{l5c z^qZClSUoLVdwuf9!|vdtmj&Ld*G(MA`&O_*=7ksm%g+}@pvG9*4#8Ed$G8g1L_WG! zCi-Mj<N_n1o?xEsqQCcc&P4{erDiUKpvCh^wg!C8dp_N<eg2(j7r*7&%C=@K0D;>y z@~uFNpqxYXG8!`IY_$WeFeoOb<pJHDZ|fEz{n7OS=bJ;h*fpQ&S!*?HWfGkPR3Gaj z=ww$}J|B7%&qr7}t&DY6)zw`L1%d~5B7fBRMNRVd-LDm9czP56NF3+AY<)Sfo&$nI zj@!7`Jc<wH@^=<@-9L^4mQ;rWz-{)D;g(TJBa{6EE)fq``5~Jc=4^Z_cARrG;p>6W z_opeVSeNGec_(a*NjJ{XMkb4kNB*b2sLyM5A3o?XMeVTmcchf`o%IWMe7^loIq*}( ziHd!uOKgFWgQS}`Iv!Y`7>dfosK)G&MROJd-{b?AwR=PtZpV?IG{{9hj?13CO=X(c zgr=?0R}C_wxp*a_UtE6KZi0uW>-#4A7(sF#lX-UJl&p=<!we<6O&5N0jA<j#vx9k6 zSN>vdu5NlXSMTDtd9JwAQcyeCSK0Gdg!8`=*^W&ypedCN%9W*RP3<mJBlCjev|~q@ zpoZ{FzkcPN(e3P6g$KJob+Y&6VC_uMGa(yGJ^aFTuim`ykR1?qVA*vFzt9^cad`C1 zd%;K;52O7C0u$q_9i&18ji-Jnz~n4VFL)|l^WS_u%UlVgX;@)zE)(>6jB$irKf@2B zz6Xg{K=LN8L!j|4bUd2oMJQk0Im3l_PH{6Sfb0D?IP?#?iLrP+D|cwT_$`9UP#ln2 znM6EA>cpG%xbpXdXH1oa203!binFuATN9q-YosY3Zs}%H-Zk6J0z2n!6%fAfWjef~ zYi+>?5hf2;PZ>JoeT|m8;kh8Y5cdhW3qTiIMX#`)uZDP1F^*8bKSeRh_d&>K%oJ44 zqIJ&io8t$1zMEv{oZp`wagZ&HuQS#k!gSj*bF3nb`SMNVuG-V*cWYZflln>I<v1C; zm70|{lS+3O#EJ4*hf7dB`R#1uOlxi@oG3YY;XZKT2v0kQfikN5-N_!K$__pv`);|g zb=rn|TC8a-l2**Blv|%Mp#SYN8AEKhq5MFRdu;pu?)917o`Ij9%bA4PDk6lgbLhz4 z+OKcF$SJp3?5ZruqD{z%N^$%aZ4`nbH&z(`19?l!uP<d^S;gKq6ZbYKf8|riE<TF8 z;IKzTs3pQ}3@dSP-3OYuc}BvDEsoOFKHj3zb~k#Wrp5cA5J>WnjvpPDMt@sAzf6bE zpcy~p76l4#zY&;M9b!#N<v6SSXmHmys(+&3U{Th=<`H!eHgYp4Iz|Yr31vaI;A+9J zCdYzv*V7$|XFZ4JJdd}ehqn<-MS7Xwz(wPSad+YS(f;Qk8A^9*9iO?rNiR2Iv{L_< z27*3QvV6(p`VYiY;em$uS66Y43^1`8>AgGyw4I_Yn?>8BecXQerJajN+kfxW#m5r4 zwlSY{2UA^<F<Z_|2`Mn*GGqYRF+qBqS~)MIy|R_PR7zqbbd*)fMG|WbIAd}j)>#7K zGjb97zvV!bFSj28G7mi|cnAfFGPyHib-yIMj~zJ24*di0%6Hlp2;7{etjXC)CgUNf z!Pbf!UuK2U&z>o;T-xKT^|nUAncZB-O_M5&$o&S@y^_NwtYBc9Sz9cWd@NdUKDk%v zQFN^Uyh^OfqCDT>_{%tx_$Ku_YjRH69Rc&b%uhZedtHn`PU~?*V8G1g(vO~__zdQ! z8FUB1yaD4MlNAw1EozQnn{nWB6pPn8fkuY@m;1TV=n|JVv8|3+wWm5IHq_|LWh_Lg zaDpQJyhua9b%#PsR(_lJsvgc<lC&%sd9rvMTYDnHHXw6|9S0p6_{8A(7I#ip_sKSQ zWrdh)cUhdKqIH@vLz_9rnK0jST4t*`PyWQ$<3s!CujfTo{*<a*>*C6n76S}YXyu7j zx}V&}-$Q`spqM8E#GcW^=AKp#$%(0hInr2gG2(Sp?jdbl7E}H}(~;vp#(0q0?#0gh zsINBelJM-*@1h(H(DYs6B&yW=Mr3tIrTQVyZ|B5iuI`SAO&fLow32*$c7apP<xL1& z@Oavi_XGM{do|YIDYoxS^*9jzgK+|xey8oQ9A#kKJin_Ka}R=Z!455#Z7-Tuev$(G zi=r&WJ)8S~B=u^<jT#7KEip`cTC6J^-LDVdOKmQQnWwenv-9u6d4p4U^eXl}0U7Ay z`|WF!R%DPb(LLV>pyqt~E==<sI`ex>65E#e)j1@YjV^%FV+w7ODzf%4e2`7N<!`@f zhkMg_xjL1;tKdM<IladD-3`xpWyfgk2pSucQ)C~{Oi|*=mFQ)G#rtOzi7TBS&foi* zd@SbT78UtTK%+%65?;TQEGaGJg{Md3Ac`f*4EL=sB-QQReooS97M`tDt{SLmzVp+M z$n(IEOKn<b1lboq99WMO?J5ob%P+e!=SK?c*7`5lxt|Ua<tEJG)@x<Wg-A6Ud-ht% z1*WgVCkW{SFYGC=CG&WE72M8T5^3)gfUG@tx(fVT7Ct@9{3D3UmWK8;7jPJ?k@2W< z9~U~U!;hOE$K}=d{raJP?qLQH`fiad*7@K*{=ytq{vJztF?o1?4yK2?>5~jkb`U8? z-DY}AicM|Oc0i-XRyjd3p0Ew+f~bRcqOba%m3y%efJkz5xNx<9YX41pyf{1=Y+rPL z*Nq)dUbPATXs|xI+wzqo3~22i%2Skhm)l6d!Q(UAV0YO`gmN2x#{`vKVr|@QTWkKD z3H{DP`i$KhyWtqC8#ijQzUPP)L^aj0ff8ONf1>4_F&f*Xe@A2w6y1THP`jJH)?YU` zzZaZXDQ9bJlq}9!_NsqmIlp3U^RUubkC0IH$_!d3H|tsf<+8q|6#uoC4bpJoq+E{n z%k!MzI%DbEExhf?kmEUn#JSgpK^n1LSH9q$TM{KgE8Fh!oWARV<X9LPtrW_&Z}~`7 z8)Eq&W+`4PntC|=_IN_1HcpbY5fA%&qGH|L2lAi7@!724tyl4J?|&4O&3S;@7f@+? z8tLzCMyb%OaX?fqHO3<lwzEPQ2gluQu*pQqpUGrnmZFz`Dnx-(6-<1yfkz7Mg@5HN zu`2y1U;cl^N5PXAwS2jtWymf4MwDrt?2Sr3#N3lx(U+6w^^MdXc}d$0cp@*8`D#*< za1)An!QpZGW}GBMc|JDq#qA#@7b?EzsnKdbV^C^IC^A7*EVFT>hu}{0l!WzzvFBOf zgXduPf{D{!rsXc1O{c@oB)Yx+S6oY^(GcAZk~jhFchhzG&70#ET<DR{CFznZjM8sZ zJ|GrH!>o_)^v|C`>KqlfE9>(HZ;JfnW4e!#bQccJB{PFVFa3EL&?F^4zpV+&Ti8o+ ziMzL+4D_qkQL#O(jnm`-Q@rFeY(Gq2ybnB|kRY+09}vp$$y&jYXx4WF<)VurO>E=5 zl-FQ*{L#3Nk%8xv1-DKkMaInw?3=*XD0zaPC;Ei^w*-A+a6XSDjufc%ws47!zEV0K zCMny#Me!_nAvm&df@aU$@RthA#y@S|>d0qf&oeSpf;c;2ct*?jUos1JbId?lK#9;V zbd#S2Sb!I2x)yMx=IM!o!uyPqZyZ>mZu_-1?F#4bLZ{>-_Rhks?Xaio@E9W5SE>YF ztDdL0MmQiXB(-Oa4{n8|PJ-M5QIFDagVw^1w-=<pb`ekiXL9?$BYUy2$Pe9j-7+dU zqMI|>Y&`Hq{_8;;>4;tFPV!s&f~2HR9rAiLGKtV_f~q4toCgS8ysrM-&%Tc8N)cjk zw%+>$@UB!x9w&3R>eH6l5_96Wj_#GbNz?d-9~mJkR!T`;^N;%-ei=^cK3k>OVnTS~ z)-JD;F=OQw%qb_hYDw6ARYU|KjBr=5i58~$okF5Ai%JWRnO&hp1iX8Z{*yF)rywWI zT-xzyYCS>nLq|OjTvv!DE$`=rLmt2_!2?^9EOWOkUD?y<!Vk7JnpK~lGt{LXat_!* zFT5OFvnL7}Jn>xLR+F&}PS==+xmXtRRINXHpeceh%72_O6&Ew#v`3`d_;e$Em79=X z1AlZi{uJ<n+)JLLS3k>aKiR<!)r8dM^}I87wygT;QSHtu>B(io87gAPG%v@P1h2W` zG6^U7ZF`;+>YC872}U034Pl4L(rR)0>x4osY=u5EcPVh3N`Y(4Obd}Lq*&r(;Bn!% z=B32tOyW`T%@#EBoU#6u&(8yS!#3fjsjb^_(+lGC7558t*T&K5!Jh|c7H`Q<#@@L{ zS*0g(n<oqJr36{XZwvORA2N(=kMh(KhC?f|sbJ1exZrR(b{)x|JIED=LoaS7**>tY z%;yT=Qpr3Zzb)r__0SWbd;(?$iX4U@mcfUOAjQ9C@8SIr#+?C9woF;EzbvP6s*@PL zj7HVfX8-WoyB(%?QGNo;_g2;|S7aV7mtQ%ebF1-PYHB<mwa3Z)ToX%JT;owFxKP2t z2|Mv4Z0M%vK*<*f(bz<QlLCqCAP1L>=C9n;yDXu+=f=qE3+oy@s3KdeQoj|>hmjC* z4En9ZDWdEo`Pd0=AuxxI=#gQjn*%xyuJ|VVre%7kVI!buPszn=GJ(${5%iH)oaTUU z?(ypb_f0VU=ka#4pOlKj(_@3K?XbvJ{_bdL7JPQufB_^%?08{}gGUs1R+RmN2~Wkx zU+Z%v^i^*{{Cx6W*=qf-Ve9rw&r`0?Zo9wQz~BE2%w15ro2mPx<oO%@vdXl*pq~^b zf-gFPJ-xD9vGrbUpRcY+wybV*7PcRGzyu1%ww9ha=YK{#QRuDooECldTa$;mJF6X7 zI2TmIe0*GWq<Y_w@$SPA7`ONuUio0FYP_ZIRdrd498O&i(N}L$2qP0OwqtL1J#&cY zo%|g-%eNqFSiNs&T&q6(zVd((O<!xzyjz<ny`o22=xSycPyxw6!j{=S8LT?t=b|3E zZtjpu!(Y6XIrPYug%bEJ1t4s<oYGKX_*{;)W}ycTu&W{wbw-NH;ghS5c2~8&SR45W zLIE3cCd)e=po+hPJd`m|CCk#tg)T@a{vm|Zl4y<&dDUp<fQsXeCQFp+xD{o$%-akU zKipdJerXn55rY$znE?!&`dYC1dSBsbi!HwuWXjlHVG4M!l)7}J|5R1<AA#rR@IxQV z;#gxhAz@Rag;)0>5M+`*+q2K#&+F<QO<!L}vZ;OcZZ<<LVkW4pimQoh%oXk-R4%(5 z5y`T?){Vd?IEK-sdTrBZXQ2JuJ%>17c&L``+WC}Wte;rro2)T6XAr+Nd3%4ZG=&Q^ znZj1-3kf4u@-dOjB}&foWgqx>jy%tfP25XL1kfnpoxSVib3^o%ru7+LiH{LXmJ{?L zbB=9B`av<E6ss9^>x;bdiVkQ0B^Cf@p4DhQ&#RBluCxqK@u7PPza0h~Z<u(O44>ha zC<GR0j|4z^MF@w!-D}%<OJl%2uUQIDl6=IAt}F*_r8r>xb6zL#k~|>;23_`t7@>8| z_&7ujI<i35?+fRoxBd7nzf&J1l@zwY+{~IjS_#u^CtrTFQuBy7sH;7#`?$R1MuIwv zMWD4<U3KNwB&*h~gDZ2+J(@|df47zSN5P9ganQs=$%4aXK>-0%42O&s7jM0tUyN;~ zhr(8TR%Rd_2J;@7y^EnTlx<uLBXatit<w;v7i;DaILlvPxXmCbcpLMFN1QlH5ORD? z;t>tQJ24X?fmE{DdxF~--M57a7{T4{ArqSZryB7}-nn@5kkg@`3fq020_iAj9N<rh z7%U8U>u=5aaX*Di!l2(p-|+^fr+ZAkFgnqGtw<1F&QKXRa0LkUw25xzar4U3v)7sc ztXiLHWTg(>XI;?iea$X$ca+bheI|AbkEDL%ddDbH=|Ew&nvjT>eRU@qtgCU)hP~*A z-R_DD019JYL@k<Txo)kJ{&d(Yc~N!0S?;p`bjq86vgpknm?5*m1-(0JoEq{+-=r}- z??%<?3OH`HGFGrdd4>yXu1^*?m7!YtB;7}LoUNH71ub)3`K-{ks$CUy_AWU1(Y>Pc zFUP(ui=^P7Sj)9nRnb27Ao@miFYR}|i>xEv{gd`^i7bO#ejy6aGF&YEDD5nQ@T6XW znfo?NNI8?t4EKzNqs~5mS^5tEi1+J%8}}8tre|h*j`#XrZ3`UQqtGNtPPGw=uRS#| zcDPBVvp#&rV5U{yl;>D~{ZFTxUKb-E49^3UL_LXIUN1?wT11a?Dlw28D}F+|Qjqp) zH{*`=BMZG#*Qjhhe>^aHq*2Rd9KwuqI=q(5fS$sq21kshZZ~FAI1%+e*`km7pgo^3 z>`J4zbFmQpcY3v>2Op~LWZa1d9f1&&`S<&t(f-&ag}Ap)CEOw;I&NzCWRuQad#GLi zt$EWqpzjNB5YuIX<5eHeSjaM;C^(9}S~dHwmniWg`%Pc*TJ@#ExY1u*9kWJu!-e2q zl3=(Z5^*eXi^*p#YW0{d>-MqrX{%gnRj<VP_#i_G?iGCld!RhflkIzKb@k?T!ySiV zYjoJ=9p29bR6lILFn^TlIj-xGWvzLy{4W16k2lE#pZ>Br20^zG1R18G)&-{ql)HmR zslz}>`t~Q15<Q&#qAaNT*@4k-vodn#Pw8&ErKA4^tG#{qU{R`&=DB;b>bedAxR_3M zP+}NF2%ng4c&YAx@t`S(vUkRqylb<J(Xq-^*_Oe0cFFm<)>QYzmQFqSmYAbT+s`-B zbW^xVn_()*kDvetsSU>o4%El)0@I1>JmXGxkTx6QpTX;!TY70i^W<&tBc}eg2qHN~ z+||WYclTr&I)z7v%4WHxBftNH@kATuf|LC6L(o#Ja<Gi4QKnzVHSk=z&-WYo{1nMg zqTk}iUkyII7D(7U8?~AA3z59kA%~OHBSozT8b)a|-fBH&TO4|#b<@n-B;|I!-w($^ zbib6E-`RhbY2+HPsD3&K(kudxlDS#C8kx=6tB%6?8--Uzw8(;BqN}ex9lBSjE-Lg3 zyg7=0Zuz5l;{}b(-I}C4f1!DTvC$?=U;guARmR{f$)p$m-q5$T`oR~xr2O;sK22W3 zF0_*FL$tbWd<4)l;^@V#ECrSMJNCAR<RoMy=C|pYs;Tm!SuaC3dU5H62BZJTrt!#f zFK41>xJhe0P8A8O^TBe0fSV6m)wO2scyUS349jQ7K8ebxy|aIri8_4cpw)_C-Q6Z; z)s$=1g7bh1GrW4f<wZf+@-~)=^N9KR6$7|s=U+}c;D#gTg|rc`@77x#9IItSBtOC> z{XRCvO*q}xP`e%H1}vqsSE<7n&&4?Ytm8QK;M`#)P6!q-cL8Cp?>Wu%H~Rs47}@Ix z%J=(<?R`FDg$xuAsxl9}q(y9&B-?J;*_9eTJDdO6FZ)J5;ih3s?sX67$i*0OXdCee zt#_5=A-^f*eyUg9zAf=Z?R?KvGGp_V>3cg`xalGNs)T(Ynfqw_mxnQeRi-2jf#cKL zgx<QO7=}7X;<A=}qO};lo7M3218D?nSQv9N9ANCUh%NcS4W;3(TAfxfKSK;<A^m7M zHpUS~Yu{jN{}(oI%QZxjpY-e~eN)ONY#f}t2^8)XT|u}M%*MV0fpVI<Q2!0C0KwVS z1H(9iB)SJD8D>5?mo$zY5D4+*M%}?FZaPqa0emBkcjCRCW@=kTCzjH^xCC&+6L?a( zhPB&?6WCWE3H8l%$&KdAVb@vucbnCvkM1E^3o$`@!8)4s0Q!p=j_NBTXxx|k+C?e1 zwrp!$V~rDX;^qxcU3|)sh({$_of!$Hw~9UY;-iHUhi;0T57Dk{&?sR<z8CL3^;VCk za9Ki+T`F3{n_$V0sQrwTy*f*e0czzdOZYlpz(>nONK6oT^AwMhwhg1><4U#{OxHc1 z-GD_k^F6!-e%iIvcNi1wC*;oS)yEGbMTu9ofJvQ#KuF+w_mwKWv>_?VdR|f(`)=AL z`qC)hwy&ueeIvx91_8*fKQv160G`%v0NMVDu)v_?qDWhwD1@TUOUnC&$4<>B1Io<e zuQiE%gMI`0^XnIUStC{oy~&LrsaJpXx$`4qT8gw{1QpM0__8{bfxAh}XB1(hZ|uEm zogaSadbOd^9DbJ*1M-~UW+R!w?Cb}PN|5jWe3P-HS|SrYmU*>6j9~(5`_Fa<H*o;D za&!AV4Ud?Y=R%ra=2anta*Q}|-&Qe%zBmVJxRaO$BI$Os`>mrI1K1_nsX7P|pBeef zyqNul(AT{N-$(o&c$E5e`+VnVf_E!LjQ9Kt%iQ1k2E{MDEyE5HLPJttUlnpEy{KGU zz?@*j8Lh1h*#j^84yeMIWx|!t!S>!=M>I~+-8S>z&T@zN&Lp3uha}TE_4HnAyyB#9 z6Z#5rr~1<^=EnbwtWN1e*^f;ihd1OoDTEz)YmI5(B+sv3)(IOGi$X}US3meoALm)h zsN`dPbFNTha$BJ7s?ZtM@@R&$DTnHhXY}F;Krn#we8QO+9ydb&DW!-Dc(g1`l$@k5 z3UZs<$1gne_WGQmmiaXs8wQdTl<TVG(peAEV?qfPCjhlKOW}m*d*h?Yn|3hAT{61T z^>Ve37mhi%=P2EJJ0|92HS;cXT%0ik6qVi^5n7Mj`hN)f?yx4luG=$7fY5srks#80 zFDgW^ASfLH=|xeB6a|!G21G$XL8XdFRFqy6DWX6W5JaR&?<yco>78Wm{NC@r_j{jP zp8NN#Ig^|zXP>>-TKhg<sbIxRUfVbkjWazJ@mp-})Ot~d5pK})6RE_z)bcQcmaJB$ zppj<?9Vl3Pc(cx~F~rss*~Ed0Es~S%T0I>|rllFkhRl#4Sf(~-wtj4F(e)&fiKd%V zBW%q|8|jmMe%lg4d9GuUj=|piho6-LN+l0RK63n?o9^ZLg9f$5+2Ab)EI7ETLx2Yn zW|Y`6fCs}C#FJFT_t(Ep=<89HdYk*Zz9SbgN@8Jds@a2xY&^$tbn%CMr3o)+^|C`- z7yO^iA*u{S9#X$bJHH<Y6wQ`dw_KOP1M>BN#5+UWaHn|Ml{xO_?%b92XN(M~jqTDq zC?{>h3HFJ`GXbZ1z7WtJ1$60_l41a=klC%^k15(gBOWth8!oVhgKPN-t9m;7)Se1k z#2Mhc@h%LY+&L_ur2tWfKyQFJL<s;=F+WC5b!`%t1Sn4kCTf4g5{$64DP5syJI`lK z(r?##x?3IBv|e;ieWBPqk62R<<^w7i5BVEBK&~l$&r}%Ka+Y|B9%T5I8eq!zEOD{( zOZFzZ$7mf`;z>YI7yfDNY9T12uv;$(u9^C74=JFm(Vsed1$%l|LC?Fa6RX`a>o;^H z=T-B9bi!;75uJ`4B1QFB+vPbhW`vWR?i}dM=#@R^wb)mCji15?<>4oUZp`~-R4)VD zdvugI;9PhJuzv#+8|OQm)V`3;!W_E;?X^WTzZKHUo%X(Ql?#(l**<2N7m`4#Fz~SV z(Xg&V=>PAmF|fg)uS2Fz<m}j}LkN5ZQT=_f_Yy9a@2cLc<?6gL>vo%^P7N&$S0?j% z?@NrG4J4%xVh?wpd!F_((2V|)wlN1O5za;AkyuO;-h~dlND5o4pTS=_vOWlr@etv! zA@j>XeTkW4a--hI_Nao!8M!2$e}05{%h4U@Yq+Yxax9Svnpw_zx5Pmg{YZ7Ra#m0M z7}LvGquc65^DJ%m7Z{+41Sgl-#7psjSSdkzoNSdl9Ka>j#3%ux4T+rK5=x1mimQrO zP8?l?VAasb-CdD+6xMilg_^vN`fRWiOL+2f8x693(qzXJK5NkGxk393oyKmxCK!+g zakTp9ngS9FkxxbAH;vR}g7AlAE-Gn$X9bdtAd7ASVt_9B?vrAuoxHWPETij&##y8j z;J`kJ67P{r+MO&$38A9&S`_qytV`4mlrUYHIC`LI&D4bT8{&(8a8+9C12DFV;0XtI zKNeiM7n7%BO>1TYuIK%pArC<1><0`0RAasg$Yt0v{STkk6O?8OO3#47vQv5e;f6q| z5=rApQpOFi0wPjrw50&{o5ENKwvm8+7Chuvh<mRf%6`lOJs^|p*Gc@~z9i8Z9PwAZ zu6iM-$}_?9JfQqhf+tDuR9V4b`>g)B+|a37K|s%1($T8BZ8on6<RA>DB`6{l$MJRs z8De#rrz?8}ZyhrG7w-KUvURAFlje!%;2^3m_y4~^Xhd?P#dm9<Cna@FIR}2C=Cx7^ z5f<4wn8w6J|FVIL^iYjq@tva*G`e*h<*U-(1LyJaMBX=Z_4d-|>$n8LI$qdG@)s8~ zy4X9i?GUMpOfb9amYCkB@lvW!FUjWr3erQvXD7}OEPzKn<yw)3TRmQir*O-3tK~g4 z$*$y2`TQ-IEC#sj=-syg=^B9Nt6p?=cM6OH&)tW}>EAGQk3jRq$aXAo;OX%ptusR4 ze7F8Qeo32fGJ1X?;h49n2{foM7YCLI5&?bGNao%`Ku*NO{c(FP`$KfsXbI#^<3@y5 z*V|mreNNH2aV<yoC>s>W?DYa1$GpW%L>M#p?^%D~;sh18n+%k{921=a69mK$N3{I+ z0d>wDtV;;q{}M~*1W6VgNT-eF_*07722oz`{jX<>x)+0^TNI~tW$(Q#E$AC_^mb;7 z+V<a2Nf($<qTi3E3eVo;0)cp!ZwP@amcN?=N}m*om1bqY5*M<njX<>e_G!=}3ZF$R zO(Um~J9x?=gm~t%mH=>DY~;nj4%{UG{_s2#1LR^%mT%e5y>~tJH;K7f5T_b0XYaml z!hmXnd@2nf;-cAmF`VsKd-w62@8!(1EHD~!VO)x*37Gv;hzuwLL}sY(soN8Y?tggl zqNP`5KwshESa1<#pHphJ(rg&O757_xu@?Zbgk`9k_Y6IB&4<8@Ql}X%MBP6PX@#A} z5)Z*;OiA3dy+1*gCzdVtSr8wXeQ<cC{dHq~Vh2o+&vZVZA;f=RN-QmmB$|el@u#D) zz(wuc91~l?SlIyw5wJg*vBn6r$li3zTFVHVJwL*5uI7}J{fv!L8)IcvOBggki&cKc zFa;a`S%koxR<&cuOXDAac>4Ojyv8r$HEre4(lUxTwT)n14?{#@=L@zQdJKRN>iL~0 zZlds@B%2j3O%&h`J;P-97gv{d%KtG~k`WsFjy~ieN>wlUs>TeQ%&RdCN~ZaS++gPv zv?5hgj9DUJUAhL&0i|KAmSb{BG#!vHGoi@?{MCKedjH12f6Xc8G=9imQX+JwD*X@i zq|wOc69(q9l|=Xepou~*h!){mWEN-V1R5?bi4v0(eZ8HZg8b5;Ud7zF?w5@Za-$YL z%NX#Tq9@MaQ@=hh&uKK_1~m*&Galq4imHDC6O;bZlOO7xv6`?lU(;g*CzC&FBB;Yi z{grjLR5P*|6v_ZGY-e{P>>0twQd@0up3>bJ*CGBV^mpo^ifD{5W9MOfH4m6{C1aq@ zz!&Ch6<5$Gw`lQQ+^wnK&mM`!>w9FRjCpq>V>m4-Ix^~-MZth)&bFpdF)j}fP6xJP zd%uv~pu^q@d163^8+|M0!4ePp6yf>Tcsh-M+lO4j>$|4bDpKRG2bzHl2)!7I!qRy< zrNQ+S`oG?*AMYM@R0BEBrwYA3<ceaF#(ley-FAHSaS@^fQ5_q1#p#A8Y|Wigm=6dV zUzorAhFt!#%;X~?hs7qiB0vV<{1Z{Q*F4&g{ND((y(6cPFtG`;iHonY7OL5(RBSrA z`kJ-Gq5S}`ns2fWE%x+Hu9|vDXi*Igcd$#@X6___^CBQOUmPsKrWUkyU6_FjJg?*H zZ^nQGFjIu=gB~yWCnLpx92#AI`&f$di^WQa*wg=W#}-73K9iiUKM6}5*{{Kle)rDX zvXszLbRT~9&^=<P*-Z}@_|T$S1}?=FazDR$B=AOMd{mqLvSYKc`6~Ye0rcQN{8s6S zD1r>l4@0cL=3Fo4!#rUCI)3Xd!NMZHNr!<KrcwRCTRT_uKWw4vU@u$Jeo$aGv4U!6 z&V~5&2RuUl0GH-v*a-HyalkD;M8E9O((8W9=>V9`e8eOr#gNZ)u7%)nPO(d^E=DS= z7c?E-uR1}w>k@4TafG_@QWL>e-WIBA%sUG9gLEfv>(VeW_<H&vR^k0{*ZJV7+N@dh zyB6*mbk5((sR?mT<*s{s0I-3zBoSV4^l)T@Fvnru7s9_~w{t~w_dmqAH7^tUTC72t zTIH(a<lXMuxIliZ1^nl;CthLU@EP=FSj%pjuhCQarK|XXZsv*At%ukl1;ENlJPjXm zzX+~dPb$!3UCe*I0$_l-0z)RTfW+#|nme*}(`9k$I?ZWI9$JkEikDvdJc|(kPM+`L zKLXpHYH2`Z5O}Fq%RS*;-7wmt?y#&LV_npxT^B8Rs~5S4K1H`lFC`*BJtNx~3zC~i zLg2Z@5R`<}ae~@Yi}uVeD#uNV^u*K@*kOI!u4|EhL8s6!3;IikL1+l}s_B~#UT5yK z++FvK{yYVlNgY*c4g*BL1azoBU}luH?dX@40%gI2l6~2n`$i#{-ivGKsic+B@exIN zq=(#FNh-A*og6*X+Z=f5JL&C$6dLK}JTTNa_SgN6Y4kv2zwy3$APIpgC-G&JLqUhw zPi40N@h*>xrFK2Fih!j7CTJ|LKRmUCJ{7RGQyk*<vh5A6s#Wg+Wc2(?+x8ndrY?SP z$Cb#DxfOc)1*%Ht;MUAzbygc<R{r)#@G-5vAalM=`~>jN7GBRbJA+qcEMWkZDxa$j zw&;EMK^%C+lVpdSzA#zxS!w4{$~nAh0}7}q(tC3Q6_zh7A$|Wko;6h>f&a~S`L>ek zLMR}A-4V{*^g}byfahn2+K@rM(TEkOZjGPI+dX#K->NdtDCwNxjn%V2>nIuy(G1ML z^OH}277nr)5IA;$>eoXuIUh0h<O|3eWpLpNww!ksqp%?&Xu3?WVS79edGa>ut?&m3 z<T8NIedw!p0FZ|UGhBHY%wJr7GeQ11Re9I@`S;!4px2KxWb$GnF-Z-91?6FbcV$2Q z;Q&!U2Qc+=T?FObEnCjQ)W!DS>MHe}8er`YMl0Y%^-<b52G*~L7Nk7k8&{?|-@aN% z`?~wl{v1}v5y@<uMpETPZ-}K$d#0SVQ!V)v_vq)8Ow_Li>ru-&w#x~eSE0t+soWpI zqu6-DWN79>?1^W)%zzhj3FM{R%VMO+PpxjXY>mG{;@)0igGxfA@g#SKt$JZl@rH4j z;k!{-Nb~=86jhZ$Kz;bGjq}YqB~?i|7N4Rz(00@LW`cRJXp~7!0z0kKEAV^}6Fxrv zN|`%qS5^mkqOAJ-vHh4M-L&xsz=;0^8}^_^2JXVh<rl)`(iDj1M+a0bYPE6IFR1lm zP_n{FVR|cG|A^-P_W};p%D0e2EZpgu-@&gizy8AcN&okIgY=C9Ol0V6<D^<F_Kv<` zXVU#dk%p{*&b}lDJn<~J%){}*dqIX=l(W;N7>%(0EMR(x0fu}|MTgxrFkmbF2f0`@ zaf$R@ig2=jz?wLCvPy)izco%MDKL`(L>jwdUzV~E1j4HW(IJ0B@L+aU@8Lq)DNMBg zC(T;XN;)}}yxQzLk3uhdDjqUssK^i2$FH9>KFgYY0|sgUb{;0ngV=+AMSh5_)StMn zo{<bqOpXaoDn6dnI~X16{^FB&NHC0`WU*4;PCjrQ<OrI!AbdZ1JuK+qM`4~x^_L!! z{MLkoc%9y>q7#4vif4o%v(u<$S@Mg7*6m7%aQ!n9O5rt%jE$xDQq+boSQ5MW5{e<> z(Fd|yh!%*hALuVqUl7Ug4RQF;OP=u!9^^@SOXuzlmP#JC@b00at0;uz_RR#eR326s z^D<l0n9smioPwSyF@B16c1myC>0p^ORd%scT@Sdy=$33ATv<1x?pW^9Bqg;T7iQ-N zaZIBzgWl&0i~_D+?4UKM^Cxf0lm-AnHty8lxAizFMaY8hfjoqYMv(`=2IA<D3Uj{N z0AvRSc_(w}w?cr!k|@ZC`(cVxnkNNkO3sq{QE3NJ+RNhni>KGcXX;H`)2z+3$y2Hk zrC?Gd#>p&>jZ+0;KZ&vZ?Xg_??#hC0A4)5vhRklC3F&-@OO{jKDZL0UNpgr1myqTo z{Z}%a=O@QsUhla>x{5dRz5Qqwc_2#kLo9a|yH_**lEoRN?A+Fzzkwg71buh{DP47V zf8l2FBU0K=b0OL{QDOzJ$t&d49YBwWsIwF2pcxFj#R|_EJ}79;<+XnC!05+j>ag0J z9*<q_LE%Fm1G9zM;m+w?tBMK+;w)A{#*}6{x0qO@=m9)zYB3avZTo|8sG?f597%o{ z=T!a+;uzXXE~wl9QW2CBQ(utNRO*BE+br+`D%thm`!dc2^@KeW_1N|vlvsL<ro+xN z(g8E?4Sa#|#*<gZSc>9TYE+kBLe8(-DZ{{p>#xkbRjKRpnUhco7^u8`diA)He!~Ss zkq%8KtYpcc=7XQ{<QnJL(XX>iXQIZuPGMb!`6Rw^f0Uutzkfun=P?6iEg=P{!Jv>B zaC2Q4*h{o=;aWR4&j=oXHW$;&G^?YX4~w5Xy(r<!8_5V;r4~h~XVNT<odm3^OMrh{ z<N+hUc{y-_AJ+I7XCL_t3mTi+RWM52oJT-7b8seY_+%89yHmtd8T*GlIWzbAMv>2d zo$Y!<0nuSWP7J7We#BCCN&muGymzlTVqJMC|8$qoA30Fw{RbaYcw+caulPZ*o%vYT z!9jY>da$|ZY)BrStW2J>j4e!h+9lYwm*V3GRnF+idbM6$s>BoP+R^w_A2Em{WjRjY z4v*g}wU%PB)s6dLF7<b=EyHD)I{q9f%9GCgIE)Ugvv?5TsqE6Upx_Mt75SC=bI+7q zwxw21KEt1Ff5KSF3XVY0vuD@V0Mft$E-roW&tG;|qbeRkcfDq8%W`2a2W48{>-=j= zt-I<hBY#6JmaL9(Iqp#1UV-bU#pI18W~S)f0f_=oQjo6yoQPnObBcAZ{Q?0jWgr%p zzq~kxE9L}ZKR*SPh*xju9bc~-F4|MZRX5<_qSZ)Cqy^q9C@L6pbA%{d#D@wpH?A)3 z9?ic;cL^l%%7W_VjI6L<GwrDKB6njiV&Tk5Y1*rNRt5sO3RST`T8V!{Z$c%r(d|<q znzDw|fkGv2d%2TcF&vBw2Z>ubhMA4v!m9hv?i%|Lgrp>0FXcVa!#-z57R6p;=zhBF zT8x}W`pq?!N!T!G$#U;MP8gO3Nkb(b!@@5;HLz&ev^7zW18fGwspv2@>S7Oqq5f2} z;t-~ZXXZ3%b9)cvzdjd?AmzgCf7}jer<Wc~E~X*_4;-S8D>RfYgn#z6_}+DYnG_Gq zeK&I=c%d0Iis{``2WBG3p)JFekguc#Lk0bVX+La&b$@B(&t8hKB*yPbZ}VdT2IP_Y z)YJNF4>p;&Ja>D?pRV%@m6C57CI;!JbOzib`JCj*W6qj$h9#g&;%H6R3CR$E8Bsfg zJkzhe?}b1?;rGV~4>;gX@woYUPCqwhtNujfoWTd0sxsgP0>CUgwJ<~zB#XSzK%~J) z6Z~Z_q4%~)5Q0_}QC2{YIvp4>yE72Xmx>oJ^u@u9N(HoGM#4<}+uurCqWL#f4AgD& z<ia(;$gc`97(?`uDt$+g$DukC*V2g?)qiemFNq7dp4wDOD|zZ+!=oz%#t@AgH7_iP zNxtmPZy)7zprV!N+9;8B954pf$Y~HQJlfz;6Z+86e9H&$9D|=$or5?o6rq1kV7u^; zLgVw<Q9z&vYa^A{B<AWAER0+B;`-yT_c>vDOdjx8k(h?_)VfbS04KqIe$0~nftDR4 z-Rfwtl)p^<2jsQ>6afF#Bj8zEqZS^p;>@54k27tM`Q@CDgHQs{Qov1A9Z6b86!JqC z%qFaE-uQLz=Up0DDt!HUc{MKJr*H*Zz7sRpJG~&zWfRDP*8O#C0nzF>ThvO&NeFDm z1~XG`sdFCRK#h=%>tFAfLX;T#h2Gcw--W=RtHNp^nfGWnHkxAEY6kqt$cd@D2gQYr zQm)f0MSvh-T{V}|`?XKUz@_YYGDI$#xqpE0HV<)Q0@n~tEMaT>kV}(cbJV`=Gg2C^ z?GP-?(9=WLNe{2MMXx113G$j-lFzOz6TW)m)ehajA<#!43(VTS^<2#`E380E#SDig z&(vUHMCt@Gywg2@!2OrUhhKYsDWzxLssv7|K0D_Pfx~QuEg9Ds0Ae0Tt6G2AfAq88 zm;fNgfL*9e_rfFpDaEf<@o5P<+&ql+1vY#S-0goATS}IN<px~IyriwUTGQxseVw^% z5Rv%N>YVD=KNSQBCjK-<<6Ny5UiBjMK%V~6{v}IMLi-oX)L&Zd|6d%MbU=5~zyM=- z!?Et0p*Y`++o1V&>nBA8`}VlyLfe@mz(-&?qsC+*MK~F|VQObBKcy~uHJOH0NGg3P z=PXFR{c~i#5Te}S%%<yqv%WQOm2JJg;C!pM{<IX8!GR$AaYs)vt9#A{3$u#pGMChz z#&K9U)u0nj;lQe4VEZE0v-_n?$*5z7j#>G`53dYnqLTWeUO|M7DUEgS89tpDd;dTO z=1vriop=xr;G3D7h&vR&ZYI9j9E2%E-*!54_w*q8-sfk0aWhj0-<Ri3+@4CDpwn*^ zP4m0FK2R`8t2S}r1#>S5UM%J9WqY#blt@mvM%ZRO*z3NH?2l;GyxUhTnxPWqg<Yqc z3?s66dSh?7BQ!xY>zyzRoNX`BC_2aQl8CT|-ex}{0loN*S6!v(bEh3RWVBPSkT4BG zdPscW-go%y^i!etlI%BHpV2gDcy;~La0ySv+S;(pXB|S5q-K#CrN`J2bHom)nP4?C z!mjvvasTA#MGgaUG{`x3Qra|QuZUQC?P5~*0*?5?r7xsAEs&ZuaPfp8GzbyLts>@M zAGoqweil^!J}CH1_B<7{uv{-^(*xlfBJvvPYI%;2#AewA-&@mz;wwgOfSD|4rI#u5 z&4VWP_5Z+?tGf@Grrpe5`A=BtJ(3_ebq^C~YTqOC6L{2Si(~b}^zgI@g_qa(_D6NT zL$E@w{x1@uZE9$$z)WW3^)%K_RNHRn=^yb$3DmwyEMVd^4f^WRRsR)B*!yfdMSAmQ zKj3BWw0{qkIUPsE8a5*UZlEf9@%{&rB41)qx7b*_q-STx2FEeX6psR1#phSSgzObS zTzpB0^@9o4L7$#pO2sZ8^vR}!=#S01k1ITTb!>|hQ^4H4?kozdrGtK-zkL`Gokgzp z*J|SOsfwqqU!Dwd$`QaDsSPe`)OUaSdTi_0BaZm(KO$oEDttvTW*=G6&%{+Eh#ob; zQ2f=DYH*uvv;L5E%D&zk58Mb+T^^*E%?&q*qsrejj61$*ZzGWtE6ChukT*e(wh?%T z=%AYpMDq)B!u1vs0ucq6j$b}nTeKQ+^cY34+`;HF0P<gFrHSh15L3Dj7L58myR6n* zQJaM>BcI++HO)H1wY1;S1%0GI=+coNyz|#CZFrtSNdms?G*9N86k=ANVrJwsVb?zX zdF9PJcfiGZL0domYAKi9H-2g$-E4vdxvFnHulEk9Jza_m+8KRc_H?x$r33%>0PnfS zf2iv_UU+>{5RAmJO{_R%SrS?PId=&UCqk{0Y?3$HHkJ?I*DlI@*n3t=q?fESu5|S_ zTK$|R1JW}!?6|@G{q+0x{JKf!nBu8nSCvcI<8fQI+u3x)<i*XdPh(1p%-`L>KHxMx zh=(OTO~HO`7PYPM9HfZn(_xE(EbjR~*2gg)3imoNgjP-6cSjxy`!Pe5uSbNSrO5?G z_*P70jUtd-*a`_asycm*4Y)~O+M#pYKQ3;(nfH(@GlJ<l#IASZUWsNsOReyT!Gnc4 zK$#@I8Q;E!mc`6ix2pj7CdiCd_menX)ak*6#ba$EjNrQLE4Wg0;y<xh?vl>|vbOt2 zWFJ_0@SG<BBk<-NiHVSoCya??V}|a)-dLc@gP(ssFeIMaNdKb*BD3CVQy+2`{(DNv zN53IqEU{rJ!cVQS&`Rww4qPp`!US3=#t3F%Lr>arJ5KLYo$VRVKcNSg?+BvCfL4E4 zfYEHnN4OF3+}i$~-S3>5{nkVl_-hV`fD02rQON0xR+~M}jV3o8?|$yPtbE@9o|fz7 z2`IgS>$<T>+R{{-b4k6N-sP-wVB$)d-al8{L_|TXSn%;>cJTs(*<y?7bh_YAQUW9K zOW=wvaWD~FPUg&ine2gXu}V^VFTMGC@W_Gf9~=^i7@c?A*Vpy(5x?(b(z(5N9E9Q# zv-m1=B(1V^vtA#ZT)&Dd(q}h8ND2vm=z>F<qdHPh?~vz9f;7o>#B$$SN1Pr%CMQMc z@m1msR}{jFY2n@BKKG0v7jfqMyn%WD-u>fmqjh?s`M?B11!S9f+=vlh5gX($Ti2-_ z{F+|M#Id47{E|#;wE4-OMy%_cdaUs^w^m>r93|Fj#T2C(h_gBl?kEx&kbaq|;p!S1 zw<x&MWYawgK&7MrM9D$efL^IN@g<@H*-{ge9`!y=mpzt%ZThPJgdJS`p4RzJc3zJY zGjT559hU^be;7{!rP+EcCC!`1Y_|RkIERQ$dQ?bG8*%(1F2CXUjV0fQ2qleVP5)<n z$BKTYFl9pii_I7gfcO6inH2<U+<j+tK^!Ob#$-yn)o^I8!7Yg6R)){f?;qa&VD9{g zRGfVGsy4uUGH^|@B>yy0e&N>#<cpg!2`&Fe&BYWY(t*FyEf6d#0Zm-E3kNa77D!j* zDrD9SOxF3A-^j-~+^03F`?i7N-?~cRdfLinB_QP8Y(W#V6HlX1J+K=W7)!?6R-tTl z5#ee)P(lNRxo^lWk6dS*?JM*vU}d1^9Xk?p?A6MXQbOsCQ-0#r6*GKke^AF6-$K9i z#e<29xr}Uefk(<1<5Vrap_9vwc)sBmqK2*_#p9e3HoqNCWCAmJTr1BimgsvjzfK(G zG(uC)O>UcUg2K96^M)a*6<hIu3@Ddr9Uh7rJL}VkWWCrKg{pUPsK?xSe6sX313Z*q z5n+s{uwhzHWHCKE2+l<?^gsA3=e^7i5h3sh2?GR9^3i<9N$UbWKZTdRFI=kely!4~ zKI$_5^t$+wWEID7e{-ca-xnfWdKm}DPHLRS#PB95%06%w_*F87S%Tka)J*of*(waB z#tWRgLI)aKyY@qED<UdHR27c94>$5KG6KaHOSuxHzL|~}Q25Sen(4zA#y92fOg;B~ z7wfx^jz>LR47Q^g(C6`j5DI5f`aw}tmCHlxne5m{y`cu1qMlMh;L}L)xrW@{dp{hE zP)dT$jnM}SiJ56PONNk{T7QOh$El{)(^q;OyV>t+KQ8uVy>KM*W<@v@3Q>G74x`?m zc%u3pdq6DGYrco8z!I6!)Q!tG{<Um&Ov{0B3g7~Y<v(n4x5o=@-_w4Jf?k0u5O_`7 zugTTJ2IRp61gkrDl63Keuy8Ea5PbM@$JuUg`~^E<TFS82LXI`g^%agFO&7qEaQ)`X zxdNJ`t(p3lI46zaU(A=fLp4-fN^+_nKf+O_q<jQLxPa4ChUofJ799}1diTu+OVV>h z@9JC@1iEFeUz^ncIc=m-u_P0{Z-{<aKL8?FC4)J~6$UxW$S<oI|AluB{6F#NJT*uW zzF!h)|CuM?YJQiHy>eX1#O`#(2mp@{RUcpe*tD2*B|3slpLa_sOq|yD$q$v(-$V}E z4IiYvKKh|#+knaadWSD|yaX*vz?UupDN6`5rC&SZsDYu-L1yesMj`<Zk*p$L)aLSl zQ@<PGcEDMTJoSqgTIneA1%@<DEHQ(LLyCWH>K_e)0v--EGuw%^1RO$@Z_mx1T#x69 z<5N9z1XS<bZ9AK_?;ymHf7O}fuL^kP>EY<dsyKp%k0yqqba3p102u>oXUgq9hKQ}3 zIDDQUK^E|M(-Q~zlSK47kUCdX`gn(PS>Y4l1#N>KgV_UPkv%00^)hCXK&p=gexpdx zyRv~Yu4cOX6vD4*>lG#2Gsosh6+O(5u6bnmoqp*C{}LY{I>lTkeR_Q)uoG~6wW|YR z)OzbJp|@Sk+S=Z>^hEW~QuIIsEde~+n2+->pcw=I*AJ!+oB(AOirAklh#xPF-uIf@ zmioWZb4Rq7`I#!5ZK5sLoiT9yJ-JOO44e`w$ias!{v%NH{qyNmYJ6?eh!^=pg~|4) z)@gld`37Qn@>x~jHsZ#d7^^>Xa0v1@V)n114MUW>+N>bk?tFsumD$DHT#Tsu!d3Un zr+%{H3~9NWQ0LEE+<WylXtidd@d-WLA@{?<#N5FLd7<Q@3i?KDhaOzVLJyJI2=I1` z@)Nmr4qK5~L7$cwP|s`O*n>T`_uc=r2!8Tbz;SBgP>nWSw1l=F9sIt%Af^Ea`lwm_ z*kM*62Epm7shV@<r<V%mZGtN?aO<Xz2_#SbsqgOw!7=b|R}u1ii=+t>aKNqIR$(mf z(DmMR)$SrdUOAd+Ni?q4`XX@{9KnqwUZhrSqs*(xdzW6tI-GE-wxFolsy-yVj7WF+ zq01HZ0102ZOns&Sh&38ti=`78spp;Km(%GGXMQl$_xU&fcH(Hu{0rNrJ>}RV@5bKV zXz7>^AV(hgj3?Uh>38mg7Qi`3KOJ0IvAlhP)?eaQntoFz@chGjQtfMy*-jm*M&4p^ z$C2fjMK47hwI+5Ws=J^iqde+u{<(yo3EzJ8IL3#?4Hjd!w40`Gz`Ds@Bwfs<_XfL` z1$|XlGhN+3oYtL}0>XjBv%~JM-9w+ZKmT!<f`Nr`Msd`0ASbbWboeAVgv<|S(`e(Y z@T)(s2b7P_6GU@g+?A690}fo$8>mLetKxsbhLBSjI753_BK$%MjlUkXM>@8jrO^-E z(n+`hl8sCcMXG4`0hf-zFQ(kor?aFfmM&_C5b#J-=(F>R{2gkoeG<vwAa;>h!G>H~ zwGziYxDEL+aF?bh2t4L=+qmtG$#L9Ft*Qc4PknF#Q3nI%4nIE;)i5eZj5}&Xt3ua^ zf0g4?V7_{3S+P3PHbaHN2@l<-kb-qyIY)Sd3GZLbo+6J+a#rqqLcEP3^=UX-{kcJ3 zJ=c1F@0ErlfTb4L^(*O-o+$$}K_c6>;-23n#Mz!HPnqF(&egh;fLxOMcvJS8gncOV zro{CoP2U}mRp9+A&RgRs7uk;|NzGYZ@e+T_n`^1NY>GdlGIDBiEd?<6h$6dj|Ix!= z9X!8N86zZ)qp6d_Je$sgQsk;)`y77b=4ZNNNmNMynxxUXT`d;Q?3?<CYQ#&J8%~0s z?7}R65LqF*wfvy?HMdzU!$P{-3wjV7_`CED%07iCXXjU3W|%?$ZC5ccMKah$)PU`& z!bOOfpJMm*shvjbpFVW}HY@cbMQAFSr;GwBreCC!Y4ln&)DY~cI%vHP&kjc1(+8SQ zlIe&i;2Nq($uDI#4GV?x8^io1eQu|<J_#%FfmUH`davg4CuGRKyXKwq0epV|KZB5T z+Te#j%r@Sy51~YfM-ahe;wT<;yY27+vP?SH&)aE=&#nt5gbw;AvOxZfpGD7u0ZS0- z0iQ?R2l^^U>g=h4g#mNIW{-$ZXs6C9yd1XYeD!wppynaG2NkuCE<rj_X2p4%!=K9l z>|=P*sDm3PC2>o6M@0Qy@)bY3d*AFyvxN--H2!9UgGRc^Nqn%@F&^O9pab+*(Oq`Z z=YE|;m6P|XT8fooNS?Gq)`;FJ9&DEI?I6n92h-MqumaAMS=slD;eyy?PVkz_`er36 z7za%r3wrW<kcO6ilfwHm=^4Jx#Z*%j8!KX}&rW<5ASZy>KYmHC15W&sSMkQ?gG-yp zRUFZW^2o2Q8{(+Q9&>qpJ>&A>u;Syt)h1*##>B$TY?l9FUSfeb@RTpU6`i-n+c(|! zC1DpEJ}2=)u}|vB$dvl)w4U(99_1%c4IAQ&0g+(+=|>2ALJ9<6x5$MYns<s~V*9j7 z$B?hyKSAfse?jLa5m`gXH~lP&)`Nx!1qS%cx;3Uz>tntaJFK(+i|(~y`8Ulh<f;fL zc&9#wrWyb1MUBoiPK=yB63Ykz+$Ut{2^$fb5K)x4D{s+!hP$?Xjl@p%<2#kz_#2d| zka6(%KEgLX=3$JD!EtX)Iv{h9seJkFukJdXrHwO!(;wMzVBd;#xPmHEo))-_G)ryo zC*-6aiEiWyLTd3G<HLVxC78}*XnvBSUfq-u8F-eVf0Nn#ZrA4}Y2Qf~!X5BQ>RaN? zscbRE&SSLqJN2k#D+GJ{GlQ*~7ASIl_jX?6CHJl5`ela)`oJ}L`f#?b&O;zPi9YJ- zF_BlgklnCz7QDcU!JL`2{a};Ts!9C*g)h%TYwv6vKBU`#jQm0hvBW|(`r4GM3W88y zis*r^t$l_#yg{^nHY|WKY*=f$53{<mtqZ<i)r+8x(}Ch{fwgm;hzib7h#iMIsz%G1 zwfu}1h1JeDFW?6_rp>ZnA4V%V2oa=9MyVUW;BWBdg#8Jpwe(UF#=FGTJIq=0yaE#R z?8KKv=YK@d>e1AFpph{|X@(4~PlIq=6)UX7V`T_I_cddgxtg~gS#yc31Ul~g_Sz$9 z10JEzU(r%D_8;sA?7y+k?#buRdJ*m~OBNo|o%~j_W_k*BJcnt<#{}BL#5u`co&B=$ zHPTK=xwqfwuhmYM&eg_>7JJrg(_>HS+=QOWgXB?YuIs2M6FxT$*tQ3HnSP^M1GD>w z5B6t!v*233-C|XZFkM6FP^Qi)Fe!P#{#6=S8qC&eLX}ZcphY}e0;thrCZ|8%$*4O^ z(?i|(_Io^P7hHd^FN&1Sa3GFm`SrHNI?92e&*_$|hz4y8f7Ve}GG&AzDTu!DyCAT_ zl2X(B3_K{syOt4LLK$i!gdiV32BI_K%mb!%!Ex}`OAQNqO?0fRSjMsx?cQH5{HFdt zL9=Lf&c%)`R29UX5PcZ+i!Y+&lMKfa8zzDF2xrUwgKlm>cc~Vo%dx`t5PDzBu0~t{ zWMNTN>ZVQWEC1MN?hsej%~Qhf6%c1G;D)C-Ww3y^Vjiy$b-g&_{FJ9+#0IK)Giv`_ z?Ml9wF%Q8$ZAT@Sy>|7+8DTnb4Df45GutM1=BkaztMdDl?w0xr%)B~AG-2TdN#!46 zO~3~)Y{o{{<rC{#ox7a_i>VpR!H%>=G7<y9H97<xXsLkJW9U?F%8lm8JMS+{M+I#l zO(D4913)P(hlg64#J<u6i1l`pYx&|*Z#D}}V0l4;1ZDtT0qj|?mDA8?;$k=H!{hzE zoAwa-;l-a<Tb@o-GP<gPk~Y+Us8epwoTbTRqW8>BVxMojh29TqI@sv(T~>yF!*q6$ zpP8S~gp&4jo!Pqe{d~@&KO>V_qPQ?q8p-001$D7!HH|SY^+>6Y9_$V{c(eMD=1>l^ zG1{qLde1%#r8637iE^K{GWGwCPE^S^#D)ouh0Y_3bH|8_d4k|2jT9&w`FYku4vY+k zaiQrTbTU5ym{m2W`^$2g#gcb%6$@j*bZo$x>%74P<4oOD_0e(5TjXE{P=zYn!h$k) z^v<JF*F_fMAHRK|XRAZ5CE%8}qw|uELo7XU!eA3j^r0Hg(kqt8VP+854ti*>AmTkF z`pun}tAha(^KakaUaqPGbijTFxEQyD^<{}@v=IK0W)UG@9Dz#4J|5A{=Gh6O&T-%z z{&GX)nu*HchGw0u`a<9%4vK2#_UZ)zA7(=M(_^U2gt<jwm-CYbnE0Gf6ZA})S_<_B z7fxDD%&#KnrZ$Bt%c%wQx8HJrHyu7WO4@~ejGxx9a5bwqYC&DrS$&X0o45Ks>L}|X z1nn8_%GbntGwR7M7vB!!2I-H?>Z8hQ24vMT!T5UWuyJn4GRYYlI0^iPGGcDCR&tR; zaAtF)2Z-HWYi<k^X#Dbd7nt1!HgkyYPW=^6UOtThBY2FHn2(&Gd0sF~@i-rxExAsT z1O*(Z>tqO^XkaE=D_=6bRnZ^aDdBrQfB_OIR%@Hxs`N@fS~4|89N7|e#}w;<@Lv60 zuswE82y!6+mu=J2yZyspDRo4-XyI~fsN-Lo@7F`@S^{fn<HzA}zruS!33Y)RJ=mjs z8TqaO!VB~QPUDq<6lZ51Vt4IYGD?bcvBaC5{W)Y7gX*U_n!jGsL#@MW+a7bL+^PD@ z`i>TKVt$G?hAETA<ppaVIRLJU<B9Q+MuG%p)IFI8MBVYjQC64HZU>4X|NCKf*K2hG z%suIlP7{&_f%4X~SLM0DUus*CjRLQM7iu&&x8H50?1LNbN|WZOqh2C^@C{%!oav_z zYy*k&`?6olvo5!VvY{I;D?ny6lf!*9FJJ``S@#!KKwhQhcr+-RgeM+lH_w|gdiGrf zd4P-oXJI$dSp61F47v3CgCGWC_HBjC_Dx2<H{7s;=qC-O*enAH;oejhj2b@Ab)T(s zuKT<^_=C%Xmflp5dZxx$Q9}!9MyweGGoi$}t#`JJdDXUt{eg5l<Ku`hSbFuJsP&sl z=;MPU9>DYrAOEbm?^Wdbx^|^3>eaQ6F^RT%N{h;`38zU$37Wc|J~lFp1MG0BIv0WF z35Yk{1RM<jY!!U1>&l3QC7V>ZT#zz1ur~l{-<%OuK+sc8C=mt386<6x@ElG20Bd6r z&IvxK^D(yI@TttE*E{zdud78frcQ@zkek!hRUm@JjLcen6?i)hcQ0iZ<A|q&9g)}j z-@ESp)eI2C??clJgk&rRLgSVGX9$%#o<{>Xa2^joT&SVBYX>)Mjr#pm;ZOqw%0#X9 zB%LtodlZLqPSej04Y*y5$e}-{!kqZ27Tt8^6Jiy0FcY*&h@&kJiQcIa1)FcYK+BZY z%UhSg_1iI08%YY8+z1RHkch5|E+?syJ@u?mb(%GnsL(7ed>l*3jU4&ofp)Fddw8;C zeOwDX+%IHX_D8<bwvOG{`W8JLx~xgUqN=kzGsi#!e#!&dq9U+$vgRw>@%zir5_dUl znJ>_xgf4j<D!LjbdK?T!;ENF*W-I2STkO^J)Wt=TT&WDREmd<9>(Qj<s4!XWz$`V7 zwXMRy9FWJR=v&%%N#!i`2eLYX-`hwY4@Xt<%Qkv<7FTWQBEVxmt_F3_v86K^=Po+| zE1NS8QjA5ry2f?O!2&?V@!~_haNxoQ4VY`tgT_ZPAg4+1MPE#&?fnl5RrtKz=w%#u zMKw+OB(gZS^ob2ieD(FrN(?(_6D1Bd4`JZz7Ig62Ey+gf34-Hh%$~a!0hNro3?Vq_ zz2y=%#Ued0W9?mV*$kW)8}B(;d8QO|#HL@^6-+#$_G%pr<42b{v+-g5j2I>R0q1gr zYKw>@VF(v$JSYX!sJ&905&^cdvDo`~55v2rH_V>iI$zC9qFQ|baN+G_M2B&*Dqhjg zeVO!l5oP(jrHM?CEM6JY7Y!-4AVvU-kqMeAS3yNQyu4%qdZyFs<q9tT{4_{68B~AO ze3|n*>SagaFk&pSaZ99~XG3<QK6@590472sA54CcC++O_hP({TC6;<cA4Bg#H6hrE zS?c}F@#k9&9c%d0R!A!nN?u1rEVvd<Le-u<hZ#S?#?i@F5HY<txvbA&viq*<sI<TI zxwv3n&TWx>z<gTdd*bl2UT%*a{fXq8s+c(p4(zQ4$FEqj`l+!GT-MX3?+JmnhE~{H z^d390vN>N%+J3+GOJ;AJ0R+~UaO;K9-v4nt*qKMaIr0_c<-()mS69O>1GB=&>HcK( zC2Gf0C*Lv}h7uQie&y`t-OMmdHK)eAt=|nRvK}8kONej&a&l?H!JUuJRH4Ou57uy` zJl9fa0U)b^!Z@pcoe;~Z5xwQ<<{<V<(kEfV^A=1_2OOafXE*fd;G)Py(#AEfTk8z4 z8kbsZmNo6&7?uqL>F1sMg&KP=Q7{ypAWA9gdD8Q1iL_ICxs|pdkc&Iqx#hU|reaPn ztNb@Go7H>GX)BI0dRHoS$v8ebxYLdt?iO?y#b;LzaMFI$4acJ+&)$avWzxvVV(f{5 zR!bZzCI`w)Jca-WgG*O$Hq27PhunT+;4a_%OFlCEr&{9TIx$i|Or$pqBiC-x11yuo zsB?IM`pCOGij*#Zf9Oe1`PyUEPI#y|oiw(Ke@Ej!cWB(%7y{M75!LvM9A^8@yk!JG z7H;bLzP5xo4t21=n)%9)LRkLI1;~GL?2vPtXziwg&9p_Fw|4tfJqzHoZHgohUZLOs z209OMwEzA6o$q}xsAdhGpLJR@YqjvnsK|)_b!_}s$MbMYNlGZ=^?R3g;l7*beUfFM zJd``X8~^>w?6^#}B?dl7ylKJ+%T$SQsnb?J89!$y9E#LH+f(7H1A*L^=N0u@Sx;!i zE85~f3N!gT8MF)|A+D&OovQuGeV6UJj)H0qsN?`JZ(V&PdN_4V6(SpUB`fBcxU8;l zz8?QbC&*eAM&}I6;)n@2FJLCN@Wb66PXGk_oA0*ve>l6>!Ld{(Pp1aC#QoRd_#fI{ z|33btA_NLjtJX)AX}=(sTQtwBANJV2D5l5g494XvzS$gQS*tUVfO>D6No0|yZYr*@ zq7I-MGpJ$Ael3H0GuIl9@`4G=+Xujt-~wIzH=g^iF@LoO0Q{9>0(BlEBe5W0f<^uL z)yorwfRf8}6lndiibxuU<l-SEj%d1Lr3oMgQ2OQvFGc<JyzqvGDHt@7+cv9nR6w^5 z;Ef2LNnC;+2lvgtqXUX`qs^cNPs9)m--uNwK|djm-*+xt_|^6ERt)yPAbz<2hOE~A z3o^8GdbRw8sfdyqD#&vY0_jEU=Bjgwoq%#ExOHl>Ad=Wvz*(9;3QACA5gz8l_+Tl< zI`fv$gqRUl8u+i)Jl`1>13d$!20*jJ`<~h!A;(*SB1%JrHGVTirgU(K6l)G}`O|rJ z&My&|x!1EnBS#cB6Pf8sGC&8KCa6iiSYG%SWpJoZn%{=6>TaLs{2}?>+{K|6bN}h; zv7uFnq7RCvwPtPTDKcNKn6YCh+?;S9X<Wzw3sCQ)p#WFf$L96=&7MHwWYhS4g#BM9 zT+IH}1<H)x2=&|oWj=fc^Yx3YB@m3~(4hn2k1wZ?kk&&;+9ul9N(whH#K00rlk9y` z!^{KlU!!#1nGQWUP3rR7zZ+)v)b`5jG~?j~JY<G1%V*zuDa7Rk5m}%Xb0Q;1f?T>t zYM;snbbv#>pYrcb&kwfOj6m;dl04ex=!I`^0uqLG$<lcuzDNf?xaWFI0hHD=uhcOm zR-oXLCLegvc?PLr_8(hxxI$&#x$xd7?8e(~_aXQUxcM4?P9|b?c%asY4%8p&+%css zpYHgQ;pVOUs`3XQaJz7WGy3N-@OM%+wiPO?3yf%-l7z0z$bv1~VSkXsSjGq>MCBpM zY<&kb1@Mo;@0wypI&A<kVh9GEHC}gL+<ts6SHS8m4o0m>=qa*CmSS7BC$K9R?*23I zEgW&7U=+Zo)T!UmK4z-{0UheV);WnW^Mf}iNSooP6&U5^o{&O9=qXu`X_qmucY2JS zqXOEZW^=os;2V#~KOpJ@8+0f@xD6)l7ZjX6Y5OS05(emC!xzsFxK(Ir+TAN|$Cb)% zVXm!_Y^a)kY#eLnP@;VC-w#S)R__?>Hq_q{jkXCXTL2_?+F}7R{SAs5D?q&rd$aiI z2~<hE*_qv)$4XOTXXhVp1YCL{Ophv>v{qb7a$jBDa#MEip#wpW>ghqnf|(fD(R$l^ zAEjNLt!{vp9?%iD+~o2PywzB@$1@U`z|;q4v~ftOckG*CPFv8~oLwCJ1W{ywLyGpD zLP`gpR=-V5qqRg^JPrcktY3wEa&OUrh`m9tQxGv0GK?(6_4;!;%b+f^?`mpjo;bqL z#vzdI=<aZXx}w+vv`{UTfXncaGSr<{fP6kxbvTy}ODJBkoF&!vGqVECIZst^r2{z% zxf}wAp5>xhvHY9V!bLpaWHtjZlkFIU{CR1MOdu8XusG?PGvDw5#8i`l>A5#LCaDLp zj5>6OtkLL{!Sl-N1{^F-d4(r)0uidqnMbtxCON6JI4KL7UjJyF6Qcd63PZl7STzty zTf~F;4Hv`t`V!5Hu50x!$Lg$(KUhI({%)-AbX>0I1;XL)n(pJkc=j+8SUpqlrcy>3 zivvpn*-Sv&e9oxb!IcvX3A{4iMhqdc^&*9ZV~mY{j`1CQ7e0~A0FSdAxb}}t@O{^s z)5zv`(xW~1f08Y9wy%&y4ybGf^~uZpc#93#A-&3H`hTE3YVe{k_rNMJQ~3M2WDib@ zR3N}B$IVuum09#IR{s`VPjEiLOfE+h8R2S9fo`+~kOXJ}N&Apq3CP+7Epr}a&-dIz zd#RlUxUQxhWG#^kcmP|I%}1Cx4^xdLbPe7-lJj)Aa0!6`1@m4Q$Y)W4YUsNiMptT? z@N0gJ)g5c^1p)hC(avWS>u{)q7Zhhv1nHA#-@*0xkkDn}rV^c;ZEH>9eTW$xaA>+F z<sVO5M7{S+CRnhB$Ys<pz*QwZd+D~uo%|Xoki`}(O~|}5h%8(pkpM^5`^<yz9R;A` zyqLM{Cc{um|Cd<vVW4Bb5Y9r<|N6oBu76+kn<EH1G_jU_AB^x!sIjRLfg+3fCS45s zS(IP3O+p)oA@=XVoFVF=Dh$DkG-~pnZA{2@*Vr0Gt?)}Ktl$fB3&7|1t+w!Ru!9xe zia>h^6!`2Hdi;Ffio#L^cj7BD#X12~eIBH*Wz$nmz14B(MgmzlJ~&9?a-zGKA`1o+ zow!6g*f9kM&L*gIf7un;;tN9)DYJU4aL6TJ6UyW4*I*2Ux4y@dM-HekfaT>q0(q{h zQA#Z90}|=?8kPMSK0Csi-i5dWqT+}_zyvQF->1~S%a#$>&3~|EwH?Xc`?;yNBp<8+ z+P{I6NFpzgd$WkzO}4(gW%Q*Z43b&@Z2;Pl8+89%`>+uBeGzUYlF=R-gCXELHfid1 z>gEbnbkzwqqHc4*t0bq7G={n+G+kP*vhT&{Lz=xMaVI?j?ZQbt#W0%G@s?&<SLM$Q zR<?dHUBo!agCg9-IX75;ba|t0Vhx$KJWe&WBa3TWedE0<id|i9Ta~7N@>%mHT$;Bs z9!`r`HfBI4po|N)zY8%1byyrVL9%sE^dQM}=N}sMIw%vVti8>u9k~MjHOO7RvO)-c z!xNnaP}N@Gy-=n+aT2*YH9^WDWq})`c}uJ3{q6(5GEWH3!sTgRW}()3H;{f1S%KRp ze%PKTdCP%h5>GpffftWca4vwuR|_m0B0gJ~N3Bl3TC6``R|iJa&CG@u3wksM<e2;p z`Zm{b|FFPmv4JQ1-VDjtjVp0jwXI?|>194b6fp^VaW%zbs;1XZ25`eEAWUSN@30^^ zyn!j>q+r1K!YSaN^o7}aM}$C(@F^0ED0l(_O{KO)#3Qc={2K=Ipt)MDmdV>PRCW#y zT|TVTfk#ixRuK6=_{#J$CAQ(v($JHd(1erMG^%~zUB3G1jqJ2n6^39gGQo5n#9)B} z1bf-TLCcz+ilY|aUjc&9-mkwBR6di2%aX$2Ey54>wrmvZAlnq$VYKD??nDqtdyAw{ ze?<5;KfBetrPMF&bO7x<a^VW{y=E)3T=Po)WlKQx;ZC|KYlS$@aa})2Lel79nT1z@ zNx6^a5=-Ceg!9j7N`b}>(ML3^`Vf9S;fuLwy}z)+94&_u@TeDB-&D4H@6tm&K*>Zx zdl{*$`VBEjbMN1I{$X#2CT6qsXw&hM+9Zqh#hc5;Sc;};eR$OjHE?aSKJ-`$vtP!7 z8mRWI(3nG&H8^OFrL$)5YSF$i4hV2V9=G(qt8`qd6SRoX-1I?i9qCrU0;S?aG-k77 zA-?ixJutRaGq)oSCL{x)_cT4_%hmDOY~>Bm#8n9xTFQBMPpS+9KVdmJgLvm4HvpI? zox!2lmkJli5PXs5Lr)nRL-uy9N06;d{`vTE#OpL$alIS{$=M8gx0O0u&c*<DWB_`~ zqiK!j6ebX;BJd2+6Qy=wLA{xjFtl~oA^$!9C9trHWCZhooc+5;A0O=%2G^5s)(sg* z%=cQAS|x}Q3kGh%5a3bV-I`T8Yz7XDe2!O)D4}zs$Nyw=zQ~dexx}I##zpoYOZhW) z82T!Y4%1D%g319b_ow^|%KR}6eX53htlhfuZ8>~%dsDBd{z$D&TD)I|?z|aN`U!E3 zcrKz#Yy;Z{$3ov@DCkBX*j7a`Tz|B|V4Lt26jLel?0g{UWyI6|aZ(5MAEW6)eKq|1 z4BqXy&SSmGxW4h&`%c%bG4Nv=Z|U!+gI8FVJU0Tm9|Y$BIh;Rsq4rLUhjDj=EJQiN z*3wC51`*_W=I&g_jMMEWeZj+Nf^@DUiQmvo*Pk6p5dNDk84$z2uGuy3AgA}~h1*Vz zLxi{Q^l;@|pzRmT;)o`<y7ix3iIrS(q%5Z;fI*pSpQ^Lx%Tbam*TPMlzx<j7B|i12 zde1mFsQ8gDPWrjuWrweS<};L=7{gY{4LH>IIQyc*BzCBbW`A3qHb4&QbP29gk*W}d z4-fXAdMa}J^Hbqg?_*Au2E$9Pk&f-L8wdQgD4NEzAp50xgRI>B$N!_bH;;$%d;iC; zduA~9u@qS{v``WyAu(eqS`kVmv=W7iY%#Y~L`AF0HkHa66;WBHMS8WNY}ttt#!~h% zbN`N4ecqq%=llIVet-P_`u<nuy3c*?bFOo3=en+^ca`-u<2yV-YUir9i#IOj_Gb2G zKbWwbw=yd$b^A22T;rE|#n4Vmk$j0HrLnUp32l4XHr*Iezy3B>07XyYb@14O#X11r zMn(2s6%7pZoJ~6Q{87{_*hT^&T$6bP_rR}3$T9r%+I^lKVRXbkxZUPaFc<RKBn!>B z{v=d?iWk;+=<&tv!qmz5!NvnJsL|F}tphDd_K^Nn&RGtYA^gTNad6zzdtMBoC~!u4 zB!QDHI^S^m<r2T}!LqlnA^vID<W3i|QBc^4l#;C8g4rZ|`qGDI#&^K(v1Z;vyiizc zJ1PA0E7l5-N<QvDt}>lM(5z?>|8@i@;g<_@{kKk!m(jq&Blp<oyRYs`O;TNZD_YY4 zR|t5Vv3`a4l6{sFvLyL0`5!fI)&pmMn4>Z7H}($NQDw)<-Nez8z8bu5KsTSSA<J*l z_GO?@vU3`KUd&}xbdb-w)O8qLWYoqa;ST;<m+ecfy#MJ-pwq$cWAy+|rlTf=4#h4m z_Yv#H+jaX;+131LE34ZqUf};2M$3>IR?t{R+>POEqQDQn0p;x^%duUD3{J7J$0Ta1 z12vml_MbXnfWIJdCbYV_3;IO#<%-V0@!Y`6g0p+TVa%yghfhQ%D!LnYR!%;O;E3o7 zM?X=~K0lp%NgDT@%lS<l_>L8;r2qb~%jxD*z9gKBdxHYT%+W8Sa*inH^4F#*%^1x8 z>$YR-ricWeJ$QFC<Hvhpl3U0!W`6he9ol;?4f@RaD1@WV?%Q|Pd*`YvUI{v~0*21S zw?5fTlNeq{f;u_jPu>vuWCyoRG*;K2pR8*+2W!{)J#Y2b{t<CSpz6Mvj=Ue?`Dq&k zs9T8kUz?i+>l?iaSaM@-8u(@vW90{Dq2Dhh^#kKICJNiG=RJOT^1tbEh1kUJyu@9m zK(BsWe@$6+i7cH<bPN%SfCG4nM_7HNhlGfVj;>sIF!ig!F=@N47+o6QHliAypfdV8 zOVr&klv2`FcF9n3qa#KS&!AG(Pzr$sC$4%GvsqyA*|5!WE)4#xX8)xhl2d9rC>)fz znGvpSKbRV#YJB^u;;d6Z8&J^uN5Sa%Ghpty3{w}5O2iMNkf;@<eWM!cxA`LSr(4TQ zcAq+@*_2sx<I}k*O$W<2L5#IqlQcPj!9TOhq;IM@rQv$a;zxEmP-lTZZBh%kcNy4` zp!bHi<Wc8pEV`IsPi9Wo?|x}(CLFzOcBT+#2USlQe#O36lN|c8=W^ef(hb6-uVQ*D z57#<qMn!nF86G(`erP)cJ^t95b5~Zc5QCLf8}CI?VT<XB+mQn;+sKe4w1wtpLTSi& zU$bW|LN@v>eQ#3OqpqJDC%HltRikD+D7|UFu`O#L3xiLjMbw7pIuG9NXE;D~VT{{u zp6)}H{Ju2a3uaf(-8J8+6s9SB(DBkxY-|>qW}*}Bx!X<{mtUH8kDqEoUJyF<EOm2( z{tAq<S?J4hf$!E64z(iFw`Bmw>}3BBBIwuFo<kUFmuB>m!>g&lfwx)?^VY1qv3xq_ z=-_kuCB4vqtKc3&2-vLOZ|jfqsoQBBgASt~mamwM7RpEcvhOQ#EGhWAsGS1Pp9kvY z@mXD6>GBc}iKeHVU*S(zoi0_DBvvdteNW6v9XFg#bzr7(Zg`|X00xgjMaWHr_2vuf zU(k4EO#CrRMpzNp9jOcNRXIjzQHIVC$HcVc4QOhk1b0xBB#*flyAk>GP9GJ-t$+Tk zt8a8vXI}QJA6R^hWLI(pD^lF^I9c(-&G&cjGA$7`ZN7KEjk-ohoWp8G1av}$_A~e% zu(CAomebS#AC^v)@wF2anjD*o)3@)n7LyTWC3U`lydzB1u9G59rYngpPBoIjvLEs_ zg*i+gvD9WF@HJ&w{=Ilf$}bGWFyMcGMnvS2(|D6XE%v>q7fuNOsJ8$c$x&kxs2#ag zCr*hzQJF{s_S1c2sU-52?>;FFz<dqWHgwdhTk_dIr7w&NXmG0jJ0IP?Rr>vX!hs4^ zE*8P`g#UWtft<{F@<}V<Xa}ansjpFXHgm#jC3c@g)%JFE1Azl)9hP9SfpdoR;8$i+ zpR&LegVl}|k=T0dhQN#h96sx*qCbG6Se|2q=S4dkQhWM$R?%YJ?&E~`)ArwUN3wN8 z_p+t?l;aFrH)9*}SuZBn5xF}Fx%5P%ALM(l;_hQseB#xn=brJ(J&_)%8Bvz`Hd^yB zy}nf9Rc*)V?w5GTAT^_L6GDU+=C~jG6)qhn3=Nh6P!(w=E+AH=o!VArcRA9H%wOH- zEa@XkPS@Z(gdr)1IcjR6?NRgH>yB{d#!+c+M0y3%#}D=##Aw%7WJGCu!_gLzP|L+; zhkPgewx{tE01v$WZeqd)81u2`nbN<4tZ+RuyK&aRgfp(QA@t|yo`0nC17GK5xj@~Q zW>9>cNdr%QlownPg&O0oD>|QBF27NoUVmZCKUC>@hR3knrm<O{(uE}4(;Ec~5C8_m z8(T~E1tMOxY}m*b1GaB?G?jhYi=x(Fhsxn=7T0`hV!5@B1m=d|UJIztwUV}zmYSU# zXzTEBOXIg~qtpKkA~N!+40cn%$NDY6)b|7#EZ^>Y`-bNRxCUVOoLKO3@O&R23H&>o z#KB!}Eke3#3}DHkt25?`<N6prv~21NSYZ4u-gJ(JDTi~|8|(@OY(=H6fzhIoccsd_ zFJz8(?q%Q9O*-nQFuV^&4vfqz(|bzPzp5>B`I+9@KOD-FHVi3Hd)RfqS(&NB51uG1 z**zd7b%)peMOmj_a2V2ejNhk-Y=9*BEe_{uy?Yi!tVY=2t0u?3*2r2YLXi}+2EL1v z^1h5qgWXQG1PuQ@xv$Oa=+s?kubiFtm34|Tb@$$s*pHfiVfUso3N))#j&d(nB-k#S zXZ|YUmKcd<Q&yDPRiC?`BpMjCP4s#d;l$u~^bXzEk!%_m4(;0?YyegbtUUiv%T@)o zH{)#@cbp&aHvsetoCIz%^R8cHcW~^4BJ%j7%EOnZrwTUGI|hapW8zZ;yDrkePzUBd z2%*6BMfP`51;XzgJcbf<p-x`$UlR?vKQ1YP=(<!V!%R`TgM@D{w2OyZB{Dkeg%+dK zYc>s9*Evj;E%&@y$tWsr`ZiwI^kW;zUHV<UTch%?(h0p%R@9i7Gn?PmH<r7Qd6&<q z#W)Ft%=mBvek2wAl(Z;#;OE<dT(PN4ndiA!(f%WEY4}a#yAc0Kk{+$WJxjOF0+;V? z#eFdW=5xTpEC2k{tD5*Ip~OpAbYmI95)EAFYG#G6!!oMx*b~U#pP;a(Lbnz)TI#ir zO_Yp=1bxHutT!(U<!$gbEX=&b3>edOSiTpvyTlkj_nFIUaMJLap6YbMmh3)28B(|K zU*kTDb8d*(4@0N{l9$Hy#DAQ=5p$PQ!BJx9Aco&iI)vGsP?{?=|L&#!v8_U|_&M?U zLL7oj4OlB<L!%Tw+<TVUGH3aocfhRmHh}g<?(hb1cNC-gDx&ReHN@DDc)HvPMR@Jx zp%8oOcS%aWvxZ&ZnRCtvTqC5|*acfjQoIT~<_pP_LHh1Fuqzx)7>}IKRE4*TiWhjt zRmA;TjbEubp&gusE^K(=C3DEI{q-g?w2g83=gIiMbfq|GkZ2khTeYP%e!M(tm>;_q zs;Kz0u(Fglz?^;L3vhhP3&%A@pt^uz02{RjyT|+%3i-3_pNrD!`ay9I#K*oU=%4Do zwC3z{hkF}UH7;3XWR&F|rqeziIRI&nlAyo*ek*~R4Fvrj-v~4rup``VvXU0uTrQM$ zl%M(7#~V81l7Vx5H#@ct&UnG~i^ijZHYyk_OjkiB2h<P>b%Onh8cUK$%g>goUVvvg zm=UmNt-cy3D{wQwBr*{T%C`oN^rVfvDO;-Mc%s)yg0u_O=k*_@9d}9*Bh=89qyCf3 zX*XS21&rx&s#EmE<=GLVTJ*1F&#gicc!lCJnL}UgnJ57nJ+g3~TPk=_a3yhylOR{& zY%I91ov@ZWnV>_;vS<G499oM7M^buMn1J6bBg1F+_w{yVWE?yEptNQ~oX1p1cuM{x z6?WUZ>j=v1DCns65VL^!-ed*P8%pb!kPjaq$M5`n$^b&BRW*y~`qJ&O;=AhgL#MZZ zr>mI8b+OefURj}&``g2!dpB?-XBuSCmG>Q2abOV1jSpJSU;{!qPZKabVhe5g1xw)E zvCJxvfd0mbgYP$gqRtJ-TmVH^wQLC1`Qxl3jL4h15%G$!oBjgqjykog>(7>Va?j$I z9Z=MoKkfFmPN)lA*-yCF%LnZ5Fvj%yrCSF!)!%e{|A}(^5A}I0XN<VHn;k#Ig0O@O z;yv8n5)~S|T41n<ol(jOE&!++aQ=q|s=9-dJC9@*p7dy(PQL10W>_k1?@7BEu6Ikq z+#1`xfcIjFJFFB*TPP$yT}Fk~^Y2p;4oBP|QQc1OP5#+oxQa6Lp7fZ+%obXq46|Lu z-*)3QY4}M(0cB2i$zyokkZ2ahIBmsly}Fr_@%42|i9UFp*1-LxsI?R^c-yc3Ej23X zX75M2%@-<yW#iU;W7@8>jCgG#jLXEpXJh*13ya7w6rZ#lB(Re}S5jSkEjqgGs`BK| zkC;OMJ_n<33|R_GN|dzz-^fQ;N6rOp^Xa-j{qt(j2Duk?6XOhBpz8;U6AWAY!|dhi zi?VY<8DGG!?B{N?U<iubUc0lp!7kN5Q`gT`2L-XSe#Z-Pi+4Px`}X+W1ojrwaH32G zKJ(g6sdJ(vFlM&I3vTW{47>v7ekQJNtCt|J5x6N}6MI=}ff+)eOy3h%)$tFravt)3 zP;hR$gLqI#7-~?Ti5?ZTUuM9`Qj|yiN*_<{{GzyNRP|H(U4Y~Es+k13d7`5Z#{M4s zXw)xYiz0SvJDoF7$&E|H{s+N1RW%{}z7~o4n2EQr3b>5E)p(bd+9~1R<#$b6p69Oc zpnvL=*E|^!xWh+YCdjvLKx(hlg9TJ)3OwSUUm*8WEmHV5w|muyBFu7f@2e7m_%-el zut)bg4JJOm_w&dc^joWgpic#FE}b2TTN}A6NvHl+1*E5wcDgM^p%T(wu<9$B+(|YX zG#nfm@|~goD2<yN?+)o-n4--5x;nr|6>eYs@lHSDMdhshol%}!$(|>-uhxS!CJDF= zHs4u84=x;}xbt$AgkzRGGe%$=L+V!&HRC~{u#9Gda`lw|nU-#?U3MN05l*j|7u^g+ z0E5mYWy%ZJM|uZv8K`H<9Pzsq19nSY=PtQotj#6L%ki2edF!F!a{)Pm^`>_zZrs%N zbq@k}4p=z78sSF~B|0ZMY`~5JSKS_!>4V0NvA`$S0ryB2Wgu<-i|}x58MA@-&{AAw z{yvrm`qL9K)n#?{S6i&znb52|PF<atq_{Ro?0b$0(28yhY)IPhdmPE^c?z1p7+1k_ zl*MY_jQXgA2F+80YS|-;2O~2vRG){FaXQ7uf6U>3BcW}LFi#-4q@2a#X}C39>A&^c z=&Vy~dvf3L`VWd)WcWym{}z6`nrJ;oswB8OXALe~R+CTA-7&JFBX8bLVLu_aOORh^ zh^kBXHYwu5_?$C0H)9v~yD`gg8nhG&E^*@y%{kXH_rfI#yQE|pP*t1Wpw2KK!u5X2 z$1`dwrl(~uf%8sYr3fA*hW{SE@<nsHP0{Zu$*%BQuF1WR4Apr-^B4u)W#oKqy%%_E zZp3~GjwXJWxxCgkO6dG7Jl#v#3R?a3j9s*Z;BxN^8_clxhb0M+k#>@+_Uzcg|3TMo zXWXKV#C!`&m+BX+=D#GQ;!Aj}zULy4X!T-mPh}-6!h(2u*A7THp5qyog!7V+1w~or zH;+-R-Znb##72SX=B(2a?i?q)xRRB<1WTK|IK(n#leWX(z5pVi7ZwhB42CDE{V-;i zjeTEd0n?^rd=}09#aQmhq{r0-_zH%sU=ZM5r8Ip1k#G}&cA{DwJopj~-1b8riIgM@ zH>y)+rAVDtp<TTws=7*rYkN*$O#|-<!6WI(TlcEQ*Z5h$zO|wEE`+Kx%|xy&X`Bl~ z)u+{5Q?vjs7*s{8wGqVTe)YlD$eJ#<1$BJg(yM*NKP9`Oc;ZjjH*{FnzH`^4Fc0K= z^cE?Qx{fjbxy^ksmHKpuTwD?s2JO!C`iClR!42}wGXCS23UB77i|;i@YWD5<aa$Fs zBm;4HB&<TFpQFlpuT9e_TTwHTpTJ!Aeh$+LZw^AGr}78Rtr7U@sFdMu3&*xCut*v% z#0lImVqBa2`u_C-K39noI_i);@;FqG<7~5M+hg;$m$+)%{k5?jN0~KZ9~)l|iw8wc zV!SdTpcol9kA;t>Bu&U`3V8JjZ}=X*<sXM$8Z7{7qM>TPm5kBxIu*<Hz?L<uc6Gbb zeSh(*k&C4sr;?E$_p$FCvt>2zG7I_ToHSDp5&C*yCjH2nrhQ&8b>epcAyqnY+8|tA zhPHb8dyc?9{G=QS&kNo)Cp}RlK1*XCAh$;fPIb!St+QHV=NJDF|0x?*>LB2MD<Go9 zzvV;pUXrPgQOD0)k4Y(Jbz(5Y`befvhHkob1Ea6m_x29?8UONwxm~#9LKL4lAyILB zA+$${v1~DPFCQ0rQ}DiKs$;+v<75v{2OTr*cWcfegJbmy@4nqqHv50YVVuW)yf%~! zv`9$sJGjiK-uhe0Jz{y*X$7LST;a_npo%iVJmqSCt=ukezR}T$TiM3<$4+D%8L5|9 zs|W^S`d!OtUE7~trMFs9?7Cfgo0q{v`=%{6R$vVAUrshPs=c%D&<1MTwvb}%>6(dv zme~=pPgw5Ne;-THAf+E&8Zdw+|MTx-MFsef_r__{l`iywmx=?rU3EtVr>o@vH_MU0 zdom#R9nEBQX{@u@?U#g%jTclc!&Z@?>VAiQYdjdy=_^>#9vH&E9ZZu4rpLt#JLGTY z2R~|Zv$jE<_c1TSWe>MC@P($Q4(vjX+KLlz<V3-~PV$3V=XS6r(f3Z?;#E9OywB%J z7d}4M?ON%oXu+F!X`~M6({ZbGjHz0ppdi*`aDNs_>)4q?qJ^_ymgOclvcRw8r$5+8 z-K^XwZG*Kxr{@yMYazXZH;P)v!x7;gOFJ@C`E<$pLta&%1$)80FGTD0ppKBdQRvaC z69+<==-yi>n4h|W#FT8y6@k|ft<QX+-+BJ!$cmG}6_HPXqb$mFQRD-Jt=S7u_jLg! z?dQEZ(z_bJAHXp&jR-#DI}#K?hGxMcI3<V!n7AQNtLafad(s}Np2PKy+c#+N()w~Y zw>S47a#VGzbEl-6`=;;Kpdx<WeV|RDgpqcSElk|jY|`opp=lmhA`2l3pzpFGVe|+D zA*bW>Ev60>l{XPIg|&tV6(P%UyJ64svft2dl2<BcV#@x+ih&WUymSB5LwkXg?TANW zN35wu39{f>jmXH$qtGgUCzJ6oPci77OUK-&-K=F7LHiB&182p1xqX#e1veWpd;=^O znlGsFHBlD6DTKEP@(B-wk48`VfqVcR8>zZ&cW|7753^L)q4=`LNpmq+D7m7%jfFn` zwE7oDYTIdrH$Q=v(|`6kF!g|BSz&82(l`rVx-c3wKlmsN&M~w%NfCns=Uz#)^#>(O zK*wjATI5*nFky&`vb(leym&t+bu4wqBtr<9{&AV2OkSCedX>}9cVlV@BBnsD#ne>h zkaWo=ia5}gN)9jaB$NmiX(KF1khK82TllhrgWIoi<$%d2(r>oMO}{Q{Ft`vs&ZwQ4 zWYy`1WSTzd<c!dhuRA(crdW9Tx-=9k#f4ql_oz){p3A_C<jywhPeNw1!RM=IPp(Q{ z5@vNlZR$?oqZW%L;<#bWGoRVe^~-YY7`yPbtvqNEaqp-<&6$o=wwqmv*F%02_@!Mt zL~w>JStFaD?2O)z4O!*%9l&5N$!xf(Z4Go9-WHZf2bHTbpMTO9Q>t{+T}LO%h->n8 z>%>WHNAl97+)&<egSmlAmIaO%=!ozZsXdHW{#oztTm^WhJ@bXDk+KjoL)gWr429kx ze)k#1TnEjO>a563zieb6I*V!yJqx<4{DG4AT2s<&JowM3ZZXIlimo`(Y0o5%8pVA4 z`rs=%9yY1=(omA7a#IR-zdVta<JQ%SG4BT59+&Wc^Va|VyoGiUPoXCGL??(Y&#^U` zsD`(1R%zC)14I-(ru!9fSD9r>qMPrkpjrKoe5iJgi#OYn<Coz(98Ly>houjhCYwUK zymYmoTfllpuq;x<!&TVp+EeO7ulh;Ehox*3rEiqZ7@dD;*l3zv5d|KASMk?DP|A&) z1BqiS`Gu#VMjatZL5zNJ7gt0rOBkl867cTQm-{S<G15{Gyma0(z9>vYIl$WwWNIW? zZe7o>2upkJJDM^u_r=J=>dLffMlv?_56e#q1c^2na=YjfQXA*rdM_fi=5mh2k!wKL zVES(j@o|1bsA7A-xhbwVRd2YT|8)Dy-hVa~oW$Z$({n+O>t}(u0lwPz<PO~II)!<3 z5jEu5oZ{u8ER)qgO@x^Uu$p%#bR7?6yfoj*pwZKXJTGr1(VxmwOj{&c6Hk??ri{oT z%mtLDq_+=a_hmc<HU+QWZQI5W@7KGvntmzrOcg#)nA3hAUpzxXw>)`NOv@5_OM_-Z zNacLEUEalMzVd3*=*s01_zPRi3Ebb3m}e;6@^)uH{v48|J*JoMsV$KeIZ)vFa9{e% zGY5c7_wK1N`IM4-b(EDDc2?>h*W?WIppWyOyLP^uOE+%30UM*`Uj=jE`WRy_2>c`H zz}YD^AHj~gm3oi9kCGOKU-fZ#Yt46zxrFR!#291U{f6Of8;a#sN-qn;6V~Jd?ruNn zlOBj>D;6(~klxxeITa+j0;TBrV+V4N>Wkt<;vqDx5ko0YbMo8M2>3wndFXy?tXmY> z?TOi9%VNOqG5)bhSQ5;^WSpbB=||Z;eIe#jiYE%Hj&DKUc`zv+g4C=4h2Rr~4z;el zuFt_>`t!)ewr>b_#lxH};MoInwB`<G_m+I|{=~IGqbsNc>%rDrpUvf1Ppv%{k>k08 z(*$ZB_}t`zFw;)Bs(Yt3<X-E4HZ{E3oqBKC9B?M32k!rDKAGFAg3+7WCW#}UCrDk$ zTmUDR<4fCCk%9{LE$-VJ9@|J{(J6L=@6sYKOfTIg1~rG{maiJwi&Ds?b1`Q7_!MLk z3qMb17(||UUw_rrCS`6s#=alH7FU8DIqFCEPAyvjN&M%Mt%(?Ze`4V~P=`ZqZ9Azw zgT167v&_U}65&+#xbE9R0+k!&)X^GPFJ&(3e;L!I>LJB&?!rxecXG^SrojDn5iz)& zXtfSFcHxCIHX;zR7VvXXVxVgG?7{nL@=M0P_7k~n<rF=0bG-|U^wBqW-40E5&T%#Q zmM~~wWO739SxapQQ+y77h`7Sn#M&*+Tp{X7^tGR?#Su6PJ|A3GiI8}4tt%IcHza;P zFIhh7{z(RY?Y-a6K-zeD+H~1$kikY0A1X&Y?YOxJiu|Q0V`?Rb{qL6?Y;EwH4q<9j z@EyXD@4oMwR{L=dMQljS)w7tDs=w=4oCm%kBVCs>LOBP1AL&cjdgBeH$L75v?nPL6 ztWK7_1?@c60_ePJeYHDL-Nf@Wy<l0f%G*@HTjL{-vqldxtX`tdg4=(Hpp*G-?OvYk zJu5Ak5V(ordKA5Dx$}TV(7<sa@*i3R`MfM!p3{5@{7%`&QOw=1@A*ZCXR^KxW)!<A zPkESLF#qV+o3}rduCf2-aZie};MCc&roH)g(p5QwYi&PlGJUJGQi-omf{O&tU`LV& zX@4FCHWs@xY#*uaC9&o0CbL#CK*A@?@MuQmK3>z@)qkn`K1jFH6v^#FpO--jws>rI zBjXn<fpoL|xr;u$m9Sey@oPC!&-DRlT>inVRh+t(M(1~Tx}U__-vj;uW?8_n^NI;# zg33t~@Xe>yxUoMsyHa7YDDzD$6<@hji%~QeLMP31KOTN4k?ty)zjXuo|9DQdBlWAo z7p@wKDa(Gum%})}fEi1?Pkb@@P!WWatISP<U!UA3O<&=rD1!UR+kZ;gAV~E#4<0TK z-=!sbNCqO0A3OB8yIf}EP-EP3(X?fHYbdk>J@!=gs^h&})K4~mH*M&Xf-I==y{OIL z!z!NncxuTk!|s&a%CftuH>xgibxq~J9tu7}F-;u1v5|C8VxtV^`F?z5<dMNcdR#S( zUCNI<`H;+!ciSfpJ}u>RpELCpTL2t{^o$k5R*1t<&&@>_H@4;+Mt2!4F}=?>LHb1c zZSjl25t1a>IEyp#bF`WS!g@SjqgJ~OXx%<FIp@@!{wEa4rjQ%=rH(Q$lbO?NnwrXj zV~<m^K0o660t(KdySfj8(v@OHvf!@IEczYicctYT`xbwgZhwWmLkW1PU#ZMiiQKrm zz|Mu|c$rD|H>_7CAKMFQv%SzgSCneC<qptue8S$g9|5I|6}}p5*<Ihad9{T9c-z*9 zFsP!?JxER8rGM*x_j&p4#ZFs)3N(ts{#%a&JwxMO9eyZOQ|hIycz1u38=2lbt=%Sg z#`DeMm?3nAc>M@&{rG;ApfGT%LR+AME;FcAei5q$!<E9&dmt!mi8L&en5#B^=5xEr z`UiqfM!~`)csr^p`G(AHBuXNzB|rprr%y~&Sn(2{Gr}d-MhKjx!LK?}<LrAPsD+4& zhU!rBxWi*C;{#f6Nmni3dUo9LRF?>R)b!i8sEqbcOGV<d98Ugh5nRvl#Ps%3{?)-w zdv;qrf}a^-+h|C?X(2qK;p~{&58~*Ds;+PN(5d}9#te=pJP~I53fEWc0lPt$!K#ze z)!fv<`idsxEZi}-Y-N5PhV;Xx`I`gs_w2G2l=W<Z&s@gVg0fI64E&{R0>5|XXKBr+ zI}q34?4h*AmG=afcNAZ58r|Q%5Q0p~-YaqT=NdrwSY=~l83k5}q?!Ca+UO)N8=t}2 zfbZiO>U6~^MB^FnIinCX!B2k59Qimj<*W#_k0;lkP%W<sUu_#}CjCR8ioGGR5o&q= z3QTUIJusxJ&?w`Y0p2@S7#Jl`i$W2NG&jwo7V98-pZ(G~)xXx|5Z)wqOYDZY!x%?u zaJto3l6laI_rK9f)H-r~`EGK+b#)<DoYl+~=5PzR>OF~?Sy+CCQE{q~y4lE5A^c`f zhZdnWa_!BNI_`o~AsU?9!c`AY|HT_*5^-TY?0Y98d7dE=VoLoYXdq(MnQ}9(!@N)t z=JP$k+%H9)Hd&0tFS1@ySf;AK*oPGET@k*h0D_7x?W*$je@upbjM9PS2}##itFON9 z!hGqrCS*3DwsD}Ur7riH%5Q%q9bY)?rXhpXoPx7yw2S1J^%RGK%~gVl68X6efYM-S zcgzPFWue7CjfCdc)(McKDMy-r$-+uXYq89S8bqhU`!H&N(l3~Z8KrQ45yf*G8kMa{ z99y1<IuyviP7|n|Fe+9VxrS9KtwWK%cbLpDa}h=F#|K&VWVKC4voQ30N{S{QM|}vM ze>v;EHixT5W-k`8dQHAd<0R?Z@<Io{H)whb<1uo!rZOALLZ`$(RVL>Q6GM5a@aulu zE!o34e6?=kKyg<1<lYp|Jvy!AL(AYZ@nwH|vp}yV(@Y&c&})Ou#+HE5j^si{2k~>c zpASos<%G&}4#fAaR^wTLmS-?j1*8_KrR=<0)_K9bx+-wc0<I6=dOtznYX^Olq5PTJ zDtqN)?cp+z^cm%tQ}CsvN_06PXcA^_;Cb(rnr4u22PLSCfvPp_Hvn&B{RX<@)z1f? z&P&og^!=QSP{iqJwXlZsWcCi`BugGBTInQsC|uPKern#|Abqx-09{mIVwtG@4u)<Q zn$h8*w3%lrr>u4*L64}rt0c3{Jln=`FJXFP?8>V1SWQ?m8c7ASiag0Aq_+T?h^3K) z|2++6<VwKbjoqJST!7o==4?V_5ug}sZTK<>A$GbML+1(`?`@30(!@#cYZs+-TI=@e zsK-#Q=keMSuNlH*d414zrT1;$iQ5`*kDVpA^y2&HUtg$Me%vPfp#BD#89r?5#BCe+ zpFdYxpr2FhyhWJK)Q=OsJH2eA>Ax;Bjwq=0XMX<Pb%N$s+Cp^97q;u$orZ$?L-S6# z<{qHjnblEqNm?zVAY*63iR+d>q@erTEX^$fHwtH*7E*Fk=G>Fp_8ZJr&l_JD{saZk z=D^JgUKcQ(PRQL4uI*Ss`qU_RE`;yAgf8_NYxyB|-|#~TY8J2J!aX2K5q#DO4!{Yu z(LVF@<VU;0sgjJTl0n8~0U2fsfvVN(SCLjLXg642*ac3#6oh{%{rKmcMp0`Lxai<m zyMN4>E^zL7P<fRK5y#Mh5O)WoWB{LJmC>D_h;@aP_fVe+bU!=0Oli<J>G7j2=tRZ9 zKe`G-o$u3l1>N`xurp{#mHz<FrTo;I)(dAt?K96%m^-CxQ0h}8f87fS+yOXx?#-Ff zPc{6yukEfm{`<*3wn3X=)y2(Zcm=(#m2r#omt2dO2NSO%ZXZdl&UGPQp95#GnvxVX z2ddWp`b#pw%~gd+<urX$aJ6jFVkJzEWA2>%S;-vOc)W}Rcc@Is0dt@V3mjfCgXOEH zxo$$ZJ%ueiP6rB^$k@$JCiuB?!Q$OP4-8s^OHsatYtP}FCtm}^$h0l$5Mb?Dbp^Y2 ziP>>12-s88iX!)Yh{qy$ycm{lVi7slUN}1C6&Y%OR2Ufr@Du_Tf*m_q1)kAdlse-w z!E-&da~B)l`hwy8o)L{_TXHIYACQ2PTAZCR#s-?4s`e2sx)VujBt&oIPaNK;+7L%7 zzI)x_7)e5MbDLmIvIz8gaW)|}6Z8IE%dzYsImYo|_6<g$@2VSERa<_BbmXV<`4V{& zupG1cBvx1I>#q0v#{)ZM=s#LEu5h$_yh7R2S@PNQvHH>7RZkU<s@S2rSqjZq+nHAy z@!~^jsF(q2!zeGp?Jf*Cd%*?;8hfq(A(W|Xsdtr=&*V`G{F<hXRf})3b|im-o;$v+ z4Pr-%#gdFy7=T%L{~octt;*n2(86%pCC#&KlPc6LXVv!R@KaL`oi=h6`lNCbNr;r3 zy@>ABwfL#qRhM?239;T>s@VJ*AWz<t!kHaPSlnL@Ti&$EJ<)VH<NJ1$`FJK%L9>K) zYa#Tr?#;vbu_g~q&o$6FO`1jQPmOMqp|{&~n^G5(<eWOJ#I!{5f)T;#UW~0P#!p<q z8hm>YvvVRpaFZfU-&vm92Dr{~BI>ddbK-Q<Qr0`HTSyMwP4A_V;e%jl0Q98s80>(^ zFOPnhAv5DGSDMwK-6(s>lemvk`!G84bPQ$xk~(h~XL&wnUg2tUrM?fU883n^o{Bi` zdDrgZSVX(c@q$Vt(sjPvc>0$)%$n{@GP7$8a$U=*H0%E3ab_qsr`dRsknYy`)V#B0 zSLcABL-&L!LKi@6da>!%ElZVoOqI!Z`DM~Te{=T1KSWf`cx34!|0fT_>W2%h&wL@Z z@0x{e(WGoRA?sn`Q?Hv#E#5^i?qWqpnBUK=Wy-=-Qr=@?z1FIjglTEXd=J7G<GdOi zq`_;~Ty0cFRVzTg^0AknO5cT?vMzfRvr?4Z%i-s<>^GtEcu3SPZ(2U}8WfGidJ3G! zCJTNx_oeO@h&<v6)?%Fg)I!_j*)VKwV7_D*Suy=Y**WaxUbW8@HUd)nk+T({Rpr{h zWNCVZ_K}z;>^9Lh2t(&Nqc+{W_)x>PgCsk+&i}pn{%q)Xc@a3ieD(6A)k0U^Rmx*S zpPWL^`k0-vjsa%}5%(?0Rq%4(U9+30=6va!pL4~5K20!j<N|sTA+XxzpFz7dW0`vk zQ#AZC`ACp()$WEa0epxcW9y+OgCFaKKzq4a$sK_LdWRgz-AEW{lEZ;z7G1>a$EV;r z@og;Q%N!0<i4&j4Vz@-hutg#FkZQIh{AM+K71V%>JBzr{+mN$Qu_yi@v5{y?kuQf{ zT5%z_O&FhK4ESe?;7_$qIf{as%#KBHX5u2Pd420gL0oMzCJ~Zh^a$Eb73)LYN<M!g z*3Y7}?z6;$o)%3q4wtNj_Nu4PYhQ5G7dyYQ%2RI<*pB>?u8urXGR_a>PKPLVIjp2a zC&VTaUpA+Q!1Y)Qe}U7UDwSoc7C@%($%WG_s+!^y3so1w@>RF6`3K08#&nbA(KfSH z6oK*XA|>;i?u9u}EDAtdBG%$fLT&S`GhdC3A7vijNBb&hdo`ZPZ%Z6Agdj0!KQ9z> z9P7zM3#Ke|rT!;YRjU4>qlacH^-_5gICs7p%aD?U{&RVT4>Xdl8}+`4yFPCPYUZF= zGoYs`0*NBfFlV>z0}YoJ!GHbPTM9m*)WnZKPq>JH)?l0{*z5(TKG;dilOUdaMi!M* z>E4emr}*_25@id3wwxPh0dSOK*E#%|==Ohj9X4wZ5UHxL!|=2k9^y`h{u8oyy3M>; zy&n;n&TS3mUgfXUcF9xwVKDzf6YC39apQ_n2Hhsg5M}oqj!Dk9G2Px~h+hcCk>YPF zYRT>aT+^&)`ndUFk%4SAS!I#5xd{I9D)v3}{TDA}nsW#Lx4(+_O+)++uDY4ogo>t$ znFbdAz~EQ7Yk&us*Kd5x?iluB##5qGi5pxU+w8++x(~6?Qh5ZYi_#c`e$!6Z9Ucfw zM>u|0#0wLPY_+Sxc*5v1xhMs`qqkk4uwD@(obRm-%nRb8TbSBYzuQ(q=a{b$a{uW< z`M1&B(VaL2yQkz|Wzx-`|N5I00(Cv*tl;yt^0CsW2fS)O9sChFh-=)z(Nl<vGDh^A zD8kIsA*h)xh3(C@%fJ#_&V~wtV)NFRy`HMMiv@Y<kQ%Im)j2VZsaShP0o7ft`!r~K z5w}0d!Mh%}zU`&7=8Iuzp9UJ{(|RYfsGUi&xLg*CtX0VRWv{&iBqVUVZ%u@XIK28w zV#XZme>WDp2cGLsZ#N+FcSK+{PgwrX)H(0a@HEd8JY^#F+pgrzKO|sB!JUA}2ZTEb z|Jv3bQXouD_hE&u3|Gls#Gm&Xr~xj#RHrFx&qM?RRE+}HW-G?kR^F>s<P?cWX&)kH zL$h1M)e<Sg^3ArL)W+eA`98#GhA13AJXE2KzweoH7J=y_*!GN1jJX5B$GMD*t-C>z zYrES2Ft_c|yz33$cOD)Z_6t~4INe~FEoAD)%eB`*Zo+c!SFNQ*a^B`5^%XmyD($iN z@SFl!vghY_O=TGHEZsKyj(R;IIW&bk#x}9SyuQ+eORHq?uM3wJnSGLl?2zO;ShmY~ z1CSAtm<@5P^fsw2(KCd=kv?AO$=5G7Qv_uNWoF>XM?*hNu2#=dX?QXE%2yy`cGw*X ziK!a@2u0|3J27uuT<n3gFy~FVa8+{Wu0hM)&|vC1sM}s|Sg-MsH`L^t<#rAYEVi;} zK5`J3u6e5UpP{`-9I3z`{weioq28~#Wo9U`Nn4?#FA~c;@(}Z%5wXR5)~K2ZxxLsx z3_3N@g>8%^+XSh3%E*qRl&bf;S@f6uA08{E@$Q52@OmiqRk@6-ngo76_FuC0ty`xb zbT^ci+-!eL4svxPwU4>oYDA4!rI*R{uX^@hU+ASxQd{(ATZERu%B3suf!E-^zZ~2* zE&RXa-!&v0-4VaOQ}yk<^Y<gV^&&ZKiYaJSl?qkzpP7A-Mq%fFH$VyKD@m<=rZ0Tl zVu({?l6~gKc)7O!GK@lGsaf-WjdExxYJg`BWH=cnaP+mcyS1ZP(1-qeeCYHA7#ZzY zD!1V8VC*F)o{fbLZ_62*YAQ)@qoHj)?N!7KFM74pV(tU!z#CeBSBt{Z{fCT?h4K<| z=AB%B1if)6Y~5MYh&hmLcL-WCB;ml$AYQ_G^7Nx3e!ZqJcrTyXUt|;ci#A~H<CnsB z%uGU#j2qmTnVUEqKhBBE8EC1C!&K1|>GsgBp%*KQxDoLu-{XPq{fhB|t5C$>HuKYN z_LB88uR#b<N8eTy^p7%J{+VNDRGLeh;ZrF%G53qg7=U#DIxBO>FqdH~y=!taL#YV) zC!x{NJmg>hSrs&ctF!*j;{S$!J19d{=fJP;{L{{J^Z)MCT;Kl2)Tl&yVa(8zb9>>C z%gm>Xg7h|@BW+EuHa%Q3E%-7u>(*2BVZy+!C4AkQ|KZLXn)M1Aif0!0%LVtL)7(lf z>v+*q){**rO$oG0j?$=pE#a#s$!!^#?EZTXxo5N8HPi7Z6XhxfvLz3UmuU-gjI#tJ za}!AHqwHE{@%NCuh`RJvi8JuIxmoo#zT@AmcUnh*G2PPYa&=*Ne-<6Y^JHYaZL0T) zI##@3hT<DQ!ZV}S;2bsgfz&M*OE;e+G_fy6(Cpfm`1}ki4<M8b5Ht%KfU`JXZts)1 zzBdIot)pj#LTP?WqZP|Ch)QnR+FCNqiYQ0IC&ZtnUeRyn@==AHhZyUk0R%W)81bIj zfAnR(iap(V3CUz(j*>sGS)N<2yJ}88WBN)(AbVjz1NqL3<U%G*-KU|awGqsm8I}+R z71FC8Q&Tj#7e&<K*}<m7&Ksqn!O=+6F{I0)SL9M<`Xh#Cmgz7UZTWM6V)npDMpRb9 z*ps|q<0pG_O?Zn<Pf4k$|3`!vv37&R;uE0)F8_2)$B5^HSnp%)RCE&1iO@#tJNbS? zf3w)Q!W|Qe$ZMvwY0F@vijf7{-m@6zT@03o-Ow14dN9t`H|rda>~;%{4LeJ=E|x;9 zya)0g?SVtg5XJOpN?IGEwSmMbcvk7oyh?pDBQckO^Y&%%gl;I)FX+5GF*;fJ`ByoW z-SmoKzaUTK&5X4CL$Xr+;p3<sVixDdSi|*^m9brA`JqR?-4z5kyX^kYcl`eoi%5i3 zC_h(ZE3Tj`oZr$%*&6e&x`AhAV@HeMx^7kvP@t0Czs;<v4obS@57bsRDFo_lu$Ylx zcdkXwRygfyBB87P=05_g>Wo^*I?ocqp<rgq?3G_$cPn4D*Yms9-(e(yxl>>&=*Tht ztbxS)!J2FF7AD3yo>BF29)He_=)2|jZ!?CX+NSS(7%rW-cQBYaqXz_}Ven(A|2UT! zrhfjv)L`5Kd!QM&Mzw`&Z<T5`+$i;9%q_M3{Uuo$e4~K3OyloMQ8AW((bEKSM9_w} z$Lc)cZK8?qeVPA=XPUy~YhMZc_f~YTsxg#fXmkCqvO{NeceqAz88N+iI;^l?{vFbX zwWwK`*~wOn>~47}EW-UZZANM#Pv~k=&%BTTlX$~5yrVJ`*|mUAOi|y6>cf*eQQE;e z6LP2jNYM+kX9OVNw-v$LsoYtQ^|oEAbZCRcmjCb+Cv%(?sx$4UxrNzb_1~P@@Pv9S z_p%=0_wOtJa@V$(qi!Yz=BQ7{b*<Ov$S6W~Hd>skz5*)gYTPy%oFRMezZq%KXTBsk zGv!4M0;Sm%`-g$e_xG16VUIv%qx{S^OTgBx5;%8}FCmL{Yd)MgYR!-TjJng|7O(A! zh}i$~9*6V%ZNk_^^ksh}v-{4>QNo_${-1$1Wwa6%H2gnPc#?)9rsjay_FvZ1vwSwP z$v<uFpTk;Ji#FJr)uXmn0{>L|o#6gE(6=$No?-Pxr5P!8XN(+F^lbJ9=usPcst93O zwS+#!h)tC5^1p)KalT1rW1GYnzIcX>l?vuvcO}uE%L18gSioalLgF~##c}q`LTBtg zy{&jr@v~stC6mc=GZKjvaVnJLw(E}C776^pRgBqpv`W-t<~xRn_2?Au7+SaPEMqEp zJ=SlB>S(JT-y33~O4%8c#9%g<I7zp5n3E*%3s--!`nWpl=rZHn&Xzr2|Ex=`4fH#5 z1IHJYu2KY5?S~WkRb}!(kKvS+?uL<EVepd)ip>;(Ql)eOgUt4jY27?wdK#~>p>M`= z%q3@(=}t#eK+8jX-8u3q2CK@YKEAJSRtxlJXJ)=e2z}bo+m+nAB^j)mKSvmUZsxQ9 z^TZA!ud*C^wqDG=e@rl(G5qChE2G+A-@oVC=&$lZGSWY*s`l71((Pkse>9P8DLYU9 z+4019-`;Z77csz|5yyYIz^=V#J1_2&VrK5lHvTcn8cx!G4j53}A$!{&2GWVf@|^xl z!r26e&cYO-4{33v$=%6b<E+8rUJdwPgyb>QT0rB!*<>Z19#)b9H4FSUY?RsmA8wMQ zYHjnS!x7Pb)*Bg)(%*OEG2q!E?H)A!Ep-lf)Be8XWHwRnEAkEUo_8s67XKINXUIbh z?w?~tQKxMuhIl4Onf;N0WA{tXUa0wFZR3FkJ!Py)RMC~ZSP1v4P8}MUj{*=VzPIW% z0_S<8RG@}CEA4pLey#A7ON1<Fab?`YW6wmGxd@3zc+cpLR+)2GYu~EAXcrHDuO|Ky zdK{UPCMDSX0#8aM**RCKcU7_G&}=7GM0-|;$W@Zmo0EF5YL*b*bw*DDKPEe!ipoC{ zXRp>i+br+O=Zow$SA-I=3kZu_DBpEvRaMEj-x4aBy{#N<Dygxyd;Ttb1<+MyUgsnO zy-!X#76w^fpM^^ETqv!#d$D#m$<ANY3iPTFv<q1%lp#%S`SbVH((X>Awnp(#63;Nm zwtZHX5Jb&QR;&#RJ?Pu3R?vy0suJKcF2y@!m8I_hzx+QM8AUI8wpt@dE;5n|sed@6 zDc%-e1^dX5B9bTemj~3P;qESM=-^pYXe-n?V}ShCZ5nSec9^ke$?Ry||K_IXOOU>j zC4s928TSN4|B+L()Jb;lO<ymf+i2p#53p?1m3c-|eWX&MsFpFjian6+|4kpZA_Hee zZy&HiO=5bP1{jdtRsRZ0Yh+6cW3A^;qV%o0zjS9P7|8Bq-gJ26z)^&(zudE7IYo=i z?jj`c|9btRNeUaY>n76vNO5HFefFJNxN6J18Qp|IIdYJy%Gk4E-gK%Yn=yQ}Dm(j) zj>slA<oL{@%Hb4F5aB`Yu`O1Y(9S|yasJF&DpBYa(<lYEbE%@c<ALjFQHHO@XJ@ZH zEPA5|`9Xd0`GgTg597QYAUMKRx0J4pyTc*-QKXXF56zDR>K<4_QEcI>H9(yX`f5#K z&YX30=Kj!ZLVK>tZsHL1%|?eoj@+J|cH4y26PF;Ph}4NeY%C``sfc>Q=UrE1#aT)B z+RokV?4%&Yo;hC2e=F=EI~UA-(3PLkv?0`iNS{?mY|jb`)BD#2JB-}cCL|4!dE124 z*pqTF(lu=bmrfzZT;B(erQOL!+DCZ4J1YtpWcSf$VMhXyz;gV#o7`}vh+mlV4f*kT z$A8L{dS)vqbFLxp^04YxfdpQ#p>WkruKH5k)WxiI`nOPVF=JYM?h9eR&7EUyPc9sq zk+cP@VM$JaAJ)$Z3!ND59OzhI9+lDnpVl=Cn(8icQ-wLMj<d4`V{K6tjC~%7jA<#? z=ATV*#BWl2>cG+aj~8C@yl)vAs=#5yu2fLPepfmqW5{o}{QEeC^X((+#jRJ|?xCTk z{(YC5-dC{n6Fv--yPYX(S+Q~RzVmg0A&)@My@RBn;g9e4O5#nd1%GBo%!jc`V*06N zQP3q`<uMyZaZ%WUfIItxW$Qf8=1vZs=B=R*HyuG&mSwUti(~zSB?fVZ36~~#37x5m zULhq!RBp$Qs2_Z#_HBVtk!}oP%<uOP-;d;QeiUnY+-y_4W0=wM^w-%gOF;;hD(D-U z_;^}Erdlp<ZEuxv6N6Z(D15v}L1jP6m&}qu+k(O$_rWh{{UoR5?zCpZBi@K@=XY*w z+3LBj2giRl?IwP|ve)Oex7mFfsv0VrcIzzpd93zwbX0!|vA>Au&nf!${c|X(&gP%8 z&Bg6eUZV-tb5L}_>)-vV7l=Z1-NpB!Ew1lbCp&(9zbm0Hb;90TlK;zg3L8)5zaR9g z?jgd%hC4r{WTjYj$>ct${p!0v6-+VjWloA{pgA*Kl!>Z*m#&`Na&4B?C{cC1v!Ww4 z-B?9wl$8}z#hM=Y5wogOV{(KmwTm3({Wb{=bn42g4F&bKaVdDg^~Dl+6LGE_@sATQ zBc`gtZx0=t@bF?rt&|VLs%4C(7dDM=)!219b|@p$B5Qb0VM0&yE5<l2paM_D3zFWU zy<mNs**ydle|cWWnqy@}yrw}%YvziZo^LEi#_Da`-nA_i1WY8x{Cs^<KF%#Mf>U@~ zc%;6v_2$1Tg;JnxU%92Sv<D{Q+`?m1@!IT|^SA#wyl-acGU1tRzMPK|dXh6t;-`m& z!$&`=Pd~TsNS+w47oV7P>&h{A8o4`{(B|X{eoGUU{9mI&99?41r&?PLwMPloBdQak z&N*I(S)oGmGn^(lGuL|uS*~JxN|e3|isd;skfv(7nZ}<3O>)YdCo@a&$M63?kLXNj z;fan9aX9v0tM<@N#PYNMHH;gcpi`;yuNj<ocxKKAA<ucqY;O}JFP)dvtwq6>htApO zV=&I1htA4KdzbHdxN@;D#Fp<l?1&oo#g;dwE5ef5u?6->nxhBr{C_=|Nl1SS*mrH* T?I8-w0<2rJ+3JCX`^o<YL2S8$ literal 0 HcmV?d00001 diff --git a/public/07-basic_statistics_files/figure-html/kd_test-1.png b/public/07-basic_statistics_files/figure-html/kd_test-1.png new file mode 100644 index 0000000000000000000000000000000000000000..8e05d61307549f7121374353c75bf3eef9cf719c GIT binary patch literal 15737 zcmeHucUTkKx9Chl6G1=_6e$r91O!AvFUe655h*G~iqb<Bq)Q3Jjvx>LsZu;5AXNxO zTCmZiO7BtWUAiGa-bBv%-S)kI-gm!S-n~g?C$rmHd-b*V<cXoaHY+nPGXMarIu|vs z0stKj0O0SL;80EAlhtql01p~oHqwG_0YC)+Fo22*paPY60D}QAP+1PuLRGYC+6$wi zf>*&{R4`Cku7by_;D<4^VNewSwLuLS6+Eq-_JV$tWAJzk9x8`1<>i=isHEam06a7c z2EhOB3N_QF`Td2*m*ern`0{dmIaE^d!^8MtYB>fd$EcL!p$`UXhT3Q|{r)O1ABNuL z!%#^rr&7DSyNB^A!+6YaIrPEPTA(&)j^AIy!&ImjR18z8Q~-eHrIzEV!_cSvcO5hV zt>vwYN)bei1Gg`lc>@6dW7-8qPp&us00Pj_{KM$Zi^b6(J5ICY#FfK|k@AVieEy3K zsW#jLFXgIZG2F84S#9TvhD2Sr9$aw~#!?MpRD9KqH{vtBMQXEsc6RnadmZ26xtB|q zxB>QyhXd(=5i2?-^qK$Bms44aXH3uy_4UQfHGE10NmYG!Gd-%cQ$Pbdt&r%ZroG%B zw0gSuX%vyV@JmCz+rHM%WsH2gw%ED$O?RA9O1ip&2X!Jeq)cFB715vc>j{Nr$eYfo zOai?j_R8F37v@7&Q}zoA<bPx;4PRx$dm5f}irkt_&C-Jz)y?X|jdmXiav&U_5p(0@ zZ_}$Un?=DYYzp!AF3^TT5`Hes&-KSC95jrHE3+VL=w>ye(3>esXVJaeZr&qIco?kI z{78m`;)YnC7<w?<Z4qcAmFE3)+J)WX&G6bbA$G(#Lr{0Ks#y%xzekEA(9BGoF21-Z z)#wEcH2F*4%w$nS{pjGk>crEN0vWba%PPa-C3~*@DOs$rQr&K^OVg2$5Bvs`n&LHT zH+1v-?H{F<ZM<-zda+P3!!jWC<%y-Y^8gj_?U&r|D3H;;-JN*r2>%<p8H+q6^1J+6 zL-)fO!D{`%vY@%gDY~48Kta6BdfjnT-TP#FjbC<>Xj6~23lZ3iV3X4*Q;+V1sI-tm zLAOE;2b4in>jjg>{M5=PwQomK9ggv-2bf8#cLyidWsa|&!M?3!@zpL-KP`ziSx8>? zCJ(z&7IK19`j8vZ=POxm5-(DNuSP!L#|0<!&$p)(rXBY5^Dnb<V#}_a*<#F5C5e%* zO%Jk#i??L0=8*Gd^@BHB9~Ti7;64189zcX5-}^PER~DDpvGA%6*>(Gxpg77YxHQ@$ zFP+bnZ3wI?@IQO7u|l-q)M?DC<-PSccgAFT%Wcj|=qEJu?6FN!6cbK3i%2a3lTuBh zgCXgG5lC#x)<+t0L>3e8iEp*?UHYJTke`1@LMl%n-NnS^09;7%p=nd$vnAOjsw)xO zNsQ@>z=88m*g<nCs~<NFa_hTy7Vnr#^IoXE*0eq2D7d)X(AGE%mhen3VbDbSK7zh9 zD>CRbNd+l9eEreqXQicZ``(Vg^d$9<WV@@l&z?;oUbnk~%d~NQ>7#j$NkO>GmyV!H zt{`?@a3hS1Q0n+&(ct}zr#g3Dh{ZDmI`0UWd?e!B-iP2@j5%0<ay=MH5xLZ2Ogj8F zIKe>p#$@Bj-hcqK&;SvsRKQsKasHNb<n2CIar6%*Bv0<tMOC^c8^43s1_EDt<35u$ zbmHIcdCU+?f|BcPmJNk8aVC<mxLwcdJCqL{ePc<%FZq)6HX;@(g@al?=g(P1%{wY? z7EGxIb{9~8_<ZWqUu>5~=x$#1F7YBVlgvK1!TZkk$i*z)l~>rxec8Vpi<-6Ssv8}& zb2GR`RpLU)3S&2FZYtCRQh^<CuNR|bM6++@oaQf<wQy;>Rf*KsiJSKgCaqU1ZYrz{ zUQaka{<wCZ*peMH*m9@DN$+HAR=&c(<A_zZfX!!w=#1f$#qp99IcffrW`_~;ueDC( zDZbefH8Yqy*1Y-Ngx<+T%VzZ_MKD5r`W)_oXQH{ch>V_sQX`<;zGO~1eVZAtMiTSA z5?*KFajWP>x!71T>!c)G(Bs1=AXVnb*co3@p*HbVB(%FkU`()I7GJ*)i7K;f%b&3~ za4v9>v4AIslE2S%26{`Pdq4J!`OHPx2U)w)JM|1c9A(9yIn<|c!;WtRHlb22Sxb0- zi}m7*<;@TG+8Zj5WVC-)T#ccQzx6-GA%xC*4oXC=VW`2kuwy9)-HCL@K|BlB9#=t< zRJ<Tw&_O8ydR4%{(O*x>W_$R5FD++8apfl^dh_rw4N%+3S^?Jzpt5}_ZI+PsBS^qd z6<u#}-BrEUG28#gapC9D-G4I}r8$^RE;rqN@+P6ZZ@NMy&Ly;b0`T=mmuon=(m91} z7(~xI%I~Et=2tQa4+;$A0)wyIQr)@_;E{*g3R(l>-_bYu`k4kg-ZjM~uZ^aqZ-$k^ zdy;-ly;ZG?pV}89lxDre7ZK{`QkYSwOKzwFx07d?HdCjkf9GzawMWOz9!A|cpqIm0 zs{G?c^F9^k@?V=H0;8)@{HcJ>cqgyR25&T=+`2?`E~L)#Wh@0R)8*W$CIZI71AKnt z%A+qe!+-)4Y*<NjBPo3%{e?W-D5QJ`)}zigGu2$Z+8y{+?WzT1&dvC8_KeK{bObp` zedNaneO#ueArt;gH6?3M72Op~3W2okubD8LjW5T7-ua|hM*<s#-%6vN*|)x5l}i6% zH2!KCwO3ZgmZOMvPq9{aJSWqt1&huz^BhR4F$N_<g*@&J2C1njd@x~fTGKn@Nh~@} z<88xG;Bn92taT6+B3PS<eNPJQ0b~5!O`>I3JLg)YEL438geEDLgilu%Q#-ppk`!a& z%Zlh*EU862I=isP!1MEX|8qr$@be2xNgA%)O7s`gmggCA<W|&GUrz4hO`kJldp5mL z1+5!>P=?L0L%Xhz$g9EDWwUmp?*P8h=8mglNg3z%+(Ny_n1!5Z=)Lne-o_WII<v|) zE~B4*w!lhLKmA+{wo*i=KJl1%t-&J0cJkbBf7z={Y>ZekbE+5X9dadHz%8V<62AJ& zpnT)+P3g!h_8zF&>`U4Bx@7e$=t5T)bEno-)SJNc2Fdwj<6H>JVY+#)kNq333dMw^ zQ-5pu;fypg(GNGo>EU6|!x=iD8pp(u(K|PpKXSmxN^83+@LWe3hy?@J13Wie1D56q zMG<5fJIZX?&auH19v+mv;QEfRi~E((t(O9CP96;HxM<GXSX?wFx>zqy3DQuBZoQea zbCXPdzu*kH;GHV?yvqaIo-yP8Qv;yHn9oLB{vkt1-`NZuiADSne>#Su`@lJt->X$Y z*Xw62z#Y;*4iVcsRSue57s_=M^e<HA(s0CXJy^0FzGJB_A-$t6>^y7PW`=r0we8vD zo8cQU3zW^p+I(D9yrF(F58k7AFrGd~jtJ2ch0YV(d%IO}oMuM&Gk$!E!FusdcN)BA z(<L3gqSd%V2=G5RYuC4D^0Z-WXyi&j>Ou+7EbPny^BKXWo1Bd<2r$|S(!%M_^CS!h z_2ISa3LNuxv+}a-A?a*|WdqG?*iqmBr$_qrjT_`gtG|_w;OE;z!C6ok3W}C;myo^H znsHjqW7)*}Cd>XI&7^}SqZY2~xx}Y#W;n<Z`M^X%Wd;^4oZa%BAxqcadrW$R($7|# zZcgY8?C!l*qK}&}`^JR`faDqB{A0S8MZIw89pblq$V;MAgKqZ>%T}N!Dz<lw)Vu05 zCn~<}6u!%ptJ9gu(fIUse(v!C##B2p=uNv!>;0+1>{VrK#FG2dC5UezuX?cu$8d1^ zYLNMHJ4=J^TtME#GP#=a^IamnA1<FpPFMPiFX-LD!_$-@Fh(@Q^SK^I<<mUygys%l z>@5GYucg|$U8x@Y0ruO=90=e8`@h@e@g%wP8uJ1(xSE+D2zzjc17V=Ex_pU={f8D# zjRRrrP1nQ;!W6Xs^-ad4G)Y50X5xFdf3L9O_(bQ5-jqiSBdUnH?yP__i{Vo}lwEEw zQkN<cO=OPF7A6n*o=K2tZ4Ds%4hknZuicqh=@QEpURD!*34x?@N{a9-Ykhk2Nc5r_ zT5)`#c?gtvTut;T2@hDST5F<AU3(4qTHTC9faW9tX%hulkH_B2;vTMu#X`7I;gcN3 zQw5qGZ1%?Jn6pPmwdX39=yJB2W83q#0B}_kx1Ds-W_>|rcNhw^B|4!I7&Hn!Yhd{( z@q&ZBLi*l#fU@glOj^jz)9&5n>-x91GtZMJE6o(Gf^a~95W2SY$9lfy*^;uCZYv|6 zxLkh3Hh3v}z()9VYL4xBNo?bS2WI%q(Mg@<rjGCt9|%nW(5u)Z!uTLKXD6kf<Xr4% z*9a!Z1u(HAvW*e0?A<j-34z9<Sh0ZcydfW}G+Dx2G+on&G%1r?bU7WRl@9nt!kLK6 z<r5>sw``<VnW&Oa%5|GH#{3xpe&42>tLGv;2%({cxp-pGS3n%??}$Oa5+lo2E@-Vq zH0pR+3nZp2ett|QdfABZRCu&;Pxh;z+x%OyE0ZG4y!-Wn`n{ZEc<fvvS2CxYyK=vN zW{!IDH4ac7Ak^nV*5*vDvoynOmlL-E!Hx8Ek$yEx#iWn0XGlM@8L;yCeh1m$ODY8Z z>f!})9?KKxjlz+IX3>+>Ej{Il)mpZQD=v}t<R99h>cyJ_NWY?Ca$bW?B=9^>wcF(4 zgY5R0rMZOK^0-I<B9T>uF(WwlOq#hMGR$`V#O?=D>VWP<MQk9)bDkGx(S34jTje}I zbH(dnL#%l0so8gTRt3Mvk`v}Ky5=9AiP?yt79Q24jB-aTO%1AmUrcIl^4!nKvKl*J zwET<XW*SwEUt=GNHXXQ~QuKOxXt%EFy4V+!)2+Num35l(-7{NSK4fc!ENG8aUuAHL z5&YF0ue^4NGjla{HNiX&kqRU^qU0<BOzS;g<vU_JE6iM5Rc}P)Eq<Q5=*Q3-P;r?Q zf2~M|JIi$PXhOB`kZLD$cV?OEmyiJYJFp4cX)xI;R2hY$-dXetZ`j^Mp~rU3j%94R zkL-l{65LEFuC1$Qi}mk6+p6J4ol3K+^Kz-ZR%U)xIw%$BwKK|3O?q9UVsAxl+j%V) zllq76nACX9f+KyvFNq*mIgO&+Ee=?Z+E_0Ht(mT=-W~3<(Ps`1*><MDp?q-h;xx)t z5<Ph}4rLv`*r7|xW5RF5lO^YCiyQ>=<?$!AKZMtcZis){h`F(oqaM>&ZV)sbXean| z{$&LjB~Y7V@a(LztgCT_2d6ALHAm5EZ!z=Q_gW4|TrM{LHN0YDT%J8cprsF&KZ<-@ z9~JY}KXlGYOA2Pszt|jg)l4^JC2Lc~$m-w{aR)C=(87f~`tS7#G%sbSESp3pNUq7M zpJuqJa-`wr0KDf8IrAtRM6kyZy{A>5dio>>y}-6t?53PRt3Mc*kM$BXtbEEHni@xO zqC|a~zEPY|mk;ZcCjBUqgdyvKuL#_>;Lm8d=*QR_pcoXMpY+yCZ2hA-C`oPPtBqM5 zylgc+Y3$F0j~JCQnWDyiRh_@9OQGgUL9@s6(-YzsPak)bjQV5>=8nnc;mXj3M>4i= z*V*ARA&R%9{n?ca=5_#I+As0GPO-VFnT1^wqx_-%1)}&8cb>DDqIx5@!XLQ6)9P$F zcQW_p9V(0TcQ)J{Sx=GP2mG3#2vP$}$h?NrqvqF)qCS~}a}8IOUi1;@O^7wVwR7dD z8C7l@T$L^^SfC%nWSD-^@tooocw{LgFlBuwu!@2U^lLrM+F7a+x-zT+nisR>thrCJ zjc$R>#S8g)Tet3VWJE5w6~}};u1y%YBaFtjO5CeGW8Q!7dENc|Qzppm5OsC!5BXHv zJ|$*M0h(*xwguiJ&^(n<wJdtb=gHJVp87Fa*|v`dA0%)hP;{rd0I5n|;`MhJod5yD z;<x!shSUIb?=f}Vc6e^AO}nZkf5z0sa>ib4g;#R_=&mjQtc)Lb&-3c%OX7Va67$5G zj~WP`>Jhqmx3h!;S>n}#ox0yc&^oK@{oBD9!mCV`?CT@AXYCK9w?4&9%M@vF2F9S2 zNt3rUcqL&yN1NRY)AJ#+7aVOEay*wZ^0Za_!JrvxFh_rlkUY&}XLF%cznkmkO(C?j zU&VF3&k<m-!q)@@T6cYvqqwS7!s<`a4eu|y#N>$L<uYrX@yO$BP#EYcl4r`(U+Xt^ z>nq=mOGTgj?Z=ZXDcz18;hRDJR)0<AAl5dVJ&+s`$tTlm_5_gfHcLM+^iIsjlc{<j z!h&RpL|rLWL>HQVQiL0A++IIR>NE4?%2$q=+%3q<`#!vE!qRQiuZvA{t9(5KMeim) zn}7IQ5pyuip!x72p1g%_WtH8Pkze8{PS4@$DW*;@)71*w#D|Slz3sgg1fPTo@+_O7 zFDheByM7m!`^q4a0+vC!RD>om+P~N4SKr04EMaF7Th4}iLuT>wQu94-gL&%7X~*c} z-Tf?vL5sC(t9+2PYpMUTef3da=qHQwIEI%uRm6tJTBhHxWOe4$A45?1hDAtsD{s-A z%Gmy#v3=3JNv7VbN(|}tjNz1goeD}-T^$>+=PX8*J)D6PtuIsX7d%Y4cqhjgVS?MK zKc2xaj0Oi2?2IEqlJBDP(BHc%s7!b<7+2RrpCfr|igE7EZFhzrUtfMU07p{2_KKHP zc@)m!?p3u!@s<${?5Y-HYx{nzjs84Ue>9_de$~$GMbz2A27M>%Fd-I0U-!owM<y-m z1doBRa>NwikRXEf4|HiC8rn8L3&kKjo;XZz<=oU&mZdNz7K6`Va!>zUQbg1{VWBfh zD-1cFcAD;uAj_2+&}C%8h0NL<Q~3P+3G{o2*5_C{zZ45YKYy?qj*I$^E{B^%0U)ms zD_%Sr8+)oBi>71hWOu~1nr+un))^^<@$T9mm<-tqh6O$DSEgJ)J2z6TyLV;!8F}#8 zop~8I-BPe*>9HcUo}6;!fFb)Zn_)oj+{~8iPR`mzY}-7cAnJ$&2Sd{c^GyD)&84~c zsi=NQ&J0Ak0AhYK|D(Tgc}P#dXJVymSc~QI{ZsI`W(gyPnfIRj$pC%vBJkXbWJlc6 z{#Cv-6|E8-M{0^y|H!ZCCp-r9PEqG-4jAC>4fx@5J&r7-F_U&7thUqERDYR^O)Q<q zsj)*~_z?4w62qih-Md$|IOZj1DRpW5kS!I0O-NB~Q+TGNFE6To(5u#6zu}kYY!oc0 z$AOULTRXVcx_UfVqD|(zv%9#N)olM>)yPtGyxQPO1mkxc@PrAkIG?vWMA6Ilcqd_w zEco(FilhrO8fB;|Q}r;zVfr3*XI37sqP#k3Ad0T$bjD3N%0v+<*LI(og@|9^0axSW zf1qlgd3F9u`>^A2O_IMc!T~ICKTq1xDr7P&8+RN!U^uU>n>LcqSuWlV>|Whrv&0G> z1+T`w{+OSY80%!Nd#lWPdj8zhnQP^#m_u?$C^i#-17qe`(&F2tl+6@{<;S;c)@d{B zelc;=jRRc@24tA<LYx^cd2h-FOopu&3(|g=*Ftnm=z3RbZ2=}5TnC4qABEd<-@WhO z-!IsjzPJonv4N`?2gfe+XJ;ImRl3N&JzKY9;PyAJkK9x>v(*L9?tV`(@E2(SjKzFL zG-M8H;(D%Y=T`^mX9ZkLKKN@iK``9aVH;+@3@_ibFDijzh*;bJF#MbeZa>QWb;o#5 z#-AQG(Z;N~*+18%Mqtm5PCQv{{xZpmcxp?!hzZ}OfhcnmTQ`CEv^aNGbJ^e)2I8{c z9!AKw0qWaBOol{OlY-6xtKyo|=*=}gSZU-dYn}~1H9y2E@Lcf+0__rC2u==LPnO&q zQJQStLhbpIH8M_$2`&FpLwKv%F<QAkxw-&KY(9ae)ZGG;(usxT@3VTHA4>Y2tKQpY zPDwwodtz|A|4qh;kAOV!kgx@_K(Hv<CBK^Fr+=zFMEUXLpYB>8c4FoLGsfCgICFv3 zY?VR{_vzy*)uDcpAAzLkHk-9{w!KKex$=$v5iXC<>Ush@%aCan3JvNyWVpgT#h67u z<^QWP`2I$}jzTrB2DQ$0@xbHg-<-(qdx+=!&a!ue318v%c%{1oD<<WLk`CdC4d!$U zQ7GKH;)s&itg-jFl6pWr@cG{4(*2f8Isw}0L<)$V8)2KdwibfUr!JU31;1$2ZB8%3 z!LC^Dsh3!%+WP#PaW|67`~?%hT()ZJ`Ql0ps@Ep_^0eq<Un3I|$5-Oj$XmtyPtKyJ z2AszUq2B|qIYF%A+m_&VSoyh8dh^E`^;ql2-Ls_TYc~p1BoF&pF7l=sYyU{~W2Sah zwGqlpy7#V7o&^NxNP$BymEfg`Rv{!MKNad3QM5{l-Lm2=ruCC47F85_BtfQ2i}Jmt zs2(J2dy!SW`P*Xs`-<QEI4E(m+~aKNx%mj`g|^%yr0}mQlxM)AW+phq1+GrrenW@G zY0@<v2k*gQB0}gfCU!n{1P8c!0rzcRNnv!1bQd*oH5>>f1f=tHPXBr3pEmRtBOCJR zPty<rSm`bz^MN<47w!6B+%(*A4F9R+qcAwKZqF+uWN&3VuhI1Yd&Y@A;6`m3(PMd5 ztRD)8(C1%3he2c8Upnq@xqG0Y6<lF(Qc(D+tkR~gKs{RP7sv>aH%t~y((n3KLlAg( z`TqJh$Ak(58u#cZ9H}={DXXL67jTf)=?r>JQKxI{Tk^?f;e=N<G=F1*>*`Hy-;7@$ zI1Am<xVm4d_x1`UM>WOTm9^>C1^DrZGw2ANYz0h3=gSrgb_l7bVAZi~`fWG$+bNsb zgsY`oAPo8WD8idhL#ll?db+`YoD`<7{T*75&=){Tx}iW<_CnFf7!LAyKUg|#Loi}a z>s=e+cW7uK(QnAT<iXk5*_Jf}fvs^G>UZF!9RCoTFeUT|$JYR~fH(7iW<K~MDog{u zn$nM}P=bHv=h$VKP^|+Et}ukD3I!f&3W|b<*s`$uYp(O-*YX(@IPGxng#TQ|@i`*j zzG0#bsAZf`cy%{Y>nLLDc+AOr#(z2Jdw?-~$fpk;CG>l=0Dkx>g8~#6L!-C$M<1n) z#xhQ*<=t(A7P}NSql#EoKJ*LHRR}+CG;!_tPcBE=01{4ZTH%`{6v#q19k}2rxwm)! z#gg{*0b2SRfk&IP`(}(x*tz;tnnn&eblp=6?K-ATb7+ynxQbJ7WWk~L2?_S>8D$I; z%5|WXEJKrJxaZHM?d|(yxsF4ixhtCJ&G(bb4wp5V99^l1y@`O8_TkhVmA*ly(9B;G z8QNy9iR<IVlUNvQpmnP%Ok$OO14t&}>YCt2V^L{9fjpv!%=#-r9gT@zpHYX7>ChU4 z;{)gipbJ*A;j|9T07K$n=MGPSBx&l@z+VQoKn}4L!0HA$qog%l+MYQzC?+-bBF==Z z$qoZ`l|>IGb^3W|uxD&AOvo19)zdtN@Ye0S;2~{U$CviEJdm;D8ewZ}cCgYwbo<(| zfy=*54Gc*$EB~EK7IE}iG<f0s1xRtvGj~?RPBdo&c0x1}ze|5=!-t6#GC_|{&^vjO zN4QQMQ{T-;spvsEcqRvs;$9;(2Hd~7m#eP9N~?McNX=cFU<?5OJ|^0;01WEEWMki8 zUMBVon>*m8(bPx+1AooIUIZjXN9}Rk#`iDWHMvh~%>b){Q@AcHmtAQ3jR;HUWP~kz zVeVEAj01uG^bKZ|PvIKA30ViP9Ay)F+ISOOVYpP$wq{0(=ju1d`eF%4>p$UPap?zA z-2>$Xh0!kXuEa8&gA?c?xOqu1i0d2rD8wliN%Tkgqy4<&U4QJa7zd4mgNOIQAgL%! zLPrI4I~!+u52|W>5A&f2p=LG~MUL&>40zy1TV_7c)}V7FLqvJZ4Op9(nVy~&EW(<+ zrme#etkR*#1;*2lFMY!B*jO6##0HGoKZAsb;Yfy#ZR)z*;5VVC!_zw5ckNne11^He zb;YKEUA-qr*Vr8g3)G_Yy$5&OE)<PkfP!!4M_d_G4m^82HujE2!~Nct@zwEtg32(u zQ;^hlXYO8#70JFaM8hc)NDA`kvA9I|?9G`^RtWLf=O^CG_l+McN!T`|@%w9IvHo6h z8tII1C4|s4Vl|PtXB+ir(9(TT^cdVL<?H(f2uruJ>>okAhHKX5QF?D7eWqC=R!MZk z@b=D!>@lAEdMag}M1mxZl&8_olEj_cfq~n*q9i6v-z$MZf9@*mc$J10MBDoZI~6Vy zq~3K4c0{JH%5jYPInlgD9B6JiK#3{gt@R3m@0*hdvYDNK`Px?AVTgsDu((A~0$bOt z*F0r9?Km4$qeh)rk=`f#C{i)?T<{44T4Dm>Y7)w1_?5m4bZ#|&e>Mk5dSz-5Qd787 zMK+wWYDWduu+p#;M-Oic{i@EjOdv-#hgY9gp~?0M`lgX5A@{4_ntQ~0RJWme8b6FI zX+uOi0*BDv+&1!%lbs|lt*<}Sfh@J99XbuNU-Fs2>lEu@md?{{`ou*C>H2R`VXiDq z-cfMkBQ6AibI9|W&Q*q{s=V64YRC|qvNbvS!H+}aE+?>>)aZ^kgpEYm6@US49`8vR zFnfJE-rAb6pOF!Oyi2*-ttZyKhD_{lD^Jj$sy^{!N=)c5Vi_d2x?96n7@TB_56xxg znT*8vZs3A3if`}!K|fP}rJHjZNLp>p=kHj6LpGLX4d3Hor6<YZJ)cO}?ek^KpSSK6 zC?e{P9l8^tfbP36vcp3>=35H}ba=lvcmSTQfT;w@7Q*AO#)M&c0UC{KfYH?S(4DG8 zkKmKRCNIyT8PiQQ>Xg0cm<-R90yos!`z?s6?-X8<cC1oK;WRdIXRu8^>W(jbx<%vq zCuV%5@Zbkj3agm+iHFmsavpFR6C}`6@%cqv&(qsqTh8rk%9kRm4!C_g|473k$L?Rs zTezOM3kgqG@5|f6*86g8Z2Byov4d>#wC3QxMn8nItlye5)Fpa-`p>{<-Fe81Lz;9} z^<{J(pojH8#|csHFDfH-SH0QwBr)wI`zw`LecTSigkl}&ai1BlyydvwPUp0jV1J*J zBX#)?5<g9`AZ{gF7#z0@FJ3Wwx-WDNlc(H#WaqLTchcZmgXX8*Ny+oywGB|WHkSx( z3Lk0Jx51$p);fph5JhZRJAX{AuXpSfi9(X*1TQ^CQ@X3TDbx!EY)5?#RUgMrfGn!6 z)#Z0IySX3KKq@S?RH%!p)w@tssJMq=@t{G^0S4V0nk7>?p3x{|4aLfjcFb95^SR@? zj1fx*QvLt9h2|x2zhzN`e0=fTy&)VDBV~OIYL-X9;{I7{H=cC)BE%s$Yv<0;$g`(d zbO28eL#C`N*n)@kXmC7xWv%sh1rCn<p_cLIUleyR1Oq*df>zIt1av}3$z}qqOb}E5 zt?Q#X6Pf9lXi#5UWZ!EXx0)jsJQGIaU@(zrJ`lzQb(s|%7*x_BQdV|$(z{UUB?nA= z{$7JPI-=g~g_@+7oL-D$?szvXoV?F$I4)oxD-uwk^tb2HTbMWK=JiyK`dcO(E`ly& z@Mo$*CN~U^<Nqm`hCJF%WbLqH13yQLbk6UfIv!GeK60)}pu0iL#C6|&lb!>NK8>|s zZ{N8UB73M32F2k=APE^<I2*Mpmx0QQzV;B}>!TwX^^@<aVB=Tb??K$Ce-DcjovFzB zgDw40D;o&&VUb3Eq9ME=$A3E5dBbm)qBh}g3w3Vng!!x})xjYL3->#h@Hdu_v3b18 zZBNoa7a}VG!i*sA)Lp8<NLAB^+e^26)BOC;Sa8<yT-_zpkk*Z(Z3jP<()?8h45`z~ z+Pn%R5&mSWHn?&Q0)C#^u&T>$lfni5cw}$<H$U+(qY*HNiG2&6Ta}@Jh%`HRoe3XC zTN4*T;X~lxb-%6H_B-azxYSOEzsEvQe(MmfwcxH2OZq<~3R3Bj^slO%8Dy)&`kMKF z&jFd`sfthD;ui-0Hq7~e!#tW^`a;1!x^QRI|JW?36bM;gk6julrHS@8$Vlu9JXYyW zHcEh&lR-KY&dE{X5VAYDv$Hc^)=`YyuPqN)sqeLzzmrTkbaKC@OFl!2cJ|Wc^X(mm zW``io_Z1Qo9jrX=(00mGjVAm|<o7L6M1-f;&+(0{WjB3CzQJlj+g3qUfd!4Aco>rU zeZ3-*Rjh-x#CiI;s7|B4ur>~$hp0M!j)e;7_{XLx-!!8+*Za(!5wEhuZh|p~vML3v zArYrVNxDq<E!+qO`L>t|E|S{OBsyTe?^%Ud@Rh~3c~FLe?*>C4q#+MJMPU^jR9t(9 z9S`(BL0iWKT=@>`(e8zwPk%ej)Tob;)2#mn^YP!EpIXMsy7PAm)_U>%HdW@h@=|Fe ziol5soDI}cgI1@>o6)l~x3jRmzCKA7i>7!&q&;5)4*iq5YVy(20yRXmGQFEnAK<C2 znGTZMT;E%~prtJ#@YPfjF8dTMk5FfvP;UfLvb3~i`%qJW2|VSAEG>`lM@Px=4)j>V zkP?L>ya}Ol+HZpoSwk~X!OAu#YrFdg@Si<yH0?gJ?|N$*r2*|qUchnF<?!M=78n%H zJO$e7Ug*{+e)ye*{3ewRol`Y*_g4z^@1Df`-%@)hNf>@t!T8&f1x!Fj9PttGt&4jM z6ewq~VpP5fHvkS5RL|<|TIe8-_fHo59jibwNJgPOP=!4|K^hN{=qb_86t@SE@SM*F zFDZUhFr%l%%h%zh@08Vd3Di7V!aM}rdIZg|uW|od{zp<k=uqd*b_<zIZk#U?C_4F@ zH9i{(Z`5}uw!LT^ltWi^#Af{u+q#%QaO8(XUgc(D7y3&z8(JAo7c)BTP40{rEy>V~ z*-^NU{|(XUvvsnAGsje4_VeN?H4F-eZE(5s#3{kKaclQ2VW?ktA{_Z|BjqE|F@&?< z>Ma>>afW|{&rqf427S(yt<h50yTJY2opug!^x3dy{$IJhB04e%?|HriN<8H2z|ehH z`aAwz0)6D5{GR1^ObsbsmYSSvqa1~{X+X0pkWyY{3*DM!>y=<99V{Qi?O>F?Neuy$ zC5we*nP9oOK=^9fG%g+5V0NeX*|fD}JVnXHWLrS7B3dgB{9=DZ0`BuOU~=s^WC%{| zpCTkeIzICb+Ufo$um1NQ-TqG9|Cax~DBxoN&(t1I2vetp++n~UP~Jb<4T!UbMXJaB zYfGUj5YxC!CmSvgJ@;L(v74Q4X{C?zQxmBpN&Ly_h;vV`@Kffi@rQEQ((x1IJq$+@ zv=4SXWri<xN+2cl=}pyII5@O|uL-RP(|rnV`^7L!r*6D=;LT)2RoBqdnqGvy3A^?b zOcq@nNfhD#tCBDDHIv=ewB634$IJGXfkDKyM@(kz2YKBXZE5XKOr24WCpIOu*sD7X z;=oI${wl*3U3PsrOeU;a;|cK3QGgT^JNu;vkSqFdVe!>cVTv_?{QQnHu<K3app?%$ z!gr9i3+LY8d{@JQZ6s@VHlGV*l7@E1#(z3{>W8W+hJ5MJ^ig4EqbY^C<x`95stZMa zN=P8>AG@M4{GIRFwf;q*F$ZTcssUkV?)*RfO`|EL!Jh%}jQD9G>+@i@4D>{x(}Z@s zI+(=78=S*$$K1Qzoz~I7gks>(zxuSB>$?aC!k;6AMd(H5(QNULIzs3rp`D|eN;<Oo z*B-=b;zqQ7$%fsIv3-%nB=!WTjQDBC{#~SANsmMSFzChey%F(IC)_hx=!FPuLi%I$ z9}i-=#*tb|I&@7p9tht58zvLJ`o9uDV2KAthdBBla3x|7buJEj#ym|6IixNyys|j) zp<|<NGh}GWQClZQtu)(uIeT{XVNzy-)x7p*NQ@WsT$}F(+o<!<IB+9#t@-G##(JXL zryV_8dZ*>=f)_ZEfW8nXt8DRI)+3yTQu!1OorfM`I)`17Hx<!@%+<gR!ee(0oqS+% zx73Ui&*vvF)Z(1Gea+xK(cr4HtsZU@xp)hAxs0u=_jBI#W=wTaiGjcTu^`l~LAqe` ziEC#9t<+09x{-R>pWU##+A3glNx|FN^vsW~xsltnp;?oS?@w1ZzHG#tPZ)IZ*f>a{ zIHwrTt7Di;>Xs<T*RN6&dQQJ0lQyw2%vs9DxSnihE4WdpK&wEhwp9WuXu!RjdMhTo zBM(@lmg>!IY}qnzh9q|tODDT<UzPI>Lg^?I)>fh?mvuvvH|5dJ<t>ADZKb>RCQDXk zsxR%5%e`!Ele2`1o?VV<o-Jj;?;#gmadXdi8mJXP&MJYMy&BBi-KEb3XT!3@Q~z90 zJklugT2iGkLIS<rUD^odmK$aVQHDE4lc?UwU^r&zOSBKN8;Ls3^GdK@<h5Y+I+als z{iVCK2rQXycT4vN<MV-f<gH18;fq<$F{vlkBq%{#vB>5S_1?@G15S`PObKqU?;*i< zul|gl8BT!s#V_{r8J+q&oCrtRoz3HavKV3m9r(JD)W%mlQ%|3`Y2TuYHCpl(MYjw6 zT2!ou&QPRvJVj0>JAdg&KI7`kak(pVmjnmRP3h`(vzXvM7O4#U9mr$#AqBhXneP5f zomGD-(b+^SpGvIEUCB_ZRE=@|qDOc#NYTmdD3~~vNKn%M_*T<jptHyFfK}?H<BiB8 z7zf;DP)wH2HN5jsKcMBs>mpSy_Yx%%DgWzK)|)s+r)4o6CU(bjMUpWGJzY$2wu$A= zT|2*)c9D7oX;bqIvX`%_qAd@WmtU0DDjZN08Kyex_HzgzJ>FC-cgIOb_Z`|;FfCh- zHOlkfx-Gv`^~Iunfzo#Uk{=Ed^juXFq`=U;^A~;bGmeNcqLiZa7B&X@KN2Jv9&oO< z#Tn*Ei;^Wusl4gZ8uuavIhxkP$=<9dAlV1XK#@(k)sJ^4JYEJE%<QHqP?laB<2Hkn z!-o|da_<L0(tnZ?R=tW`^u*bcFWs}0LsQgmk@Pcx#VzD9a)qtthL&JugE%T!k^vWV z4*;2<#NogA^~cwpPxDLnsmp_=yRsk7up?$Ff3>NSznc!(-MfoGcb=u*{%N+?-1h6b zztI^kI;Klg9s)ZfTZELA6Dc-ZhrxRl<dn=hasJrM5vtsAu?}<8i<6Hnj!P{-=W8DN zV6w@R%41?WT|-lsNZ|!<DPh2e6kW)Jz1pg`66+wgqe`umbaT_k1x}!UPO)dKzljd7 zRa>L3^zKl6mpN}ovm@?!Gj-;V&1`Ry2#iCN;4B@X7s3ykI1qO%pa)##EG({*_AFen zVtQP8=q)w~9ToIi3lC)L0!)ugC{VVhJ;VZx-5VB-+Ni~4En--Spu0;@VCZ2C#Q<WJ ztCv4HuPoQez>tfDW0$K`?<%qTQ6ZR;@VLU7xK%`3%+RZ%0Lw$eMYopelHaoWu|a^L z#w@$_)p^?xg?3fDd-i<~r5m(xt?+`f6tirF?$48@7e3zwK3H%-hZ~h!S-&jGJ~-$r zBSYmv1uCqD#>Qib;i>4YLlCY)=<Yy@OUy&eRsJh7SCR8Cw%r7r7wMAy1kbHAvDX{{ zbA#+md=IrTm{v+X->YWnoZpnB4h)_W-e0O3db7`n`^D-2MQE5T%+T~A;m%rmit1ga zPOK*GTLH6S*_zTp{o<i(yVb+-3nxi?y50$LU{y3UwQ>PCc-(UE;jzV*4}W#9W^;-U zqu|W7KYU5;Z%ak<(O1)YZt&5|W%DaU--C|d^4AVUNM5t(f8{0c8^o>20JNyusNBmu z&KyE2T5+<CLz#11LkRs-H1)uZ!k>w9FJ)TfUZ(Wld!3}xZk1NR$ZzV=P-gv`QPBTF zTyL_X#HkwmwH703To$gDtf4YA#!_8=^)-jrC+l+;dbKsF+=-^#hse1Vg6@qDr+^NQ z7mmvXY5SI)jeC^0oqJ{}><%<)!SDz|RaI!|02al8aJx}kEC0stbhfy8)jd0`E5i~8 z>_LH?c71E#z$oK<PudbI&b;V5`v63zx4wglY}|AC!Pn!D5|3@9384pw5uOz&=eygA zCB)RX@R<;(>TWfm(HSd1+$md`DJ_Ds&h)S8lqbL+9g|-rSH6?N*v17AXhS55;=T3Z kSRQJN=l_F;`CF-sNrUfjlV0cL0qCWprLS3d&idZ}0XFkv*8l(j literal 0 HcmV?d00001 diff --git a/public/07-basic_statistics_files/figure-html/plt_clusters-1.png b/public/07-basic_statistics_files/figure-html/plt_clusters-1.png new file mode 100644 index 0000000000000000000000000000000000000000..66d429c209e185ebdc7b11d0a81921602f078263 GIT binary patch literal 44495 zcmcHhWk6J4_W+EZ83q_ix~02QLO@0V>5?w#kQNXLfgzNZkY=P6kdSg{83btrq&oyb zr33_(nD@ZX=YQ|Vdq2G6co^oawf5@0*53ONtEZz%LdZY}004=)n({pWzym+xVBk35 zkM5N_8UO$x*V8gok+^)BNk{}sn3+kKfmf77F!*lOY90c=1-~+r2)?{?`2s(n%z}f> zg28L6847&Q247(YUjczPg3VCD!4j7s!Kh#q_-+jbVOm>*TfyrI%1i=vMFJHpfw}@k zq0BC!P_5uUR4aI$MS)<mt*F_P)?kU&V6)cXV30&B%B&R?{12oRe9c}0&VtvI)|1xO zliAjjlUbD6EGl>w1!4zZ5&(f_QI{Z>uM-duyv&}Q%)fjJl0IogUE!fFQ7^x~Bye(a zg2iHGZ7KFZ9T9k|nfU?$Q}pG3NYchnM*v_2)Rk`=2B5avi5i8PQ@BflB&Rb&iFeD* zJ#B`w9tL9MNvfS}ZN{Fx@yvb5=qhZm(Xx4lW%)2GXB`w(5~HV9IF#^q{?UlBMxoj( zs(h+K!xodsP8-n$3LOi`<%cZ{9AhI&=Sj!`fWJ2JB>=>Dk*lvop`vue&vHNfzk4$V zK&>9rEs>Mpbp_Bt=vayOV(=nu<v||Eo;_BM>=b3b3*f=K<cd0N=twyLoTyc%F&oi@ zXmTXv!~Sy@QM#TkI0mo{P?e-3{$dNWL5j9<Fc3fc338A4|DP;=25{@oH^nC>2L}fu z9p@E7tI{Hhp|K6z`B;q}{uF`xKfg(fEO+$6wH>B4Z)sxBbVWp1!gLMdlAibqn;Zxk zwuajL$4WQ{QaALX=7K1+gHE}P>0+H$WVuLuO_T-FmL9Z%qs=FLFx+g_|4whGCFwtr z@Z$huqDH&gm;kx6-HkQazUKql{#?Q7jPeJqscwaHk68X`ffypcgC*?<k_o%`%7QMh zW`Kx}W&`g7I)BHO=<xtS{Z#)4_+&%Z3wylNJN*fc>7vz)CypRTcG{3ZBY=ywR*ZM$ zp%n*`2~=?8Y8rwJvA!BmAFFsVB%RF?)@&KT5qCp=zY%+e*7|)|XY2APS%llC`JmUj zYVCcH!2Y;mJJ*?e=KXZqneUFL!z{;Z`HJ#}VP|IU=#ynq=c(uu1Q!A1$;FS}_jxDL zCAy)1NejMXLG>ZvtcHKG$z1==j<C?*y7+0*tME}8XMiwAg3QNqc8}fQplQ&w0_Q&& zl5Rre6P!dl&)pQ^#B|#oGmnWw7|klr2S^p?E4R9e8#KM)f$ys>M&2JrwelD#{M4m~ zn(in@0LJRe*bVM)hs%zJSP?d8jA5vzX?$3MWXLSFrYBy;hO{#;=Z*d5)KjY-b9x9J z@yVT+z|s(W{YO6qrgVAR|C{Y=`S?e4B}Qu|B4MH2A@J^ujX-J^)3~<7d#uoz?XZ`C z|M*`PW9WWbj3Jha6=~`yVq1P9x~M6;;v`<z_BA1j6YrLVPwSwm02o)RPGyuBxqu|i z3}9*dGilh#@!{ceC9d@JVb{{xens^1YU|`z#iGGwtRRg=$|fbIw<8QYv-sX{KMl*h z!^X^xT)Z$LU`;=I{jGQTz4cPGnxU>8piU_thdr-L_+8`r_jL31o8_Goszt5)8Ox~f z<bYgf^!i;O#TfE0jt*e^lTO#9<?3f&Dvjpu1kwEEr?$%6B*(Of|FILZ39ekL{j5f? z^5U)3sWlf;`SW~-TlkKM^{*(vF1_(|@gktnV&PF>`jVD0NWU<72IH*h)Ij(z+z{lz z(Q~&4xMZKcOSc|Q+B!{@y#4IK_b8AV@`TahY#<4@1m-=1Wq<@^nyBX)UGN(*nL}Xw zEZTI=A<7e-x%~ss<AcgONNT{+r#)|a;L;?G$TPx~Z*CXA!?2Be3XqCur_95QU$(*T zHAr-=?pLo36Sqvn+<J4tVx5<pDV`34C2Jf|;Tr00J6HNR<!?D-`?33rn*Jh2ca61x zXfh0@i;Fa(Z|^?Sf7zxW0>cRnXz9&IJ1@cl$&g7OtGTPATiT!y_aNvzBL8=C6(=`R zFEtZe5T*2MBK0nR=}B{5)d}J$;4_>}82;qUrhic-tta&Hznt|QmK+eH$Tw%ZnSZ@e zwxZ)vCo?MpMESsnIyi%p6N%j)_AC{EC954QlUg`t60qKrZPx7&a)l*7_++Sd2WU>c z3PggQV8F|N{p2HUC+hUuTZJxPGDKS{h8)3})C~Q-f3e8yvhyDF=jVIAW+`WXlCbk( z=b6if1gztza<Z)&>6((u5D$pB;NEAz3Q}MgZ=ITSgw8JOnOh-#p2A$9`x|2RKs*mt z={3a@VjGf|#snA>*-!f)FK*42@<Ne064a@(I}$<<#K75LA9gNS@K_|T>PTpnRwSj> z;fB`U^URkNCV@Bcs|E(ikvuF5xD5+^(>7fF!Ubv+4Me=UK<q&0^I_8W-}hXF3-0;e zy~B=^FO<CtHOHC1_0JWv#t|I>Kj~JyI*2TP_BQ-I^pfhm$dIj*v%Y@n{l4#akJv%n zsqXUIKP$zo$Jf=lvQGdh_0eG9DK(<<K>sXoL+@Na#1S{y?UNyVpBXq~o%)et%=VA? z)*eJYiONDpc|Pgwtd92Y^V5xAOCj@LFP?qJf4t2RVmjVCU%gvz-Bw~eQUBU8&<r}W zw0!>HtG10-Ysfu<eeV6`KdEQZ;nPu22&Z<<d*9Q5k;gZNNmVjgca(G-8F^<=vB~Fg zjU-fp^z8&~4;*3OTuM?V5)sn!GU~XS)cWQ~-1SyD?55WTkKFmMX^xF?j~RyF3*oXO z-?Tm1FZ8Dw75k>mPe8Dee5CuQ9w|DHXxzU45NnC%;fE!Ad{XWU<yyjH$kbx73er0I zZ;r$HqrGB%9nA?Ewe`{4)y50?;7-yGztcUh_R8E&$VuVEI(5;=yKw~RrjDh$GBC)8 z*ceB|&m)StW#UAn-{08mT^3$_wk9=d>DzPXSm0D@RIC47n4{{+Ki~C+?aKsR{P{el zxW}`=BGxk!`g8G1!IP1pi{ZB{fhYBcih=G*f6foz=HvIScQKL+9B9lZP3=LtZx1Vd zw*P!8q^GV0>>f7qckV%&3?I43X-~ig`%inLN%KBjoXwxOaiZIZc&AY*$>#$PX}$Zu z1eK&m|C{$R03BQ#llbsw|NY+k6uvT3NxJPSHu^8QG|@nwJPB~Q73u$u&gI{vZW#ld z)jxEHjK=&Qmd$*N{joLhZ{iRjN1kqPh8;-L)BpY-P8>jN_y22A;8M~-cUcFS|G!iR zx$pp+JrCT#8VgTMjSMLU2CXQHY#6rkU-^|r#s=75)?+d(<^-6_bcoj_%ccbMfRlBn z_f1I(q{LNy_To+qkN~-4)ZK*xa0Y#mj@bDr6@(7w5~F`q833n#@Jk&cF{misWku&( z_!K~0<_J*~tq;tG_!6V^4h}@-s{E4?gAripE-^mAZb3MYm#?rt!PNg@Q-*5;$aCqd zu_<q-U5(upB|4u5$pjFmUWx9ablg$FHx6NUGJwihu&VP5$datrA<Kd#*J7u-!P-tr zUMPp22mS$Oa|PUW2XI0G`*2n_Y*iu%?_R@&xc2$Kn_nYlv4W;By&CM)0Ej6}2XO#P zJW)E~#E%8p4<azW5c*5C)XYlQ1He`GZ1HZDm4E^^mr&J2BRTXqC0F*NeR@a(LXcf5 zw~M-VTjS?;4mskg;`LUE@*f&fjG=-4URmJj2t50F9(?jm+Wwams4OVEgwrvLG6$sT zagyQ{vSke}fL8@uc^?ESl#Y0u%^RD09zCW7g#CPZsnx7&(M%GD`6?2SCXp*sQuy>N zE&~q7it+x?0Eu&u&8}Z!^AD|mNa>n#EXNHOANaX|v%^+q5*HFA;2qf1e9h?aQvlLX z9EvDR0hZclFLXogL5VDx>R*-{#QwxHcBe?^Q5Jx-J!!AG!f_n(FUuhkdQy~D1?ahO zBc;FWUA(&__MmC@cw%Ddu#Ora9ER;5?9dQ`VogWoj-u|01d)p{(lk(FlB^j(|1x=& zJDQVf4EUDGbIcLg%#yfX4oN922A9YhH{~;FlaK5%xPt_4U3><8qKW_B>02+ImzwYu zZNANRY9}J#It;!-k1qvkMVJ6{-DTbYpMme>cSj;L0q{;{MfMu&T^2&ASucPC)3jVM zcLfgfOXsp=Is6F3!S)%#2(+x1W3LPxmn8%Tl(_~(p?z2VheJ)v1dl!N26VhWu->;3 zby%75^-opEbY@4&E?MSLT^b+K6LeM@A0j-!ovs1A8PK_Q>Cga&^Ml188mxmWJ<jMA zZ5syy8#Br>dSeEhtaFj8-p4_2)~om(Tog(cd1=DFLMK;MhUwDr{*=ezIp-psm-6zF zQT{H613|rm@B)%cBWka{>8W*f!#6iM*bU<VV4$(VZplc>kNxZ1U4RGdP&&O0<Vhz5 ze}|KCPs3N%FCB3=_PfcF824jT;0@>&<We7bW#j<=+)Yo8GI9hd*Z~orbl(QT6QdN% zQybq#;Gua3;05>?8l2A!zrYr!&YKyhNx@^;J@!VEn<stZf!)x>W5|pHA_tv^7kQg* z2@z&~|A6MS%d#(P_K8|fX%5OMQ{_1J?&#EbLDYt%jhy~T+&=!zbKHtP7d5{W!OZ<f z_0KKvW}Gf5JYx%Z@4k1oJW?oh15=85v|B>1jmJ{Q==pO^S|-Ye7-KS-_lVvm7xG{( zhyl;0_UL^T>DQQ?H?`!9#UJ~tN`?$wa({MB`JV<5XF@FJ#xrCItkQR^V_&z3YItla zS?DTx{T4=sT%+aW7wA)R*=4e^-6ae>?eKs3jOH19C7m|glxVhC7{^_XRT~600a!xj zsyX?1kc|~wO|;I3A8<n8Hf}aLM6FTz`RA#sfPnAJi~j>xME+EywU$lUJfl15^pl)9 zs(b65<~N~g0$rh7O3PzxGaRWR5|IvVQ$u>-mpu6KU<*GW?PK2bL$4=NL;;K6zW*-s z(DD)JwBl{jR&j>1O1s^hb{XBTCQT=<`H7VDP#`%^rgx^#*9-HQb2aBV|Ad`?b@C;| zbp18eXeQ97JBCZt&?{fSr4cfsIsnWBTxm2ElUOgN<QhWxP6hL3*Y`wi)&EYUZ^u(a zv^GNMoGZ^$)CxN^w@37EggUs?>4-!T!-;28UnQ*<??s42?%3=FB}<_w)8dZp0R+vQ z{JN_2HpQng9FKV2SB-X|jz^z8j2%KY|1hJA8_#+0Oq3^^`#Go}Goe>bal3Nw#52rJ zHQl%BBG8l`KUv@AR!utEJZ18MAJOSp2n6A#s{Y9H=UGW|pg#fVWPP1Xn~zgAhklxo zSN?q=UH>`r+K1^BeQLr0a&*X+v?v=694Ts%Yz6qaqX*eew(VSgJV^fF%Zz<8w88tp zKj7nWmb>svTEAaQXX;X}EgXUUEG*<?FYR?ZGS9T{Sv;cP3_9KOJ8ce%Mp{46<h$+R ziC9YQQ)s0FeX3-|E7pOf_6L+w$M59t+u)#Jf1k<UigtXV?O#;@om)W)#z9N-V~fLB zfmKAzl&{*CoTs@*Yd|iU+W6EsM)?WqP`uES+3}Px|4EY$-6of7sxnboZgwB_OCsTt z>Msg1dwDI4SZAv(C%<<)<`X%slG~2@0Ra$DZnD*o)h_IS!IufeZJuaEK+m?6LWFXM zC=XsOi)`~`+s;x-Q>m5v3H}7`&sFIk<FmQn9g&ATWfY}#F2f<_$8UJ$+W=4o7w@qO zofy?2M$i2o?ZzE?4QSKqPl_RpF7JnbjAxBdWS<mqyP5;gBSn@@r-k$SS-_`1D@S@k z0k=RVlJywB`X~u|j|DS6o>E@^wf$K}r2f+do0cKtNua;bOwnn4p)>BErwrbwjdN;s zFws?sY{pm7SFuH2_^WDOH4q9<2$309Bu-6ZSlkI)bXTC28PCoQ=vi)lc_7n*TjIF> znqoU~Tp?vv|49HdIA&Un+}gNfm}h}xLft)QvsgG^s4=umhx4cKZtZCOZ*mRT%KhSx zMXZnn_ifFB-}~~Q!TUPrKke<y@psd)rYr4BjA#Ipu_fdP+-UX(j5}V1?i~rhkzQy3 zK1kjHv#2ti1mIDjsS$XT6v&a+gXC4Wk){qN;)a=!rvqK{g;k}HXM+kgfAwssBGz4~ zcHK8c*^pdcVpO%li>4JLMu67o<)=ToJPcBC!++@o`paFBWtP8#z7q*>&)`V%L1H>c zJD<J%c<ix+a!Q4XE^}lv&TL*1RvuS<@mu9piIxTsLx-t^?ME!&jxyC!aJ4Hh<7Dk; z4-s!4g2|CA;)K~l($HLE?;aK5NuxKlL~7u<2L*@~_)eKR?;vG}=s!5bvVS~$m73Xh zC61WvZ)0f}3MRVNeq>?+(F+e@2JL?h{wGkk6-s9ZR&sL){SU@K5at#sm_6iz+Phw{ zuA^XNqMK32PI00&<QQ4x6^_4FZKU<x0d)c(TbIO{1CS%pA)V<3*|&|H!3*U;`UuV9 zlWpXVtf8I*oVr3edk?ipY6!wFa}wj%I_xwTvXV>P-1FuOiAd6zGH{WHqJ|Vqw_S1l z+a2VXC~jxy>D#-&xI#jIc*td((G0CLrM!^50a?H0n_;Y&J(k^h@gf9aH|g4V(T}_W zVI~V6!7jiGT48Dx`9oXa%ruI*MGOu|I<$I;yOWF2ywO~W94?EZzXQ15Dj={wFu*w# z1WhAv3mdiMDa;v?5QSne5kM($YzF#FfVyJ&yr@Rh`a&}BH3_mXi|;@Lu-A;-0U0Ga zGqYL}B~SS*?CJ^adon_ksY`7jio6DKkv^YAhS1CfEiunSy2ZPcl{H$+`U!w6-48}1 zPX11;z?$nM9DzUMTv)Zavr0%BeM^fo3LcXa%(zuwz0bB@Ip^T-{EQbc!YwRM^dHYB znNbBHJywfeV7Yo?x5fm%5Rty~e6P}PBL8x6%oz}ez{}jp0r8q79gC4xXp9VD!V7<L z@w!h4KzHKPO5Ugat+$XqLU@_{qJ0+2jB07srj;#>jCM@aV^U+YUVf7UfZ%2AiD{8; z7mrUJW*|HM&fL;6$BiNQLS@|O&iYzH;kzbqt+~;-d~u5hb}Z}iBTyH~Q52YkLIDjz zj0xWok_PVednH4->>zU<p?7RpqR@Gb%1&^w<Fu_8y@e;rgEQpvB<elWfIA3Ov?g&Y zayC4K3{(+$Gh|F&kMrR#R#Ao*<}5cT=(K@d$Im>X(lw-aEJozm<yf7}p_YGDL<zs% zP~;!JakI@{4iSjCh3}!T7qdN~-L>UU-phrgr?<I}Q=$Y!Mq&=7unSlBy<&wmkwjz| zlp7#jLAfR<%xVGQ1x~Lw{A%MO^vXNHCv0`V4}1d6N`c&8L>a4<S3MKQpoGGpHY|~s z{4WhHz66|JAx%`-!f!`CWQW?QRt{fCgopTmj8ibd5euGgK5}q70ue$%t&wcR-ptUI zOmV0U^pqGJf`gFTlX<h*4iR(@55Z9UsP6RlknUb+$t2kqjqLMH=qVfoVv94d+%0%d z0nr)+%1T?E{W%-SOF16A>x#KIqHjk8NYx}EEJhfM<SDY4lLg2zl{&0ZvIiq4_qDRj zRlm=Yp~M^RJg4&)Q^wqq1{D%Lhp@?349tBX%nCS0!k*p?_GB~S7}ynw^vLi3G37Un ze@qV=Ptj2I!<LB$f_g4N(_-}n1yJTcjoi=90Mgi_8HX{r{{c;?Lc5@ZSrM4PRjS93 zcZLg$xb}Ht^S>JGOU<DLL`+Pz7F|{>Grg~?HqVjt`0)h(sM`i<^r271HJ0AWpfKDX zbzD4oSVcer;rQ|BY(LA``g=s4P60>$N8mT+76jxM|47E$f|K}5a(HD+*l^|w_FF`n zGh3+!AT;?LaCpI=)Y~pdRXCm5-8nxVJGkL2fwuxZ1wg$q-SjvxBMFpwu^bAi58caG z)9EG%nHZ))<pIYvyYJoKME_#ZU1Xv(mlc*Vp`%j=^w|nuw=mY|YFmuthM(Vkas$Wp zCE3@J5)L;(4HipJPN|ALDQo%<r|5^><2mYgaX%gD1JBPJZveD2rJ#Vrqk|XLUlfoM zGg#_wtDW8)ciU^7Dv0RZt_5;g#gU771|-3@5*R%9x1=TBLm{ZXi^FLd5sN65IM}CJ zSb-`siPIjyt0BE@F%rBgPXurv<#U!&;YB~ii3`R&yKgdXcgTjDV$jv-ypsrWMD6Gq zn~iH3E}L$FiS`I!N+Mxfe$3s%QZrmpwb?#8A{`n^J6enL=)T{IS$61+w$&K1<P3Kw ztSkoo7Nl^eccrWW7YwD~tcF)hOIhha&s(Sq5#S&d0AZcDBaL$v!y@~Z9A)=-c!10^ zF}9mq+|EnSq!#*ckzxS;4Bph#q45?yV>=;as2(q-{oIO50$R2qemVk0KYjPBjW(-O z-%`p<wT1yQREuY-dw7!5kYw)jHtLbSNa>^K?dByn7zX-p7%j;l+z=9IRygDspE|E> zqL96|dQzo5;WJYm?fVx(lgf?I<J+KLiX1Jmh&11R=(2k8o`xY6S6$@gr{8x(n}tMM zXAZ!=9*MK<J34jfwABn{-Pjg*lL&B|LZgT%Z1>FdQk;6%z6)Bj=XY)^lFk@|>^p&} zoGL3G`1^*#VHr<~J}gOOvt>4nxn{VsYI6}ouh1;M^5E0GQBEKPkFFFsk!#a+v?ChL z*WW-5kj|7AfQrWWa5?NKdT*4#lGmr5kSUa|DWNy+8leR$O)Gn@K}q}+Z5YihMoy6m zK|b?e5`Y%l?YsdRBAyT#ef^PVK^neiuI+aA`*$(u26UeE?XCsB4q(ew<`DrRkY{ve zAQx_f%J5KNmrE><zX7!Y+||G)Vk8);=zq}qWo6I~&z2K{nDtTyNPHK<k2_QYw@uj3 zlf2_d2HbG2at!`D0j6_$q#4>rhkxT5owe9_Wui;bzTEf|v90b(ib3l-j>9^PR3n(p zkZpSt8`aiMxcgd}wF(ZrqNH8bzdW+5HiG?mGcI}nURIWHazvOUi9u84pi>hSWP7@| z4mmIo={|kat@%?U?mUwnkbz>3Jn})@f^Z<0T$pa(z%~uuPkGyDVr$5l_yu5s7R<eS zZ|?8n&Vfw10($SlqB;pYxQGsDUnJx>BwYhu&ESmHJmLmyAFi-J|8vhQzc5G)DRkM} z1bV0u7k_uco&^=K*5y1Dgpd`5E06hYeausTUFD?-|HS$Hw?|McSIx9bI~6A5vb$`P zY9T|2?Z*4PZaQx}CH%miZpkUs^rv;+xt*k}LHoJ0DHIl><T6r64&d1gUbcYu8N^>S z^bJ~DlC$zJocI@9=Why;5hJ&moUu>*br!0w;d%22?CR_mb;bxc;OXQD#fkhLsE2|G zNugNK%w&QPw-{nYjN%=8b<M-^W~<YX;KD{SHe)}EJ^Tv)h7h?<!h$-LVR!)xS<)8* z4~4hHokH0aRYPhe%8;VH1vDQ`{Baq7x!=p5dz>rOMQ*FdxKT3nTXSJh9I#qBK*&Gm z0i_aDeynFwbyLc#D7}Qb|DL8c&sTrUBMAB5?89(^N>e9UF&p}oConQus^(~pW2Por z$k&JRpt~A{KhIqIE6=9H_jW?3?F~ieTXUuzO9Cmcx9D9`RO}Be0J<i?gAsEB0|RiE zz4WyT_W5QrWj!7w>X7S2JSzif7Vy21zu6Ru`(kbZZZlp~8kMSA&yPNwX@}K}D1itO z;?Ammfyx<+bJRYP0{4vBCgF|aWyND8(mb}K+SHPk1zYvfvKSFb1<2?JeOR+Urwh{z zeo@t?O1OA%lyK6}SHeK6ulJ;(GdJwgsi3ocWt0etSAi0b=fCo~vbY(P1P6wq?mjTh zhtKd_VihU@ue^?_tI4SNrmOYtSsuWl1=Wb-SBtgW0cKrV3h%b9m*54AHN#bxz{<c= zb)$Y3&CwE5>BfaB8sJGqh_X>0r=IyPfz9P2;1<5SuiKA6eYKNNC=N1KrGmo|$+Hk3 zy9`Bab+yb>?x^Q2YSx1qDud21f&N0}3ag=y+RSYnj3xag>zu?P@Hg`Zdy67Ojdu4g zWG!dF$Ofi|i|zzdBDbDZ>lZ?d5LR_2di*)Ta$8Y_BnF4`ehVX{uhJ;zU_H*2bpKDd z$3xIB2!6JUlu!c-GQ4+yv()h++fqgMAVJ7JXYu3ThxT{pzMR4^QcdW*X;{!a_muG$ z0^|)(YJ!3<_cI8X5LMSDKH+y?FxM!#Ik2rf{|DH4-@YR{Cat&rbq<VG?_HXUzLk$| z5e`lRe8{kC$xgXR!82)$d9f7uk6AS<#$Lcwf5FT`BI^Pgp7Y8<^ZPxSuPv`~<{qp- zWilKVTPf-XU6OVUfGb5%FbR_S<02}XtFn*@u{6Niv0`$dAUp?-OrEpEQ4;hB>^f!u z1*H53p0I*LPdxs=vjFz*;op)Ow4r(y!F@5ib}C&-ta{hisXJ}or0v>@{9snHt?(cQ z_1F&Tk$rt(|NUYnF?9hy3%f%OZ8q#zOr^{3om?~=@wy@5pr5n&BzS^^vA3c3_YnpS zCO6usC=rK8A6lMViz4&fuylEv&&4_TZOmOovo7`<)!2&JY6v~X7&u3Ic!9c){;J+I z|2mPJ=ZF({#f2CdA6m!x8Oa5y3pUCLx#lYj5rpgEqnklanCIXak6V#_Oz{%w+mKf( z0L3I>AG4_Xo}l>?H*#G;dtALAPrez|W8pUW&(V3AO2xFVJ-Bqr<mJOn*Kv?aar+K0 z5{X-<o@?f?LnM(_e915KS{F`Pe+^x5AVY3~?nUyX(dn4}SHL^&l=9m^2<iR(sMdjI zwM}clPhO{(182foR_%J>TPN&8%&qGn?|5kGkGDgy3kHLPw~Z%_H4QfE9<4>miN1^H zHiwN0q3-<pF7XFyw;6Kij;dDZ8$sH+1%orD9iT1aBZ!fhxJD_;`vM9fwg6b~d#28- zi*QDBw5TpR+<y?;9@$ZFqxM)-5mGa9*J32TFdPtPr2y>OB4jxmnCo$)gyl~jn<DNq zX+yX4o0Yr}D_g+OpCnTACdr4|qs$x5!0{|NhYMjer?~qpCe`5u73U+2=kho)(*nf1 z#pz{K+E7kr?Zwl#!7_3|QJthawxM_hbEjY{MDrbn>|gB1>DGIfPstlra{Il;Qz<f< zMQ7Zab0fv1sP7_g)Z!iX!X6|Y{PRY_>ZOW)m!IWpxUOWtX?Nfoehz{H7MwCcz%FI> zT9544qEv-zWZUuN;2?xHjFuK7nyZyCjJz@fTeA{*-9q;>$HXk}k9B%xz>2w7NV@Wz zMYb~BST{`!fX>iNPaT?%`a^!+!Q45{-x&L5FFNRZffBLzWEs5<Tluq<6lKy=uez_o zz`leXW!^f(8809OMHlM}zLDc^WK*}r94Ucu=`;fHTs)y=8oS-En!gfV6m>k+lg2*1 zPKx)L`TGl;`LCe;;h3+u5VG#VyKHl8cW`y@kybpFQ@){1`w&u2j!E{8%iJy+tb0q$ zF@=8@!euiL%0XmHde2Bs5yE+@n^Ed<VT}(H7QoXoO%FZpKs!5$Lfqf8Ruk@&O3*{n zkRFEM%!Tt-DM<#xJf!Ie+}<PYC}~=ao0iGadWzCc*DRW~^Dn#ciMZFefb|6?sAmem zwP7>@vpj3I+4xfa(DB2c+l9f(P6VUeDp^py<Bn-4A`zgnANja&ZGnyR5nj1If~KtW z&=tlS>0VNqg5S;IHabPPiOnqbbXzHQn<!c7+$wxFaANbd7CZY5mtXJ;weobC!jUuX zjOpcCA1&ftYh5DL-pfjX$Z+6Kak>W1aLQgDOfNOjfzWP;pIG!M4zJmLr)tC8nDvth z=8G55`Rci#JZ70*IX5KKZPWb5BYaY0=J#Jcc928YGH6vk?Nc4T{3}1|d7QrkXw3QM z8&6o|n3kh)vnXetO->!IV=VgDXw@U+$G#L*M!yI&Hs^Zas!J$PKP@}t6Br(?T)B*T zm<%cMf4B~1u&=1t9C-)v^mqVc1>Cz_e+0TB=NV^S21}P<S~FxS)@;Tz73oRX>O$Mo zft$h*{*=44Z-mi!TdI(3Q-jihKA#tvIH|<EeBB!FhB0XvsY-MnPtWK1SH!Lg$;h() z@UY#dvSLd<q0xDsnNde}z_vqu_J@`4!2rc#)y<X_h8GNw1Ss0}-7k5e56OIU4PV7$ zl_?1K*tZGmoFDCfy!SHdW)rUF!Dzxa7B|+Seib;9<79R?hXzP^6pa?jBA@vR`f>>} zi0`xJ3-w;AYWlLFYPq{AeNf@H!Uu3*Pck@>CAORBx;=qS5iZ8O`YAxiL&*REFj5`p zyi(XgR|*Zjl<3xdYjNFZU5hxt)z*y-N+xCZdnN&A{`*YL2P33ewQv9{L~`E-%{!bJ zTdgzCss(o+2UT@PQhUvW=Ru3+HG`%MYRWUt#J8y=YE|x$TojUaR3_7|n}^d*_Q-JN z0%5PmjF)mg0Oe#ccajc$ZEqnt{6i0wB8O%1d1z-u!g;qmmc3_r)*v(Xf$(dmkjewI zZAHbYkB1%fIGh-%_aL)Mot^3nrM^^!!vhtxZuc4ew7V@Pxqu!<QhXDeGgnCunWv_A z<n*<RXU=kgcM+9y4OJhWV9-_QJZGiFGvgNiWKL%+Ih)q!dtYRj*(;0n>)dCZ1E2ZI z&tS~&Z;wtg-UYs7FepQYbnIZPIPUYHgyNEnCcJB=A}VFYLwZyu<Etz`7Zh+K^f{5& zx!4vQWk^bv^H*#Q;ifhc?!uv;qrt653Y&RjixJ<#5PuRfL_66nY5!c_!q>yc8^<DS zH@b{^1W=ESs0Wneb6OlzEz8Bm=7L3yV%msS@B6|=KjJ#Tl7V?N=>J68U!@O;V_<ry z*y$sC!*#BPmX4e0+**f8%C1c|LNQ@Gdng#|(LMiAU!%AF5_mC44+{?kUEFTL+MLMy zFv0!nwkh;)^0;r8MY_70hscnql!FUz)~WID^!Rto<A>I<lY2$qUb&h%rO%;lrLLGZ zfQWVS=z5!?d*^@VGqc3K%}slF56Wsm<+9p+B<FV+Q}~o{irwKXzbGOMDe$ZA=;ph` zE{7`(mqK6r-g929yq2GLA7dU;Q1XSa(VX-+H297Bsw}s6U2W!XL``<u7LC3cUh<C; zby<%uqVzQ$V6WSZ@j1v8Axe~M_MHmMmCyBxlqFDgJn(TOteM=a=i|4w>bTiW3$!Ia zB}WopVf2s6M}BLJ$)vZi43?6B{GKf#SV<qu8fy7#G!_oXv@gODcr$1)6ZpA2YB(|P z=2(|>EGI{}ks&t;i=BpOlI@Tj+~eUuQDcRJ+twZ6Xvy<`_P(h`iA0f><-OvHHjSbe z79u0$b0)bUf3qyGD=+qx@~g7zY$&1T9((L|y*M-(g7yIYnaMSHqwf~`8m%J(|E>n$ zfmc$2v(-262&vJ4AKQ!Ryi+wC^M#BK(yA*I^#6~wgtEL8>)rD0RF(1=lNan{)LR2U z2opln^LOhWbRxH0+tT4@X+wb6?YjW~m4Y{wiExhCk*?Q*psW1ck$(EFd|Nx{NoNkP zw}}8|c``%lfBXm#GG#A!{jn$WP1AnY@`4;_*DECGrZ12#9vU>g0d?7SnvIy_wiUiI z`JwGkdMY~B7w_AvC!YeQc{~)5qu{5}7HPMESzSE8{I{A!D3jF%aktY}pR$7gS>Rhu zeq#2Gqo?Z$EG_q_B3<1X{K6<*6@%e6;Ne8dvr@9ZgeVhhz2_${(VQw;r1k*IfA;Wx z^>qlJN}mJmLH1dxsX7NIq}lQN)E_2fQ{QpI2b@A#{)r#ox%RY(kgT(tmI0a(LJ(zS zh!hwOB-InB;TNZ##L15|17*#P0TNroV?G3l%Dtkzmq5#VC@Wu`IJRH)ljWqGVU_v3 z%n)q5er)Q{otGTZ`na?|@t#j*M(^Uy?JZ6C#7DxJZZ>m=ASgT(l>~UdD-n>mH#yg1 z%WadNh|Z(zY@Z0$`)OHwub1gIFzhocU4Q`Uj;%v^Ty!5WZFi&%p|T#ug}?cTLO`$b z{ozXUh2SP{3kg39jjF$`rIf2#rRgqH0uP{5{{6_{b4?t>w~J$I4cBtYBEG2%U<ZS) zK<ACGz{&o~ue3!S^c$!1t;3<bO~^SFKi`5OB_NfUwIwfR8`}+I?Pl)*hJjpsa4*T1 zqI=U_Vd3`bs_=?iNwDackyHS?U0IbgwBNn@tJ$B|50^VLe2EAskXa?SkHfg3;Hd?< zn&CH9o7dIwse6cn<DdO{YrfP#(YJQUi};F*!yIq<4Ct<`C`dn6`6Yvfm)$kE`{KGi zl4Qnda?1Cbnzm)kltk`JRe*iX)Jr^p8yV`!@rcrxVshkfN1Th`>pXIV#1(xiy3vO( ze&3#*=4gc#s7G!{GDirRXPC{;5)_pF$&UjV*6DC6ucS68P=qKC26T@NCk#9_2CkEP zbh^2274tygvSvZbls736r-_V^AsqKs*B`RDe|s<5{MPTg$o9h3sZL^O$VtUh32t`C z$x}m)6y6pY(wDX+FnEj;c-V^*)a+aey2Wxj?~0k`+@LR9WQ^#9xt1G_bt*m+;r>kf zw~{ZI65)pXR}5U6`%gp)Vjrk}LOdCyZze42=Gryb7@2HKmX<Eryb&2;%OC}Yu7G~V z7}Nz#-=oC{(x*=G{rsJ<QDG=g>7+mBMmdXR*%WJ*TXLG;4`j^3oy36++;uvLe7J{^ zheGLXFFbD_bk@BH7jbiVfe=|jMqh|6?G7ZT2S4g}Os*uu-l8!u4$Qxq3(|>P3b$#o zV*5IhrCE4WU(Utl(I2jQkBq3N{Q`U)timkW6^yPN16wS(WTijHQWJnYAQ$h_Bbfc1 zfR^*jnnk<H@od0#`XyG?<P_VYhk?B(^VXjbMjN{gu3PAlgsOWeiR0HKf+~_H;{;-x zn}!Gx?vvr{fF~t;(&Ee~tF_77eP*)L>gbkA7!%ZGK2kQE<}RRnRV)Uw%7)D9C?;9b z8j20iek*yQ0FNk#RNph?jvgUSFLj_6T^@!;y(T}3Gm0CC6^8~u=ga1TKH<z3z6)91 z{hiBJBqVogs_(}xVPYA>ncF_FmC+m@b)8^X3rKDGnP~%#gVe?WSBPXu)>WtK;C&5p z8i?GnHBvS|J5;m*SISqq8=|iIq|p55K-37|J8A^Sl_-)kjL|-#+UNTbudSYz96p2* zAb*7H>H_xLShrRMw}xlJ0)=uoYSoO<Za={;AL`C<xgzp_Y~CljbIeNO@ZHx~R&zv- zzQ0gXvhgYJwfExLLnI$_x-dJh-oXokliTa%IgmUx9-!7FUA|)q+R1{7;e4DVkOspz zjR+sVTXVk24_!n35|2C9Wl%>RD-Ylpx)lQVT+nw(7zkJ&SoLSxdCxn<DaIPHj}y`} zWC-8OKDm?N7`t$mzY6n<O-AhtuiU6>pg@CXAZNrc>*eu+MVn{E?^P_>nH-fq$a@sx zV`f!2fwRv~OBlF(mFSyssos3U9L(M`5QcQ8i$h(YX!Uo$P<T)YClSt3cH-0|c4Qg6 zLyDK+8<bz8bBa5yxlrqM|8#phGvA%Bi(Fy#$G#hbN5{}aw+&`!BEXE1DhEeJL;zAE z0r6$-)Hg<2CeB!nv8>ipjxLBX!+i<aqk&Y~l*NNj-nLci9+U-!s5EsWwwPjjjQ{-v z3a!|?04Y-FKl3R+`Kq0JOY9d_N$WPL9n(ZyCkMkm8xZkEX(!B-<!|RMJ;#UF3r=Tm zH9gy<afta1Qu-LR|G)6NBVSwTc@wc7K6LBb{~-3wk%G+Gb)ivBZ=pSvguIO;P6fy- z!3*?D@N&6b4&vEZ7=Q)^7if;fJ7L~3mCe5%TLJL4G0nWEPRj(Hnm|19FX&j*iN)`_ zsV8%<9SHw1N}BTom&8&1mkj|Tl$`V~Ufrvp0Hox$BGXTE-lm9jfSX9(R{o~Q&}fkd z0R}cBdS#gvVgck@3gwvB^MLOvnIcinz|REL*q_H84YueMfWg@8x~QeGf(;A<LyKLS z#F+;<;D!1<P<VIM?fu8`KlOPf``Wf=_t~DE^JKaxO<9Fm_V)8lAP0HE)xm>l_-{Ql zoq&I1A!2}=pKcBwHy<!s;NMRlj<ScTO#BQ|HgWvrD)<?|8V?AXr$@c-X;=Cbzp(>t z7KPeC=F`ATf<pi`T?SXN8)D6*r(qv7yzEK1k*=|SEz>Dv*JrSWFtR1jv1cY!9F`l4 zY`c>VYZYz=Paz4w{RE(oj1{S^Je~(%R-pJZ6Yt}AC&~`C;`Pkkx%;+bQvt3GZ&Ix( zwLLpa%bxdS!Km+srf|U}%V@4kX@_BCI#aP0y`6UDs`M<l#yrShZz`PFCa2yJQywW` ze?Pr$$SB-sky-qHT8MYPj;wr(i_ij614t2rhetLAUFHW+a@QDcsLCxUcpop2>G<_w z@8FmWIbPuTXt<N-=K=*hx*`#R&CY!9>sL4C>R)FI<h^O(uHp(Jkb(w?K@02{`PO%v z8{9j|@A(omPrFVwX-hyaZ2wRLx`}!{-Q>XUS|fpxTOKHrP4D&f*TlT{Tn|*#(=deG zx3oEsv>X7x<@;Dst7<=wjf~G5LAY#W8vDD-PjE4x*{Q_#puh>|%5|;pF|N3Wl$^Bg z0wHVKL(AHA<d}GJfchM6GlC=ZA-kBEGtwWrvTeAh4YV~s34`(~$T<jzqg2bzes@oQ zUP~{FBgYtG(8cJy7Z~as`1nThY^qunhS#@d_j(6`)UqDbhWfiU0DsG@L)_@Vrx**= zB{~Wq4RGe4gT{>zgYCDBEY7BfR|LCwv2euo4w?wQRsn`5jo0JH?sMR%ks(4KvKA0& z-+5+|2yFc~kPQ#O?V{jU5pDkchI0_wO8IxWEGv$Yz<Qq@p-Q1MZ)E&;?!S0uY4=mU zJ@w-lNOWkR0R|#Zbe{-l&u3|cTjKPNg0+X_vDNN}@Q>G@uDd>|;cO15!uTDMBTP<{ zWQM|>-ZoJs)19q3MAhms?%+VDYOi;K(Yekj18x)h7EC%134dZmy5cqVrE>vGDomt$ z)~6!Xi0`-`{8U{tg%t1b*M51WH?aBr2DG4f6a$`oLE(CYWLo5iIf$ZHZ~XRYM%tkB ztsQYkUjW{F$M0g46(oPcNk^^dLh2KtHncQGWwTfwLXzv?R;v1_OrR|#BA*>x(lf@H z@6lBSz7qj|*9HZU0`og6i}z}x@1byL&j(*TfbA=nhljZQkR=jU0d9vjXl7e{bAT0i zVJ$wCQs`EcD^HPfm=Ty#EsPLXN5_TC!B+^j$H%688DfU4%0BiCd8LRj`U<=hz!MEW z_p13c0f@Ham2B;T>-H$0PduVB`f=Xb=hj#2fI2w1P&(u9w_u|uB%+nx=#w^U+%)#V z*LFeFY36J5kNQ8NFpn~os<}CkxHF~2;Dpm84w3Y-k|l!pp|MOm5<3eMp9EBU15}ud z)VIINvR`|6{&tq8UzzZDaPFA{g$+v*n8h)0q{VxiCfK%EzxO*69`^RP%;zo0%vN3E z0Ls>m4>epkKG*#|8W2?vZet0zzks69G$hXcAt<<2FbmUbx|IQNXJf6yfjq9QhtD)( zKR*7#_;bN{L*a%W$;anK0jv9XU>QN=v%>=J6PSTj@!}Wv(89m-D&S5zhCP!D);j&7 z-_Cc#^5IJp_O2ktcUm_T<z(v4vMq_6rF28bq&Vw=`Ljzu?qQQtfUpuCvm!ObU<d3) z<6g+fhnzd2{og;W#kmS8Z{%EqB_~o=^8F|dv%<O^hvA_AfJp|%!;YlE^ZsLMKlrDI zfti)peWoxpqim225Q7=;0Jm_`zI<j}WQ4f)H9EjO6nMg+kfWS_TEdo)YS^dOO-9GW zQ0Hb`4)afBL?cm*qrqWLN+B^Q5}2NGclJ4HxJL+x)2R+e2DIs_>y_O3*gfqyHdvT! zR>g{|X=Yc1s)mU+(7kez*64A!HT89!PYFa`;e-!~87mB`Wrw~E3Nsq!Le?4YFepKl zH%k<{{Wt;t_+w|l5dHo_0DQ1%#(x5IAjw(&yJk5C&0W`2Y1{VuIgzi2U-5E6OLSyB z^lY`>)uraPNPj|~*aMtH7c3ZbJ38;sMi7$hPko%P?;n34^@ABdSpC?#WL0K+>01hk z_j*Ix-H_e_^`tm=4@PnF8jrVNp_i2b+}z`Pm`*~2OD&2&J$_?=aK>&1Rd@EcS8nkX z&V&I5U^d6gIOrWvwfK<)1;y?Z%p$rzOtMCk;9j<x7qw-UMQ|61Uw|iv)6dz@cf{^< zAjPh@p|oB98`Qv9%zCjQ=INTdt=7Nw1769@Z>{)5t)}*SPa=frgH+tBS7#wiUpVIQ z9QbYK?^}$-igH1Y@~|wAtq-cZXz^ykT)zA$K>w(ZR5!4Zz?m?4g457PWZb}X2$??u zy(DU!0ui6j?g^D)#;^nAr_1b(*q+SLUngWU)k(m{iNzQL<Tqdezbu5g6OK*>JStZ5 zmo9QB5F5n)TKv2G#)|J(Xf%t_A!QW^0-Xx^Lr5#MF5*!_57>)<DwVKhg~WKgF?AF> zpWH7{f3T7U8`Y~wNY6<GTB`cnDmWG*==&q9KCWLaKN;9AxMj#dS^L+v?$b$j>hBOk zN6}c43U)pYuEPWWUyQth`XqN4z$f2`anL_OjS>~Z0mXMb>vjpd-wXIcE6|449kPC5 z&=ndOu6k7JL$4pJC6BJb%E*zkShAU(=_y}fR1UBuAwP8Tf^c(0TN_}A{)$M=abB#T zs(q?Hy{K(8dl!gAdOYz^*!;j+%=Yc$H3@xsU{<i^&o><aHL6qrji7O*ocu~)?u?CS zn@E97z%kolF!wKRKV<1s_cT^-f2)d^UDIk<O=Ob37Nm=T10rwMHM%rYZY$y?2O1!8 zIFRrwPQ)cgCOCb?IX;&7evKKXjM>!$1V;?&p{aNSPl+*Ed}?kDKRydXsPt3je<aA) zWBD+~P;k2zMQlJ0d~eUWYgES3%kn{ipx`K-o?C3~`vx@!yqKYrS;~MLg<4WK^He<b z0#~}+xh@Ox{?X4$8;zwCzD_=5ZwjQx#GYFeg{!=B&Bs>gmN?g7XG_OBt<<7S5we80 z!_Cl^i$fi=SSlNd%k5sBXHu<PSw!j5UU*|KgqB9jleTuX%m=#-5Hoij=?l7iQegeb z;!kvzCC&qft7vaBySZGB%Y8ZS>}VJPf*o0uiF=s6?MfoFGZ6{Y^wbhT)N;!z<>hZ{ zmVY+b_L07yX0I#b<A=gBLI5C_;L_Wq{H&p){JhySf1eYj-CB6&V+BVD-uf`-Es+3> zJ|fVWYz%T+7^YyR3!b6mw6N#3n!vM!{>SjAXK2rX#5o_I;z~L8IE>euYqxD=r{PNB zwLHI1h#hev7FH8Cw^ec&oUjJS9oS`4#K?euH^f+&lXT}!*)#IL4U+@}1=0F~t^40U zZom;5qY0u=H3*vWvW)WE0vqr-?DqWtKFwK4|8*<Gj2+V_rd>OBfy8BFOPv(ou5Cr2 zrttFQaH-Olk_xHS*P5DY$g`z~4;kjBOjU-zC7Vx+8tTn@j5`Y$SgRj)!U14L@3Q`- zEaJcsb$)eCqa+?8^2k+y8=~e!$<dG3&|YoB%u1C207w$tOMcm2vmrx@Sn@t{GcLJX zLf2s@evsJDup0u@lXS$JsSPxx&t}8mHkw!ViwS*bv!?I!Ng$>IS!h(sg;0eedI?6; z{TB=S{0{p(C&ZvljF^lo?;>L&K>BxfPCG9CsOsY3$#_+=eapP0w5<MN<z83B=P0lp z`af9mMLNU_z$c?D@b`otPdRU@<47F2G)8iYuOPHUr-E>eVl$i^fYrRZQU%QaJ3Pp% z+ZcF1-yw#l#~UaNWewda_#R4cPxs?pl-Flh7jN^db9{&t^`)BAFuUS`Uy1k%d~T6) zDX;<;fd}DgkJawqC#0rRys^Re_s0Fw4VIIeg8U7&9j_`%FzU820P4<v>2<Q<S#^KD zcFFCd?R?<her_ti;V-OtviMN3Ztz_jfu(DeFbqLsE?Z@XGUKe|qyC}Dl>i`++E<$8 zA=8<6ncI`f)O+P%Y$sGYL-za}Jmy=04-s|9IDc4Aj(PNB55FEOia}o~jM72kx&O#I zeSzIiITG7gYGA^$o(z%la8C*NOL!DP4iMK=UCPg+(x2AVyU5;as$XrbV%a|d14P+% zbDvd|h*$g7;vDU~eUE2lbF7F{Q+uT@m2Ykq*=UbNf77_b<2tN3hs%8^Z_o6eG9Xbl z3b_l=BNMOqm58fX6{YS1j^cGh;lwc+F6FLpoGP8wA}WZ@`v-#Yd<lD08fsl|)_;VZ z@#F&qch}2z?bqEYcTWC1-)woMY0yszG?Ej(p@*QDoUp!t1<_>)x{jh7C+LxZ!di{z zaTPq4MXwyBgwh{-h?9TkKGa|`da6%NEf!5v1U{_+aTmH&e7U|4%lcd++0B(*^6ygK zCeW=~au;?eT;r}gCZpdNL0P}WhR=b#j+wgB9ph-|$Q`dCX^GF_V|r<k+P1M7sWT1T z-brKY{))b(_d3L##*~Piu=POh6+@oh8GxQ#afjbioiwB~?Z@0VI1ouxRILIX0oR|& zANC9?Q8ut-+!@QuSb7oJ#6~G82`k18VJkR=uKX$W)9j~2#IFol%t;>t?Z?|%45Fv` z_%rwagH{7hRlG_G#;LB&RIqCTJ4@-;tp76cX|*#@{q^8uBn1zfVUDlZzHaFCT-wV^ zzI8maJ3YK=%_x)rGfMxs_%2YDrJ0KdK3xL1i(X~FlopbKFRGsg1s|UIzIs-6vp-{v z3~3`g#y?^}N@&104&^{XF?g4!a8OJbih|Dq>dl%FC~T7GitcQ~JHsD%njFa6S(=Qu z5&%Mg@%uus!2iwy5MLT7NRK1Bj#2w&2s0<gyA%jipSY@9Ja#JJO`Kkn1{DTg0Mv9| zIg@JLqvX4QwtdI607kZaoDx~~%}3e^sp*X*M?h>MFSA4*(4d_i0Tcaus+X#dWQMWM zT|cEAyBQiiSW#8~M0`r5>p{gB?Em<cC)meVBlMKobIibed5wGP+N>HdDXy@fIA5wD zm-~T0s7kI~r0@SY7y-f}WKw~anZ)f)JO}9re^%fDR#$Nq@#sa)oY}7roph|EHSL$Y z>H?|fnOp$<N%z5@uC?mV&d<L-i-U<b2yU_ta`t^62CQC5uMAOvcK&C%dXBm*VyFxA z>GnZ%|J&NWmM;y>wdQF(-N^ns1gU?`Kg14i2l8Ry{~N$LnkalLt;~rhoDZqz?i(|x z65fB)p0F>QUv0GJ@$T!cg}Dve{||Mg56R_%5Z<Yw`E|}oQ_h!T&#N6Yg~y$o8*kT^ z)c(lD<5{HPKj4awhq{Yg+WgyXCVF2ozyopm%%ZH8_m|w+^E1|=eZd}kRl6Vo9UE)i z0y~%lmJ2C_cbUi)V{mZ%gh!PnX?b$6q62K>#+*=_4XZozo2<xhnE)y3wknGgRuize zGI%K1e14(GHO?|O$qJE&)X)gHx#ya<-E-{q5<%HK3xQIH&_U7wG~HzeJp<PooP)Z? z@(jZ?;*VBg2<vJ=uf5&iOd0077V$Ob+Pu!TyxYCt-vRg^Gje@OMXC9YhCyZqh@f2i z$@=`Z@8q+Y<BV+)sj%d{PJS1P5gV(Kf-i&|NQ(cSO+qofL`&Rzd9&$khlse=1X7c; zKPzhL0T&uaYcA|)ow=5F()(G0t4GioyURGMFCKTd3b3kOUwv+c)!v-afA`SHq(>vo zzqJ={v$?zy_;7>VLgmgo%2i2E)_GjRe`w>y(dD6Bq!P-z84m^e0Jr#GtGE61g&|Fn zc45*`8B$z22o)f8CHB#lGN7!eccWrPsyGG4+GUn7_>|S#M_rUykh@&^Qz5ub_0Q#X zlF-`e>1_dM-uMTSSe<B~L?%A8odL#e7}aCOJ@wXEfAR?e7fJG;p>9$DY{oh5qiqIa z#{qo}GiC&=?VJuoBen*QQFkot|1UeRSP>w7VINX>Yqb^rtiRHVe{{{<24yF1q-plS zz;ptqbVZ;Z8;IPw%-(^}qwMkVgVN@xC4CK^wt1_@8+6Zro6i7#Szg#^MIn!Bs|9&G zQ^c=>xNe^9YT}x)s}Mo{fg|=wCewfn+ez^jyh?yUK`Vsifg&5nScA%RAs3kr^hi@k z<>}qu)F~eC;FrO@{o)2L(eG2qS)P>@*T+AE4pnJ&I%uwSWz&?uah&_>PK*h(R|q92 z=8u@qriCUmewkK6PqKsOF`(UhbVisTL%-w;e?Kqm54q^MZqsCic*%r_IL21P5N0k; zt)Y&mbNZ;V`GcfwL<be&Fb%jyKv{4|2z(Psl1Qx4kS7Gsr_~cx!~%aS$H?q-$W0e( zd4IeS&iQ|+dhd8RzvmD1*|k``w-CKYCxQg43yG5GbraERqPJLGbU_ep2_br-w^&`2 zAP6E_^h67yv-gpFzV~<Uzxz68pEGmj%$b=p^PV4NMIHl>L_g!l#sYi53<;>z_F?PW z!V9<(YCdm$Im$ki(4F=N3X&~F>jiIzs3Hx$<O34k{}2@HG|M74|NQCjReJ}=g$72B z1k@a;OVXv1BE1s!67n3zVr4+g)R4k>nHH!IprfDiW@YWBO1o=%+AG)XJ!fgJ8v|YY zTNIH4BvYcIZYsbwd`Jv3TRbP4(p6j`Zv4>1JwxmJvMDV+Vdh!K>hkMs4gB(Rm5{37 ztNM$z-Y7wiGS34z6e(CO4r3KN>E#ow$4z;NOf37jUcb3`2(7|`b*m^}N-(QMT0X*w zfiLx^J+@SlX(_ep-gmd+8?u^`2g2v{5DATECze|s{=_FY04ISf9daTX0?;3}Jq>$& zR3=9^Kd!s_#kDr(KGt&7o79KW0x}fl@R0l~&C7UUe5@d6%RsTb>_2Pd4#dL>2x%XD z!#jFyi~;cJOs^C&eX#dPE#l%9T_U=S`SznY070D_3MT#!0}m=`xPf*gcN=eDtf!yz zBHxPx3CV$B{_CkU7<)M4>w{)eG4JW?s^_?gLBwn|f9~MQP+^c~!@k|Qeo{Igj6=(v z^NEa)(21K%y3`X49XY4xJt72)JrKTs#^fE`aX8|cxTfaaqYtrS=jt(VRJl_=ffe4) zYw-6uziZIMqw%8vl5cQU+$pUq?NEfGg-~0+$EWVaYnuF%C}oiO?i;o^WmRZoe+oNh z*My;Gg-qT1H*$T_e^kYx_8C53C(gn74pACFeI0=iZ8b*}y)Ut?#@5mB;{F@U19`MY zP=r;qj}m+xTjKUIFZ#Q?H&4;0Rk1ujO;mOI#Mm^}&=iLgV7&4?_5~0L1PoA2oWk~r zK-c3rt=HeBaNZ(+)7~S9iW0-)?cBuD0CkjC8rE1O1=v+e`~-}jM~cqRa5yj{VNDHg zw>{v9LATtF8c@4Z_W%?a)hn~%4uNVDs;SLu1PQ&R#KL$^32~E1`C_W7@v!yt?FU#` z&mU?|T#!K6l<F0MJnd3YdbdNfhZ)`DYIrQ)qwgP!ILWtKcVSd^U7EJiHT{O(JcZIc zqKAY5Ggtokz5x9)G@nKPtKRj(L^X(z<ngYr!nVGbBA*JNsEOL+(KR?EVrSboojkcY z*be{ScWfb-zlyUyH(!dcW<d|1wp>~Uw|nm%yLXV{zUTPKrO_2epV<Cv+idqvX|6#Q zVC#v!gM^Vooj9%pwHobe^h(xnmHJ2g9`A$SAEZLEOyh$r?kMSI-p#$Z!KsRZ>=oVT zkh7km=}Wj7(k=5&0;&qIVI==DgvgHywMlmrtr7-D%3An7y#9>%t||5VS*bX#u(kx= zD7(?%GM%h<H2>f4i9`D6SLC>MxyD)*Hv7}Bp$kN=#qC}{cuDV~P!@2Y$kp%Rx9<ug z$N9IwWb}>@`u*DJLFo;KFn3DeO_&b6z9=s|gP`5ePz0+Ai2k=0e7F*<-y~D=!x|Qc z1Bk^1$`_UO5O>+4ld@R7t82Nq22w3LFBu`q|1lee7Ca5sZ<x6py8FXrfT0eb+E559 zmQJqc1$i;2$YV7l*46+XI%pJ7M{y-81c+;Fzv-&Rw5=eYmsbNbT8Z-d73LEvn_1wS z-)`V-Mw6FNSD2_fs5m8E7ovawX}R@y{{&$_)CPOOY<$glriAqjsqX119DV?By{Vdl zx%ijT`yO03F??Ad^trLDg}JA$eW0ziNT4(kZ}2km-%8z|>)=Hmv6Fk@=U4?6pBsB1 z`BLzC_r>VB>yHTaD@wF-jz@bcl|1QPgm^52p|KDs>i%DsSRQT_x*>^tz8d|o*ztXD zteiRYN!?r2P|HWejRK!T1=uf%4^!O5Q`qmus;`xKNjXpelIou&Ih8b8)&6Y3E2pBH zb%43q2QA=uTey<Co~f1AZtu0D@tQTqUFS$r2*%d9K}tdSx*$CS24wyXGCfCc$+zu% zAoTwJxl<7K4O>V-Ms3nWPrcUtxIe!q^Nt`CkStPY{5$}$!78Dg|E;vDuCnlmloOS+ z{kC^gc9x*aZey<|JKrq{px(?5NbS3PF}Bn~{C{F}BKkNodM?AI!x|Nb2zw=z;cP-x z_)=1BoT5Ni)a!dxkOgZ_mTuwaeh@m~KVi*cZo!qL!6869nhO%4_H4smu%VVKBUfad z<c-nPSv7BPv34PdSQO?Hl9(KDV*jhgby+GXl_CT}E$!8yb^(k<<S=vuYAIwCW;8sR zM0Q{N$>^M}{D(BlVY`PKBt3u}hW78dfbioe+F*z|fzJ^dPI7r~wUk~N;eL%%w&*yu zOnWlcz8&T8YHZ<_z$*!81N6T+IMHKVd5h0zpmwG>%lXyo1{U(V<c{0iU{(p|ol1(1 z2KTesMd*#?#TN#VqA2{T;D3h1cb`OA6|Oq7+D#5~1WdkqU}wKb!gKR|`wgH}ZVaz? z@V*~Ie{e_-RrF8SoZ&G&iK(XuW(?lHWq!Htab1hRR8^MEzkqmgm*9f~HO~2Yg7U-8 zpa(ZS#i<Yx&}Rea8ma0_HU&Z4^a~Kph5YYXSYWrBsl<OM=&XmH$#9UUHQ|07{Iq~2 z)jI+gv66A}+Y#Xy%&4HA{;qLX1iJg*EQTtV@ARU)yPs)A<ZYZDj<cotO6prZJo~}) zh2FZ+_ilE7PI!M;bZ`65^|!EX*mTYo4G9<oVL=l86-ww*1P<F2fz6J1^Ft0GNk8tm z*|5BCS1+QoL-u|sSgtUk?ePe<faAn=wRP@DW1IsPsyHHG^F2^7gDwj+vm!>F;J*L% z_SL6*#$JXB+|&AEaD6hpJI0-<|2HogQ*L=X;|2_442=BDv!1himzT}=`jLLtP;62H z(Hc!@l$G`MWddsuS^$4a@$W^ZG<lhD2v|S!W(7Vp+D+s6kwMY?HMOORTRQht)#H@i zs)-vFo<mTASF-Lab6^fl6!3Wj(V<oLTSR5)OW?8QElm?3UzDwn=R}|{R8XvZ1e-3D zj7x^V_kKR`-eKc*gGx*7ym~NuXDl2z{KojYPLmiZQy<O`A!qEAN7w~*oP{5ZljLYo z9@)YcIK~FSa_~EBey^!Q$l%{JDbF+O{R0hvxt7G+v>Ae?f?m&{h?drw_j~0$C%-fk zXj?d6$v7$mQ+cYWolHaO{%$efXaZCj&U)>geVvfP0xOHVh!+Q{ksf6oN^?W_+mSUF zhU!8f<G@5H7IFtg@|QBLgAY8%O2e4Q#wI(eJY5sIGhqc_lj^g><k|<UfN2p0RCVCH zg=U^wJ=amgH)8~|*j6@ZXC~(-n=-gMw`buRmQ;$w0qRdTF6b)t`J%0V;Z-m~q6X|~ za)kJt2v`ZK0<UC#IEIu7v0HBoM;AP#@9Z?}?(ex4(|QL{lmHPKI7mrO`fMs<^PsO* zGvPNC&g3fSH77FPi$yu6n9PzXl}03*q5wZ%R0R@S=#uaMaF+prxM_vDUd$Z?rhSF% z+LbuZfe%8lMk!1bw`&Z_oQQ**gz-l_gwQTT*}97TH(5<*UIFI8j?Xwyw8XX8^u=H% zU)d1MMnJp_eT-#azpGOF_n{}kP+m$*x);WYVC(64?KBn#c?Mkh=nNm;y!(1ldk8UT z)o2V&e-UR~h0UZ~$T0}cq>mk-!c=o>dAmGu;6UL_NrE}6<B3_u1}dK@P~(K?JEO_Q z5KdF0B{Q%tzW>tQwuy2+gkhR|g@hm@Mio%RNP<;!w!IC$jjWSVPb$P|Yx(kS(WCv8 zR1vdXPl!dTQflBy-}vX`4zIl%AeZN<8mcH?n-+EP&RJL}jOt(M4zu_a$8i6!+S8v- zYaRM!A41|1@m-*;&NyQLRHOKR3ty_OzO!xNwBC>M6J=*Q(P6EzE^0-{7?T@0<BGJ< zgm_uT^D1XEbXlu|EWJvQ+CNBS(2G@QuXE@!M{ges>-RMIMvi59;wLLPie+B3kwKL2 z-Iv-3Gd8W%eJ+R01hcO9l{h6MMXesaaCYT<BWB{VmVJo(GlU}8^?uDuAH4Lz^HK^F zDH&z@DQ{;*=@LSo?r(M#u85rtZP{D0&pzi$(lKepTMnnjM1U~1I(uQ1;Wv(+xfXwe zRPgpAu_}Sze00FDL)x4)3K%?R!AOF6W^^db-PMA7iva=E7w2>$qSJ;)&W~n-R0e+# zK~>k2G5I~phA69;4LGWB)SdwOE_2*A7I+=(YygU5f^PG^*N%^i$YKwDGSKlbY)YZY zBg$oS<@{?`rLBmXsaXiX$rLxl{<>r*W%9;NpJi<lr)n^77D8+eNh!bci{#v|urevy ziO%^)fv2#GY{x+(0(o7)lIJ6l2&ULx^%k)agdXDaccE#BrIGw&m!Fwd{A&GqKTDpt zHd@kk;doVk;r6<aV>PyW8#Yjp#$W4E_v(N#ATV&ncYeyVKcvnTr4J&c;Q#$DNll!f z1O#2DV`y2;wm!ZTeo<6!JHvc!x_0H-u*!1*=B!+LiAZhy!ic?S!RAQ@!qi&p<#`u3 zz3dN2a!ehB<YXIFN0Cl6WeZkY-5hzsmbhm8_|}6I62`X&GMg6rG<8D0%-cDggF?R- zQx~q;G@f}STivDj9yTA<J=IQ|<}>?>T+XLS;U@V9f9>2wPOAw%V(^iQI932O`+&a{ zeei2|bdt|Br>{}1aMBA0H4VDwpclTr36i|s3Ii-&>GisPo;B%my{r82)GQ`Kh@)-D zY>W+;LH74F2Nb!H*AJ8nv38BC%)syAZi<7IAN&hir0)zExWuzqf1In<lzd~rIL95D zk(4p#)p9Yu();)uZ%np2$7J+?k2~5a=8fbC=dnxiEJK$O)J_a2bm0|#{JTW@vIwWn z94v?-_8BwC(v09A-=|+v4ctUxsO`EHA-`17fl1G5c!teJzY4r)>>X!a#AByKSuUf6 zRcrmINA3ZC9{7a@DI#Y;At%b~&2Q-@q%`{)sRT344dWuX^ROA)rWv}LZA_X<!b41U z`np2D%W-r5TI?kZsm01N<prK5#dQQQII3YOzKM<H1g0h#TWAMO&RHGzh@_%ji~h`Q zIKtVW$X8U57l4!~3UrCU3S%6wU<N0?@~v0)Eu#}WJWHLvSkx;)hY17URHEL`ZxoI` z?=EOkqT*TXx-MQ{9HFj+x)Mh%0ZM%<|5mJCi0BLvXV4=}i98KJxFA(OPhnrh?qlU- z6!#*^n!q|x>?YKnlR$w07Y{w!aFy$LRov?sEK{aQ8iVI8m<sS8mOUtdpi?|U$&2*& zrLCRk96n8A-T2=KjlMiDqj$3~a|H$52)s}0j6vp7ueaW@g4}(E993tyi>4m}*dHOK z{&2}~UNhGpxB+@x-21%VH)}uk>^;pJr5*{w1w-z@AsZOz;7e51cM;F+8c{xz!0-xu zj8}b9VxmQ~7a=hzOJ#;!H>~(nDn1VAHw~HdR;hUj;KUk1c;nAc{!xtEPxKmdkaQ-= zz?*p=2$Q*%^amyAd~z*^VwO|yc@N{gq75yH4|1_G{hoxLH#rwapNMg$Uyz{!!RU+y zaZUNrqSDjCC40L*0ih2XDan|Z7k3c;)W|bUB<@K2(xT>p<CYrwKqh~W{ds{A%&U8> zsdLZ_!HLY&0i_{C6_7o&L0Zz_@|ZMq@^#Vj?}ppnZgQqTumdLdos=n$3_5#nTq{|Y zM)@@`j*fCq{xmB~l{{ksW~#u?lNZyYgMJvjpLa*qs+=(Rl%r!Se4$3F`(COr)72*9 zqR0zv<tD@Y4<0<^ZFY4!zmm;%u4PaNzI^%7;wBW1a#jE<WZ+$cx9LR%Bb%Qrt6{(H z=~kd&R=PS!dyOVTfj_-RRam!!ECVtt0*rqQ+RWT^sqB<B-a%<~$xEXe%T`5FT)sx5 zn~Nyod$2f<hRQ+oRzF-2U@T!G*8Smn8nv<1@7p{Pt|^MQe+*+#glP`y^Fc~w8v6qs z&!krr<Qc03!9U<i+9(+{S|=EEE9L)^3voDInfajSlssEq$i-RRFocyr>FJYDF9_E| z`6w>7wF}2e#;=}ki9ls~f0;cA=N{HXe^!6w13k-om``8@^q5EBkF%p76rF9NT>Qd+ zTaUHFIX>r3p<WJ8eJ_ach>=8J6&H?wv6^o!69XjO)Y_C0vuwK^(NH(;Pc<^iVY}RW z0a{L<AM&lZnPzDErf-7MhF5n1mZx%~$sfJ59eDG@o$F&6qEQjb?zP_c>g5_2n?W9X zxP3tqS*ExOgb7>xpt0WvOd*hm{F`<@Vl>MzhAVV>t07|ItuRDqj)eUI!q(Mv$GPe; zu3b2NeYY$8*mK^Yirrnoze^jxD)q|hseCbe>M~~7y+oJ%n$L6shfbLHBZQhk@0QLa zcN(SOUBGuny#(dwC@9!&EW2z_^Nr)V43beBtoUO0t9R`Cm<uO8{&f<AHKAGS%FK7F z<8JtVozXlRfCZkM**e3mi#;XQ;``saQ@MnLK6RBdh>o$c5Xrh<y}ONa_6+SNz$x9j zHGWk7&IZa`!gDCK@^+^8^;po8tgY-NIICb>Gz+SNW9yOpb&;V96v)&NqSec#p-a*c z@6M;cBdk~G%d1O+e|g=W>z|W5hQ4NOTDa%=cpB%eg{Q5gLhtvx8+N|^6<<h0qJo{J zL2AR@qVEtvB*NLC11wE-CL@!g@4JBXuRBwpb4q<3pu6nacRUUT3%e7{DV=YFIA!c8 zlE2l{e9E6`RiII_SZCq0=BeF!{F`__ZyAUITJ`0=aE~rH;zMa1CrTf7LSIPz%_>L| z$?~c$$58Q!$IY#v^Rk)8p6_?s!nM;0M+s0LsU)z1!MiZBcKjRNKz?8x`@IkVCV4mg zA_4L*dK8X!{B3ohYjcEOD|B&2>qdMFewlKO17$LIiT|btT7!@Ez(`hu)<uWjVH+J} zv!_k;RITi#)8Ho=cK-EUEz2>*;(^y;yd=+h$)ut=-aYi+{oi&AhutQ}{F1B5TuvkE zt&s2vr+(dT`+y6@L0Db(v?)t?=8H?JxVj7&1;U%sxbi~iz=ui|jSYvYLhG4{FGpF> zl!LWBwefFa=8x_gnJ6>FH?Ye6a3Ad(MY1hWBX3`MR2J|fR^SDL#ftL6uGvZX7dcxb zyXUt(CLs}q5dz@A`L4XvPfFH6+sDNhlguaLP$%9i$BO8Y5OiG*#<)ypSs6`B|4}!I zFvBM0Cx@XCbr<5t4B0n2(<Qvn`&fm4&#}JO2Wtt|JpmlI8z|dR7yl#4MCP{9uOF3E zSevtEvaRhOwlzly<wIBWO4P;n$#AanGcDlW9DoZh!>u~aY^=`pDUI9yv0)}@3IHbX zlf1nr-jsCRs*nT}6&%QYHF%5ylcI&bN6u#T)d*kp<zA{Md8#lwu1Ai!BSBT`RP)Eh z%(N$~@?@LhV6B5<dK_RA3w<(Q6dno<*HI{Ek2X-_i)M_{R}xTp+ZCn>d_;8>+rIu* z7DO;*3zlAogHIoywgI|fFTRH%#*Pnt6y-__5_MtdZUAkJ|0Lr?80SnK)CV9!VSl4l zk-Q?g)UK!}o2LV>xAWQXi#$$BquLIo8-HM=%-@S}4qt#572Ed&fLD_JdWTR@IWJxk zc-_G0$g88#k{`&YF1`Im;+`2-Zm;wh2!IH3&??WXXti+I3<Y2vtK@#7M3|>K=zQ}y z_x5s1iii_fK;vSHPi|3OeEnzECIh2Xl{P_D>eZCW(2Y5qM57*#pGe!8mwlP84kxCP zX!zQoJY?<-!#$vK?)g27M^4xOEYd8qh~#LKR%QR2cCv~6g(^oE6ZmcnS@txWcSD_p z?epj)=;c#x1ipwXe4<LNMETyr>&@ej{V1`ukG)k#Iv=46kx3v@%`c=DRHq{UiL?~H z@mDzdPZ{&2AKv(rGph3_wg+5BHkqunJ}LUb;aS6skVK$P;wqZpDZ&F;7XvOiZWJ^T zri7H#>a(fR%gEJd+<f!Z1dy1}<5xaOe>3S}-uqhx6-W(kIUZF6z^uasbZsW+8@^4^ zyhJP6rP)87?##L8UP}>*o_A<eW<X{s9^oF|1^LbJ{p)2K9G&OH=RZXA#bc6E!*ICS z2Hn9IikWUQS!Ydw*bpNiQ{S)7QCfQz4BZb9YZFNNcfXrUg}_{5DlDgW<ClTFG`bu* zBc;JjdAuon5Q@keTzBkyqVqr@GiY%ZCH`pWlrJ_r4Ne+{$bPWUxP`gV#kML{=t8)e z44R-~4dRe-?&Z{wb~W4^C*qzxYs4q*Ux&i#T543A;+s6DKG$zHuF)1uDwp!N0j!zN zG)9hBF>)Y$f-qR@g-kJ4FKutbS(ZLDpU6m(MzBwN;P3@I#Td}ZR}W?8j+YU$u0Z_a z#f~1sP|*LV&IBH0Vv2oCaZ|*D^%Zl|?y9g!6C@X{C#mUkJnW|vDWc=8e3h{mkCBtS z`U)Qba(QmNs>H>0>GTE)1^wdm>9Jxw5Z&mL86XwjrE*Z*4@clk@%%?Rad{bKgvx+| zh3BVA1cQiB@atKQy*?@wrdoypl76d=r%D?Xhyn23mUvWBoev+<(e})ezVxF&#Jk{( zxVr!kAvCcj-2L^*4$)r*@u%;rER1Tbl!@vR_P2lBVSM&GH9xW8&U-%u`6<+p)uN;C zCeS40!}nGeSxLHk_sXBPz;*wIT{PJ;_4`(k;uux0X~X`pF{5ZEzIb4(S&tKi8d?vD zsDNC1_WELnbdv*&vGao{mg7G+)c|xO{_x}{)AfQ)M>nT;+>n-6jW5de@E6j6yC8V! zHbzbqJVGJT1PF!Fi5$YdVr#;ALXJ%(&kbR^K1{9Y*YGet;#Buu|EJWloIh7lRj?>J z+i!3F;QimkB7;dY@n|658BGA8{-~Vz#3OhNcb|sJ7mCs<jmjapp!r`ez!H-_#rG!Z z1tG}bB^huS42FqlK#y-ilI4Cxop%OZ=)hy7_^-x=r@g9hD!^z(<Gz$?^v~@e1XJ>> zSO5<=YXKDy{A~>utbX72XQvj{PbI=x6Bmxe)9-o=8%<iF>c@v2k{><ikZos06`6qR zB*n-HgPR`0M}Tm3bg&w#`GRXJ@AJ;4zP?x_-^S>9D=X_eukYd(dYRnR<g^ZIMxE>! zB~+jV$a9!GCC1p1o3=N?-~L@OM|%5^jI89&?jh{Y7KC%7)cw9cdJa4x;K^1&!dOkJ zsd02{*6p87Ja?H~I-=z79^oIYq2O0a{M_e6ECT;KP+x=thnEtOxstc@eDGePsR2-V z^Nhi~@S~c}WK=SrkT?m>X51Uu2d>b~{V!LW2nL23&_jDw{dJUp0NRaZ!-m~ulg1EH zrr(9&0?u*<q>#C3;LRRPfkMu<5}+`^0Y~U*Yujx`oWyO9>45^-dpkJ04F6<E6$tU% z7r4IMsjwzsQ{;TOp$X`1$P%E^rw6eJBuo00RtO_Tm%M~SbXL=S&a^3#CPLZ5S!L4_ z=*>3Hgy^Sn3S?DxV4FCgfQh9i03O=KuUG*!^3eLxvUmPJcYAHiA<o#lxpgcfkSH*W zEkZuER(PfOX6Yavf9$z{{u_;MlCSr3c5j}(+}$gTfX2$I&fW&%fWgZI*r6{d4{Y~T zf&Q>@@bx08Z>G`@5`tG_<ocE=9-uUU%rkaMOe96_a?v`e3fU<jw|@Hy|0BP{jM(il z6ivvXV*f4}B0}`pG)39DT|{W;l7mQR@2LWjnq9)@Ovo7qlpo4fb`(`J3b5zI-r>lw z3#a(GDGXCi_EwZ&6M$bLUTr|XKoS0Kb0mLvELDUA(y+jyf4!@VCZysG95a(0*0<c! zb{=F5BR@w_0{n(JgAfVvD(!oq4f==@PrWFIUxWB%+6=uCA%vU(Py?QZ>|^uBH>2gn ztxx3x14KFov2Opk9rAicRyroOD(EehDh05v&qv*N9WRco`)j<5R+oz9r+adVMx_!j zI1K+VDP67`g&j7ua8!|jA97Uqw2HU-JkwUjoRGYtxe5TG8+4z)Ecdb^ts32Zns;{8 z>#!HyCSHhl$BzT`A~+BU$}=%P_oTOA7-3CN)_X|)O*%zjx0~HcXIbr}ghBNFN8?L3 zd!2qw9n{Nm5_SC={1w6AzsG>Y50*G6-WjtbYD17{3OQg0k^}}u?JA8A`J+0G4@FxN z?1^t<AL9Sr>J>E7E!mC3=c$w)0lMKaYn1JBr`G5g5~9KMvtdK@kY&#+oMG_T5fZ?B zbqh^~a^s-rCfLU=3LDE9W!nHWjMzx}#gVzM+=~nRHpRQie4)2~UDoUxJ4pVjgzvui zE6C)XBrZc?yrL+lR+Z-aZUMD|fDQ~{4fN>Ox7ez--oLwf7%1Ps@$Ixg2JTAcR0Q5i zA@t6!8x~<~<ni)KF3f3{wUZ>znOTddR-*1F2^?=qhY#?C#`_SluJ5~C*xEnZzbM8D z_={Of*Jb1$GecAHBkiX;@cxgxy#+>4nV8t!ozk@V8KHfnKxI1cfqSmwBM4Oi#;{vh z@u<MOsk^L)^*SqCLEJ2JxSK)#X6U!7R@_crw6g2dL7hyPLqbp`MdkI-wh9L9va?o8 z7wNJFyuNl12*UshqtkHYjP|#;5HP`w2mg5F$}19%dJh|6vt_(<LvR4tUO+8hJHWXQ zP~X&5)@a?qW6=?s8_n1mx*R6mefQVmCHDqRXps%KorVX6bV7>qRYeuL^3^eYN)$!| z2`_d#A+Gtfuyh<dzvU(k5HhhcDv22J+u~r{k)+?nQ_3F78%e$3Bk~F;j@GM=q68{> z-n+0?W5;j;oUV4wuuBJ;9tL^o%HoHmNwR!N3yaDdzo#hLXknPX?I2CB_!}B5jyRQd zHU$RBb{qe$h@umYy7q1BE|7ggpn{jQh^&R0*O5aNC{FWW;9r0aR~$T~wZX38AAkSr z1x6{{cA=k$wE^Cr@)Hs6ipk(%MqnB)jni*=fs}z&>@Bs{7y)o!qunZJo>Y~Nh3glm zX*3!-6?UZ+wx=-?00CiJm6U5Y1}r-7B2yl<!xxB)y_0akQ$P{S!XEOScbP8r3xq@O z?FR?tb_F7Keuy$9dRDo0GYE};s>o;9OM^N*7Gp)NvulHf71%@}hnh|zg;@g-bBy;> zXOQxN{(^ohXjV7g5l-V&p&3E|Z2o^t1Fk``APdQV!K&C3l`8FHB?W*UN=#{(XbBbI zM!^D`Bal9hw-Nb0+!}iRI*=hPUJ?&J;XKK0nm~bJ(Ai)IfkRt3M>-Sab+ms#C`-nk zb|LA2-<dcwA*^1Pwu2>x+&nCegbvZrhQawSB4<IQ<EMRipnMQ?00l0~PcjsB!gwRd z0bRmS;Oo3}3`sd3p(9QkeKcT{hGLqE_%ZTw8tab!swN3ib(h?>qyV?GX+BF2^a-+X z{DShLwSbZPt9Oo%548zhCdLWS%x8R&QX@@yEIa!#7U@oqdU{9}PPg2TtJs&~f%364 zz0904eacs%jx+<Z5Djv`-aK5VW5xZ|crliD(v(zX=}C$hE60}^9<#$-X|lBa=IRVE zOLFD~NGESG9@)OG@F(Bq&1<MtG#Y-$Gv&k3Xjd8YJjr|K$+<wP^sQ*XB-?I|5dF&C zxT);A=Zi<TE5}sNUUh2vDfJ_ubyVPup*upt{3!~Kh=uAf<A1*6Ka*ZPe1EjUxhvfI z7ilepqHWYnnQewT=HbhJ-~O9xxD8FkwYs67e+CYZ;--0(811+(z{P4Hf0x8BwMs*J zN5-&P<X&GFH1X1=rR6+B#>jJj`cCo?6g}p66He@#Q}XPcblsT=4plqu!hOjCzMu#K zNxyX|6XG8jFLv-W5$1#kL(}xIx5_&dpjFc%W0PO|ulWf3ui7v|)CKaszp~9kZ4Gk> zCR%+x|M}mPLniS(v4iRhO%f&8IHOf&M$Gu+PpwBOPVB%7e?Q#Si>H=*4`U%hq)t4b zVbHYjI>V=P;X4dfZ80Hza>MVj(1PGQ^I^v?;Xs&6CU*yX;on+>iP;8blL5O-)~CX1 z3dRmF#Av=(tEiH%rF@pfYQ^z2c5YO81EdF-#QV$4M_DK!K3h^s1>Gm`7TLYZ&aY<M zBQ@~LkPoIaiwj#;`=vCXf}+6G25%{YhlyUys;=}RXm;qdAIFzPjZ*7Qzg0=GS??Q9 zQQc{0Mk*AM>@xt;@ku2W#6h(}IpX}~vdCuzAoH%b%Dfu6<)B6XgwCg%FM&kIB)74_ z9>VAJH>b3}DFU63f%nQ=zaOm={H3@f(RZTcHU$0CeY!2_wzsMv<TacXEj|1#Qv5J5 zw@~vK`qJ1llaB(dNh$odHik4FV429_18jtwu#NI}3*sgpP2~gUp)hA9Fc-y)VM?o@ zd@c2<1{8H8to5t<td=6+xno#}l#8GgWb3<muz}YD(Ea0zbyf<1$ri$p)x_NJNLzk} zR`}-rLO8QIB<5M$YDm|6;yG1*Qz*S1=8z5C{#Y=5!_4{z9uHG-6<&rt4K1#X<D?NF zkkMbZ&V|F^M1V}ht0My?*Ba~*@f!NAf;)tR=}>Qi7C6w9g6@(8tln!o5Uy0t){O&* z!N_VNsBwG1B)-{=>9<{r9F<QN;IfqDr7z`RD8~w?Wlp)`xN`jKJwO`nzkkho1$5k( zADS@^bylkVN&mpIbzgYYx+*P^4ds`&NeNhE!T;s_`@d-sU1)ta6s9SfuyjW>Uz5aQ zSdl-ZEn*&5?`}VXp9<Jhp+TT3P#rXFl#nAor?4TN`6>olW;Y<L%H_f9E}5v866<56 zZeD4eq4VYMxlqBtu076`!@`(fy_Sc$uWA1wC+HWLg07Y<H(Xg6{*y7N;|BxT$oqPG zjvJAU)p$}Is9)^+7%EU7IfHPX%boPkbWy|*4Dk{vC7O?X%J#vi#MH0AvKu1;=Nn@6 z9NNHPM(;0Zz{1~PklH?4p99d-q2VJUH|tlVH9ZpD@=CoHF&9<krpNr^;RAzWp5+8~ z=a3BS4V-`<f9FIlkiKpwuaW-5bgR7dz7Thx&Y?Yx70zWEb@15EwS4?AJfV|HA5gbi zKRML_!2m1c4e;pi0YV<q2T~(?gO{C}sGlvjFBWW`zHz)4YF}DI4qSdt!r!4l!rZJ; z+Dum&PJ2=`kYh`mBBn!~B$H!Yt`S_rJ1g%V2G*Vp69hW{vU}ZrvNc{46!mQ93uq?0 zSz}~*!$Ir2w-Js!5#B0hDbPEnOTm!Ga-&{PXbsrB>0g+HE|^S9|B&H&^nYJDC6`jQ zr9ai1j057yoztoBhJ9XSyKZgLlwzx4X#K$YYWGAiJfv68@%S~S4Z1pPC~iD;fihD8 zVcwkIkM*Zz_2QX*K1xXO{OJ*dBQemKAW$#kfDxY5Do5P<30JM>3;wO550NEE%X{v( z<{QcZVk6`kSY7Ciq5!sT-4`+Y=G<)a_$V<K*BIv)JG=bFN0r=!X^`17fmi=@44G&@ z40;ZgYT+LtmhWqH8UOSxNH4`81t|F_l8=&1zi5-FnpL|(!PJDjAwbA{ZXguoVg2R7 zd_Lu9Po=f)H{26ZtuJXIyu9`Y4t7_goZ1HKA@5_D8aoNlnsJD!H0HQJk{6Q&bR{JB z+{!zCu31aLP$#E`x+ro1sGBpg8C>kG;7gQY8O1m3gWW-l*fT-(?@wNwog2JUyf;Cj z816WzA$At@Z)AP&VYKCY4R!7pki#gU2R<8w@xYHa>F&N!cFyJs&=F>`h>sXA77)u8 zXC<AbqC@Cr$HS)q<>5neoMbvWrqV5$POSM8<`u8W-uGG&p-TU;fsC3vHhJ7IC))6r zU{;qIziFdRG1bLKk@8lU)+C}#Gclw_Ei_MDY?db&Tx`byY{d35mkZ#;(ev^*h_;Sd zFjISZhL|xuqPX*%Lb~`9eBmdMD{~c6ibF8h&=~{NS)yk%CQ%&|p0GW|aNvuu$BIIA z=hlAEuv5J*$`>U>w)_6-RL&7(nTINgdf--Blm__pq!OU6LFG8Vrg7C?i$8BD&)$NK zjAugcsse`i$5U59vYjxn9#lIn>Ux^=zVR8SP$aN7$;RdI2w1bGc>Yw1V&rQ!VLovh z&hhxa(HjKlhjHrfP$%Wx1UgA(4R8~tMbD}~z`9w_hb(@|H`fUYl<{JL3eZmdx1J+T zp#KBAsQroKbj{vP*HE&mZOmzSzrM^A7bi=DXXG=@0D9p8`h_3=5u7a|3psFujQ%KC zG$v6nri3ipbfRK<wS~e;-EXFbo%PZ+Ua-Q$3S!S|)C8MD>NM+MB2Ea;5knB8l$G>C zQvg^ms1JHqFDKor3^;Ip$PqAnJ`HroP1v=2#hU9s&{C|kl72=f4sDRaME*TEJoFGG zVZ%L<SDfd&2j^W&FY_ad#H1^=XGi1NUBo$JB~J^a_aWv?3rhG`7^PG;JSZUwRL(OU z*e<Gb<4a9K@{b^eHR6~&ndyD`sQd2%&zck%rk;cE4%u#CvK3k2>IFA1*+@H(J&Y~t zYBG*fygA(ic;g-S{bT7g0V0r!T<?5>g1yPqlNoaUgbj7@t6e>K{TJx(Z`Qo)=4?86 z+Q|v9NMA`rHiGeRX$$M5iJDDFqJV^ZOn&;9TO|hch<<L!ncgR$m6wExUJG}rawc%I z`cGRKpq*b7JfT%&!9%~kU2qq-{@@PJ*;6<s2B&7@1+kVbVKrDolkA^Kfr-=o70h@= zC0_3J9z<m|t6y0lX5-jl0|G4`BY10aIb;4O?HYf#^mS65`J4R`SvW|Zs}!sjD!W6= zP{40Ao)#hnzRAyuB@w8k`rfbQs)LW|MOHqLFFZbFgqYE#YaN5HD&A1*ksH%kK6)Tk z+T%~9Jq5&v6fFZGKbWziI?vASnm}5mnMyv`dQqWY_Q($@vxsvg+ngLq@5x?D5kRE+ zY}<BDHZ=iF{Vp9BA{+^NhkAa-GPXmyrPs|hj|`Bf3s(~e&k2^Kh|dMwG;NM*w%;qs zefzBhhq&i|sM+*^Ailm8N|Q;fOBR0ZSN+IlLFN?&Mkgy61oJ0~{#Lb7cX6TidjBv$ zC^w^hCP-E9RXR)R0d>|kt(`IS$q)SBB^WnB)-yB(MqQ*nHa7et8N9Y|u72}Z-Dv0c z=2ToiY19)9RBo;@N3HG$ui=|nBvV=-{8c$-PF##!!xEQc^-o-@>-y37v9}6SAS96@ zIVckHy*34oYKk5jCwYRr4FZ|fcksaxmO^m=<q}ze0hfl9M@W@h6D|u|PkUhZW?L}v zlggV=dia5a-st5~X=a-(bN>TwfR3Ap2}iF#{`8VA1jtYLIAe1khvm<99hjkH$|lO# zKD-3!t}9p(f1vD9b~h1lIGhisBPRm3U*&9O&=ea+ydkCdLpxJqg?#gE)&RV<Z*<K| z&DY;>v6{U;*|D~I=xbvuw$96RqsbRi^&Do?25S+nIzKw5CSH`hLu1Za?7^5JD1SMx z6Df*q3l2ANodJ_8TFL!=q17yJBN7CwL}iT^&S6y_Nn5a~Lcmul>FThUhok=R1!+Y} zu-}h}?l0#n31n0hPKZfZ`;kGauucX1M6TR{NMTv<DKH&PGxB}csJNE2X>m+th}zIk zz$P|K{MpWtpj;^_1Eb%6i)eVxjP~l4Mgk&5&zidCY~jckcnH6;+g<@`OppcA%V!!D zFRktu&)y_4RD56Q3;LN}ynfdKXkW9xj40w3mQt0!;wL4fix}`hy^21pv-vKl7uE=y zngBa4!J#uC5LnCgKCqt@<BI0}^)7%Hin&`d6O;h?LSJ>n(+3C*85vfu!ulyu)zfVX zOj9o4)^DLWfk*<KLlc|>8Hx)2R0piA`_7LP4q_cvpbvlf`k~pMnUsgRuqx#@watZ# zk1<{#!rM;72Xp!Fl%|OvoG6=z#{I+7Rkrb20dJ?1Jg{qGujD=H4jiOti?$HSu2T2l zg%vq|MJNa{sM>RRCbTiJht|s4c~rcpUX!vOp#DZ=DgK!vY&SU!c>Zh?|9;JGDeh*= zevX=18RD@HEB)`&2nv(}6H@K3cgrYwq<Db*?%+YIw0N$9VAzYeHm;+(>!K)L%l_-0 zBGCIaNCv{GiTX|!iGHH>Mz+wwTeEWlwUq;&JF<~+vAyGmn^6sUa~$X|FNwCvf8bNf zQth<vWm2MMv?7G`@m#uPg|_EujSTT<CU$TAs3ZoP7j*#5Ojj!I0vPnnw)OnP?DOb$ z+;5Y8So8M;H&d<FuL}a}BXg05K~|Bn#hC`zD*&;a*Gn1Wom1<oL_WRr7*?W&fkJRI zBh=r-^j5x1zT<k=WKo~t^@h!-=hyFMs}(A|ZAv0>evbTokz0zjT?#Rrq6s2Lv^OSL zX0mnCC$WQFm5h;RZ^26%M(_2V1gG=pi$hWNjNr=w(TC!!Z9xx6gf2JZ2`;tS3t$W9 zfryNaKp$#LZfyfZil_6SqE=Km*a<Da&tnM&vVr3Ltw!H3vrmcw_f22Ft!KyPrx0zq zS206ydQi1wv=D!t<CFd0Se0&c8srC)LhM_(9geP_^nHu72$x9-Gh8=$E%1fnI>lN3 zOskNf%{PwxEUYOW0D;}+q{`Llc?sPKP~oiF#!jzcQ_FAv853rY?qE%>uIe|+o4rkv z2Gs3?W}y;iGaJ|U?bv6iVf;a^IzrxS@^(i<hu$eaNi}nW+n~i;9YKX*<}#F+R|?Jk z*MuNWYoK`>ze^It^ykTpiAMVncRoojId00VK;g4siiCtSJ_^jCX%u8+EAbC7q3PhQ z-ARMm3b>+IZCCteM}Vd#FTu_U1?8M&tQue}Jn|9uU?DW0g+)8OfrcXYs$Clt<0a=T z>q@Yy++ZWsB`!&`!QF%XYSlwj)5g|<j{~(p-3tBT8mtWzJAk8yFo)piofkhMlq6-e z*1~@PVv4{+GAhh(cA!StZiINT4?^{{mL8(Ml+fmfJ;Y#FCkHB7+Rm46r9$P;E1I>k zgSWuP*g0xr&5^n{4@C^$Q74fySyA1;Yi9Rzak#^OvYogxN!p@*=Z)ur`7P)O25jy6 zH859x%P$q|HP(9O5M^^cc<VX%7c>l}V|Hv$nImYYOR-@cz#J(H_z1$ldPe|y>@Zki zjOLzmV}xYk&$oH!Ui{E@wYjL@nH}3RBv|Mb27R(t$ZY~0+I-~g^v?t-cJr=^=>pA$ zx=>(HI%T;#c<d;g>=CMNLlLuemKc9l$$M8L-re4NNON)MHMZM(AXi=>2y9;p%6HxR z2Po3NXe0mqrBgk%=O=?85%I?f_n&s;7U;uSTjQ3|@rKx2;EPuz;lv{t>x)Y7Gwj}8 zyR1Mnm^ugYGDePAM^LyXm!~TF^X>ca&tXsB@3_JYf2xop8gOcq0XI*fqv|TJ;!kC1 z-}dZ|1~u74R#~uHZKt!U0L%BHc^|NA?qOw})bGh*`@Uwu-_^N6^~+}m*i-*CIc!|6 zrv=hK7i?P)?k~$k^z6}>r!aE*qrvwi1uCJpnuVUK!~y3Z#A8Co69T{?>715r8N{$- zw)wK1k=9|eCX0aW{!aTP6#({yO>jIo-gnJ8k-He4zq~wPl>gO&@shtH;Fv_@s{*<q z^4<Wd(!n=LP^*9VWfE-H<QZ)+52n3`<t`9z_4A9R`rFUh#|8p5D}VpIJ_p|pR~eXZ z(q<MvotN+In#o^C+fKFwV?fQh<w-bemn+^ZShhhKK}^oynmDTiX+L*X$g+T^Uldu% zPd801Ats%<eH_b}H(fgG^#%4HjNxO0?@rh2<7)j^Q+GXObR*%ceRY(W$cZjt`FT(a z^E_2VUB4<B-v68^(cKL$m{rGeJ4-rxzN`Htc{*TMS0oDf5{HHtX(L-ZxAOno4&H$W zZAW<Zwos11b~kofh)WIa1W&idSPlx$9;Y5}5Li%^9`%Be&be!{^hiRedcx87vAZut zV2O(%B17FTMs6AJdG5nmz4q9m1-fg_R#H)%D6(yet&6c&kFxhF7njJ$SVk_z`~F`t zT|JPfQ5b^6hqmRcxP<|#o`qff<1q`U3w1?=t^l76(^`zc?s_DwR$w0Lv6MhZ;GV?h zZOEq2fZuL#uBQn~_Ah~R;7#^v_)b3mJsQkI90}b>I$$L^FPRHa4E?fs-4P5*j8kkw zPqEK)X7En;eg_3^pGb#bjG?>LT0~X0S3%@CrafYjAwrZHES{T_0DeYly=y?&cT|HO z%Jo<L<5??fwSqSWHmQ9HxBPkP_jL6bwtI2L(aG|Bh16C1K*s36eMm;IWY!;awQog2 zA+ZEdy?zX1fXEjJw67@$>fkoVtoxn6YkovydURQA`4J2ana4k{*=&<C00xNXcu=Xd zhpfAFIa$kpkP9TCFLbtMZ-AzVw2KBX{48oH9W^UEc<~+~9Ka-I0onXSU;b*6No1!X z+z@51w8EZ5_^oyCL0>j*4Z~$6ORv&q&m0Hp)=wkB^ZMuHQlL~V<Ya&k$(cAcf`SPD zqVN(&@;WD)Kl34~^wV2Z!Y-NT!f#vmd>3+oM+=+R!>>8n;&fN?*m}!19>3PSEN*AO zhyUn2<3gUT?MjT?3ccLeVdjx<{-aW5+48iL<ttamSWnx<zR$|9r0yd)u5l6WROMBu z-IcUH-n-1cc!o4d;N`^1!1h<M{r9RqEE|g>1e^Y^pklfqima^Wubtk>nYLRKLHV4m zVXRR*2|JK7VJ}(Vh0d3Ut{rb!nKi@K61?XkVFofrpp451R<(j?Z2nf#my29yzJN@R zAF5#DbKCP;9%%B}5*-3(TDXrc0Bpt}E$_?)0b3et!l7X9`-_C2<J;>o$RMBUom{Nn z?W4t`po^(_Yz$X#n|a2<)6E$kd2@M=>TV#UtQtCV8?>~fzspTieJK26j?O1#eR_As zOt7f<D0N=y@K;D>=jI|r27(|?^zqbi4_ttz0v@38bkKLuadiXJ4v^2cwrcS+n^A`P zgWIW(KRNM{wr|<g3ENL5w7Vm)xG;OGrn*ZUnJ7RS-9)Dy(N|))Ow9pwB9LcApgGw+ zw%5$@ZLRASaI*fk>ZIti!@!r_X?A&vDzZM6RpxKpdglBpZREcRzUZoTm)T%R;xJxd z3gS-mt(XtWKs<HcO+?QvHirt!dUSD?l%gaOYbVo2_8buj(=Uy-!^^9rhwysc>%58D z3c0#nBB?sHsUY;XQz@<!Q4>QYYzErkiF=U#%d=F-Cc(CjVDmir%?jf`O@)j6yk2%> z;2i4SH@jC*>2NC46#k%BaQO*83^9fK`YT>o!Pu9nYBus(u(jsv;H}WB!6Fc}vvPL` zIwv6XyhE+6f!%apmjLa?q-<usIv&l>#d=d)?B^eiPEXXo@gIX2G@PId9CR<UG#Fc8 zecL1@Q$fcy4SvnbNB*kRsHCt^K>)nZ53h(Ov?ECFVEgvJT!4`cXOTr5w6CS~I}PVg z1~;+OONyoOnfD?%VeD!E=(fXw8GLYiZ`>Ih^(Am4JWCKk@8Y3tAJ1Oe4#!l~XnARu zS5j+XO(JC9Jg$^5!<&)=Gb_y(F<ih`b-jC00~h3p<|l$&w?4L<KE_<vO2<W9Ry8=Z z`Z}LAps4)|7sdWA%QfaXY-H@Rlmc_g!pj_!fu$3B`U;r&?NSF7xku>4GX8bHV!fUu zs!qD_ZUYimMfCFu0ea$c@^e^Usk@n~D{luT1cL`bo`D&b-rdp!z#KUrTLY&}ePv>v z^B&e|@`z)dydK{vq@xCsm;KLP`OA$&fRi3W6BOM~TL%1kq3zvJH-lw$G=DDzkH7Qy z6C5K#`IjK)r&AL06s|fSzP`B}EPO&_keK>1Gs874@K<*APrEa+hENAN;e#Y~RUjhi zA3;Qkz~Mv1-(T7Ny5K}Tc*|@XJ^?DCfvrD>X0yFlXS`JHZbJY^(hsku1WdIGne7`W zs{+B?+!^R0q<b=Io%YR8)X(SiW<xiZ1KEAV&r3gfpG`hmhGV)3a@YqM!=CXUs9ss} zR{}$~M-23+8^1(s^hxCG{&;?7me;+?qb48u3rdMY%{W5y@f{L|Oeg$HNuVw}K#P;u z_FzKDJki3<)U9KnG)dURV^ST+q3q7qm|!fkmU<Sy6B982`MdMN1q7_OZf-FYZZSRX z!2|k<LBT!XMDcDjfiMT(#wu7Cdc9RT|NOTUV<=KJ*x16O#*GA;ScQ!-?p^!tjBSUA zX#!3UGcIna{}U(SJs4&N{?pITzUjk&P@Knz84EP(fS?W628NU(`p1cmBY^_C^;Z+l z^J+ZLi(y=u^>>raNUGM}CN|%Ol$rRzbadYJfGt%2$MG0qh!ZKipb^L|KYlS}OtA+; zWxB{$f^||pF}CPOD|qR27Xc3DU)<P`&7hbZ;VwgE&Ohr3>&&gzGj6oNrs+}poCZ6& zHO+0|K$Y&oWV-ME<9<czvjR{^uM~zWksB_i?mJh#c6F+dw48~xe|}5taOZh$A~2;8 zGUUCMm5s|!)Eip&ZR_9om@t6yNcPd1&-9OalMMw})x|FzmnsD|z%t>qB(@$VCCPj} zP@&q<f*{2=WRk3A!Uew$AIvT`_2Ds7Z7aolbBLsZ+TD3?D*#~)Pv8OWafrcL1EhK% zAR2=#V5&eWGkDgVDW-!KW`%2>#?g{q#(J6>NQj`KtQd7kbY-kv<>egj-W+euXC#`d z_SAd(O}Y|?1EsMB9;dq9AFZYu=M8SO_;W{}j(C!4)&s7Y*>452421<->X3LBNkI_; zpM;R1HX!Inp*y%ND`j`tg$=il66qO6AMSg0Q_ZIVgnPe(&HFLJ?;@T6J~uYrcM@zQ zHls*hgNQTsYNTLLA&!C)*uQDvRX}fkuh`G#=CsE-lGX%*+@X<qIpHgm8%o&!*yHw^ zJ_yj^wG8&foTK{%mat(N#C2{_dzyCiHPPwTVNXW*9!XGrc%_FCD|UYol)E_l|NBPv zVtinbG+uFYbTcKwbB4p1-CXDGBlw$)#M)xWhw=;FfNfd<P?dokvj8K0t&3ZSOBBGT z%1&040uhQGf?0gjVaNSMkU#RzTyM~a{M&R@3gRFV*LKEL2T1{R?&=PC<-ph6Ak7zS zhw|>Ve^ije+Dk>LCA~5`$!*4?*+f%l1~74R!vpM@nA4YApD~ZOe{MNRgF)jWE^tj* zUr6L6fB$@OMuJb(a$#OFYpwU&mD7Z?h8%+%I|2jy-gwA>9TSE9??~AaEF@e!u1`+M z4N?kzbjb33Q$rLxOiMg=DH{cbS>t>!Rrj(U=`M(pv!N=nt8Hi7C%wHvr_I98ZeI9a z94!fBe>86eJ!R%Cf4(*B_6&Sp>rHYdj{qC!Od9%LWOJ2OUoW;US$q0L9~li<PY`<@ z%npOX>-SO&0VFgT^!qqjm4MHIf6kXe-KC+&y=~_<CrVj>*C$To?dwW43QWUDk;@^= zxmV90oe3)g0%y782>UD+Q8Q+UQ$h2^;4P9WFn{%N$sE{L8ukRfklf~1fBt*=j0qBO z@lFl6Y?CvBRcUfVW;W>aNwQJ(#T;<72_g*eIh5x{MMkb|tU#7p5o|vQS-+3xo*diQ zH1lKv0>rEU1N8Wy&G*_O=rT@%XWj+VW*;^X>2prPB|!%eKsNJU{^{tzB@&cEQ{Mw{ z$#en;eoZO}(_-%R0OjQDDD2WjC;q|W);vDse7E%I^TmO;Yf#|%S$*5(s<-Rcv+`WQ z(l89}!BSf8<#y71qxSR5*=JjwV=>?_I|hsL=Yx$wznkBD*T8-MM7yWibymp%<Sozi zRD|k+6aVC%7#z*C=XA&VlrQX^N>$Lll%Z?$kHesj2Xo|+yeI@P;>6;`y6DPZ-k}xl z5>5^|&$W~*JDd#qy~BKE9^0<@-5YFse);E<s~Bt-T*SG}FxI89F8z|sQSVXfG4~C2 zl==tZrRpQ0w!|sGyO_FT%h?Xv!yj9X{UcTmLs{%$W^UxU??f|}w6Mj;1IrTk`9F_m zj1_*Q@c4ANPW$a*uLWd->&NF>Yi-Au3V>yETj1cxeA({=OF4nxJ1p*}7~Go69qh$Q z=VjXpHf{Lavi$AECnm?kTW6Qu1HD-5Rxfgdz;s#?iSildP-XP1q(lcCoiaUxTU$7y ze7X~`2*=Pk5I(GqkSiq?>-w>ICPI?Pjv{k?d%hJ!1~qcp&t$ti$gF3$)W#mkJNv#G z1f%GN+Gp5{GjGk)=5T;H89R&P(Gc<&3g^TZ(-DO@SvuL9g-Yl!Qz$dP3wcO^G3d!W z7=vTnuYnEjg-$s1ZO%B--k`NFDak!VC>IdXz?=<M*tHae4+&_)3uy}!-<g-YkRY49 zg8*EnC7S$Pvu2jScnsNyWOjlXB5&D9_4*Vk&uAZ>s9WF<-Y9W|J2AR5JB4(3stBtN zb;DRz359Fi;3A*{aa%!BZdIRQ0~+arasi9W<I-*cCD`sK>~bW)9DmvE6Lhw5%YRz{ z684gcK_7WLOZ^680cwUR<P(fKnFq*W--1Rz&pA*1ao%<h=vK;TFvu|)gri9Lz+Uf1 z*o&a^%(On-gO<}Z`SZ=8&q_k*9l1OCb&+wF_s@=YutVF&FU%2Se2%yumz7m%rnI{4 z^^|TMOyN^Ye|}+In#Ont{eOD<?x-f8XYWl25CTg0Qba)MAc9gwia<bm7nI(Wst8E$ zp(7w-qe)eeA{~SP0-^UN2tuTZNKuMZX~}*3{@(k(@BjCldrr=ib8>cOKeIc#J2TH_ zX3w<mrM9;%(V7Rl-4`zNs@n<0>vAweuap3qLrIgbIpxFgb1k6<1t}@)7b|DWvx&r% zBq(sQeg4Dg_ZB~d*Ic<Mc3D2_GubY3mH2IGiI(u8oSk#Qx*?`qASt5<D$O;=!%7&T zk%mhRC7KNXv$k`z6{4#`yD;#GxADm7Ny4cxJvL9cAm9qU=fp-Pe<U;PW7?9dWXsXr zi%g+YC5O1}D}OHH4<LtPYP-Da*xa|nBPE{jf%YkTHtE3}MT3^^y>aaN!*EwuG&YsC zhn#CFaDS9i$=zjTC-d8y{RxW01TG?&XFWjql2P`D2B#`;V>*04n7I=q@Y9Vw&<l!o z42p#AOU8sA{&w8(Bm1+ptnhAk_+<E8x6xwL#;WO-AKkB=(`kifUs7n`@-%CA>8wXz z3M&3?UM1J(kXz$LrCic0@$<^6^b!RkHsn5@&bMI(HSae`ibF{m)V&K!3--~~;v{yP z`@YdP<s19`iQn7%Kc3taLWn<-+(9aqy4p88=*JnrbF|O*vKF7QD$$Kfn0324!ScyI z7fELd<J*K4?j*=$?sukNHX7ize@0L|@Wk>(nlbWUM<^?rbF%2ZSvs$~Ilw=WA$7*Y zh}I?#bckY0u84o%(r)yb%4UG0hyNj;&zguHj`)|T;}!;}igy)U$iFab^7N8TTxG=k z!3!w+ouz11$?B)b78DXA(NB+!p+3m^M4oHZxq1b53;h-IF+0_%=JT`IjnDKkd}4t> zm*j>79taLYaHMPap!+P^1WExUJT(<L<*Wbx8_hc`vz^_>z3ZaoK)>NqJK__9U{DZN zyZi#dQBOH<u2SOapv*EAhUlog0ZXNF(J67|7s(lF_?=gAPiB;XBSs~X>8PTBD01sn zKyYENWg+FfQN$(B9>ZWK>wQ$vSOx~bua(qh;(5gJuD*1S;YsP2+30Pj%_j~}7um@K z?^8wVaDv|WCX0f_W1S}6YU5sR3OKsZ_QN`Y&;R$Clu&ilhXQI$MN<hi=AhUx>|-}w z3LP-g2Tm*+r%#OLvmD5v<~Dzur@=PzEXMk_c|EOUS$^|Ss5{kD>d71M!_t_v=g4xN zMwj3f2FamfZmli^D(!8vx}jp$a`2s^Xa=1U_CsYqlAfkvf0_GK!BYVt)t&R5d4!t* zd-lKEi;?4{Z}AwxddRx((LS8(ofFsKD^vDuRSjn*%?%l&?xl$-XGo#G@_i1SK3}}_ ztnE{wtB?G6x(Pwo2E9d!bn>Kw#ir(Ldbz8jXGBN44HNs3c2ZrHeRu(|_G;0%M(pm; zlQ-IQmf+p`UM0m-@;If^I7loC|5Ed3J<mK|!aI2OJB|nIH<Irw#X0`e94V>1K4U4X zC}PgkA>1Ztx7+^)k#n56RCpM~$iPNE?qWvJ&1r)ZvwyH=)Dwa|R82=Uu1rR@3%>1c z9&6@t7{0*<i!*<LR%aNK=AfLJro6#MVHyJmXIw0yN!CaDI~p7-{6eWKuAe98u$ZXu zGBKBQc)C?6yaLDndj9f#@-1$enoV2gZ2d-WeUPJ6ngF4_oQn+YQAD4D{BvmfB))<g z%XTDn%TeSS>*PwwQ38u3&%;*{B9uKy3cBXf+c1%HtcXwP0l5?BkU&4zsB78>{wfWD ztymZdlEePlR#Fixy(jmB_p5&b5YbWlR)Wl0(;S%{{bX96iF+9SHr(v|eFD|(H*ksx z9u-ua=W3MX?t{f?^0@t&(Ki9$C0jKDuT7UK_jAzcQ!!N{wTt~<$tvfT1LhlJ>5=5D zZM^w;cZ93&DW4?FT7=*1xJqh4!$ew!Q&(~NVC3e1L`r;}`Rr6k6n=Y%#NQcOl2W<v z=|GXK)GVU`K22U6BgasgciM~aWa50nx&MPmg3S`!CXb&}P4rqNk2n~W?rL-?ARSO+ zs+wL}nJd&eGUH<VbBCS2O;aUO{tIfP@G799%j6-y!~-fvSw8JxsZkgM_5K97=_7BN z5N!+D*5C7GRx;2Kv!uZ>u4Dmxul3_KMV|)f7@%Wo2CmdoCNcleSk;+&*O>TxDg~o$ zF5OC}So-8IK|MUlcnDE?n0NmhMedpIP1pC0r=jZL(~qNW6o!@3t}n2EGM8^OQP1>R z>#hIL$W)dND^t#2bWL;&x4JoT$?G}vrs6>iz%}Z45mfyX)q<|Um_MZ@V*r-c#Ty#c zk=`}<I2zl*YmwV4b6z^13L_Qq96qvdHemgR9$^SBUMsaJ`^X7$BFrv8bLN!@RRYSd zt-1eAvyTo~r*w>wA<tdBaNW}i&(_jWxa4M4z*chxtEbP|>Y-Hn6p}(l8jkiLIYRjr z;rYK_BpLl9XK1eVW&OE$02s<rtg*p`#NA@(JF?J>kx3AvFpoCl{M(J);;`A9uXauk z>*nHKoY6!N=E3KEnj$%EtlQ;=j3(VyPXxN!(TfY#n<nH8phjQto~vw_u2(AO`o^$; zgICT8hr9MWdj$T&1qoh4p|GdWm}cwZRs4#J8w?FbluDESBHKY?yvCI@Y@L0hUE^E$ zw7}O<mNq5q7g0;SfPRJ$g5FS<N@F81BQAVxmCT(OhqOF1{{Z}=PWmPbGelzQ7F&F! zQw_<Ew7AGQDh@LiD%Tad{F++~pCp{5`XJ!ItZ=WcHZw;>7v)t#cB$op`!omU0mIi9 zhG7g2V(*w&f*Hy!$({#*R%_J{!+SM9CcIqP+UUqw^k_aAw=NkgSD<3|&cQ1f%r<S@ zY-DHR(=S)u2;?Jji5>Be8uL(r-`nAEOig*_-saJju7C96V0)C5GyO#oHgf2n!U!9I z8s9SBHr<`bO5c!hkXI6=)52v1b|;&EuEXbDypA8dL1HHl<LBDsl3ZtyJvZ8px;1VB zY@|^zC(vqFSZ}|%o5?Qj$5M4K3_jm9D^D~3s6I=(oh~P7=ir2CAiYTiOlv#Yhv{I7 znlh$+!f&z@rBhv7Q@a&;Uuu?cEf{JsV0}zJZ>TiE(RUd<&lc2mI-W3<(fRi0{$Xb? zVbfe+8n2~iV}Kzy5S#a0V8{XQTvpBI@T3Cixo-VoD@4~hmP+;pz^s6NVZG=#OBa9t zshalNHYT)ag@nuN%%>mLOcFoW(if&$MgC&sW5Ond7W0B{3Z5x73nk)(!xVGE8$POx zpgK0fOO$dZir+7(B+5;2%h+&%0KN{Qn)U5IhXEl<$vTk4{{eCH)-`e)Kie7U?sR(b zja_A!&Cz79iC4dM{f!e3%WMkxJoG7-L1R1dRfrt@bNI`s0ZARvDg8A@QGt^(!hYIw zatyWf`MG6Iejm)m^*T09VefSeIJrX!&0*K;cG(co6l-+>&y0S*iCpo-=MMabaa$)W z;-!Yb0y;j9L*sx`mErb5!DVc4o4%=*5du2Ie4#_nOz0<eQPQMm11{ou7s?&CM1^1Z z5Qqp2Qf>&n1JpGS3WIn%V^9KfTqmJyXe?%_2-+@13o7;HFvaIaGFGILhPp~0s7+;g z78xs3VVuZvMqx{QDKD@T`P@u5T5mr~wWVFR@z63NgF5twI=tOgYPJ-N@3%+c{mx~^ zN*6IAILg%fQ>25aN=XGiu!df>r4XO~;RPYqn*cI+Zur6qYBMoW^*67!8^F3sTJAju zsXI<DQ*M!c8bx7tsya2<f>}x_M|5UJ*?WFo2}m#cmTbbf;8~8h)S*D&t)Y-mJjV6u zG$FSu;U=N{^=)@wkL5knIXv&}i)&Lasryja`YSsmSvH)O<zN;6HhPHDZ!?z>_r4bk zoc4UQq1BJQaFi42D%RIyX{w~?49_{&)i6kp)EUJZqmq8kX^j4JVejQKljDMl=?f}6 z&M6LFV!N<*8v|+rWZyxH)ZYEFB&;G&_#1_nuNy59CrEqh<rNUm&GyyL-PSBHN?a`) zn6y}kZ$_4<|A|P@tm+I>W%m{fOuT@^7R<UsgT~`xF}2&Cn4ho8&gpSl#In1EYx;CQ zY_ZDlM?rw&v7gq6>c<G{1mB&pNVjxie5$=7Obj|UvaPQ(ev98U5W*2MpO0+_XU}~Z zK3Q$rSooIdAM2%cLkT2@H$-7M!BC_5p3^BAxn2L6@uyn?c5t_V#mt3ZHQ5T@mpPW| zJ1IlX#)b{%=J%d%X#*rSLJYpuT#9m}Vq&1fW|Ou@J*V0QDPSgaH_flRdkO|e4pe3A zaR<ev;!~Orsv`Qm5u4no9f^#^i&@TQBF>(KwP`BDupHnMhs4ipL|!L`R{oh1Q9;bF zJyrwqo6HCsmBLE)wzr5KpK{A^P;)k0e(w^4!lSa3l_<VN^Ym+AJX!URRSqzM7<m7* zz8mB}JPxH)q}~6ezzKfl&fVS~J%4KaJWfG6pL|X24})kJfAHK1|8lxK2i@9j>6TUb z2o1SX!P><qkMo1`T=kW~!)v4f(v`dXZjo=BLp#4HgeFnGcKFjz+ZJ<OF6u>jXX|7_ z<|!9qevI0Gl(@Z{E_e7Wlilxo^NZ-K>{o#SqJwmNp!3c;$Z1x>_o&FAYCwe{$nQ_e z_3L$LEF)*MeWx6ILlLzU_mA?6@+tIX7BwgTc=6waJoh(|!o{z#FHc_`qt2W5KPdRs z^jhGItXUiqvxv10nY=c*>GLMSf4b%SlbwB=9RsPK(K{RShF8JlOzY{=*o8o1XxrYw z!^YumG*-}KwD$nIF3Q_)5j_M)*x1*YM+~{^(UWt8%sN~;ObRiAIg#mVSig$xc}0Z& zR77LAzWj@w7H;!)fMbhjJ~0e$u(SSM>%aJjwdJedE<0|g$<FcHynupVz?f9f?_!NZ z|H+R*xcR}oM(T}Ol|}1FuLj&u($lMe_T0&5{*W;3@{|$)GvW2r-gt|`;3$)d!EB;h zy7WTzW5ajvh$;gM4#(1yJv}wG7x?ohV82KQ<-*KvUUi(Or%Ofuv^^_pkpA<Xo5W9B zBjBduxUfag)1mm<L|r~C=M#FE^i%-w3x^(AX3WELUVi=Yi3|oF>)*s=dG7Lbkqh~y z9p6i=e9%h2{9*LIL&kRK$NZ4I;+Gc435id~QZ(lx8Z9SjHmxjo+;x^)2oY^fb;jNs zmTb4VFqZPFNOeS_@`yDGV_hX}LId$-U?o#Gz>XA`IU_KaFzdpzPpZTSLElqJi&y@L z-+3DeYSsg%+BRoILNyp6e`|l~bqgs#6u0q{pZz#ZP8TM1a#ZT|rvYp|q(A_MFg7@< z@xTd&gaVOmJ&J-NOwZEn{dgmEnRQ^y3YBWdx4jcAB~$`{G5=hAivc)VY2-#oATjLl z=Vy-;>9CD6ErP~BIdiT?^PD|BJiKGrz<_POhr~;!%Ihn##=n{!50%fjiPEqH!Q^Qf zy0W@rd&aNhy~8MX1g+1=rs(84=Ww0%3>Ap>(QE#3vszZP?>JewUFI`o*ei`2GaOr2 z*qNI{^AT=;Ze$HP(;n8O{O(oa>hL;}6@EpH+0hd`53dOMLh}r@&BGBFC@c&_X%Dxv zyo4%b<Uh&;<z+i-_9eh-s->o?ZM*n48G2IM1^K>u34`tV6j?gBSj6?o2h82;J9Lh2 zDjMZS&N<q;+;SHf#UM@Lu3DAxr?Xt@$zHX-4ZbVkI@%t<Z4$4uy|3GSZ0AZyR?AhK zx3<1Mbl}{06i@lXx^Kz4oW=MwSJv;*{;?t>@X)`CSft8sZd!{*p6!A!TxIv)U%n7{ z7-NFm=NA63dSPoOB>f<`7md}iIRk$=n7yL!tiiT3)_$HKyz>;@jlw(ijs6bMN`Q}< z{_+`N%C=-!lM^qZv+1qSpW(Qj?T!i^muafOasCX!;H7)FQ{98#b{{|HyITZz-~9Tg z9z7oDV8D%$ACn8zynmMdqb%>^s1A8d7Vy(%v(nui911)9$-C)Z>60t~g0$yvWC&5N zxr&xDa=cg##{@vfvNO@&SQomGThHyA64w=1*G+o-&L$0B(V`ttgP|EG*x8BWl|(6& zgJ)}WszhMw)~E?6o5?9XLv)4zJca2yFaY*y3tjmO5!AO6E@iXeBr0aFm)`Kr>R9R& z#Pxe8x76B(aDcGDV(1|HM^h-{N9Ild@F~cU=~sK_&P#R0`6qFLNEKJztoQN^g2VkT zWH#Ln|A>$hGnFD!q5c{iF@Edu{Jv5jGamI2N?i>{<7}Y=Nu7b6W+F>ggDW)6xaC?z zLwSC?^@}$K+B!_LW<vx1<aN?W07HJg4cWpW(E=CkPZ@Xapc<<ORZZjbOLso3PpGmc zC&$xJOtN23^+2$~!?ZcTM6rTCL3cjtjN+5$vzPz4(`kNwtY%4{b8Yg&AmKYx*1|x5 zz~f_)quqi>a{?w@6ZrzRkfo+qu~r9R_DgeGD6U$((dn2>kHz>kk2Q2}q3q0&f{MV% z{XLlopUIv%g!`k@i);PMS_eO)7_jmS>dsS!%e46e4&eZM=by5p=a3mLJchz3+q5JA z<)al&J_#0n_dyUR2}6MiWbPU@#3G2{sj;tr59b)N+)5L?c_R_=>cRLUy&-le`6T#1 zO`O8EGW@(-Y_)e%ymi)?3#`-uSNrbTfbMh9;bw}0-UUVmctWWE%x^TrzPD?)=v~=r z(Uy0liG{8W!vU6ZZSWRB7o8Ie@@UiE@eTKNWvS1>q@_cV;0qXk{kArf1Iq;0eEsH^ z$$fJbm>2?MzW?*1gb6kcN(FC(+-oj&<wxeowa0bJ3h5Op4CSX#!IzN0x$_(X03<%3 zLaKy0d&x7_L%yj2BpC&Dq998k?3z;3bx1%Zuf~~67X`bVqb6pfPwZXnj4yUP|M-^4 z>Q;Oe*kCWAUu*gcPMLxjvzioBsHQ;9_U%_DHlcuacMf|!UY}^D?%H5|2Ai($_5>Qx z%Pz-t8DOA=O~@RkbbK1a<ED-z(N3WDvLKK-&v86L->3u-eF<b0HiEO~$l{#79qYEA zMljxN5{JO_6ut!>#^e;?jvMeBwg1d3tY5vM1)_Bd_>VI|A?@A}r28CW{$;rR&>r6C zTFbM>xe_1q1E7FGM3iIe7m*}5K0SBV2+~8Z={w*S83=*J5@>r;3?-<<{imIbI_%~~ zCEqv^BU~{}<xqbs6;8wX<T|Qhdrk+|rl3cXM$boVjQUK}G3EQ1fMsaTMjodV1%y{Z z{et;%6FL-f0;OkpMe_k}ta~sAK5vpcEB&`KJ912>WJiKb(#VnTom`2_R3M#XL$ALH zIWusX%2_Q&aLT(rYWmAVBBmw-<hd;;aRPUe4fnq-!jb=QW1a@!V!r%wES(oIltYQO z0Q_mhAf^c_dPK#?)wn9}r=<ekc>eyL?RB{`_TgG+r!^VY|3976+v;M6^|6;=911Rv z<Y7)~t@nv6V1Rm$X~?k%0Gdl0%8Iv#AVWTuZ>3Lpo^Q@Ik(>iZF)8-@(+imenqC?L zF9gL<-|esG<<thxk<*l#yKg{_6=Dd!?1^cho<R5Kl96a@$@jYca)~16#j`|dr0>qz ztM}ie1DYI8Chzli*^u{x7f7)4$*Qi^JO4rEffjVKg)tjFKOFN7)nJuOed=(2-<cW- z{8MdlcHgYYg<jP-QwtUfPdv4kHiDEa=Ds+qA!A%5_T^Xg*U`mtQ6{hv-6Wqt<hhZ8 z%!L?OJOZ8*BGg|A0lj3h{Au8_%o@{o;ROS+Jl$WSK9)#c{w4b0J*g!c1sW4RG!}ow z5MrvvDprvHIXTpRhJ5_}+ld7Kcd(^hc2%l^Lteb--)&0_nn90>!nL9sn(`sA^+Jn2 zmA5)EL5~Fv^DJEN-8s4rx*>PQy&uwsj@EB$jtV6#O^1X_UCK>EhEr@B>-<`S<d&_2 zG|$5TVj~U0CUtZXT%%!F5(=&Zx0D+s9HvJ<q+QGsQnzmjb+>>5q6d(hp~zDbEJWka z#?fYa`A+9ESrxLQ)eO}o@wu3)UKzPO!Gq5ci%?_}=Lo5Q9i8X)svafxP;bE;?E9#t zr*4uMhvJGh0}Gi+YblKw79bw}?bzh#L-qKs{V6Go1EzgE)^d@_tTsNX$^V{Ur1mRP zRK(xND$f2d!&M)>SR6+Kk=}=O+iGrk%nfCGo(_4*kPc?jno0BMzZv>P9wca8JV(KG z?_mnyvur*hj-0h1xY*hB$3Rz4Xse=S&wq!^>9VQ%KY?|!-mmUv9aW#GJ&p+YJ6Jqu zey~2ksrG)R){RY+aO-_mQOqm3_*7Gr27oJaeR5go5oRiRq6Bx}mLqAM`|DbG#6j0@ z_L7Sp@Tqfc{NBp6l0w*crQT@Bq1`Dq?>?WFO3da1K0kv#_<MPG)FCF+Ibk-#Zf8Z| z?t4&_gpd1C`*cWG(lr-x8J1TcyeTau|G89MJzth|m+V5(B{=%G2L7@DH{d7r&0gRD z^Xj4pdz1I0ruwcfNOr&eY<k}=5vs)=e`!k*?_sD8h(4`y4ZGV1a~sTohq(%Yr1Z*a z>y9ElVP;u>&+3*38%1Np^%8bm`%$G(cQG^NWm|UKg?GuiE0Q1H#5gO}9D7vUd9A^M zb4jO#Cq7n!Z=GIYr(}Y=*U|5lyM60F&^s);Z+dOm9JVq$M9h_*Jyy?+^RST|7)dBK z>xt?V3V55Vt~LHo@SR5wtmo8jJ)kb*jUZ7jA?DpbpU}hIJBJ>gJw7Nob0{%HeE+(A z*>Z=t@J(Y(7}w|*!mWhqBcMzal9x=*5b!}OaCGtJv$6PZLX{KBE<AHbJQ8zg(GvwJ z1_sF5++l@G`cJu=!i1|B){~Z3;gBUB8r*6IB@{El|CP<<3&oFiQfkGlxzDV3TX(M6 zT}*C$R&wKL&z+wpU%K;JeFXSG%>DgD+2h8UL-$|qE3*m~G^4q?Ai9pR;_rfGsSVS_ z{TQohB|UC>ca7qEVRBaE=m4WUJ5GQfawqhN-NMk<um0<yByS{a&rQ(g)Fk=twFhL? z;zGUag6(KCc874?HRU@n<Q=Wy86?Pj1b4?VayMn6M@mx#k4C7l+qLk2w~=;95y3}( zDWdjWp>tNrW6m$>4W}0hALs7j>C+Jtx{5F<i^uhuT^#N^&8&!r%JV<mNt%(^bitSZ z53027%niMXhm^Jmt)o>1!$txR3}Zw2UEcs~;8HfZj$ILjfu#Huwu*<*E8cGz|G$wg z>9Mb0N3b7zA{;hgg@#gTZif1}&?GetnA6t=$T`80s^^ZYPn!PvDF;(ybszUgcvfON z0fhmWm}zpUFP1I}NRj;W#m1Ah32$d(fwBQ~i;WJ7jXM|gn%v(nxeHFu=FSja&Bf+i zMgt^3LplCjFb-za;|rAGa1J;^EDS)rfUD@|gw9&xTy=)8{9U}vzdt6WH2{aAr^!v~ z#y;%f4H&=yIJ7UokaA2m<OiIE)KJYNfb@bLn!XQFpzrZuEt{7|c>kpY<VJ62tD!XC zTO=D64uA$2+Y{#Qv^a0MJR9=soP}rqQaXvu-5!0EpODSu>@ReR+Q3vG{%z_IZG~M= z6Tb^fokmsAnXr5q9HNASZ?=7^x%97W21CA_gA>`Ya0s--BLC))(WA+Y=Mil?tN>q( z1z4w!t_<%P;n&-h9pC{u62!&~iqf!&z%Bq#6$Y>j#kAPZX-`o22B<BM3pI8zj2y6u z1`^R}b=yl%Wqr2a1!{jMK6=Biss!*#VKJ1fZ-Zs>{1Uc4Z*2n@Ado?3To+>?F-$?7 zIJ4m1pA|emoEXGE3<(Wv25(p(g<D!4Krh(oT74U9sUZr0y|&}dIdl4X=k>(GL5TH7 zKb+rouJmDd-LLQWMJ?Qug;8jT)&vC8&i8g(QD+4)gw}%_7F$-WpLg8;%;O1KM3TQx z+P{t9#vgTBLWfJ>TiyAwsK*}R!?HvYe=<Atzaaqd|KJF}9Zq|x--96TlNL6%`OHW$ zGP3jV5fj;~p(N`kwv(T3vm7`G-6t)^|IqR~<RrF3RKFiV`;@S}#S|ik`j5q#vX&}f z;gK(vsPUpqwR@(gsC@ZHm@1r088QtgV7_k_6`^|^mObbZ1H^oCruCDI8g!X%lls@H zvDe4cOA!{;)pN8l3UlXT-CzJe%3(fK_fhUa8byF$a?}+S;K#7mVE%5zvrg8H^tP>C zWsUOLXz9&^GY}3*+(WbWm|<C{asqYhe#*&=0Rr1UUMiti`=|ceWI`oB`|I{>pP=Hk zFttCvuCb(}UbWd`QU}?I+c*VDwtlztt>?+{TupzBQbR^Zeady$Vo5#mKmer9PH)vE z>^-du#}TfPu0RD|ZZ^5DX<eAVn9e$AKd*AGBc*+sE8TPNB<9E48L@TG-~GBi27+ek zT1POOrS04#$$|xo<F(tVcK2ujP=i~~?A6TBY{dL_a5sJ;DFpG$C_b~_uc1(9Ny=L- z%J}$7)=VO9LSk;ye==Wsde`~hF_HL&o%e?)mZ(8u&}oU0J5FpdxN3}gCVg$Wxk36@ zi}Yc0Ft0;z`V<)e?$0iPN4L@~>L=FF2P5mu6<eQAPCxt_+{#U8%-rgmEOm3MCuE)w zIxl@0zO!&XTUW-SjDgFuVZ-t4UeS=+zbu|#0+V9nZ8$-rH#@$KzNbAOzKkeIcKXK= zCTv3kT6K?{NwnvlWVb9)&sqHp2^@|%SzFTN<SGa$F&Ro)zv*bU52@4FJSxm}<Lutw zE*CS;JtX<~Dfqdb7iM9Kxwd|M)r<Fq<lw&X%+&p*sDOHdp1qO7kq6F<s=XH>g?}vp zTlo=cMLT*ZDC&PF;dYI<$#BfzlXPyoUvJjgcE{8R&dSCm*%ag640(Vi<$YAo!x$Q> zO5eU>vcD4s9zKVPyoSvAoUM2Ei9b9kI8DNr`VGf8ZdzBCiEp{LX8ZbtPF>sC^x>a- z?3ld=JLMy1Kb$3TC}B<^F)T%5n_d;Mv^sB}>~znpUi!Zr?fOmAW++s-SjIl|5SU0J zcXlkSriOnq^z@bu69XrYf0^^*@^rb@saKb?%nZ_?k;E{5vAb2OO$RD3Dsr$JZpBqr zEBGyvwwizUd{V4C1<m!NV|Awz#8IUyqelvj(qFUo>f`q;_3WP$ALS=qEf^l8tGB@p zvj)d`+W>5*KB50ue?WT;+7!UnEkb|et<uQ9>sB@FfAGvjLB!ZI|L!zT;D7g<|E1?P Yt*(gMGTx)<7X$!ksOTz}DcOYo7k-!rZ~y=R literal 0 HcmV?d00001 diff --git a/public/search.json b/public/search.json index 2a918a7..f3cad48 100644 --- a/public/search.json +++ b/public/search.json @@ -1,10 +1,24 @@ [ { - "objectID": "index.html", - "href": "index.html", - "title": "Mapping and spatial analyses in R for One Health studies", + "objectID": "07-basic_statistics.html", + "href": "07-basic_statistics.html", + "title": "7 Basic statistics for spatial analysis", "section": "", - "text": "This manual is tended both for R users wishing to set up spatial data peocessing and for users wishing to use R to carry out the tasks that they usually carry out with GIS. The main steps in the processing of geographic information are covered. Emphasis is placed on the processing of vector data but a part is still dedicated to raster data.\nHow to use the manual\nThe RStudio project containing all the data used in the manual is available here. Once the file is unzipped it is possible to test all the manipulations proposed in the RStudion project.\nContext\nThis manual has been designed from the courses “Géomatique avec R†and “Cartographie avec R†by Timothée Giraud and Hugues Pecout. It has been translated and its examples have been adapted to the geographical distribution of the audience.\n\n\n\n\nCreative Commons License\n\n\nThe online version of this document licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0." + "text": "This section aims at providing some basic statistical tools to study the spatial distribution of epidemiological data." + }, + { + "objectID": "07-basic_statistics.html#import-and-visualize-epidemiological-data", + "href": "07-basic_statistics.html#import-and-visualize-epidemiological-data", + "title": "7 Basic statistics for spatial analysis", + "section": "7.1 Import and visualize epidemiological data", + "text": "7.1 Import and visualize epidemiological data\nIn this section, we load data that reference the cases of an imaginary disease throughout Cambodia. Each point correspond to the geolocalisation of a case.\n\nlibrary(dplyr)\nlibrary(sf)\n\n#Import Cambodia country border\ncountry <- st_read(\"data_cambodia/cambodia.gpkg\", layer = \"country\", quiet = TRUE)\n#Import provincial administrative border of Cambodia\neducation <- st_read(\"data_cambodia/cambodia.gpkg\", layer = \"education\", quiet = TRUE)\n#Import district administrative border of Cambodia\ndistrict <- st_read(\"data_cambodia/cambodia.gpkg\", layer = \"district\", quiet = TRUE)\n\n# Import locations of cases from an imaginary disease\ncases <- st_read(\"data_cambodia/cambodia.gpkg\", layer = \"cases\", quiet = TRUE)\ncases <- subset(cases, Disease == \"W fever\")\n\nThe first step of any statistical analysis always consists on visualizing the data to check they were correctly loaded and to observe general pattern of the cases.\n\n# View the cases object\nhead(cases)\n\nSimple feature collection with 6 features and 2 fields\nGeometry type: MULTIPOINT\nDimension: XY\nBounding box: xmin: 255891 ymin: 1179092 xmax: 506647.4 ymax: 1467441\nProjected CRS: WGS 84 / UTM zone 48N\n id Disease geom\n1 0 W fever MULTIPOINT ((280036.2 12841...\n2 1 W fever MULTIPOINT ((451859.5 11790...\n3 2 W fever MULTIPOINT ((255891 1467441))\n4 5 W fever MULTIPOINT ((506647.4 12322...\n5 6 W fever MULTIPOINT ((440668 1197958))\n6 7 W fever MULTIPOINT ((481594.5 12714...\n\n# Map the cases\nlibrary(mapsf)\n\nmf_map(x = district, border = \"white\")\nmf_map(x = country,lwd = 2, col = NA, add = TRUE)\nmf_map(x = cases, lwd = .5, col = \"#990000\", pch = 20, add = TRUE)\n\n\n\n\nIn epidemiology, the true meaning of point is very questionable. If it usually gives the location of an observation, its not clear if this observation represents an event of interest (e.g. illness, death, …) or a person at risk (e.g. a participant that may or may not experience the disease). Considering a ratio of event compared to a population at risk is often more informative than just considering cases. Administrative divisions of countries appears as great areal units for cases aggregation since they make available data on population count and structures. In this study, we will use the district as the areal unit of the study.\n\n# Aggregate cases over districts\ndistrict$cases <- lengths(st_intersects(district, cases))\n\nThe incidence (\\(\\frac{cases}{population}\\)) is commonly use to represent cases distribution related to population density but other indicators exists. As example, the standardized incidence ratios (SIRs) represents the deviation of observed and expected number of cases and is expressed as \\(SIR = \\frac{Y_i}{E_i}\\) with \\(Y_i\\), the observed number of cases and \\(E_i\\), the expected number of cases. In this study, we computed the expected number of cases in each district by assuming infections are homogeneously distributed across Cambodia, i.e. the incidence is the same in each district. The SIR therefore represents the deviation of incidence compared to the averaged average incidence across Cambodia.\n\n# Compute incidence in each district (per 100 000 population)\ndistrict$incidence <- district$cases/district$T_POP * 100000\n\n# Compute the global risk\nrate <- sum(district$cases)/sum(district$T_POP)\n\n# Compute expected number of cases \ndistrict$expected <- district$T_POP * rate\n\n# Compute SIR\ndistrict$SIR <- district$cases / district$expected\n\n\npar(mfrow = c(1, 3))\n# Plot number of cases using proportional symbol \nmf_map(x = district) \nmf_map(\n x = district, \n var = \"cases\",\n val_max = 50,\n type = \"prop\",\n col = \"#990000\", \n leg_title = \"Cases\")\nmf_layout(title = \"Number of cases of W Fever\")\n\n# Plot incidence \nmf_map(x = district,\n var = \"incidence\",\n type = \"choro\",\n pal = \"Reds 3\",\n leg_title = \"Incidence \\n(per 100 000)\")\nmf_layout(title = \"Incidence of W Fever\")\n\n# Plot SIRs\n# create breaks and associated color palette\nbreak_SIR <- c(0, exp(mf_get_breaks(log(district$SIR), nbreaks = 8, breaks = \"pretty\")))\ncol_pal <- c(\"#273871\", \"#3267AD\", \"#6496C8\", \"#9BBFDD\", \"#CDE3F0\", \"#FFCEBC\", \"#FF967E\", \"#F64D41\", \"#B90E36\")\n\nmf_map(x = district,\n var = \"SIR\",\n type = \"choro\",\n breaks = break_SIR, \n pal = col_pal, \n cex = 2,\n leg_title = \"SIR\")\nmf_layout(title = \"Standardized Incidence Ratio of W Fever\")\n\n\n\n\nThese maps illustrates the spatial heterogenity of the cases. The incidence shows how the disease vary from one district to another while the SIR highlight districts that have :\n\nhigher risk than average (SIR > 1) when standardized for population\nlower risk than average (SIR < 1) when standardized for population\naverage risk (SIR ~ 1) when standardized for population\n\nIn this example, we standardized the cases distribution for population count. This simple standardization assume that the risk of contracting the disease is similar for each person. However, assumption does not hold for all diseases and for all observed events since confounding effects can create nuisance into the interpretations (e.g. the number of childhood illness and death outcomes in a district are usually related to the age pyramid) and you should keep in mind that other standardization can be performed based on variables known to have an effect but that you don’t want to analyze (e.g. sex ratio, occupations, age pyramid)." + }, + { + "objectID": "07-basic_statistics.html#cluster-analysis", + "href": "07-basic_statistics.html#cluster-analysis", + "title": "7 Basic statistics for spatial analysis", + "section": "7.2 Cluster analysis", + "text": "7.2 Cluster analysis\nSince this W fever seems to have a heterogeneous distribution across Cambodia, it would be interesting to study where excess of cases appears, i.e. to identify clusters of the disease. The definition of clusters emcompass many XXXXXXX\nThe first question is to wonder if data are auto correlated or spatially independent, i.e. study if neighboring districts are likely to have similar incidence.\n\n7.2.1 Test for spatial autocorrelation (Moran’s I test)\nA popular test for spatial autocorrelation is the Moran’s test. This test tells us whether nearby units tend to exhibit similar incidences. It ranges from -1 to +1. A value of -1 denote that units with low rates are located near other units with high rates, while a Moran’s I value of +1 indicates a concentration of spatial units exhibiting similar rates.\n\n\n\n\n\n\nStatistical test\n\n\n\nIn statistics, problems are usually expressed by defining two hypothesis : the null hypothesis (H0), i.e. an a priori hypothesis of the studied phenomenon (e.g. the situation is a random) and the alternative hypothesis (HA), e.g. the situation is not random. The main principle is to measure how likely the observed situation belong to the ensemble of situation that are possible under the H0 hypothesis.\nThe Moran’s statistics is :\n\\[I = \\frac{N}{\\sum_{i=1}^N\\sum_{j=1}^Nw_{ij}}\\frac{\\sum_{i=1}^N\\sum_{j=1}^Nw_{ij}(Y_i-\\bar{Y})(Y_j - \\bar{Y})}{\\sum_{i=1}^N(Y_i-\\bar{Y})^2}\\] with :\n\n\\(N\\): the number of polygons,\n\\(w_{ij}\\): is a matrix of spatial weight with zeroes on the diagonal (i.e., \\(w_{ii}=0\\)). For example, if polygons are neighbors, the weight takes the value \\(1\\) otherwise it take the value \\(0\\).\n\\(Y_i\\): the variable of interest,\n\\(\\bar{Y}\\): the mean value of \\(Y\\).\n\nUnder the Moran’s test, the statistics hypothesis are :\n\nH0 : the distribution of cases is spatially independent, i.e. \\(I=0\\).\nH1: the distribution of cases is spatially autocorrelated, i.e. \\(I\\ne0\\).\n\n\n\nWe will compute the Moran’s statistics using spdep and Dcluster packages. spdep package provides a collection of functions to analyze spatial correlations of polygons and works with sp objects. In this example, we use poly2nb() and nb2listw(). These function respectively detect the neighboring polygons and assign weight corresponding to \\(1/\\#\\ of\\ neighbors\\). Dcluster package provides a set of functions for the detection of spatial clusters of disease using count data.\n\nlibrary(spdep) # Functions for creating spatial weight, spatial analysis\nlibrary(DCluster) # Package with functions for spatial cluster analysis\n\nqueen_nb <- poly2nb(district) # Neighbors according to queen case\nq_listw <- nb2listw(queen_nb, style = 'W') # row-standardized weights\n\n# Moran's I test\nm_test <- moranI.test(cases ~ offset(log(expected)), \n data = district,\n model = 'poisson',\n R = 499,\n listw = q_listw,\n n = length(district$cases), # number of regions\n S0 = Szero(q_listw)) # Global sum of weights\nprint(m_test)\n\nMoran's I test of spatial autocorrelation \n\n Type of boots.: parametric \n Model used when sampling: Poisson \n Number of simulations: 499 \n Statistic: 0.1566449 \n p-value : 0.014 \n\nplot(m_test)\n\n\n\n\nThe Moran’s statistics is here \\(I =\\) 0.16. When comparing its value to the H0 distribution (built under 499 simulations), the probability of observing such a I value under the null hypothesis, i.e. the distribution of cases is spatially independent, is \\(p_{value} =\\) 0.014. We therefore reject H0 with error risk of \\(\\alpha = 5\\%\\). The distribution of cases is therefore autocorrelated across districts in Cambodia.\n\n\n\n\n\n\nStatistic distributions\n\n\n\nIn mathematics, a probability distribution is a mathematical expression that represents what we would expect due to random chance. The choice of the probability distribution relies on the type of data you use (continuous, count, binary). In general, three distribution a used while studying disease rates, the binomial, the poisson and the Poisson-gamma mixture (a.k.a negative binomial) distributions.\nThe default Global Moran’s I test assume data are normally distributed. It implies that the mean However, in epidemiology, rates and count values are usually not normally distributed and their variance is not homogeneous across the districts since the size of population at risk differs. to be the same since more variability occurs when we study smaller populations.\nWhile many measures may be appropriately assessed under the normality assumptions of the previous Global Moran’s I, in general disease rates are not best assessed this way. This is because the rates themselves may not be normally distributed, but also because the variance of each rate likely differs because of different size population at risk. For example the previous test assumed that we had the same level of certainty about the rate in each county, when in fact some counties have very sparse data (with high variance) and others have adequate data (with relatively lower variance).\n\n# dataset statistics\nm_cases <- mean(district$cases)\nsd_cases <- sd(district$cases)\n\ncurve(dnorm(x, m_cases, sd_cases), from = -5, to = 16, ylim = c(0, 0.4), col = \"blue\", lwd = 1, \n xlab = \"Number of cases\", ylab = \"Probability\", main = \"Histogram of observed data compared\\nto Normal and Poisson distributions\")\npoints(0:max(district$cases), dpois(0:max(district$cases), m_cases),type = 'b ', pch = 20, col = \"red\", ylim = c(0, 0.6), lty = 2)\nhist(district$cases, add = TRUE, probability = TRUE)\n\nlegend(\"topright\", legend = c(\"Normal distribution\", \"Poisson distribution\", \"Observed distribution\"), col = c(\"blue\", \"red\", \"black\"),pch = c(NA, 20, NA), lty = c(1, 2, 1))\n\n\n\n\n\n\n\n\n7.2.2 Spatial scan statistics\nWhile Moran’s indice focuses on testing for autocorrelation between neighboring polygons (under the null assumption of spatial independance), the spatial scan statistic aims at identifying an abnormal higher risk in a given region compared to the risk outside of this region (under the null assumption of homogeneous distribution). The conception of a cluster is therefore different between the two methods.\nThe function kulldorf from the package SpatialEpiis a simple tool to implement spatial-only scan statistics. Briefly, the kulldorf scan statistics scan the area for clusters using several steps:\n\nIt create a circular window of observation by defining a single location and an associated radius of the windows varying from 0 to a large number that depends on population distribution (largest radius could includes 50% of the population).\nIt aggregates the count of events and the population at risk (or an expected count of events) inside and outside the window of observation.\nFinally, it computes the likelihood ratio to test whether the risk is equal inside versus outside the windows (H0) or greater inside the observed window\nThese 3 steps are repeted for each location and each possible windows-radii.\n\n\nlibrary(\"SpatialEpi\")\n\nThe use of R spatial object is not implementes in kulldorf() function. It uses instead matrix of xy coordinates that represents the centroids of the districts. A given district is included into the observed circular window if its centroids falls into the circle.\n\ndistrict_xy <- st_centroid(district) %>% \n st_coordinates()\n\nhead(district_xy)\n\n X Y\n1 330823.3 1464560\n2 749758.3 1541787\n3 468384.0 1277007\n4 494548.2 1215261\n5 459644.2 1194615\n6 360528.3 1516339\n\n\nWe can then call kulldorff function (you are strongly encourage to call ?kulldorf to properly call the function). The alpha.level threshold filter for the secondary clusters that will be retained. The most-likely cluster will be saved whatever its significance.\n\nkd_Wfever <- kulldorff(district_xy, \n cases = district$cases,\n population = district$T_POP,\n expected.cases = district$expected,\n pop.upper.bound = 0.5, # include maximum 50% of the population in a windows\n n.simulations = 499,\n alpha.level = 0.2)\n\n\n\n\nAll outputs are saved into the R object kd_Wfever. Unfortunately the package did not developed any summary and visualization of the results but we can explore the output object.\n\nnames(kd_Wfever)\n\n[1] \"most.likely.cluster\" \"secondary.clusters\" \"type\" \n[4] \"log.lkhd\" \"simulated.log.lkhd\" \n\n\nFirst, we can focus on the most likely cluster and explore its characteristics.\n\n# We can see which districts (r number) belong to this cluster\nkd_Wfever$most.likely.cluster$location.IDs.included\n\n [1] 48 93 66 180 133 29 194 118 50 144 31 141 3 117 22 43 142\n\n# standardized incidence ratio\nkd_Wfever$most.likely.cluster$SMR\n\n[1] 2.303106\n\n# number of observed and expected cases in this cluster\nkd_Wfever$most.likely.cluster$number.of.cases\n\n[1] 122\n\nkd_Wfever$most.likely.cluster$expected.cases\n\n[1] 52.97195\n\n\n17 districts belong to the cluster and its number of cases is 2.3 times higher than the expected number of case.\nSimilarly, we could study the secondary clusters. Results are saved in a list.\n\n# We can see which districts (r number) belong to this cluster\nlength(kd_Wfever$secondary.clusters)\n\n[1] 1\n\n# retrieve data for all secondary clusters into a table\ndf_secondary_clusters <- data.frame(SMR = sapply(kd_Wfever$secondary.clusters, '[[', 5), \n number.of.cases = sapply(kd_Wfever$secondary.clusters, '[[', 3),\n expected.cases = sapply(kd_Wfever$secondary.clusters, '[[', 4),\n p.value = sapply(kd_Wfever$secondary.clusters, '[[', 8))\n\nprint(df_secondary_clusters)\n\n SMR number.of.cases expected.cases p.value\n1 3.767698 16 4.246625 0.012\n\n\nWe only have one secondary cluster composed of one district.\n\n# create empty column to store cluster informations\ndistrict$k_cluster <- NA\n\n# save cluster informations from kulldorff outputs\ndistrict$k_cluster[kd_Wfever$most.likely.cluster$location.IDs.included] <- 'Most likely cluster'\n\nfor(i in 1:length(kd_Wfever$secondary.clusters)){\ndistrict$k_cluster[kd_Wfever$secondary.clusters[[i]]$location.IDs.included] <- paste(\n 'Secondary cluster ', i, sep = '')\n}\n\n# create map\nmf_map(x = district,\n var = \"k_cluster\",\n type = \"typo\",\n cex = 2,\n leg_title = \"Clusters\")\nmf_layout(title = \"Cluster using kulldorf scan statistic\")" }, { "objectID": "01-introduction.html", @@ -33,231 +47,5 @@ "title": "1 Introduction", "section": "1.4 The package terra", "text": "1.4 The package terra\n The package terra was release in early 2020 by Robert J. Hijmans (also author of raster). Its objective is to propose methods of treatment and analysis of raster data. This package is very similar to the package raster; but it has more features, it’s easier to use, and it’s faster.\n\n\n\n\n\n\nWebsite of package terra : Spatial Data Science with R and “terraâ€\n\n\n\n\n\n\n\n\n\nTip\n\n\n\nA benchmark of raster processing libraries is available here.\n\n\n\n\n\n\nBivand, Roger, Tim Keitt, and Barry Rowlingson. 2022. “Rgdal: Bindings for the ’Geospatial’ Data Abstraction Library.†https://CRAN.R-project.org/package=rgdal.\n\n\nBivand, Roger, and Colin Rundel. 2021. “Rgeos: Interface to Geometry Engine - Open Source (’GEOS’).†https://CRAN.R-project.org/package=rgeos.\n\n\nDunnington, Dewey. 2021. “Ggspatial: Spatial Data Framework for Ggplot2.†https://CRAN.R-project.org/package=ggspatial.\n\n\nGDAL/OGR contributors. n.d. GDAL/OGR Geospatial Data Abstraction Software Library. Open Source Geospatial Foundation. https://gdal.org.\n\n\nGiraud, Timothée. 2022. “Mapsf: Thematic Cartography.†https://CRAN.R-project.org/package=mapsf.\n\n\nGiraud, Timothée, and Nicolas Lambert. 2016. “Cartography: Create and Integrate Maps in Your r Workflow†1. https://doi.org/10.21105/joss.00054.\n\n\nHijmans, Robert J. 2022a. “Raster: Geographic Data Analysis and Modeling.†https://CRAN.R-project.org/package=raster.\n\n\n———. 2022b. “Terra: Spatial Data Analysis.†https://CRAN.R-project.org/package=terra.\n\n\nPebesma, Edzer. 2018a. “Simple Features for r: Standardized Support for Spatial Vector Data†10. https://doi.org/10.32614/RJ-2018-009.\n\n\n———. 2018b. “Simple Features for R: Standardized Support for Spatial Vector Data.†The R Journal 10 (1): 439. https://doi.org/10.32614/rj-2018-009.\n\n\n———. 2021. “Stars: Spatiotemporal Arrays, Raster and Vector Data Cubes.†https://CRAN.R-project.org/package=stars.\n\n\nPebesma, Edzer J., and Roger S. Bivand. 2005. “Classes and Methods for Spatial Data in r†5. https://CRAN.R-project.org/doc/Rnews/.\n\n\nPROJ contributors. 2021. PROJ Coordinate Transformation Software Library. Open Source Geospatial Foundation. https://proj.org/.\n\n\nTennekes, Martijn. 2018. “Tmap: Thematic Maps in r†84. https://doi.org/10.18637/jss.v084.i06.\n\n\nWickham, Hadley. 2016. “Ggplot2: Elegant Graphics for Data Analysis.†https://ggplot2.tidyverse.org." - }, - { - "objectID": "02-data_acquisition.html", - "href": "02-data_acquisition.html", - "title": "2 Data Acquisition", - "section": "", - "text": "The function st_as_sf() makes it possible to transform a data.frame container of geographic coordinates into an object sf. Here we use the data.frame places2 created in the previous point.\n\nlibrary(sf)\nplace_sf <- st_as_sf(read.csv(\"data_cambodia/adress.csv\"), coords = c(\"long\", \"lat\"), crs = 4326)\nplace_sf\n\nSimple feature collection with 2 features and 1 field\nGeometry type: POINT\nDimension: XY\nBounding box: xmin: 104.8443 ymin: 11.54366 xmax: 104.9047 ymax: 11.55349\nGeodetic CRS: WGS 84\n address\n1 Phnom Penh International Airport, Phnom Penh, Cambodia\n2 Khmer Soviet Friendship Hospital, Phnom Penh, Cambodia\n geometry\n1 POINT (104.8443 11.55349)\n2 POINT (104.9047 11.54366)\n\n\n\n\nSpherical geometry (s2) switched off\n\n\nTo create a sf POINT type object with only one pair of coordinate (WGS84, longitude=0.5, latitude = 45.5) :\n\nlibrary(sf)\ntest_point <- st_as_sf(data.frame(x = 0.5, y = 45.5), coords = c(\"x\", \"y\"), crs = 4326)\ntest_point\n\nSimple feature collection with 1 feature and 0 fields\nGeometry type: POINT\nDimension: XY\nBounding box: xmin: 0.5 ymin: 45.5 xmax: 0.5 ymax: 45.5\nGeodetic CRS: WGS 84\n geometry\n1 POINT (0.5 45.5)\n\n\nWe can display this object sf on an OpenStreetMap basesmap with the package maptiles maptiles (Giraud 2021).\n\nlibrary(maptiles)\nosm <- get_tiles(x = place_sf, zoom = 12)\nplot_tiles(osm)\nplot(st_geometry(place_sf), pch = 2, cex = 2, col = \"red\", add = TRUE)" - }, - { - "objectID": "02-data_acquisition.html#online-databases", - "href": "02-data_acquisition.html#online-databases", - "title": "2 Data Acquisition", - "section": "2.2 Online databases", - "text": "2.2 Online databases" - }, - { - "objectID": "02-data_acquisition.html#openstreetmap", - "href": "02-data_acquisition.html#openstreetmap", - "title": "2 Data Acquisition", - "section": "2.3 OpenStreetMap", - "text": "2.3 OpenStreetMap\n\n\n\nOpenStreetMap (OSM) is a participatory mapping project that aims to built a free geographic database on a global scale. OpenStreetMap lets you view, edit and use geographic data around the world.\nTerms of use\n\nOpenStreetMap is open data : you are free to use it for ant purpose as long as you credit OpenStreetMap and its contributers. If you modify or rely data in any way, you may distribute the result only under the same license. (…)\n\nContributors\n\n(…) Our contributors incloude enthusiastic mapmakers, GIS professional, engineers running OSM servers, humanitarians mapping disaster-stricken areas and many mmore.(…)\n\n\n2.3.1 Display and interactive map\nThe two main packages that allow to display as interactive map based on OSM are leaflet (Cheng, Karambelkar, and Xie 2022) and mapview (Appelhans et al. 2022).\n\n2.3.1.1 leaflet\n leaflet uses the javascript library Leaflet (Agafonkin 2015) to create interactive maps.\n\nlibrary(sf)\nlibrary(leaflet)\n\ndistrict <- st_read(\"data_cambodia/cambodia.gpkg\", layer = \"district\", quiet = TRUE)\nhospital <- st_read(\"data_cambodia/cambodia.gpkg\", layer = \"hospital\", quiet = TRUE)\n\n\nbanan <- district[district$ADM2_PCODE == \"KH0201\", ] #Select one district (Banan district: KH0201)\nhealth_banan <- hospital[hospital$DCODE == \"201\", ] #Select Health centers in Banan\n\nbanan <- st_transform(banan, 4326) #Transform coordinate system to WGS84\nhealth_banan <- st_transform(health_banan, 4326)\n\nbanan_map <- leaflet(banan) %>% #Create interactive map\n addTiles() %>%\n addPolygons() %>%\n addMarkers(data = health_banan)\nbanan_map\n\n\n\n\n\n\n\n\n\n\n\nWebsite of leaflet\nLeaflet for R\n\n\n\n\n\n2.3.1.2 mapview\n mapview relies on leaflet to create interactive maps, its use is easier and its documentation is a bit dense.\n\nlibrary(mapview)\nmapview(banan) + mapview(health_banan)\n\n\n\n\n\n\n\n\n\n\n\n\nWebsite of mapview\nmapview\n\n\n\n\n\n\n2.3.2 Import basemaps\nThe package maptiles (Giraud 2021) allows downlaoding and displaying raster basemaps.\nThe function get_tiles() allow you to download OSM background maps and the function plot_tiles() allows to display them.\nRenders are better if the input data used the same coordinate system as the tiles (EPSG:3857).\n\nlibrary(sf)\nlibrary(maptiles)\ndistrict <- st_read(\"data_cambodia/cambodia.gpkg\", layer = \"district\", quiet = TRUE)\ndistrict <- st_transform(district, 3857)\nosm_tiles <- get_tiles(x = district, zoom = 10, crop = TRUE)\nplot_tiles(osm_tiles)\nplot(st_geometry(district), border = \"grey20\", lwd = .7, add = TRUE)\nmtext(side = 1, line = -2, text = get_credit(\"OpenStreetMap\"), col=\"tomato\")\n\n\n\n\n\n\n2.3.3 Import OSM data\n\n2.3.3.1 osmdata\n The package osmdata (Padgham et al. 2017) allows extracting vector data from OSM using the Overpass turbo API.\n\nlibrary(sf)\nlibrary(osmdata)\nlibrary(sf)\n\ncountry <- st_read(\"data_cambodia/cambodia.gpkg\", layer = \"country\", quiet = TRUE)\next <- opq(bbox = st_bbox(st_transform(country, 4326))) #Define the bounding box\nquery <- add_osm_feature(opq = ext, key = 'amenity', value = \"hospital\") #Health Center Extraction\nhospital <- osmdata_sf(query)\nhospital <- unique_osmdata(hospital) #Result reduction (points composing polygon are detected)\n\nThe result contains a point layer and a polygon layer. The polygon layer contains polygons that represent fast food-food place. To obtain a coherent point layer we can use the centroids of the polygons.\n\nhospital_point <- hospital$osm_points\nhospital_poly <- hospital$osm_polygons #Extracting centroids of polygons\nhospital_poly_centroid <- st_centroid(hospital_poly)\n\ncambodia_point <- intersect(names(hospital_point), names(hospital_poly_centroid)) #Identify fields in Cambodia boundary\nhospitals <- rbind(hospital_point[, cambodia_point], hospital_poly_centroid[, cambodia_point]) #Gather the 2 objects\n\nResult display\n\nlibrary(mapview)\nmapview(country) + mapview(hospitals)\n\n\n\n\n\n\n\n\n\n\n\n\nWebsite of osmdata\nosmdata\n\n\n\n\n\n2.3.3.2 osmextract\n The package osmextract (Gilardi and Lovelace 2021) allows to extract data from an OSM database directly. This package make it possible to work on very large volumes of data.\n\n\n\n\n\n\nWebsite of osmextract\nosmextract\n\n\n\nFor administrative boundaries, check here the administrative levels by country:\n\nlibrary(osmextract)\nlibrary(mapsf)\nprovince <- oe_get(\n place = \"Cambodia\",\n download_directory = \"data_cambodia/\",\n layer = \"multipolygons\",\n extra_tags = c(\"wikidata\", \"ISO3166-2\", \"wikipedia\", \"name:en\"),\n vectortranslate_options = c(\n \"-t_srs\", \"EPSG:32648\",\n \"-nlt\", \"PROMOTE_TO_MULTI\",\n \"-where\", \"type = 'boundary' AND boundary = 'administrative' AND admin_level = '4'\"\n ))\n\n0...10...20...30...40...50...60...70...80...90...100 - done.\nReading layer `multipolygons' from data source \n `/home/lucas/Documents/Framagit/rspatial-for-onehealth/data_cambodia/geofabrik_cambodia-latest.gpkg' \n using driver `GPKG'\nSimple feature collection with 25 features and 29 fields\nGeometry type: MULTIPOLYGON\nDimension: XY\nBounding box: xmin: 211418.1 ymin: 1047956 xmax: 784614.9 ymax: 1625621\nProjected CRS: WGS 84 / UTM zone 48N\n\nmf_map(x = province)\n\n\n\n\n\nroads <- oe_get(\n place = \"Cambodia\",\n download_directory = \"data_cambodia/\",\n layer = \"lines\",\n extra_tags = c(\"access\", \"service\", \"maxspeed\"),\n vectortranslate_options = c(\n \"-t_srs\", \"EPSG:32648\",\n \"-nlt\", \"PROMOTE_TO_MULTI\",\n \"-where\", \"\n highway IS NOT NULL\n AND\n highway NOT IN (\n 'abandonded', 'bus_guideway', 'byway', 'construction', 'corridor', 'elevator',\n 'fixme', 'escalator', 'gallop', 'historic', 'no', 'planned', 'platform',\n 'proposed', 'cycleway', 'pedestrian', 'bridleway', 'footway',\n 'steps', 'path', 'raceway', 'road', 'service', 'track'\n )\n \"\n),\n boundary = subset(province, name_en == \"Phnom Penh\"),\n boundary_type = \"clipsrc\"\n)\n\n0...10...20...30...40...50...60...70...80...90...100 - done.\nReading layer `lines' from data source \n `/home/lucas/Documents/Framagit/rspatial-for-onehealth/data_cambodia/geofabrik_cambodia-latest.gpkg' \n using driver `GPKG'\nSimple feature collection with 18794 features and 12 fields\nGeometry type: MULTILINESTRING\nDimension: XY\nBounding box: xmin: 469524.2 ymin: 1263268 xmax: 503494.3 ymax: 1296780\nProjected CRS: WGS 84 / UTM zone 48N\n\nmf_map(x = roads)" - }, - { - "objectID": "02-data_acquisition.html#geocoding", - "href": "02-data_acquisition.html#geocoding", - "title": "2 Data Acquisition", - "section": "2.4 Geocoding", - "text": "2.4 Geocoding\nServeral pakages alow you to geocode addresses. The package tidygeocoder (Cambon et al. 2021) allow the use of a large number of online geocoding sevices. The package banR (Gombin and Chevalier 2022), which is based on the National Address Base, is the particularly suitable for geocoding addresses in France.\n\n2.4.1 tidygeocoder\n\nlibrary(tidygeocoder)\ntest_adresses <- data.frame(\n address = c(\"Phnom Penh International Airport, Phnom Penh, Cambodia\",\n \"Khmer Soviet Friendship Hospital, Phnom Penh, Cambodia\"))\nplaces1 <- geocode(test_adresses, address)\nplaces1\n\n# A tibble: 2 × 3\n address lat long\n <chr> <dbl> <dbl>\n1 Phnom Penh International Airport, Phnom Penh, Cambodia 11.6 105.\n2 Khmer Soviet Friendship Hospital, Phnom Penh, Cambodia 11.5 105.\n\n\n\n\n\n\n\n\nWebsite by tidygeocoder :\ntidygeocoder\n\n\n\n\n\n2.4.2 banR (Base Adresse Nationale)\n\n# remotes::install_github(\"joelgombin/banR\")\nlibrary(banR)\nmes_adresses <- data.frame(\n address = c(\"19 rue Michel Bakounine, 29600 Morlaix, France\",\n \"2 Allee Emile Pouget, 920128 Boulogne-Billancourt\")\n)\nplaces2 <- geocode_tbl(tbl = mes_adresses, adresse = address)\nplaces2\n\n# A tibble: 2 × 18\n address latit…¹ longi…² resul…³ resul…ⴠresul…ⵠresul…ⶠresul…ⷠresul…â¸\n <chr> <dbl> <dbl> <chr> <dbl> <chr> <chr> <chr> <chr> \n1 19 rue Michel… 48.6 -3.82 19 Rue… 0.81 housen… 29151_… 19 Rue Mi…\n2 2 Allee Emile… 48.8 2.24 2 Allé… 0.83 housen… 92012_… 2 Allée …\n# … with 9 more variables: result_street <chr>, result_postcode <chr>,\n# result_city <chr>, result_context <chr>, result_citycode <chr>,\n# result_oldcitycode <chr>, result_oldcity <chr>, result_district <chr>,\n# result_status <chr>, and abbreviated variable names ¹​latitude, ²​longitude,\n# ³​result_label, â´â€‹result_score, âµâ€‹result_type, â¶â€‹result_id,\n# â·â€‹result_housenumber, â¸â€‹result_name\n\n\n\n\n\n\n\n\nWebsite of banR :\nAn R client for the BAN API" - }, - { - "objectID": "02-data_acquisition.html#digitization", - "href": "02-data_acquisition.html#digitization", - "title": "2 Data Acquisition", - "section": "2.5 Digitization", - "text": "2.5 Digitization\nThe package mapedit (Appelhans, Russell, and Busetto 2020) allows you to digitize base map directly in R. Although it can be practical in some cases, in package cannot replace the functionalities of a GIS for important digitization tasks.\n\n\n\nGif taken from mapedit website\n\n\n\n\n\n\nAgafonkin, Vladimir. 2015. “Leaflet Javascript Libary.â€\n\n\nAppelhans, Tim, Florian Detsch, Christoph Reudenbach, and Stefan Woellauer. 2022. “Mapview: Interactive Viewing of Spatial Data in r.†https://CRAN.R-project.org/package=mapview.\n\n\nAppelhans, Tim, Kenton Russell, and Lorenzo Busetto. 2020. “Mapedit: Interactive Editing of Spatial Data in r.†https://CRAN.R-project.org/package=mapedit.\n\n\nCambon, Jesse, Diego Hernangómez, Christopher Belanger, and Daniel Possenriede. 2021. “Tidygeocoder: An r Package for Geocoding†6: 3544. https://doi.org/10.21105/joss.03544.\n\n\nCheng, Joe, Bhaskar Karambelkar, and Yihui Xie. 2022. “Leaflet: Create Interactive Web Maps with the JavaScript ’Leaflet’ Library.†https://CRAN.R-project.org/package=leaflet.\n\n\nGilardi, Andrea, and Robin Lovelace. 2021. “Osmextract: Download and Import Open Street Map Data Extracts.†https://CRAN.R-project.org/package=osmextract.\n\n\nGiraud, Timothée. 2021. “Maptiles: Download and Display Map Tiles.†https://CRAN.R-project.org/package=maptiles.\n\n\nGombin, Joel, and Paul-Antoine Chevalier. 2022. “banR: R Client for the BAN API.â€\n\n\nPadgham, Mark, Bob Rudis, Robin Lovelace, and Maëlle Salmon. 2017. “Osmdata†2. https://doi.org/10.21105/joss.00305." - }, - { - "objectID": "03-vector_data.html", - "href": "03-vector_data.html", - "title": "3 Vector Data", - "section": "", - "text": "The st_read() and st_write() function are used to import and export many types of files. The following lines import the administrative data in district level layer located in the cambodia.gpkg geopackage file.\n\nlibrary(sf)\n\ndistrict = st_read(\"data_cambodia/cambodia.gpkg\", layer = \"district\") #import district data\n\nReading layer `district' from data source \n `/home/lucas/Documents/Framagit/rspatial-for-onehealth/data_cambodia/cambodia.gpkg' \n using driver `GPKG'\nSimple feature collection with 197 features and 10 fields\nGeometry type: MULTIPOLYGON\nDimension: XY\nBounding box: xmin: 211534.7 ymin: 1149105 xmax: 784612.1 ymax: 1625495\nProjected CRS: WGS 84 / UTM zone 48N\n\n\nThe following lines export the district object to a data folder in geopackage and shapefile format.\n\nst_write(obj = district, dsn = \"data_cambodia/district.gpkg\", delete_layer = TRUE)\n\nDeleting layer `district' using driver `GPKG'\nWriting layer `district' to data source \n `data_cambodia/district.gpkg' using driver `GPKG'\nWriting 197 features with 10 fields and geometry type Multi Polygon.\n\nst_write(obj = district, \"data_cambodia/district.shp\", layer_options = \"ENCODING=UTF-8\", delete_layer = TRUE)\n\nDeleting layer `district' using driver `ESRI Shapefile'\nWriting layer `district' to data source \n `data_cambodia/district.shp' using driver `ESRI Shapefile'\noptions: ENCODING=UTF-8 \nWriting 197 features with 10 fields and geometry type Multi Polygon." - }, - { - "objectID": "03-vector_data.html#display", - "href": "03-vector_data.html#display", - "title": "3 Vector Data", - "section": "3.2 Display", - "text": "3.2 Display\nPreview of the variables via the function head() and plot().\n\nhead(district)\n\nSimple feature collection with 6 features and 10 fields\nGeometry type: MULTIPOLYGON\nDimension: XY\nBounding box: xmin: 300266.9 ymin: 1180566 xmax: 767313.9 ymax: 1563861\nProjected CRS: WGS 84 / UTM zone 48N\n ADM2_EN ADM2_PCODE ADM1_EN ADM1_PCODE Male Female T_POP Area.Km2.\n1 Aek Phnum KH0205 Battambang KH02 41500 43916 85416 1067.8638\n2 Andoung Meas KH1601 Ratanak Kiri KH16 7336 7372 14708 837.7064\n3 Angk Snuol KH0808 Kandal KH08 45436 47141 92577 183.9050\n4 Angkor Borei KH2101 Takeo KH21 26306 27168 53474 301.0502\n5 Angkor Chey KH0701 Kampot KH07 42448 44865 87313 316.7576\n6 Angkor Chum KH1701 Siemreap KH17 34269 34576 68845 478.6988\n Status DENs geom\n1 <4500km2 79.98773 MULTIPOLYGON (((306568.1 14...\n2 <4500km2 17.55747 MULTIPOLYGON (((751459.2 15...\n3 <4500km2 503.39580 MULTIPOLYGON (((471954.3 12...\n4 <4500km2 177.62485 MULTIPOLYGON (((490048.2 12...\n5 <4500km2 275.64610 MULTIPOLYGON (((462702.2 12...\n6 <4500km2 143.81696 MULTIPOLYGON (((363642.5 15...\n\nplot(district)\n\n\n\n\nfor Geometry display only.\n\nplot(st_geometry(district))" - }, - { - "objectID": "03-vector_data.html#coordinate-systems", - "href": "03-vector_data.html#coordinate-systems", - "title": "3 Vector Data", - "section": "3.3 Coordinate systems", - "text": "3.3 Coordinate systems\n\n3.3.1 Look up the coordinate system of an object\nThe function st_crs() makes it possible to consult the system of coordinates used and object sf.\n\nst_crs(district)\n\nCoordinate Reference System:\n User input: WGS 84 / UTM zone 48N \n wkt:\nPROJCRS[\"WGS 84 / UTM zone 48N\",\n BASEGEOGCRS[\"WGS 84\",\n ENSEMBLE[\"World Geodetic System 1984 ensemble\",\n MEMBER[\"World Geodetic System 1984 (Transit)\"],\n MEMBER[\"World Geodetic System 1984 (G730)\"],\n MEMBER[\"World Geodetic System 1984 (G873)\"],\n MEMBER[\"World Geodetic System 1984 (G1150)\"],\n MEMBER[\"World Geodetic System 1984 (G1674)\"],\n MEMBER[\"World Geodetic System 1984 (G1762)\"],\n MEMBER[\"World Geodetic System 1984 (G2139)\"],\n ELLIPSOID[\"WGS 84\",6378137,298.257223563,\n LENGTHUNIT[\"metre\",1]],\n ENSEMBLEACCURACY[2.0]],\n PRIMEM[\"Greenwich\",0,\n ANGLEUNIT[\"degree\",0.0174532925199433]],\n ID[\"EPSG\",4326]],\n CONVERSION[\"UTM zone 48N\",\n METHOD[\"Transverse Mercator\",\n ID[\"EPSG\",9807]],\n PARAMETER[\"Latitude of natural origin\",0,\n ANGLEUNIT[\"degree\",0.0174532925199433],\n ID[\"EPSG\",8801]],\n PARAMETER[\"Longitude of natural origin\",105,\n ANGLEUNIT[\"degree\",0.0174532925199433],\n ID[\"EPSG\",8802]],\n PARAMETER[\"Scale factor at natural origin\",0.9996,\n SCALEUNIT[\"unity\",1],\n ID[\"EPSG\",8805]],\n PARAMETER[\"False easting\",500000,\n LENGTHUNIT[\"metre\",1],\n ID[\"EPSG\",8806]],\n PARAMETER[\"False northing\",0,\n LENGTHUNIT[\"metre\",1],\n ID[\"EPSG\",8807]]],\n CS[Cartesian,2],\n AXIS[\"(E)\",east,\n ORDER[1],\n LENGTHUNIT[\"metre\",1]],\n AXIS[\"(N)\",north,\n ORDER[2],\n LENGTHUNIT[\"metre\",1]],\n USAGE[\n SCOPE[\"Engineering survey, topographic mapping.\"],\n AREA[\"Between 102°E and 108°E, northern hemisphere between equator and 84°N, onshore and offshore. Cambodia. China. Indonesia. Laos. Malaysia - West Malaysia. Mongolia. Russian Federation. Singapore. Thailand. Vietnam.\"],\n BBOX[0,102,84,108]],\n ID[\"EPSG\",32648]]\n\n\n\n\n3.3.2 Changing the coordinate system of an object\nThe function st_transform() allows to change the coordinate system of an sf object, to re-project it.\n\nplot(st_geometry(district))\ntitle(\"WGS 84 / UTM zone 48N\")\n\n\n\ndist_reproj <- st_transform(district, \"epsg:4326\")\nplot(st_geometry(dist_reproj))\ntitle(\"WGS84\")\n\n\n\n\nThe Spatial Reference site provides reference for a large number of coordinate systems." - }, - { - "objectID": "03-vector_data.html#selection-by-attributes", - "href": "03-vector_data.html#selection-by-attributes", - "title": "3 Vector Data", - "section": "3.4 Selection by attributes", - "text": "3.4 Selection by attributes\nThe object sf are data.frame, so you can select their rows and columns in the same way as data.frame.\n\n# row Selection\ndistrict[1:2, ]\n\nSimple feature collection with 2 features and 10 fields\nGeometry type: MULTIPOLYGON\nDimension: XY\nBounding box: xmin: 300266.9 ymin: 1449408 xmax: 767313.9 ymax: 1563861\nProjected CRS: WGS 84 / UTM zone 48N\n ADM2_EN ADM2_PCODE ADM1_EN ADM1_PCODE Male Female T_POP Area.Km2.\n1 Aek Phnum KH0205 Battambang KH02 41500 43916 85416 1067.8638\n2 Andoung Meas KH1601 Ratanak Kiri KH16 7336 7372 14708 837.7064\n Status DENs geom\n1 <4500km2 79.98773 MULTIPOLYGON (((306568.1 14...\n2 <4500km2 17.55747 MULTIPOLYGON (((751459.2 15...\n\ndistrict[district$ADM1_EN == \"Phnom Penh\", ]\n\nSimple feature collection with 12 features and 10 fields\nGeometry type: MULTIPOLYGON\nDimension: XY\nBounding box: xmin: 468677.5 ymin: 1262590 xmax: 505351.9 ymax: 1297419\nProjected CRS: WGS 84 / UTM zone 48N\nFirst 10 features:\n ADM2_EN ADM2_PCODE ADM1_EN ADM1_PCODE Male Female T_POP\n29 Chamkar Mon KH1201 Phnom Penh KH12 52278 54478 106756\n31 Chbar Ampov KH1212 Phnom Penh KH12 64816 68243 133059\n43 Chraoy Chongvar KH1210 Phnom Penh KH12 30920 31087 62007\n48 Dangkao KH1205 Phnom Penh KH12 46999 48525 95524\n50 Doun Penh KH1202 Phnom Penh KH12 33844 36471 70315\n93 Mean Chey KH1206 Phnom Penh KH12 68381 70366 138747\n117 Praek Pnov KH1211 Phnom Penh KH12 27566 27698 55264\n118 Prampir Meakkakra KH1203 Phnom Penh KH12 31091 33687 64778\n133 Pur SenChey KH1209 Phnom Penh KH12 95050 109297 204347\n141 Russey Keo KH1207 Phnom Penh KH12 67357 68419 135776\n Area.Km2. Status DENs geom\n29 11.049600 <4500km2 9661.5265 MULTIPOLYGON (((494709.4 12...\n31 86.780498 <4500km2 1533.2823 MULTIPOLYGON (((498855.3 12...\n43 85.609156 <4500km2 724.3034 MULTIPOLYGON (((491161.3 12...\n48 113.774833 <4500km2 839.5881 MULTIPOLYGON (((489191.1 12...\n50 7.734808 <4500km2 9090.7234 MULTIPOLYGON (((492447.1 12...\n93 28.998026 <4500km2 4784.7051 MULTIPOLYGON (((491068.2 12...\n117 115.384300 <4500km2 478.9560 MULTIPOLYGON (((481483.3 12...\n118 2.224892 <4500km2 29115.1253 MULTIPOLYGON (((491067.6 12...\n133 148.357984 <4500km2 1377.3913 MULTIPOLYGON (((479078.8 12...\n141 23.381517 <4500km2 5806.9800 MULTIPOLYGON (((490264.8 12...\n\n# column selection\ndistrict[district$ADM1_EN == \"Phnom Penh\", 1:4] \n\nSimple feature collection with 12 features and 4 fields\nGeometry type: MULTIPOLYGON\nDimension: XY\nBounding box: xmin: 468677.5 ymin: 1262590 xmax: 505351.9 ymax: 1297419\nProjected CRS: WGS 84 / UTM zone 48N\nFirst 10 features:\n ADM2_EN ADM2_PCODE ADM1_EN ADM1_PCODE\n29 Chamkar Mon KH1201 Phnom Penh KH12\n31 Chbar Ampov KH1212 Phnom Penh KH12\n43 Chraoy Chongvar KH1210 Phnom Penh KH12\n48 Dangkao KH1205 Phnom Penh KH12\n50 Doun Penh KH1202 Phnom Penh KH12\n93 Mean Chey KH1206 Phnom Penh KH12\n117 Praek Pnov KH1211 Phnom Penh KH12\n118 Prampir Meakkakra KH1203 Phnom Penh KH12\n133 Pur SenChey KH1209 Phnom Penh KH12\n141 Russey Keo KH1207 Phnom Penh KH12\n geom\n29 MULTIPOLYGON (((494709.4 12...\n31 MULTIPOLYGON (((498855.3 12...\n43 MULTIPOLYGON (((491161.3 12...\n48 MULTIPOLYGON (((489191.1 12...\n50 MULTIPOLYGON (((492447.1 12...\n93 MULTIPOLYGON (((491068.2 12...\n117 MULTIPOLYGON (((481483.3 12...\n118 MULTIPOLYGON (((491067.6 12...\n133 MULTIPOLYGON (((479078.8 12...\n141 MULTIPOLYGON (((490264.8 12..." - }, - { - "objectID": "03-vector_data.html#spatial-selection", - "href": "03-vector_data.html#spatial-selection", - "title": "3 Vector Data", - "section": "3.5 Spatial selection", - "text": "3.5 Spatial selection\n\n3.5.1 Intersections\nSelection of roads that are intersecting dangkao district\n\nroad <- st_read(\"data_cambodia/cambodia.gpkg\", layer = \"road\", quiet = TRUE) %>% st_cast(\"LINESTRING\")\ndangkao <- district[district$ADM2_EN == \"Dangkao\", ]\ninter <- st_intersects(x = road, y = dangkao, sparse = FALSE)\nhead(inter)\n\n [,1]\n[1,] FALSE\n[2,] FALSE\n[3,] FALSE\n[4,] FALSE\n[5,] FALSE\n[6,] FALSE\n\ndim(inter)\n\n[1] 108285 1\n\n\nThe inter object is a matrix which indicates for each of element of the road object (6 elements) whether it intersects each elements the dangkao object (1 element). The dimension of the matrix is therefore indeed 6 rows * 1 column. Note the use of the parameter sparse = FALSE here. It is then possible to create a column from this object:\n\nroad$intersect_dangkao <- inter\nplot(st_geometry(dangkao), col = \"lightblue\")\nplot(st_geometry(road), add = TRUE)\nplot(st_geometry(road[road$intersect_dangkao, ]),\n col = \"tomato\", lwd = 1.5, add = TRUE)\n\n\n\n\n\n3.5.1.1 Difference between sparse = TRUE and sparse = FALSE\n\n\n\n\n\n\nsparse = TRUE\n\n\ninter <- st_intersects(x = grid, y = pt, sparse = TRUE)\ninter\n\nSparse geometry binary predicate list of length 4, where the predicate\nwas `intersects'\n 1: (empty)\n 2: 6, 7\n 3: 1, 4\n 4: 2, 3, 5, 8\n\n\n\nsparse = FALSE\n\n\ninter <- st_intersects(x = grid, y = pt, sparse = FALSE)\nrownames(inter) <- grid$id\ncolnames(inter) <- pt$id\ninter\n\n a b c d e f g h\n1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE\n2 FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE\n3 TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE\n4 FALSE TRUE TRUE FALSE TRUE FALSE FALSE TRUE\n\n\n\n\n\n3.5.2 Contains / Within\nSelection of roads contained in the municipality of Dangkao. The function st_within() works like the function st_intersects()\n\nroad$within_dangkao <- st_within(road, dangkao, sparse = FALSE)\nplot(st_geometry(dangkao), col = \"lightblue\")\nplot(st_geometry(road), add = TRUE)\nplot(st_geometry(road[road$within_dangkao, ]), col = \"tomato\",\n lwd = 2, add = TRUE)" - }, - { - "objectID": "03-vector_data.html#operation-of-geometries", - "href": "03-vector_data.html#operation-of-geometries", - "title": "3 Vector Data", - "section": "3.6 Operation of geometries", - "text": "3.6 Operation of geometries\n\n3.6.1 Extract centroids\n\ndist_c <- st_centroid(district)\nplot(st_geometry(district))\nplot(st_geometry(dist_c), add = TRUE, cex = 1.2, col = \"red\", pch = 20)\n\n\n\n\n\n\n3.6.2 Aggregate polygons\n\ncambodia_dist <- st_union(district) \nplot(st_geometry(district), col = \"lightblue\")\nplot(st_geometry(cambodia_dist), add = TRUE, lwd = 2, border = \"red\")\n\n\n\n\n\n\n3.6.3 Aggregate polygons based on a variable\n\ndist_union <- aggregate(x = district[,c(\"T_POP\")],\n by = list(STATUT = district$Status),\n FUN = \"sum\")\nplot(dist_union)\n\n\n\n\n\n\n3.6.4 Create a buffer zone\n\ndangkao_buffer <- st_buffer(x = dangkao, dist = 1000)\nplot(st_geometry(dangkao_buffer), col = \"#E8DAEF\", lwd=2, border = \"#6C3483\")\nplot(st_geometry(dangkao), add = TRUE, lwd = 2)\n\n\n\n\n\n\n3.6.5 Making an intersection\nBy using the function st_intersection() we will cut one layer by another.\n\nlibrary(magrittr)\n# creation of a buffer zone around the centroid of the municipality of Dangkao district\n# using the pipe\nzone <- st_geometry(dangkao) %>%\n st_centroid() %>%\n st_buffer(30000)\nplot(st_geometry(district))\nplot(zone, border = \"#F06292\", lwd = 2, add = TRUE)\n\n\n\ndist_z <- st_intersection(x = district, y = zone)\nplot(st_geometry(district))\nplot(st_geometry(dist_z), col=\"#AF7AC5\", border=\"#F9E79F\", add=T)\n\n\n\nplot(st_geometry(dist_z))\n\n\n\n\n\n\n3.6.6 Create regular grid\nThe function st_make_grid() allows you to create regular grid. The function produce and object sfc, you must then use the function st_sf() to transform the object sfc into and object sf. During this transformation we add here a column of unique identifiers.\n\ngrid <- st_make_grid(x = district, cellsize = 10000)\ngrid <- st_sf(ID = 1:length(grid), geom = grid)\n\nplot(st_geometry(grid), col = \"grey\", border = \"white\")\nplot(st_geometry(district), border = \"grey50\", add = TRUE)\n\n\n\n\n\n\n3.6.7 Counting points in a polygon (in a grid tile)\n\n# selection of grid tiles that intersect the district\n\ninter <- st_intersects(grid, cambodia_dist, sparse = FALSE)\ngrid <- grid[inter, ]\n\ncase_cambodia <- st_read(\"data_cambodia/cambodia.gpkg\", layer = \"cases\" , quiet = TRUE)\nplot(st_geometry(grid), col = \"grey\", border = \"white\")\nplot(st_geometry(case_cambodia), pch = 20, col = \"red\", add = TRUE, cex = 0.8)\n\n\n\ninter <- st_intersects(grid, case_cambodia, sparse = TRUE)\nlength(inter)\n\n[1] 1964\n\n\nHere we use the argument sparse = TRUE. The inter object is a list the length of the grid and each item in the list contain the index of the object items of cases and grid intersection.\nFor example grid tile 35th intersect with four cases 97, 138, 189, 522, 624, 696\n\ninter[35]\n\n[[1]]\n[1] 97 138 189 522 624 696\n\nplot(st_geometry(grid[35, ]))\nplot(st_geometry(case_cambodia), add = T)\nplot(st_geometry(case_cambodia[c(97, 138, 189, 522, 624, 696), ]), \n col = \"red\", pch = 19, add = TRUE)\n\n\n\n\nTo count number of case, simply go to the list and report length of the elements.\n\ngrid$nb_case <- sapply(X = inter, FUN = length) # create 'nb_case' column to store number of health centers in each grid tile \nplot(grid[\"nb_case\"])\n\n\n\n\n\n\n3.6.8 Aggregate point values into polygons\nIn this example we import a csv file that contain data from a population grid. Once import we transform it data.frame into an object sf.\nThe objective is to aggregate the values id these points (the population contained in the “DENs†field) in the municipalities of the district.\n\npp_pop_raw <- read.csv(\"data_cambodia/pp_pop_dens.csv\") # import file\npp_pop_raw$id <- 1:nrow(pp_pop_raw) # adding a unique identifier\npp_pop <- st_as_sf(pp_pop_raw, coords = c(\"X\", \"Y\"), crs = 32648) # Transform into object sf\npp_pop <- st_transform(pp_pop, st_crs(district)) # Transform projection\ninter <- st_intersection(pp_pop, district) # Intersection\ninter\n\nSimple feature collection with 1295 features and 12 fields\nGeometry type: POINT\nDimension: XY\nBounding box: xmin: 469177.5 ymin: 1263090 xmax: 505177.5 ymax: 1297090\nProjected CRS: WGS 84 / UTM zone 48N\nFirst 10 features:\n DENs id ADM2_EN ADM2_PCODE ADM1_EN ADM1_PCODE Male Female T_POP\n149 NA 149 Angk Snuol KH0808 Kandal KH08 45436 47141 92577\n150 NA 150 Angk Snuol KH0808 Kandal KH08 45436 47141 92577\n151 NA 151 Angk Snuol KH0808 Kandal KH08 45436 47141 92577\n186 NA 186 Angk Snuol KH0808 Kandal KH08 45436 47141 92577\n187 NA 187 Angk Snuol KH0808 Kandal KH08 45436 47141 92577\n188 NA 188 Angk Snuol KH0808 Kandal KH08 45436 47141 92577\n223 NA 223 Angk Snuol KH0808 Kandal KH08 45436 47141 92577\n224 NA 224 Angk Snuol KH0808 Kandal KH08 45436 47141 92577\n225 NA 225 Angk Snuol KH0808 Kandal KH08 45436 47141 92577\n226 3.400075 226 Angk Snuol KH0808 Kandal KH08 45436 47141 92577\n Area.Km2. Status DENs.1 geometry\n149 183.905 <4500km2 503.3958 POINT (469177.5 1267090)\n150 183.905 <4500km2 503.3958 POINT (470177.5 1267090)\n151 183.905 <4500km2 503.3958 POINT (471177.5 1267090)\n186 183.905 <4500km2 503.3958 POINT (469177.5 1268090)\n187 183.905 <4500km2 503.3958 POINT (470177.5 1268090)\n188 183.905 <4500km2 503.3958 POINT (471177.5 1268090)\n223 183.905 <4500km2 503.3958 POINT (469177.5 1269090)\n224 183.905 <4500km2 503.3958 POINT (470177.5 1269090)\n225 183.905 <4500km2 503.3958 POINT (471177.5 1269090)\n226 183.905 <4500km2 503.3958 POINT (472177.5 1269090)\n\n\nBy using the function st_intersection() we add to each point of the grid all the information on the municipality in which it is located.\nWe can then use the function aggregate() to aggregate the population by municipalities.\n\nresultat <- aggregate(x = list(pop_from_grid = inter$DENs), \n by = list(ADM2_EN = inter$ADM2_EN), \n FUN = \"sum\")\nhead(resultat)\n\n ADM2_EN pop_from_grid\n1 Angk Snuol NA\n2 Chamkar Mon 10492.7159\n3 Chbar Ampov 1593.9593\n4 Chraoy Chongvar 1434.1785\n5 Dangkao 942.3595\n6 Doun Penh 10781.8026\n\n\nWe can then create a new object with this result.\n\ndist_result <- merge(district, resultat, by = \"ADM2_EN\", all.x = TRUE)\ndist_result\n\nSimple feature collection with 197 features and 11 fields\nGeometry type: MULTIPOLYGON\nDimension: XY\nBounding box: xmin: 211534.7 ymin: 1149105 xmax: 784612.1 ymax: 1625495\nProjected CRS: WGS 84 / UTM zone 48N\nFirst 10 features:\n ADM2_EN ADM2_PCODE ADM1_EN ADM1_PCODE Male Female T_POP\n1 Aek Phnum KH0205 Battambang KH02 41500 43916 85416\n2 Andoung Meas KH1601 Ratanak Kiri KH16 7336 7372 14708\n3 Angk Snuol KH0808 Kandal KH08 45436 47141 92577\n4 Angkor Borei KH2101 Takeo KH21 26306 27168 53474\n5 Angkor Chey KH0701 Kampot KH07 42448 44865 87313\n6 Angkor Chum KH1701 Siemreap KH17 34269 34576 68845\n7 Angkor Thum KH1702 Siemreap KH17 13802 14392 28194\n8 Anlong Veaeng KH2201 Oddar Meanchey KH22 24122 23288 47410\n9 Aoral KH0504 Kampong Speu KH05 19874 19956 39830\n10 Ba Phnum KH1401 Prey Veng KH14 46562 49852 96414\n Area.Km2. Status DENs pop_from_grid geometry\n1 1067.8638 <4500km2 79.98773 NA MULTIPOLYGON (((306568.1 14...\n2 837.7064 <4500km2 17.55747 NA MULTIPOLYGON (((751459.2 15...\n3 183.9050 <4500km2 503.39580 NA MULTIPOLYGON (((471954.3 12...\n4 301.0502 <4500km2 177.62485 NA MULTIPOLYGON (((490048.2 12...\n5 316.7576 <4500km2 275.64610 NA MULTIPOLYGON (((462702.2 12...\n6 478.6988 <4500km2 143.81696 NA MULTIPOLYGON (((363642.5 15...\n7 357.8890 <4500km2 78.77862 NA MULTIPOLYGON (((376584.4 15...\n8 1533.5702 <4500km2 30.91479 NA MULTIPOLYGON (((404936.4 15...\n9 2381.7084 <4500km2 16.72329 NA MULTIPOLYGON (((414000.6 13...\n10 342.3439 <4500km2 281.62910 NA MULTIPOLYGON (((545045.4 12..." - }, - { - "objectID": "03-vector_data.html#measurements", - "href": "03-vector_data.html#measurements", - "title": "3 Vector Data", - "section": "3.7 Measurements", - "text": "3.7 Measurements\n\n3.7.1 Create a distance matrix\nIf the dataset’s projection system is specified, the distance are expressed in the projection measurement unit (most often in meter)\n\nmat <- st_distance(x = dist_c, y = dist_c)\nmat[1:5,1:5]\n\nUnits: [m]\n [,1] [,2] [,3] [,4] [,5]\n[1,] 0.0 425993.7 232592.12 298254.12 299106.92\n[2,] 425993.7 0.0 386367.88 414428.82 452431.87\n[3,] 232592.1 386367.9 0.00 67060.05 82853.88\n[4,] 298254.1 414428.8 67060.05 0.00 40553.15\n[5,] 299106.9 452431.9 82853.88 40553.15 0.00\n\n\n\n\n3.7.2 Calculate routes\n The package osrm (R-osrm?) acts as an interface R and the OSRM (luxen-vetter-2011?). This package allows to calculate time and distance matrices, road routes, isochrones. The package uses the OSRM demo server by default. In case of intensive use it is strongly recommended to use your own instance of OSRM (with Docker).\n\n3.7.2.1 Calculate a route\nThe fonction osrmRoute() allows you to calculate routes.\n\nlibrary(sf)\nlibrary(osrm)\nlibrary(maptiles)\ndistrict <- st_read(\"data_cambodia/cambodia.gpkg\",layer = \"district\", quiet = TRUE)\ndistrict <- st_transform(district, 32648)\n\nodongk <- district[district$ADM2_PCODE == \"KH0505\", ] # Itinerary between Odongk district and Toul Kouk\ntakmau <- district[district$ADM2_PCODE == \"KH0811\",]\nroute <- osrmRoute(src = odongk, \n dst = takmau, \n returnclass = \"sf\")\nosm <- get_tiles(route, crop = TRUE)\nplot_tiles(osm)\nplot(st_geometry(route), col = \"#b23a5f\", lwd = 6, add = T)\nplot(st_geometry(route), col = \"#eee0e5\", lwd = 1, add = T)\n\n\n\n\n\n\n3.7.2.2 Calculation of a time matrix\nThe function osrmTable() makes it possible to calculate matrices of distances or times by road.\nIn this example we calculate a time matrix between 2 addresses and health centers in Phnom Penh on foot.\n\nlibrary(sf)\nlibrary(tidygeocoder)\nhospital <- st_read(\"data_cambodia/cambodia.gpkg\",layer= \"hospital\", quiet = TRUE)\n\nhospital_pp <- hospital[hospital$PCODE == \"12\", ] # Selection of health centers in Phnom Penh\n\nadresses <- data.frame(adr = c(\"Royal Palace Park, Phnom Penh Phnom, Cambodia\",\n \"Wat Phnom Daun Penh, Phnom Penh, Cambodia\")) # Geocoding of 2 addresses in Phnom Penh\n\nplaces <- tidygeocoder::geocode(.tbl = adresses,address = adr)\nplaces\n\n# A tibble: 2 × 3\n adr lat long\n <chr> <dbl> <dbl>\n1 Royal Palace Park, Phnom Penh Phnom, Cambodia 11.6 105.\n2 Wat Phnom Daun Penh, Phnom Penh, Cambodia 11.6 105.\n\n# Calculation of the distance matrix between the 2 addresses and the health center in Phnom Penh\n\ncal_mat <- osrmTable(src = places[,c(1,3,2)], \n dst = hospital_pp, \n osrm.profile = \"foot\")\n\ncal_mat$durations[1:2, 1:5]\n\n 684 685 686 687 691\nRoyal Palace Park, Phnom Penh Phnom, Cambodia 55.9 71.6 64.4 40.2 76.7\nWat Phnom Daun Penh, Phnom Penh, Cambodia 60.1 80.4 40.1 32.8 53.1\n\n# Which address has better accessibility to health center in Phnom Penh?\n\nboxplot(t(cal_mat$durations[,]), cex.axis = 0.7)" - }, - { - "objectID": "04-raster_data.html", - "href": "04-raster_data.html", - "title": "4 Work with Raster Data", - "section": "", - "text": "This chapter is largely inspired by two presentation; Madelin (2021) and Nowosad (2021); carried out as part of the SIGR2021 thematic school." - }, - { - "objectID": "04-raster_data.html#format-of-objects-spatraster", - "href": "04-raster_data.html#format-of-objects-spatraster", - "title": "4 Work with Raster Data", - "section": "4.1 Format of objects SpatRaster", - "text": "4.1 Format of objects SpatRaster\nThe package terra (Hijmans 2022) allows to handle vector and raster data. To manipulate this spatial data, terra store it in object of type SpatVector and SpatRaster. In this chapter, we focus on the manipulation of raster data (SpatRaster) from functions offered by this package.\nAn object SpatRaster allows to handle vector and raster data, in one or more layers (variables). This object also stores a number of fundamental parameters that describe it (number of columns, rows, spatial extent, coordinate reference system, etc.).\n\n\n\nSource : (Racine 2016)" - }, - { - "objectID": "04-raster_data.html#importing-and-exporting-data", - "href": "04-raster_data.html#importing-and-exporting-data", - "title": "4 Work with Raster Data", - "section": "4.2 Importing and exporting data", - "text": "4.2 Importing and exporting data\nThe package terra allows importing and exporting raster files. It is based on the GDAL library which makes it possible to read and process a very large number of geographic image formats.\n\nlibrary(terra)\n\nThe function rast() allows you to create and/or import raster data. The following lines import the raster file elevation.tif (Tagged Image File Format) into an object of type SpatRaster (default).\n\nelevation <- rast(\"data_cambodia/elevation.tif\") \nelevation\n\nclass : SpatRaster \ndimensions : 5235, 6458, 1 (nrow, ncol, nlyr)\nresolution : 0.0008333394, 0.0008332568 (x, y)\nextent : 102.2935, 107.6752, 10.33984, 14.70194 (xmin, xmax, ymin, ymax)\ncoord. ref. : lon/lat WGS 84 (EPSG:4326) \nsource : elevation.tif \nname : elevation \n\n\nModifying the name of the stored variable (altitude).\n\nnames(elevation) <- \"Altitude\" \n\nThe function writeRaster() allow you to save an object SpatRaster on your machine, in the format of your choice.\n\nwriteRaster(x = elevation, filename = \"data_cambodia/new_elevation.tif\")" - }, - { - "objectID": "04-raster_data.html#displaying-a-spatraster-object", - "href": "04-raster_data.html#displaying-a-spatraster-object", - "title": "4 Work with Raster Data", - "section": "4.3 Displaying a SpatRaster object", - "text": "4.3 Displaying a SpatRaster object\nThe function plot() is use to display an object SpatRaster.\n\nplot(elevation)\n\n\n\n\n\n\n\n\nA raster always contains numerical data, but it can be both quantitative data and numerically coded qualitative (categorical) data (ex: type of land cover).\nSpecify the type of data stored with the augment type (type = \"continuous\" default), to display them correctly.\nImport and display of raster containing categorical data: Phnom Penh Land Cover 2019 (land cover types) with a resolution of 1.5 meters:\n\nlulc_2019 <- rast(\"data_cambodia/lulc_2019.tif\") #Import Phnom Penh landcover 2019, landcover types\n\nThe landcover data was produced from SPOT7 satellite image with 1.5 meter spatial resolution. An extraction centered on the municipality of Phnom Penh was then carried out.\n\nplot(lulc_2019, type = \"classes\")\n\n\n\n\n\n\n\n\nTo display the actual tiles of landcover types, as well as the official colors of Phnom Penh Landcover nomenclature (available here), you can proceed as follows.\n\nclass_name <- c(\n \"Roads\",\n \"Built-up areas\",\n \"Water Bodies and rivers\",\n \"Wetlands\",\n \"Dry bare area\",\n \"Bare crop fields\",\n \"Low vegetation areas\",\n \"High vegetation areas\",\n \"Forested areas\")\n\nclass_color <- c(\"#070401\", \"#c84639\", \"#1398eb\",\"#8bc2c2\",\n \"#dc7b34\", \"#a6bd5f\",\"#e8e8e8\", \"#4fb040\", \"#35741f\")\nplot(lulc_2019,\n type = \"classes\",\n levels = class_name,\n col = class_color,\n plg = list(cex = 0.7),\n mar = c(3.1, 3.1, 2.1, 10) #The margin are (bottom, left, top, right) respectively\n )" - }, - { - "objectID": "04-raster_data.html#change-to-the-study-area", - "href": "04-raster_data.html#change-to-the-study-area", - "title": "4 Work with Raster Data", - "section": "4.4 Change to the study area", - "text": "4.4 Change to the study area\n\n4.4.1 (Re)projections\nTo modify the projection system of a raster, use the function project(). It is then necessary to indicate the method for estimating the new cell values.\n\n\n\nSource : Centre Canadien de Télédétection\n\n\nFour interpolation methods are available:\n\nnear : nearest neighbor, fast and default method for qualitative data;\n\nbilinear : bilinear interpolation. Default method for quantitative data;\n\ncubic : cubic interpolation;\n\ncubicspline : cubic spline interpolation.\n\n\n# Re-project data \n\nelevation_utm = project(x = elevation, y = \"EPSG:32648\", method = \"bilinear\") #from WGS84(EPSG:4326) to UTM zone48N(EPSG:32648) \nlulc_2019_utm = project(x = lulc_2019, y = \"EPSG:32648\", method = \"near\") #keep original projection: UTM zone48N(EPSG:32648)\n\n\n\n\n\n\n\n\n\n\n\n\n4.4.2 Crop\nClipping a raster to the extent of another object SpatVector or SpatRaster is achievable with the crop().\n\n\n\n\n\n\n\n\n\n\n\nSource : (Racine 2016)\n\n\n\nImport vector data of (municipal divisions) using function vect. This data will be stored in an SpatVector object.\n\ndistrict <- vect(\"data_cambodia/cambodia.gpkg\", layer=\"district\")\n\nExtraction of district boundaries of Thma Bang district (ADM2_PCODE : KH0907).\n\nthma_bang <- subset(district, district$ADM2_PCODE == \"KH0907\") \n\nUsing the function crop(), Both data layers must be in the same projection.\n\ncrop_thma_bang <- crop(elevation_utm, thma_bang)\n\nplot(crop_thma_bang)\nplot(thma_bang, add=TRUE)\n\n\n\n\n\n\n\n\n\n\n4.4.3 Mask\nTo display only the values of a raster contained in a polygon, use the function mask().\n\n\n\nSource : (Racine 2016)\n\n\nCreation of a mask on the crop_thma_bang raster to the municipal limits (polygon) of Thma Bang district.\n\nmask_thma_bang <- mask(crop_thma_bang, thma_bang)\n\nplot(mask_thma_bang)\nplot(thma_bang, add = TRUE)\n\n\n\n\n\n\n\n\n\n\n4.4.4 Aggregation and disaggregation\nResampling a raster to a different resolution is done in two steps.\n\n\n\n\n\n\n1\n\n\n\n\n\n\n\n2\n\n\n\n\n\n\n\n3\n\n\n\n\n\n\nSource : (Racine 2016)\n\n\n\nDisplay the resolution of a raster with the function res().\n\nres(elevation_utm) #check cell size\n\n[1] 91.19475 91.19475\n\n\nCreate a grid with the same extent, then decrease the spatial resolution (larger cells).\n\nelevation_LowerGrid <- elevation_utm\n# elevation_HigherGrid <- elevation_utm\n\nres(elevation_LowerGrid) <- 1000 #cells size = 1000 meter\n# res(elevation_HigherGrid) <- 10 #cells size = 10 meter\n\nelevation_LowerGrid\n\nclass : SpatRaster \ndimensions : 484, 589, 1 (nrow, ncol, nlyr)\nresolution : 1000, 1000 (x, y)\nextent : 203586.3, 792586.3, 1142954, 1626954 (xmin, xmax, ymin, ymax)\ncoord. ref. : WGS 84 / UTM zone 48N (EPSG:32648) \n\n\nThe function resample() allows to resample the atarting values in the new spatial resolution. Several resampling methods are available (cf. partie 5.4.1).\n\nelevation_LowerGrid <- resample(elevation_utm, \n elevation_LowerGrid, \n method = \"bilinear\") \n\nplot(elevation_LowerGrid, \n main=\"Cell size = 1000m\\nBilinear resampling method\")\n\n\n\n\n\n\n\n\n\n\n4.4.5 Raster fusion\nMerge multiple objects SpatRaster into one with merge() or mosaic().\n\n\n\nSource : https://desktop.arcgis.com/fr/arcmap/10.3/manage-data/raster-and-images/what-is-a-mosaic.htm\n\n\nAfter cutting the elevation raster by the municipal boundary of Thma Bang district (cf partie 5.4.2), we do the same thing for the neighboring municipality of Phnum Kravanh district.\n\nphnum_kravanh <- subset(district, district$ADM2_PCODE == \"KH1504\") # Extraction of the municipal boundaries of Phnum Kravanh district\n\ncrop_phnum_kravanh <- crop(elevation_utm, phnum_kravanh) #clipping the elevation raster according to district boundaries\n\nThe crop_thma_bang and crop_phnum_kravanh elevation raster overlap spatially:\n\n\n\n\n\n\n\n\n\nThe difference between the functions merge() and mosiac() relates to values of the overlapping cells. The function mosaic() calculate the average value while merge() holding the value of the object SpaRaster called n the function.\n\n#in this example, merge() and mosaic() give the same result\nmerge_raster <- merge(crop_thma_bang, crop_phnum_kravanh) \nmosaic_raster <- mosaic(crop_thma_bang, crop_phnum_kravanh)\n\nplot(merge_raster)\n\n\n\n\n\n\n\n# plot(mosaic_raster)\n\n\n\n4.4.6 Segregate\nDecompose a raster by value (or modality) into different rasterlayers with the function segregate.\n\nlulc_2019_class <- segregate(lulc_2019, keep=TRUE, other=NA) #creating a raster layer by modality\nplot(lulc_2019_class)" - }, - { - "objectID": "04-raster_data.html#map-algebra", - "href": "04-raster_data.html#map-algebra", - "title": "4 Work with Raster Data", - "section": "4.5 Map Algebra", - "text": "4.5 Map Algebra\nMap algebra is classified into four groups of operation (Tomlin 1990):\n\nLocal : operation by cell, on one or more layers;\n\nFocal : neighborhood operation (surrounding cells);\n\nZonal : to summarize the matrix values for certain zones, usually irregular;\nGlobal : to summarize the matrix values of one or more matrices.\n\n\n\n\nSource : (Li 2009)\n\n\n\n4.5.1 Local operations\n\n\n\nSource : (Mennis 2015)\n\n\n\n4.5.1.1 Value replacement\n\nelevation_utm[elevation_utm[[1]]== -9999] <- NA #replaces -9999 values with NA\n\nelevation_utm[elevation_utm < 1500] <- NA #Replace values < 1500 with NA\n\n\nelevation_utm[is.na(elevation_utm)] <- 0 #replace NA values with 0\n\n\n\n4.5.1.2 Operation on each cell\n\nelevation_1000 <- elevation_utm + 1000 # Adding 1000 to the value of each cell\n\nelevation_median <- elevation_utm - global(elevation_utm, median)[[1]] # Removed median elevation to each cell's value\n\n\n\n\n\n\n\n\n\n\n\n\n4.5.1.3 Reclassification\nReclassifying raster values can be used to discretize quantitative data as well as to categorize qualitative categories.\n\nreclassif <- matrix(c(1, 2, 1, \n 2, 4, 2,\n 4, 6, 3,\n 6, 9, 4), \n ncol = 3, byrow = TRUE)\n\nValues between 1 and 2 will be replaced by the value 1.\nValues between 3 and 4 will be replaced by the value 2.\nValues between 5 and 6 will be replaced by the value 3. Values between 7 and 9 will be replaced by the value 4.\n…\n\nreclassif\n\n [,1] [,2] [,3]\n[1,] 1 2 1\n[2,] 2 4 2\n[3,] 4 6 3\n[4,] 6 9 4\n\n\nThe function classify() allows you to perform the reclassification.\n\nlulc_2019_reclass <- classify(lulc_2019, rcl = reclassif)\nplot(lulc_2019_reclass, type =\"classes\")\n\n\n\n\nDisplay with the official titles and colors of the different categories.\n\nplot(lulc_2019_reclass, \n type =\"classes\", \n levels=c(\"Urban areas\",\n \"Water body\",\n \"Bare areas\",\n \"Vegetation areas\"),\n col=c(\"#E6004D\",\n \"#00BFFF\",\n \"#D3D3D3\", \n \"#32CD32\"),\n mar=c(3, 1.5, 1, 11))\n\n\n\n\n\n\n\n\n\n\n4.5.1.4 Operation on several layers (ex: NDVI)\nIt is possible to calculate the value of a cell from its values stored in different layers of an object SpatRaster.\nPerhaps the most common example is the calculation of the Normalized Vegetation Index (NDVI). For each cell, a value is calculated from two layers of raster from a multispectral satellite image.\n\n# Import d'une image satellite multispectrale\nsentinel2a <- rast(\"data_cambodia/Sentinel2A.tif\")\n\nThis multispectral satellite image (10m resolution) dated 25/02/2020, was produced by Sentinel-2 satellite and was retrieved from plateforme Copernicus Open Access Hub. An extraction of Red and near infrared spectral bands, centered on the Phnom Penh city, was then carried out.\n\nplot(sentinel2a)\n\n\n\n\n\n\n\n\nTo lighten the code, we assign the two matrix layers in different SpatRaster objects.\n\nB04_Red <- sentinel2a[[1]] #spectral band Red\n\nB08_NIR <-sentinel2a[[2]] #spectral band near infrared\n\nFrom these two raster objects , we can calculate the normalized vegetation index:\n\\[{NDVI}=\\frac{\\mathrm{NIR} - \\mathrm{Red}} {\\mathrm{NIR} + \\mathrm{Red}}\\]\n\nraster_NDVI <- (B08_NIR - B04_Red ) / (B08_NIR + B04_Red )\n\nplot(raster_NDVI)\n\n\n\n\n\n\n\n\nThe higher the values (close to 1), the denser the vegetation.\n\n\n\n4.5.2 Focal operations\n\n\n\nSource : (Mennis 2015)\n\n\nFocal analysis conisders a cell plus its direct neighbors in contiguous and symmetrical (neighborhood operations). Most often, the value of the output cell is the result of a block of 3 x 3 (odd number) input cells.\nThe first step is to build a matrix that determines the block of cells that will be considered around each cell.\n\n# 5 x 5 matrix, where each cell has the same weight\nmon_focal <- matrix(1, nrow = 5, ncol = 5)\nmon_focal\n\n [,1] [,2] [,3] [,4] [,5]\n[1,] 1 1 1 1 1\n[2,] 1 1 1 1 1\n[3,] 1 1 1 1 1\n[4,] 1 1 1 1 1\n[5,] 1 1 1 1 1\n\n\nThe function focal() Then allows you to perform the desired analysis. For example: calculating the average of the values of all contiguous cells, for each cell in the raster.\n\nelevation_LowerGrid_mean <- focal(elevation_LowerGrid, \n w = mon_focal, \n fun = mean)\n\n\n\n\n\n\n\n\n\n\n\n4.5.2.1 Focal operations for elevation rasters\nThe function terrain() allows to perform focal analyzes specific to elevation rasters. Six operations are available:\n\nslope = calculation of the slope or degree of inclination of the surface;\n\naspect = calculate slope orientation;\n\nroughness = calculate of the variability or irregularity of the elevation;\n\nTPI = calculation of the index of topgraphic positions;\n\nTRI = elevation variability index calculation;\n\nflowdir = calculation of the water flow direction.\n\nExample with calculation of slopes(slope).\n\n#slope calculation\nslope <- terrain(elevation_utm, \"slope\", \n neighbors = 8, #8 (or 4) cells around taken into account\n unit = \"degrees\") #Output unit\n\nplot(slope) #Inclination of the slopes, in degrees\n\n\n\n\n\n\n\n\n\n\n\n4.5.3 Global operations\n\n\n\nSource : https://gisgeography.com/map-algebra-global-zonal-focal-local\n\n\nGlobal operation are used to summarize the matrix values of one or more matrices.\n\nglobal(elevation_utm, fun = \"mean\") #average values\n\n mean\nAltitude 80.01082\n\n\n\nglobal(elevation_utm, fun = \"sd\") #standard deviation\n\n sd\nAltitude 155.885\n\n\n\nfreq(lulc_2019_reclass) #frequency\n\n layer value count\n1 1 1 47485325\n2 1 2 13656289\n3 1 3 14880961\n4 1 4 37194979\n\ntable(lulc_2019_reclass[]) #contingency table\n\n\n 1 2 3 4 \n47485325 13656289 14880961 37194979 \n\n\nStatistical representations that summarize matrix information.\n\nhist(elevation_utm) #histogram\n\nWarning: [hist] a sample of3% of the cells was used\n\n\n\n\n\n\n\n\ndensity(elevation_utm) #density\n\n\n\n\n\n\n\n\n\n\n4.5.4 Zonal operation\n\n\n\nSource : (Mennis 2015)\n\n\nThe zonal operation make it possible to summarize the matrix values of certain zones (group of contiguous cells in space or in value).\n\n4.5.4.1 Zonal operation on an extraction\nAll global operations can be performed on an extraction of cells resulting from the functions crop(), mask(), segregate()…\nExample: average elevation for the city of Thma Bang district (cf partie 5.4.3).\n\n# Average value of the \"mask\" raster over Thma Bang district\nglobal(mask_thma_bang, fun = \"mean\", na.rm=TRUE)\n\n mean\nAltitude 584.7703\n\n\n\n\n4.5.4.2 Zonal operation from a vector layer\nThe function extract() allows you to extract and manipulate the values of cells that intersect vector data.\nExample from polygons:\n\n# Average elevation for each polygon (district)?\nelevation_by_dist <- extract(elevation_LowerGrid, district, fun=mean)\nhead(elevation_by_dist, 10)\n\n ID Altitude\n1 1 8.953352\n2 2 196.422240\n3 3 23.453937\n4 4 3.973118\n5 5 29.545801\n6 6 41.579593\n7 7 50.162749\n8 8 85.128777\n9 9 269.068091\n10 10 8.439041\n\n\n\n\n4.5.4.3 Zonal operation from raster\nZonal operation can be performed by area bounded by the categorical values of a second raster. For this, the two raster must have exaclty the same extent and the same resolution.\n\n#create a second raster with same resolution and extent as \"elevation_clip\"\nelevation_clip <- rast(\"data_cambodia/elevation_clip.tif\")\nelevation_clip_utm <- project(x = elevation_clip, y = \"EPSG:32648\", method = \"bilinear\")\nsecond_raster_CLC <- rast(elevation_clip_utm)\n\n#resampling of lulc_2019_reclass \nsecond_raster_CLC <- resample(lulc_2019_reclass, second_raster_CLC, method = \"near\") \n \n#added a variable name for the second raster\nnames(second_raster_CLC) <- \"lulc_2019_reclass_resample\"\n\n\n\n\n\n\n\n\n\n\nCalculation of the average elevation for the different areas of the second raster.\n\n#average elevation for each area of the \"second_raster\"\nzonal(elevation_clip_utm, second_raster_CLC , \"mean\", na.rm=TRUE)\n\n lulc_2019_reclass_resample elevation_clip\n1 1 12.83846\n2 2 8.31809\n3 3 11.41178\n4 4 11.93546" - }, - { - "objectID": "04-raster_data.html#transformation-and-conversion", - "href": "04-raster_data.html#transformation-and-conversion", - "title": "4 Work with Raster Data", - "section": "4.6 Transformation and conversion", - "text": "4.6 Transformation and conversion\n\n4.6.1 Rasterization\nConvert polygons to raster format.\n\nchamkarmon = subset(district, district$ADM2_PCODE ==\"KH1201\") \nraster_district <- rasterize(x = chamkarmon, y = elevation_clip_utm)\n\n\nplot(raster_district)\n\n\n\n\n\n\n\n\nConvert points to raster format\n\n#rasterization of the centroids of the municipalities\nraster_dist_centroid <- rasterize(x = centroids(district), \n y = elevation_clip_utm, fun=sum)\nplot(raster_dist_centroid, col = \"red\")\nplot(district, add =TRUE)\n\n\n\n\nConvert lines in raster format\n\n#rasterization of municipal boundaries\nraster_dist_line <- rasterize(x = as.lines(district), y = elevation_clip_utm, fun=sum)\n\n\nplot(raster_dist_line)\n\n\n\n\n\n\n4.6.2 Vectorisation\nTransform a raster to vector polygons.\n\npolygon_elevation <- as.polygons(elevation_clip_utm)\n\n\nplot(polygon_elevation, y = 1, border=\"white\")\n\n\n\n\nTransform a raster to vector points.\n\npoints_elevation <- as.points(elevation_clip_utm)\n\n\nplot(points_elevation, y = 1, cex = 0.3)\n\n\n\n\nTransform a raster into vector lines.\n\nlines_elevation <- as.lines(elevation_clip_utm)\n\n\nplot(lines_elevation)\n\n\n\n\n\n\n4.6.3 terra, raster, sf, stars…\nReference packages for manipulating spatial data all rely o their own object class. It is sometimes necessary to convert these objects from one class to another class to take advance of all the features offered by these different packages.\nConversion functions for raster data:\n\n\n\nFROM/TO\nraster\nterra\nstars\n\n\n\n\nraster\n\nrast()\nst_as_stars()\n\n\nterra\nraster()\n\nst_as_stars()\n\n\nstars\nraster()\nas(x, ‘Raster’) + rast()\n\n\n\n\nConversion functions for vector data:\n\n\n\nFROM/TO\nsf\nsp\nterra\n\n\n\n\nsf\n\nas(x, ‘Spatial’)\nvect()\n\n\nsp\nst_as_sf()\n\nvect()\n\n\nterra\nst_as_sf()\nas(x, ‘Spatial’)\n\n\n\n\n\n\n\n\nHijmans, Robert J. 2022. “Terra: Spatial Data Analysis.†https://CRAN.R-project.org/package=terra.\n\n\nLi, Xingong. 2009. “Map Algebra and Beyond : 1. Map Algebra for Scalar Fields.†https://slideplayer.com/slide/5822638/.\n\n\nMadelin, Malika. 2021. “Analyse d’images Raster (Et Télédétection).†https://mmadelin.github.io/sigr2021/SIGR2021_raster_MM.html.\n\n\nMennis, Jeremy. 2015. “Fundamentals of GIS : Raster Operations.†https://cupdf.com/document/gus-0262-fundamentals-of-gis-lecture-presentation-7-raster-operations-jeremy.html.\n\n\nNowosad, Jakub. 2021. “Image Processing and All Things Raster.†https://nowosad.github.io/SIGR2021/workshop2/workshop2.html.\n\n\nRacine, Etienne B. 2016. “The Visual Raster Cheat Sheet.†https://rpubs.com/etiennebr/visualraster.\n\n\nTomlin, C. Dana. 1990. Geographic Information Systems and Cartographic Modeling. Prentice Hall." - }, - { - "objectID": "05-mapping_with_r.html", - "href": "05-mapping_with_r.html", - "title": "5 Mapping With R", - "section": "", - "text": "The fonction mf_map() is the central function of the package mapsf (Giraud 2022a). It makes it possible to carry out most of the usual representations in cartography. These main arguments are:\n\nx, an sf object ;\nvar, the name of variable to present ;\ntype, the type of presentation.\n\n\n\nThe following lines import the spatial information layers located in the geopackage cambodia.gpkg file.\n\nlibrary(sf)\n\n#Import Cambodia country border\ncountry = st_read(\"data_cambodia/cambodia.gpkg\", layer = \"country\", quiet = TRUE)\n#Import provincial administrative border of Cambodia\neducation = st_read(\"data_cambodia/cambodia.gpkg\", layer = \"education\", quiet = TRUE)\n#Import district administrative border of Cambodia\ndistrict = st_read(\"data_cambodia/cambodia.gpkg\", layer = \"district\", quiet = TRUE)\n#Import roads data in Cambodia\nroad = st_read(\"data_cambodia/cambodia.gpkg\", layer = \"road\", quiet = TRUE)\n#Import health center data in Cambodia\nhospital = st_read(\"data_cambodia/cambodia.gpkg\", layer = \"hospital\", quiet = TRUE)\n\n\n\n\nWithout using types specification, the function mf_map() simply display the background map.\n\nlibrary(mapsf)\n\nmf_map(x = district, border = \"white\")\nmf_map(x = country,lwd = 2, col = NA, add = TRUE)\nmf_map(x = road, lwd = .5, col = \"ivory4\", add = TRUE)\nmf_map(x = hospital, pch = 20, cex = 1, col = \"#FE9A2E\", add = TRUE) \n\n\n\n\n\n\n\nProportional symbol maps are used to represent inventory variables (absolute quantitative variables, sum and average make sense). The function mf_map(..., type = \"prop\") proposes this representation.\n\n#District\nmf_map(x = district) \n\n# Proportional symbol \nmf_map(\n x = district, \n var = \"T_POP\",\n val_max = 700000,\n type = \"prop\",\n col = \"#148F77\", \n leg_title = \"Population 2019\"\n)\n\n# Title\nmf_title(\"Distribution of population in provincial level\")\n\n\n\n\n\n\nIt is possible to fix the dimensions of the largest symbol corresponding to a certain value with the arguments inches and val_max. We can use construct maps with comparable proportional symbols.\n\npar(mfrow = c(1,2)) #Displaying two maps facing each other\n\n#district\nmf_map(x = district, border = \"grey90\", lwd = .5) \n# Add male Population\nmf_map(\n x = district, \n var = \"Male\", \n type = \"prop\",\n col = \"#1F618D\",\n inches = 0.2, \n val_max = 300000, \n leg_title = \"Male\", \n leg_val_cex = 0.5,\n)\nmf_title(\"Male Population by Distict\") #Adding map title\n\n#district\nmf_map(x = district, border = \"grey90\", lwd = .5) \n# Add female Population\nmf_map(\n x = district, \n var = \"Female\", \n type = \"prop\",\n col = \"#E74C3C\",\n inches = 0.2, \n val_max = 300000, \n leg_title =\"Female\", \n leg_val_cex = 0.5\n)\nmf_title(\"Female Population by Distict\") #Adding map title\n\n\n\n\nHere we have displayed two maps facing each other, see the point Displaying several maps on the same figure for more details.\n\n\n\n\nChoropleth maps are used to represent ratio variables (relative quantitative variables, mean has meaning, sum has no meaning).\nFor this type of representation, you must first:\n\nchoose a discretization method to transform a continuous statistical series into classes defined by intervals,\nchoose a number of classes,\nchoose a color palette.\n\nThe function mf_map(…, type = “choroâ€)makes it possible to create choroplete maps. The arguments nbreaks and breaks are used to parameterize the discretizations, and the function mf_get_breaks() makes it possible to work on the discretizations outside the function mf_map(). Similarly, the argument palis used to fill in a color palette, but several functions can be used to set the palettes apart from the (mf_get_pal…) function.\n\n# Population density (inhabitants/km2) using the sf::st_area() function\ndistrict$DENS <- 1e6 * district$T_POP / as.numeric(st_area(district)) #Calculate population density \nmf_map(\n x = district,\n var = \"DENS\",\n type = \"choro\",\n breaks = \"quantile\",\n pal = \"BuGn\",\n lwd = 1,\n leg_title = \"Distribution of population\\n(inhabitants per km2)\", \n leg_val_rnd = 0\n)\nmf_title(\"Distribution of the population in (2019)\")\n\n\n\n\n\ncases = st_read(\"data_cambodia/cambodia.gpkg\", layer = \"cases\", quiet = TRUE)\ncases = subset(cases, Disease == \"W fever\")\npopulation <- read.csv(\"data_cambodia/khm_admpop_adm2_2016_v2.csv\")\npopulation <- population[, c(\"ADM2_PCODE\", \"T_TL\")]\n# Remove commas\npopulation$T_TL <- as.numeric(gsub(\",\",\"\",population$T_TL))\ndistrict$cases <- lengths(st_intersects(district, cases))\ndistrict <- merge(district,\n population,\n by = \"ADM2_PCODE\")\ndistrict$incidence <- district$cases / district$T_TL * 100000\n\nmf_map(x = district,\n var = \"incidence\",\n type = \"choro\",\n leg_title = \"Incidence (per 100 000)\")\nmf_layout(title = \"Incidence of W Fever in Cambodia\")\n\n\n\n\n\n\nThe fonction mf_get_breaks() provides the methods of discretization of classic variables: quantiles, average/standard deviation, equal amplitudes, nested averages, Fisher-Jenks, geometric, etc.\n\neducation$enrol_g_pct = 100 * education$enrol_girl/education$t_enrol #Calculate percentage of enrolled girl student\n\nd1 = mf_get_breaks(education$enrol_g_pct, nbreaks = 6, breaks = \"equal\", freq = TRUE)\nd2 = mf_get_breaks(education$enrol_g_pct, nbreaks = 6, breaks = \"quantile\")\nd3 = mf_get_breaks(education$enrol_g_pct, nbreaks = 6, breaks = \"geom\")\nd4 = mf_get_breaks(education$enrol_g_pct, breaks = \"msd\", central = FALSE)\n\n\n\n\n\n\n\n\n\nThe argument pal de mf_map() is dedicated to choosing a color palette. The palettes provided by the function hcl.colors() can be used directly.\n\nmf_map(x = education, var = \"enrol_g_pct\", type = \"choro\",\n breaks = d3, pal = \"Reds 3\")\n\n\n\n\n\n\n\n\n\nThe fonction mf_get_pal() allows you to build a color palette. This function is especially useful for creating balanced asymmetrical diverging palettes.\n\nmypal <- mf_get_pal(n = c(4,6), palette = c(\"Burg\", \"Teal\"))\nimage(1:10, 1, as.matrix(1:10), col=mypal, xlab = \"\", ylab = \"\", xaxt = \"n\",\n yaxt = \"n\",bty = \"n\")\n\n\n\n\n\n\n\nIt is possible to use this mode of presentation in specific implementation also.\n\ndist_c <- st_centroid(district)\nmf_map(district)\nmf_map(\n x = dist_c,\n var = \"DENS\",\n type = \"choro\",\n breaks = \"quantile\",\n nbreaks = 5,\n pal = \"PuRd\",\n pch = 23,\n cex = 1.5,\n border = \"white\",\n lwd = .7,\n leg_pos = \"topleft\",\n leg_title = \"Distribution of population\\n(inhabitants per km2)\", \n leg_val_rnd = 0, \n add = TRUE\n)\nmf_title(\"Distribution of population in (2019)\")\n\n\n\n\n\n\n\n\nTypology maps are used to represent qualitative variables. The function mf_map(..., type = \"typo\") proposes this representation.\n\nmf_map(\n x = district,\n var=\"Status\",\n type = \"typo\",\n pal = c('#E8F9FD','#FF7396','#E4BAD4','#FFE3FE'),\n lwd = .7,\n leg_title = \"\"\n)\nmf_title(\"Administrative status by size of area\")\n\n\n\n\n\n\nThe argument val_order is used to order the categories in the\n\nmf_map(\n x = district,\n var=\"Status\",\n type = \"typo\",\n pal = c('#E8F9FD','#FF7396','#E4BAD4','#FFE3FE'),\n val_order = c(\"1st largest district\", \"2nd largest district\", \"3rd largest district\",\"<4500km2\"),\n lwd = .7,\n leg_title = \"\"\n)\nmf_title(\"Administrative status by size of area\")\n\n\n\n\n\n\n\nWhen the implantation of the layer is punctual, symbols are used to carry the colors of the typology.\n\n#extract centroid point of the district\ndist_ctr <- st_centroid(district[district$Status != \"<4500km2\", ])\nmf_map(district)\nmf_map(\n x = dist_ctr,\n var = \"Status\",\n type = \"typo\",\n cex = 2,\n pch = 22,\n pal = c('#FF7396','#E4BAD4','#FFE3FE'),\n leg_title = \"\",\n leg_pos = \"bottomright\",\n add = TRUE\n)\nmf_title(\"Administrative status by size of area\")\n\n\n\n\n\n\n\n\n#Selection of roads that intersect the city of Siem Reap\npp <- district[district$ADM1_EN == \"Phnom Penh\", ]\nroad_pp <- road[st_intersects(x = road, y = pp, sparse = FALSE), ]\nmf_map(pp)\nmf_map(\n x = road_pp,\n var = \"fclass\",\n type = \"typo\",\n lwd = 1.2,\n pal = mf_get_pal(n = 6, \"Tropic\"),\n leg_title = \"Types of road\",\n leg_pos = \"topright\",\n leg_frame = T,\n add = TRUE\n)\nmf_title(\"Administrative status\")\n\n\n\n\n\n\n\n\nThe function mf_map(..., var = c(\"var1\", \"var2\"), type = \"prop_choro\") represents proportional symbols whose areas are proportional to the values of one variable and whose color is based on the discretization of a second variable. The function uses the arguments of the functions mf_map(..., type = \"prop\") and mf_map(..., type = \"choro\").\n\nmf_map(x = district)\nmf_map(\n x = district,\n var = c(\"T_POP\", \"DENS\"),\n val_max = 500000,\n type = \"prop_choro\",\n border = \"grey60\",\n lwd = 0.5,\n leg_pos = c(\"bottomright\", \"bottomleft\"),\n leg_title = c(\"Population\", \"Density of\\n population\\n(inhabitants per km2)\"),\n breaks = \"q6\",\n pal = \"Blues 3\",\n leg_val_rnd = c(0,1))\nmf_title(\"Population\")\n\n\n\n\n\n\n\nThe function mf_map(..., var = c(\"var1\", \"var2\"), type = \"prop_typo\") represents proportional symbols whose areas are proportional to the values of one variable and whose color is based on the discretization of a second variable. The function uses the arguments of the mf_map(..., type = \"prop\") and function mf_map(..., type = \"typo\").\n\nmf_map(x = district)\nmf_map(\n x = district,\n var = c(\"Area.Km2.\", \"Status\"),\n type = \"prop_typo\",\n pal = c('#E8F9FD','#FF7396','#E4BAD4','#FFE3FE'),\n val_order = c(\"<4500km2\",\"1st largest district\", \"2nd largest district\", \"3rd largest district\"),\n leg_pos = c(\"bottomleft\",\"topleft\"),\n leg_title = c(\"Population\\n(2019)\",\n \"Statut administratif\"),\n)\nmf_title(\"Population\")" - }, - { - "objectID": "05-mapping_with_r.html#layout", - "href": "05-mapping_with_r.html#layout", - "title": "5 Mapping With R", - "section": "5.2 Layout", - "text": "5.2 Layout\nTo be finalized, a thematic map must contain certain additional elements such as: title, author, source, scale, orientation…\n\n5.2.1 Example data\nThe following lines import the spatial information layers located in the geopackage lot46.gpkg file.\n\nlibrary(sf)\ncountry = st_read(\"data_cambodia/cambodia.gpkg\", layer = \"country\", quiet = TRUE) #Import Cambodia country border\neducation = st_read(\"data_cambodia/cambodia.gpkg\", layer = \"education\", quiet = TRUE) #Import provincial administrative border of Cambodia\ndistrict = st_read(\"data_cambodia/cambodia.gpkg\", layer = \"district\", quiet = TRUE) #Import district administrative border of Cambodia\nroad = st_read(\"data_cambodia/cambodia.gpkg\", layer = \"road\", quiet = TRUE) #Import roads data in Cambodia\nhospital = st_read(\"data_cambodia/cambodia.gpkg\", layer = \"hospital\", quiet = TRUE) #Import hospital data in Cambodia\ncases = st_read(\"data_cambodia/cambodia.gpkg\", layer = \"cases\", quiet = TRUE) #Import example data of fever_cases in Cambodia\n\n\n\n5.2.2 Themes\nThe function mf_theme() defines a cartographic theme. Using a theme allows you to define several graphic parameters which are then applied to the maps created with mapsf. These parameters are: the map margins, the main color, the background color, the position and the aspect of the title. A theme can also be defined with the mf_init() and function mf_export().\n\n5.2.2.1 Use a predefined theme\nA series of predefined themes are available by default (see ?mf_theme).\n\nlibrary(mapsf)\n# use of a background color for the figure, to see the use of margin\nopar <- par(mfrow = c(2,2))\n# Using a predefined theme\nmf_theme(\"default\")\nmf_map(district)\nmf_title(\"Theme : 'default'\")\n\nmf_theme(\"darkula\")\nmf_map(district)\nmf_title(\"Theme : 'darkula'\")\n\nmf_theme(\"candy\")\nmf_map(district)\nmf_title(\"Theme : 'candy'\")\n\nmf_theme(\"nevermind\")\nmf_map(district)\nmf_title(\"Theme : 'nevermind'\")\npar(opar)\n\n\n\n\n\n\n5.2.2.2 Modify an existing theme\nIt is possible to modify an existing theme. In this example, we are using the “default†theme and modifying a few settings.\n\nlibrary(mapsf)\nopar <- par(mfrow = c(1,2))\nmf_theme(\"default\")\nmf_map(district)\nmf_title(\"default\")\n\nmf_theme(\"default\", tab = FALSE, font = 4, bg = \"grey60\", pos = \"center\")\nmf_map(district)\nmf_title(\"modified default\")\npar(opar)\n\n\n\n\n\n\n5.2.2.3 Create a theme\nIt is also possible to create a theme.\n\nmf_theme(\n bg = \"lightblue\", # background color\n fg = \"tomato1\", # main color\n mar = c(1,0,1.5,0), # margin\n tab = FALSE, # \"tab\" style for the title\n inner = FALSE, # title inside or outside of map area\n line = 1.5, # space dedicated to title\n pos = \"center\", # heading position\n cex = 1.5, # title size\n font = 2 # font types for title\n)\nmf_map(district)\nmf_title(\"New theme\")\n\n\n\n\n\n\n\n5.2.3 Titles\nThe function mf_title() adds a title to a map.\n\nmf_theme(\"default\")\nmf_map(district)\nmf_title(\"Map title\")\n\n\n\n\nIt is possible to customize the appearance of the title\n\nmf_map(district)\nmf_title(\n txt = \"Map title\", \n pos = \"center\", \n tab = FALSE, \n bg = \"tomato3\", \n fg = \"lightblue\", \n cex = 1.5, \n line = 1.7, \n font = 1, \n inner = FALSE\n)\n\n\n\n\n\n\n5.2.4 Arrow orientation\nThe function mf_arrow() allows you to choose the position and aspect of orientation arrow.\n\nmf_map(district)\nmf_arrow()\n\n\n\n\n\n\n5.2.5 Scale\nThe function mf_scale() allows you to choose the position and the aspect of the scale.\n\nmf_map(district)\nmf_scale(\n size = 60,\n lwd = 1,\n cex = 0.7\n)\n\n\n\n\n\n\n5.2.6 Credits\nThe function mf_credits() displays a line of credits (sources, author, etc.).\n\nmf_map(district)\nmf_credits(\"IRD\\nInstitut Pasteur du Cambodge, 2022\")\n\n\n\n\n\n\n5.2.7 Complete dressing\nThe function mf_layout() displays all these elements.\n\nmf_map(district)\nmf_layout(\n title = \"Cambodia\",\n credits = \"IRD\\nInstitut Pasteur du Cambodge, 2022\",\n arrow = TRUE\n)\n\n\n\n\n\n\n5.2.8 Annotations\n\nmf_map(district)\nmf_annotation(district[district$ADM2_EN == \"Bakan\",], txt = \"Bakan\", col_txt = \"darkred\", halo = TRUE, cex = 1.5)\n\n\n\n\n\n\n5.2.9 Legends\n\nmf_map(district)\nmf_legend(\n type = \"prop\", \n val = c(1000,500,200,10), \n inches = .2, \n title = \"Population\", \n pos = \"topleft\"\n)\nmf_legend(\n type = \"choro\", \n val = c(0,10,20,30,40),\n pal = \"Greens\", \n pos = \"bottomright\", \n val_rnd = 0\n)\n\n\n\n\n\n\n5.2.10 Labels\nThe function mf_label() is dedicated to displaying labels.\n\ndist_selected <- district[st_intersects(district, district[district$ADM2_EN == \"Bakan\", ], sparse = F), ]\n\nmf_map(dist_selected)\nmf_label(\n x = dist_selected,\n var = \"ADM2_EN\",\n col= \"darkgreen\",\n halo = TRUE,\n overlap = FALSE, \n lines = FALSE\n)\nmf_scale()\n\n\n\n\nThe argument halo = TRUE allows to display a slight halo around the labels and the argument overlap = FALSE allows to create non-overlapping labels.\n\n\n5.2.11 Center the map on a region\nThe function mf_init() allows you to initialize a map by centering it on a spatial object.\n\nmf_init(x = dist_selected)\nmf_map(district, add = TRUE)\nmf_map(dist_selected, col = NA, border = \"#29a3a3\", lwd = 2, add = TRUE)\n\n\n\n\n\n\n5.2.12 Displaying several maps on the sam figure\nHere you have to use mfrow of the function par(). The first digit represents the number of of rows and second the number of columns.\n\n# define the figure layout (1 row, 2 columns)\npar(mfrow = c(1, 2))\n\n# first map\nmf_map(district)\nmf_map(district, \"Male\", \"prop\", val_max = 300000)\nmf_title(\"Population, male\")\n\n# second map\nmf_map(district)\nmf_map(district, \"Female\", \"prop\", val_max = 300000)\nmf_title(\"Population, female\")\n\n\n\n\n\n\n5.2.13 Exporting maps\nIt is quite difficult to export figures (maps or others) whose height/width ratio is satisfactory. The default ratio of figures in png format is 1 (480x480 pixels):\n\ndist_filter <- district[district$ADM2_PCODE == \"KH0808\", ]\npng(\"img/dist_filter_1.png\")\nmf_map(dist_filter)\nmf_title(\"Filtered district\")\ndev.off()\n\n\n\n\n\n\nOn this map a lot of space is lost to the left and right of the district.\nThe function mf_export() allows exports of maps whose height/width ratio is controlled and corresponds to that of a spatial object.\n\nmf_export(dist_filter, \"img/dist_filter_2.png\", width = 480)\nmf_map(dist_filter)\nmf_title(\"Filtered district\")\ndev.off()\n\n\n\n\n\n\nThe extent of this map is exactly that of the displayed region.\n\n\n5.2.14 Adding an image to a map\nThis can be useful for adding a logo, a pictograph. The function readPNG() of package png allows the additional images on the figure.\n\nmf_theme(\"default\", mar = c(0,0,0,0))\nlibrary(png)\n\nlogo <- readPNG(\"img/ird_logo.png\") #Import image\npp <- dim(logo)[2:1]*200 #Image dimension in map unit (width and height of the original image)\n\n#The upper left corner of the department's bounding box\nxy <- st_bbox(district)[c(1,4)]\nmf_map(district, col = \"#D1914D\", border = \"white\")\nrasterImage(\n image = logo,\n xleft = xy[1] ,\n ybottom = xy[2] - pp[2],\n xright = xy[1] + pp[1],\n ytop = xy[2]\n)\n\n\n\n\n\n\n5.2.15 Place an item precisely on the map\nThe function locator() allows clicking on the figure and obtaining the coordinate of a point in the coordinate system of the figure (of the map).\n\n# locator(1) # click to get coordinate on map\n# points(locator(1)) # click to plot point on map\n# text(locator(1), # click to place the item on map\n# labels =\"Located any texts on map\", \n# adj = c(0,0))\n\n\nVideo\nlocator()peut être utilisée sur la plupart des graphiques (pas ceux produits avec ggplot2).\n\n\n\n\n\n\nHow to interactively position legends and layout elements on a map with cartography\n\n\n\n\n\n5.2.16 Add shading to a layer\nThe function mf_shadow() allows to create a shadow to a layer of polygons.\n\nmf_shadow(district)\nmf_map(district, add=TRUE)\n\n\n\n\n\n\n5.2.17 Creating Boxes\nThe function mf_inset_on() allows to start creation a box. You must then “close†the box with mf_inset_off().\n\nmf_init(x = dist_selected, theme = \"agolalight\", expandBB = c(0,.1,0,.5)) \nmf_map(district, add = TRUE)\nmf_map(dist_selected, col = \"tomato4\", border = \"tomato1\", lwd = 2, add = TRUE)\n\n# Cambodia inset box\nmf_inset_on(x = country, pos = \"topright\", cex = .3)\nmf_map(country, lwd = .5, border= \"grey90\")\nmf_map(dist_selected, col = \"tomato4\", border = \"tomato1\", lwd = .5, add = TRUE)\nmf_scale(size = 100, pos = \"bottomleft\", cex = .6, lwd = .5)\nmf_inset_off()\n\n# District inset box\nmf_inset_on(x = district, pos = \"bottomright\", cex = .3)\nmf_map(district, lwd = 0.5, border= \"grey90\")\nmf_map(dist_selected, col = \"tomato4\", border = \"tomato1\", lwd = .5, add = TRUE)\nmf_scale(size = 100, pos = \"bottomright\", cex = .6, lwd = .5)\nmf_inset_off()\n\n# World inset box\nmf_inset_on(x = \"worldmap\", pos = \"topleft\")\nmf_worldmap(dist_selected, land_col = \"#cccccc\", border_col = NA, \n water_col = \"#e3e3e3\", col = \"tomato4\")\n\nmf_inset_off()\nmf_title(\"Bakan district and its surroundings\")\nmf_scale(10, pos = 'bottomleft')" - }, - { - "objectID": "05-mapping_with_r.html#d-maps", - "href": "05-mapping_with_r.html#d-maps", - "title": "5 Mapping With R", - "section": "5.3 3D maps", - "text": "5.3 3D maps\n\n5.3.1 linemap\nThe package linemap (Giraud 2021) allows you to make maps made up of lines.\n\nlibrary(linemap)\nlibrary(mapsf)\nlibrary(sf)\nlibrary(dplyr)\n\npp = st_read(\"data_cambodia/PP.gpkg\", quiet = TRUE) # import Phnom Penh administrative border\npp_pop_dens <- getgrid(x = pp, cellsize =1000, var = \"DENs\") # create population density in grid format (pop density/1km)\n\nmf_init(pp)\n\nlinemap(\n x = pp_pop_dens, \n var = \"DENs\",\n k = 1,\n threshold = 5, \n lwd = 1,\n col = \"ivory1\",\n border = \"ivory4\",\n add = T)\n\nmf_title(\"Phnom Penh Population Density, 2019\")\nmf_credits(\"Humanitarian Data Exchange, 2022\\nunit data:km2\")\n\n\n\n# url = \"https://data.humdata.org/dataset/1803994d-6218-4b98-ac3a-30c7f85c6dbc/resource/f30b0f4b-1c40-45f3-986d-2820375ea8dd/download/health_facility.zip\"\n# health_facility.zip = \"health_facility.zip\"\n# download.file(url, destfile = health_facility.zip)\n# unzip(health_facility.zip) # Unzipped files are in a new folder named Health\n# list.files(path=\"Health\")\n\n\n\n5.3.2 Relief Tanaka\nWe use the tanaka package (Giraud 2022b) which provides a method (Tanaka 1950) used to improve the perception of relief.\n\nlibrary(tanaka)\nlibrary(terra)\n\nrpop <- rast(\"data_cambodia/khm_pd_2019_1km_utm.tif\") # Import population raster data (in UTM)\ndistrict = st_read(\"data_cambodia/cambodia.gpkg\", layer = \"district\", quiet = TRUE) # Import Cambodian districts layer\ndistrict <- st_transform(district, st_crs(rpop)) # Transform data into the same coordinate system\n\nmat <- focalMat(x = rpop, d = c(1500), type = \"Gauss\") # Raster smoothing\nrpopl <- focal(x = rpop, w = mat, fun = sum, na.rm = TRUE)\n\n# Mapping\ncols <- hcl.colors(8, \"Reds\", alpha = 1, rev = T)[-1]\nmf_theme(\"agolalight\")\nmf_init(district)\ntanaka(x = rpop, breaks = c(0,10,25,50,100,250,500,64265),\n col = cols, add = T, mask = district, legend.pos = \"n\")\nmf_legend(type = \"choro\", pos = \"bottomright\", \n val = c(0,10,25,50,100,250,500,64265), pal = cols,\n bg = \"#EDF4F5\", fg = NA, frame = T, val_rnd = 0,\n title = \"Population\\nper km2\")\nmf_title(\"Population density of Cambodia, 2019\")\nmf_credits(\"Humanitarian Data Exchange, 2022\",\n bg = \"#EDF4F5\")\n\n\n\n\n\n\n\n\n\n\nThe tanaka package" - }, - { - "objectID": "05-mapping_with_r.html#cartographic-transformation", - "href": "05-mapping_with_r.html#cartographic-transformation", - "title": "5 Mapping With R", - "section": "5.4 Cartographic Transformation", - "text": "5.4 Cartographic Transformation\n\nclassical anamorphosis is a representation of States(or any cells) by rectangle or any polygons according to a quantities attached to them. (…) We strive to keep the general arrangement of meshes or the silhouette of the continent.â€\nBrunet, Ferras, and Théry (1993)\n\n3 types of anamorphoses or cartograms are presented here:\n\nDorling’s cartograms (Dorling 1996)\nNon-contiguous cartograms (Olson 1976)\nContiguous cartograms (Dougenik, Chrisman, and Niemeyer 1985)\n\n\n\n\n\n\n\nA comprehensive course on anamorphoses : Les anamorphoses cartographiques (Lambert 2015).\n\n\n\n\n\n\n\n\n\nMake cartograms with R\n\n\n\nTo make the cartograms we use the package cartogram (Jeworutzki 2020).\n\n5.4.1 Dorling’s cartograms\nThe territories are represented by figures (circles, squares or rectangles) which do not overlap, the surface of which are proportional to a variable. The proportion of the figures are defined according to the starting positions.\n\n\n\n\n\n\n\n\nSpace is quite poorly identified.\nYou can name the circles to get your bearings and/or use the color to make clusters appear and better identify the geographical blocks.\n\n\n\n\n\nThe perception of quantities is very good. The circle sizes are really comarable.\n\n\n\nlibrary(mapsf)\nlibrary(cartogram)\ndistrict <- st_read(\"data_cambodia/cambodia.gpkg\", layer = \"district\" , quiet = TRUE)\ndist_dorling <- cartogram_dorling(x = district, weight = \"T_POP\", k = 0.7)\nmf_map(dist_dorling, col = \"#40E0D0\", border= \"white\")\nmf_label(\n x = dist_dorling[order(dist_dorling$T_POP, decreasing = TRUE), ][1:10,], \n var = \"ADM2_EN\",\n overlap = FALSE, \n # show.lines = FALSE,\n halo = TRUE, \n r = 0.15\n)\nmf_title(\"Population of District - Dorling Cartogram\")\n\n\n\n\nThe parameter k allows to vary the expansion factor of the circles.\n\n\n5.4.2 Non-continuous cartograms\nThe size of the polygons is proportional to a variable. The arrangement of the polygons relative to each other is preserved. The shape of the polygons is similar.\n\n\n\n\n\n(Cauvin, Escobar, and Serradj 2013)\n\n\n\nThe topology of the regions is lost.\n\n\n\n\n\nThe converstion of the polygons shape is optimal.\n\n\n\ndist_ncont <- cartogram_ncont(x = district, weight = \"T_POP\", k = 1.2)\nmf_map(district, col = NA, border = \"#FDFEFE\", lwd = 1.5)\nmf_map(dist_ncont, col = \"#20B2AA\", border= \"white\", add = TRUE)\nmf_title(\"Population of District - Non-continuous cartograms\")\n\n\n\n\nThe parameter k allows to vary the expansion of the polygons.\n\n\n5.4.3 Continuous cartograms\nThe size of the polygons is proportional to variable. The arrangement of the polygons relative to each other is preserved. To maintain contiguity, the sape of the polygons is heavily transformed.\n\n\n\n\n\n(Paull and Hennig 2016)\n\n\n\nThe shape of the polygond is strongly distorted.\n\n\n\n\n\nIt is a “real geographical mapâ€: topology and contiguity are preserved.\n\n\n\ndist_ncont <- cartogram_cont(x = district, weight = \"DENs\", maxSizeError = 6)\n\nMean size error for iteration 1: 15.8686749410166\n\n\nMean size error for iteration 2: 12.1107731631101\n\n\nMean size error for iteration 3: 9.98940057337996\n\n\nMean size error for iteration 4: 8.62323208787643\n\n\nMean size error for iteration 5: 7.60706404894655\n\n\nMean size error for iteration 6: 6.83561617758241\n\n\nMean size error for iteration 7: 10.1399490743501\n\n\nMean size error for iteration 8: 5.79418495291592\n\nmf_map(dist_ncont, col = \"#66CDAA\", border= \"white\", add = FALSE)\nmf_title(\"Population of District - Continuous cartograms\")\nmf_inset_on(district, cex = .2, pos = \"bottomleft\")\nmf_map(district, lwd = .5)\nmf_inset_off()\n\n\n\n\n\n\n5.4.4 Stengths and weaknessses of cartograms\ncartograms are cartographic representations perceived as innovative (although the method is 40 years old). These very generalize images capture quantities and gradients well. These are real communication images that provoke, arouse interest, convey a strong message, challenge.\nBut cartograms induce a loss of visual cues (difficult to find one’s country or region on the map), require a reading effort which can be significant and do not make it possible to manage missing data.\n\n\n\n\nBrunet, Roger, Robert Ferras, and Hervé Théry. 1993. Les Mots de La géographie: Dictionnaire Critique. 03) 911 BRU.\n\n\nCauvin, Colette, Francisco Escobar, and Aziz Serradj. 2013. Thematic Cartography, Cartography and the Impact of the Quantitative Revolution. Vol. 2. John Wiley & Sons.\n\n\nDorling, Daniel. 1996. Area Cartograms: Their Use and Creation, Concepts and Techniques in Modern Geography. Vol. 59. CATMOG: Concepts and Techniques in Modern Geography. Institute of British Geographers.\n\n\nDougenik, James A, Nicholas R Chrisman, and Duane R Niemeyer. 1985. “An Algorithm to Construct Continuous Area Cartograms.†The Professional Geographer 37 (1): 75–81.\n\n\nGiraud, Timothée. 2021. “Linemap: Line Maps.†https://CRAN.R-project.org/package=linemap.\n\n\n———. 2022a. “Mapsf: Thematic Cartography.†https://CRAN.R-project.org/package=mapsf.\n\n\n———. 2022b. “Tanaka: Design Shaded Contour Lines (or Tanaka) Maps.†https://CRAN.R-project.org/package=tanaka.\n\n\nJeworutzki, Sebastian. 2020. “Cartogram: Create Cartograms with r.†https://CRAN.R-project.org/package=cartogram.\n\n\nLambert, Nicolas. 2015. “Les Anamorphoses Cartographiques.†Blog. Carnet Néocartographique. https://neocarto.hypotheses.org/366.\n\n\nOlson, Judy M. 1976. “Noncontiguous Area Cartograms.†The Professional Geographer 28 (4): 371–80.\n\n\nPaull, John, and Benjamin Hennig. 2016. “Atlas of Organics: Four Maps of the World of Organic Agriculture.†Journal of Organics 3 (1): 25–32.\n\n\nTanaka, Kitiro. 1950. “The Relief Contour Method of Representing Topography on Maps.†Geographical Review 40 (3): 444. https://doi.org/10.2307/211219." - }, - { - "objectID": "06-advanced_spatial_analysis.html", - "href": "06-advanced_spatial_analysis.html", - "title": "6 Advanced Spatial Analysis", - "section": "", - "text": "RGeoHealth (Herbreteau, Révillion, and Trimaille 2018)\n\n# remotes::install_git(\"https://framagit.org/espace-dev/geohealth/RGeoHealth\")\n# library(geohealth)\n\n\n\n\n\nHerbreteau, Vincent, Christophe Révillion, and Etienne Trimaille. 2018. “GeoHealth and QuickOSM, two QGIS plugins for health applications.†In Earth Systems - Environmental Sciences : QGIS in Remote Sensing Set, edited by Nicolas Baghdadi, Clément Mallet, and Mehrez Zribi, 1:257–86. QGIS and Generic Tools. ISTE. https://hal.archives-ouvertes.fr/hal-01787435." - }, - { - "objectID": "07-basic_statistics.html", - "href": "07-basic_statistics.html", - "title": "7 Basic statistics for spatial analysis", - "section": "", - "text": "This section aims at providing some basic statistical tools to study the spatial distribution of the cases." - }, - { - "objectID": "07-basic_statistics.html#import-and-visualize-epidemiological-data", - "href": "07-basic_statistics.html#import-and-visualize-epidemiological-data", - "title": "7 Basic statistics for spatial analysis", - "section": "7.1 Import and visualize epidemiological data", - "text": "7.1 Import and visualize epidemiological data\nIn this section, we load data that reference the cases of an imaginary disease throughout Cambodia.\n\nlibrary(sf)\n\n#Import Cambodia country border\ncountry = st_read(\"data_cambodia/cambodia.gpkg\", layer = \"country\", quiet = TRUE)\n#Import provincial administrative border of Cambodia\neducation = st_read(\"data_cambodia/cambodia.gpkg\", layer = \"education\", quiet = TRUE)\n#Import district administrative border of Cambodia\ndistrict = st_read(\"data_cambodia/cambodia.gpkg\", layer = \"district\", quiet = TRUE)\n\n# Import locations of cases from an imaginary disease\ncases = st_read(\"data_cambodia/cambodia.gpkg\", layer = \"cases\", quiet = TRUE)\ncases = subset(cases, Disease == \"W fever\")\n\n# Aggregate cases over districts\ndistrict$cases <- lengths(st_intersects(district, cases))\n\nThe first step of any statistical analysis always consists on visualizing the data to check they were correctly loaded and to observe general pattern of the cases.\n\n# View the cases object\nhead(cases)\n\nSimple feature collection with 6 features and 2 fields\nGeometry type: MULTIPOINT\nDimension: XY\nBounding box: xmin: 255891 ymin: 1179092 xmax: 506647.4 ymax: 1467441\nProjected CRS: WGS 84 / UTM zone 48N\n id Disease geom\n1 0 W fever MULTIPOINT ((280036.2 12841...\n2 1 W fever MULTIPOINT ((451859.5 11790...\n3 2 W fever MULTIPOINT ((255891 1467441))\n4 5 W fever MULTIPOINT ((506647.4 12322...\n5 6 W fever MULTIPOINT ((440668 1197958))\n6 7 W fever MULTIPOINT ((481594.5 12714...\n\n# Map the cases\nlibrary(mapsf)\n\nmf_map(x = district, border = \"white\")\nmf_map(x = country,lwd = 2, col = NA, add = TRUE)\nmf_map(x = cases, lwd = .5, col = \"#990000\", pch = 20, add = TRUE)" - }, - { - "objectID": "07-basic_statistics.html#basics-statistics", - "href": "07-basic_statistics.html#basics-statistics", - "title": "7 Basic statistics for spatial analysis", - "section": "7.2 Basics statistics", - "text": "7.2 Basics statistics\nThe problem is usually expressed by defining two hypothesis : the null hypothesis (H0), i.e. an a priori hypothesis of the studied phenomenon (e.g. the situation is a random) and the alternative hypothesis (HA), e.g. the situation is not random. The main principle is to measure how likely the observed situation belong to the ensemble of situation that are possible under the H0 hypothesis.\nThe statistical analysis performed relies on the type of data.\n\n7.2.1 Spatial autocorrelation (Moran’s I test)\nA popular test for spatial autocorrelation is the Moran’s test.\nMoran’s I test tells us whether nearby units tend to exhibit similar rates. It ranges from -1 to +1, whith a value of -1 denoting that units with low rates are located near other units with high rates, while a Moran’s I value of +1 indicates a concentration of spatial units exhibiting similar rates.\nWe will compute the Moran’s statistics using spdep and Dcluster packages. This package provides a collection of functions to analyze spatial correlations of polygons and works with sp objects. Dcluster package provides a set of functions for the detection of spatial clusters of disease using count data.\n\n# Compte incidence in each district (per 100 000 population)\ndistrict$incidence <- district$cases/district$T_POP * 100000\n\n# Plot the incidence histogramm\nhist(log(district$incidence))" - }, - { - "objectID": "07-basic_statistics.html#cluster-analysis", - "href": "07-basic_statistics.html#cluster-analysis", - "title": "7 Basic statistics for spatial analysis", -<<<<<<< HEAD - "section": "7.2 Cluster analysis", - "text": "7.2 Cluster analysis\nSince this W fever seems to have a heterogeneous distribution across Cambodia, it would be interesting to study where excess of cases appears, i.e. to identify clusters of the disease. The first question is to wonder if data are auto correlated or spatially independent, i.e. study if neighboring districts are likely to have similar incidence.\nIn statistics, problems are usually expressed by defining two hypothesis : the null hypothesis (H0), i.e. an a priori hypothesis of the studied phenomenon (e.g. the situation is a random) and the alternative hypothesis (HA), e.g. the situation is not random. The main principle is to measure how likely the observed situation belong to the ensemble of situation that are possible under the H0 hypothesis.\n\n7.2.1 Spatial autocorrelation (Moran’s I test)\nA popular test for spatial autocorrelation is the Moran’s test. This test tells us whether nearby units tend to exhibit similar incidences. It ranges from -1 to +1. A value of -1 denote that units with low rates are located near other units with high rates, while a Moran’s I value of +1 indicates a concentration of spatial units exhibiting similar rates.\nHere the statistics hypothesis are :\n\nH0 :\nH1: , i.e. Moran’s I value is different than 0.\n\nWe will compute the Moran’s statistics using spdep and Dcluster packages. spdep package provides a collection of functions to analyze spatial correlations of polygons and works with sp objects. Dcluster package provides a set of functions for the detection of spatial clusters of disease using count data.\n\nlibrary(spdep) # Functions for creating spatial weight, spatial analysis\nlibrary(DCluster) # Package with functions for spatial cluster analysis)\n\nqnb <- poly2nb(district)\nq_listw <- nb2listw(qnb, style = 'W') # row-standardized weights\n\n# Moran's I test\nmoranI.test(cases ~ offset(log(expected)), \n data = district,\n model = 'poisson',\n R = 499,\n listw = q_listw,\n n = 159,\n S0 = Szero(q_listw))\n\nMoran's I test of spatial autocorrelation \n\n Type of boots.: parametric \n Model used when sampling: Poisson \n Number of simulations: 499 \n Statistic: 0.1264291 \n p-value : 0.016 \n\n\n\n\n7.2.2 Spatial scan statistics\nWhile Moran’s indice focuses on finding correlation between neighboring polygons, the spatial scan statistic compare the incidence level of a given windows of observation with the incidence level outside of this windows.\nThe package SpatialEpi\n\n\n7.2.3 Population-based clusters (kulldorf statistic)\nKulldorff ’s spatial scan statistic identifies the most likely disease clusters maximizing the likelihood that disease cases are located within a set of concentric circles that are moved across the study area.\n\n\n7.2.4 Expectation-based cluster\nIn many case, population is not specific enough to\n\n\n7.2.5 To go further …" -======= - "section": "7.3 Cluster analysis", - "text": "7.3 Cluster analysis\nIn epidemiology, the definition of a cluster\n\n7.3.1 Population-based clusters (kulldorf statistic)\nKulldorff ’s spatial scan statistic identifies the most likely disease clusters maximizing the likelihood that disease cases are located within a set of concentric circles that are moved across the study area.\n\n\n7.3.2 Expectation-based cluster\nIn many case, population is not specific enough to\n\n\n7.3.3 To go further …" ->>>>>>> refs/remotes/origin/main - }, - { - "objectID": "references.html", - "href": "references.html", - "title": "References", - "section": "", -<<<<<<< HEAD - "text": "This section aims at providing some basic statistical tools to study the spatial distribution of epidemiological data." - }, - { - "objectID": "07-basic_statistics.html#basics-statistics", - "href": "07-basic_statistics.html#basics-statistics", - "title": "7 Basic statistics for spatial analysis", - "section": "7.2 Basics statistics", - "text": "7.2 Basics statistics\nThe problem is usually expressed by defining two hypothesis : the null hypothesis (H0), i.e. an a priori hypothesis of the studied phenomenon (e.g. the situation is a random) and the alternative hypothesis (HA), e.g. the situation is not random. The main principle is to measure how likely the observed situation belong to the ensemble of situation that are possible under the H0 hypothesis.\nThe statistical analysis performed relies on the type of data.\n\n7.2.1 Spatial autocorrelation (Moran’s I test)\nA popular test for spatial autocorrelation is the Moran’s test.\nMoran’s I test tells us whether nearby units tend to exhibit similar rates. It ranges from -1 to +1, whith a value of -1 denoting that units with low rates are located near other units with high rates, while a Moran’s I value of +1 indicates a concentration of spatial units exhibiting similar rates.\nWe will compute the Moran’s statistics using spdep and Dcluster packages. spdep package provides a collection of functions to analyze spatial correlations of polygons and works with sp objects. Dcluster package provides a set of functions for the detection of spatial clusters of disease using count data.\n\n# Plot the incidence histogramm\nhist(log(district$incidence))" - }, - { - "objectID": "07-basic_statistics.html#import-and-visualize-epidemiological-data", - "href": "07-basic_statistics.html#import-and-visualize-epidemiological-data", - "title": "7 Basic statistics for spatial analysis", - "section": "7.1 Import and visualize epidemiological data", - "text": "7.1 Import and visualize epidemiological data\nIn this section, we load data that reference the cases of an imaginary disease throughout Cambodia. Each point correspond to the geolocalisation of a case.\n\nlibrary(sf)\n\n#Import Cambodia country border\ncountry = st_read(\"data_cambodia/cambodia.gpkg\", layer = \"country\", quiet = TRUE)\n#Import provincial administrative border of Cambodia\neducation = st_read(\"data_cambodia/cambodia.gpkg\", layer = \"education\", quiet = TRUE)\n#Import district administrative border of Cambodia\ndistrict = st_read(\"data_cambodia/cambodia.gpkg\", layer = \"district\", quiet = TRUE)\n\n# Import locations of cases from an imaginary disease\ncases = st_read(\"data_cambodia/cambodia.gpkg\", layer = \"cases\", quiet = TRUE)\ncases = subset(cases, Disease == \"W fever\")\n\nThe first step of any statistical analysis always consists on visualizing the data to check they were correctly loaded and to observe general pattern of the cases.\n\n# View the cases object\nhead(cases)\n\nSimple feature collection with 6 features and 2 fields\nGeometry type: MULTIPOINT\nDimension: XY\nBounding box: xmin: 255891 ymin: 1179092 xmax: 506647.4 ymax: 1467441\nProjected CRS: WGS 84 / UTM zone 48N\n id Disease geom\n1 0 W fever MULTIPOINT ((280036.2 12841...\n2 1 W fever MULTIPOINT ((451859.5 11790...\n3 2 W fever MULTIPOINT ((255891 1467441))\n4 5 W fever MULTIPOINT ((506647.4 12322...\n5 6 W fever MULTIPOINT ((440668 1197958))\n6 7 W fever MULTIPOINT ((481594.5 12714...\n\n# Map the cases\nlibrary(mapsf)\n\nmf_map(x = district, border = \"white\")\nmf_map(x = country,lwd = 2, col = NA, add = TRUE)\nmf_map(x = cases, lwd = .5, col = \"#990000\", pch = 20, add = TRUE)\n\n\n\n\nIn epidemiology, the true meaning of point is very questionable. If it usually gives the location of an observation, its not clear if this observation represents an event of interest (e.g. illness, death, …) or a person at risk (e.g. a participant that may or may not experience the disease). Considering a ratio of event compared to a population at risk is often more informative than just considering cases. Administrative divisions of countries appears as great areal units for cases aggregation since they make available data on population count and structures. In this study, we will use district as the areal unit of the study.\n\n# Aggregate cases over districts\ndistrict$cases <- lengths(st_intersects(district, cases))\n\nThe incidence (\\(\\frac{cases}{population}\\)) is commonly use to represent cases distribution related to population density but other indicators exists. As example, the standardized incidence ratios (SIRs) represents the deviation of observed and expected number of cases and is expressed as \\(SIR = \\frac{Y_i}{E_i}\\) with \\(Y_i\\), the observed number of cases and \\(E_i\\), the expected number of cases. In this study, we computed the expected number of cases in each district by assuming infections are homogeneously distributed across Cambodia, i.e. the incidence is the same in each district.\n\n# Compute incidence in each district (per 100 000 population)\ndistrict$incidence = district$cases/district$T_POP * 100000\n\n# Compute the global risk\nrate = sum(district$cases)/sum(district$T_POP)\n\n# Compute expected number of cases \ndistrict$expected = district$T_POP * rate\n\n# Compute SIR\ndistrict$SIR = district$cases / district$expected\n\n\npar(mfrow = c(1, 3))\n# Plot number of cases using proportional symbol \nmf_map(x = district) \nmf_map(\n x = district, \n var = \"cases\",\n val_max = 50,\n type = \"prop\",\n col = \"#990000\", \n leg_title = \"Cases\")\nmf_layout(title = \"Number of cases of W Fever\")\n\n# Plot incidence \nmf_map(x = district,\n var = \"incidence\",\n type = \"choro\",\n pal = \"Reds 3\",\n leg_title = \"Incidence \\n(per 100 000)\")\nmf_layout(title = \"Incidence of W Fever\")\n\n# Plot SIRs\n# create breaks and associated color palette\nbreak_SIR = c(0, exp(mf_get_breaks(log(district$SIR), nbreaks = 8, breaks = \"pretty\")))\ncol_pal = c(\"#273871\", \"#3267AD\", \"#6496C8\", \"#9BBFDD\", \"#CDE3F0\", \"#FFCEBC\", \"#FF967E\", \"#F64D41\", \"#B90E36\")\n\nmf_map(x = district,\n var = \"SIR\",\n type = \"choro\",\n breaks = break_SIR, \n pal = col_pal, \n cex = 2,\n leg_title = \"SIR\")\nmf_layout(title = \"Standardized Incidence Ratio of W Fever\")\n\n\n\n\nThese maps illustrates the spatial heterogenity of the cases. The incidence shows how the disease vary from one district to another while the SIR highlight districts that have :\n\nhigher risk than average (SIR > 1) when standardized for population\nlower risk than average (SIR < 1) when standardized for population\naverage risk (SIR ~ 1) when standardized for population\n\nIn this example, we standardized the cases distribution for population count. This simple standardization assume that the risk of contracting the disease is similar for each person. However, assumption does not hold for all diseases and for all observed events since confounding effects can create nuisance into the interpretations (e.g. the number of childhood illness and death outcomes in a district are usually related to the age pyramid) and you should keep in mind that other standardization can be performed based on variables known to have an effect but that you don’t want to analyze (e.g. sex ratio, occupations, age pyramid)." -======= - "text": "Agafonkin, Vladimir. 2015. “Leaflet Javascript Libary.â€\n\n\nAppelhans, Tim, Florian Detsch, Christoph Reudenbach, and Stefan\nWoellauer. 2022. “Mapview: Interactive Viewing of Spatial Data in\nr.†https://CRAN.R-project.org/package=mapview.\n\n\nAppelhans, Tim, Kenton Russell, and Lorenzo Busetto. 2020.\n“Mapedit: Interactive Editing of Spatial Data in r.†https://CRAN.R-project.org/package=mapedit.\n\n\nBivand, Roger, Tim Keitt, and Barry Rowlingson. 2022. “Rgdal:\nBindings for the ’Geospatial’ Data Abstraction Library.†https://CRAN.R-project.org/package=rgdal.\n\n\nBivand, Roger, and Colin Rundel. 2021. “Rgeos: Interface to\nGeometry Engine - Open Source (’GEOS’).†https://CRAN.R-project.org/package=rgeos.\n\n\nBrunet, Roger, Robert Ferras, and Hervé Théry. 1993. Les Mots de La\ngéographie: Dictionnaire Critique. 03) 911 BRU.\n\n\nCambon, Jesse, Diego Hernangómez, Christopher Belanger, and Daniel\nPossenriede. 2021. “Tidygeocoder: An r Package for\nGeocoding†6: 3544. https://doi.org/10.21105/joss.03544.\n\n\nCauvin, Colette, Francisco Escobar, and Aziz Serradj. 2013. Thematic\nCartography, Cartography and the Impact of the Quantitative\nRevolution. Vol. 2. John Wiley & Sons.\n\n\nCheng, Joe, Bhaskar Karambelkar, and Yihui Xie. 2022. “Leaflet:\nCreate Interactive Web Maps with the JavaScript ’Leaflet’\nLibrary.†https://CRAN.R-project.org/package=leaflet.\n\n\nDorling, Daniel. 1996. Area Cartograms: Their Use and Creation,\nConcepts and Techniques in Modern Geography. Vol. 59. CATMOG:\nConcepts and Techniques in Modern Geography. Institute of British\nGeographers.\n\n\nDougenik, James A, Nicholas R Chrisman, and Duane R Niemeyer. 1985.\n“An Algorithm to Construct Continuous Area Cartograms.â€\nThe Professional Geographer 37 (1): 75–81.\n\n\nDunnington, Dewey. 2021. “Ggspatial: Spatial Data Framework for\nGgplot2.†https://CRAN.R-project.org/package=ggspatial.\n\n\nGDAL/OGR contributors. n.d. GDAL/OGR Geospatial Data\nAbstraction Software Library. Open Source Geospatial Foundation. https://gdal.org.\n\n\nGilardi, Andrea, and Robin Lovelace. 2021. “Osmextract: Download\nand Import Open Street Map Data Extracts.†https://CRAN.R-project.org/package=osmextract.\n\n\nGiraud, Timothée. 2021a. “Linemap: Line Maps.†https://CRAN.R-project.org/package=linemap.\n\n\n———. 2021b. “Maptiles: Download and Display Map Tiles.†https://CRAN.R-project.org/package=maptiles.\n\n\n———. 2022a. “Mapsf: Thematic Cartography.†https://CRAN.R-project.org/package=mapsf.\n\n\n———. 2022b. “Tanaka: Design Shaded Contour Lines (or Tanaka)\nMaps.†https://CRAN.R-project.org/package=tanaka.\n\n\nGiraud, Timothée, and Nicolas Lambert. 2016. “Cartography: Create\nand Integrate Maps in Your r Workflow†1. https://doi.org/10.21105/joss.00054.\n\n\nGombin, Joel, and Paul-Antoine Chevalier. 2022. “banR: R Client\nfor the BAN API.â€\n\n\nHerbreteau, Vincent, Christophe Révillion, and Etienne Trimaille. 2018.\n“GeoHealth and QuickOSM, two QGIS plugins for\nhealth applications.†In Earth\nSystems - Environmental Sciences : QGIS in Remote Sensing\nSet, edited by Nicolas Baghdadi, Clément Mallet, and Mehrez\nZribi, 1:257–86. QGIS and Generic Tools. ISTE. https://hal.archives-ouvertes.fr/hal-01787435.\n\n\nHijmans, Robert J. 2022a. “Raster: Geographic Data Analysis and\nModeling.†https://CRAN.R-project.org/package=raster.\n\n\n———. 2022b. “Terra: Spatial Data Analysis.†https://CRAN.R-project.org/package=terra.\n\n\nJeworutzki, Sebastian. 2020. “Cartogram: Create Cartograms with\nr.†https://CRAN.R-project.org/package=cartogram.\n\n\nLambert, Nicolas. 2015. “Les Anamorphoses Cartographiques.â€\nBlog. Carnet Néocartographique. https://neocarto.hypotheses.org/366.\n\n\nLi, Xingong. 2009. “Map Algebra and Beyond : 1. Map Algebra for\nScalar Fields.†https://slideplayer.com/slide/5822638/.\n\n\nMadelin, Malika. 2021. “Analyse d’images Raster (Et\nTélédétection).†https://mmadelin.github.io/sigr2021/SIGR2021_raster_MM.html.\n\n\nMennis, Jeremy. 2015. “Fundamentals of GIS : Raster\nOperations.†https://cupdf.com/document/gus-0262-fundamentals-of-gis-lecture-presentation-7-raster-operations-jeremy.html.\n\n\nNowosad, Jakub. 2021. “Image Processing and All Things\nRaster.†https://nowosad.github.io/SIGR2021/workshop2/workshop2.html.\n\n\nOlson, Judy M. 1976. “Noncontiguous Area Cartograms.â€\nThe Professional Geographer 28 (4): 371–80.\n\n\nPadgham, Mark, Bob Rudis, Robin Lovelace, and Maëlle Salmon. 2017.\n“Osmdata†2. https://doi.org/10.21105/joss.00305.\n\n\nPaull, John, and Benjamin Hennig. 2016. “Atlas of Organics: Four\nMaps of the World of Organic Agriculture.†Journal of\nOrganics 3 (1): 25–32.\n\n\nPebesma, Edzer. 2018b. “Simple Features for r:\nStandardized Support for Spatial Vector Data†10. https://doi.org/10.32614/RJ-2018-009.\n\n\n———. 2018a. “Simple Features for R: Standardized Support for\nSpatial Vector Data.†The R Journal 10 (1): 439. https://doi.org/10.32614/rj-2018-009.\n\n\n———. 2021. “Stars: Spatiotemporal Arrays, Raster and Vector Data\nCubes.†https://CRAN.R-project.org/package=stars.\n\n\nPebesma, Edzer J., and Roger S. Bivand. 2005. “Classes and Methods\nfor Spatial Data in r†5. https://CRAN.R-project.org/doc/Rnews/.\n\n\nPROJ contributors. 2021. PROJ Coordinate Transformation\nSoftware Library. Open Source Geospatial Foundation. https://proj.org/.\n\n\nRacine, Etienne B. 2016. “The Visual Raster Cheat Sheet.â€\nhttps://rpubs.com/etiennebr/visualraster.\n\n\nTanaka, Kitiro. 1950. “The Relief Contour Method of Representing\nTopography on Maps.†Geographical Review 40 (3): 444. https://doi.org/10.2307/211219.\n\n\nTennekes, Martijn. 2018. “Tmap: Thematic\nMaps in r†84. https://doi.org/10.18637/jss.v084.i06.\n\n\nTomlin, C. Dana. 1990. Geographic Information Systems and\nCartographic Modeling. Prentice Hall.\n\n\nWickham, Hadley. 2016. “Ggplot2: Elegant Graphics for Data\nAnalysis.†https://ggplot2.tidyverse.org." ->>>>>>> refs/remotes/origin/main } -] +] \ No newline at end of file diff --git a/public/search.json.orig b/public/search.json.orig deleted file mode 100644 index 4ead360..0000000 --- a/public/search.json.orig +++ /dev/null @@ -1,263 +0,0 @@ -[ - { - "objectID": "index.html", - "href": "index.html", - "title": "Mapping and spatial analyses in R for One Health studies", - "section": "", - "text": "This manual is tended both for R users wishing to set up spatial data peocessing and for users wishing to use R to carry out the tasks that they usually carry out with GIS. The main steps in the processing of geographic information are covered. Emphasis is placed on the processing of vector data but a part is still dedicated to raster data.\nHow to use the manual\nThe RStudio project containing all the data used in the manual is available here. Once the file is unzipped it is possible to test all the manipulations proposed in the RStudion project.\nContext\nThis manual has been designed from the courses “Géomatique avec R†and “Cartographie avec R†by Timothée Giraud and Hugues Pecout. It has been translated and its examples have been adapted to the geographical distribution of the audience.\n\n\n\n\nCreative Commons License\n\n\nThe online version of this document licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0." - }, - { - "objectID": "01-introduction.html", - "href": "01-introduction.html", - "title": "1 Introduction", - "section": "", - "text": "Historically, 4 packages make it possible to import, manipulate and transform spatial data:\n\nThe package rgdal (Bivand, Keitt, and Rowlingson 2022) which is an interface between R and the GDAL (GDAL/OGR contributors, n.d.) and PROJ (PROJ contributors 2021) libraries allow you to import and export spatial data (shapefiles for example) and also to manage cartographic projections\n\nThe package sp (E. J. Pebesma and Bivand 2005) provides class and methods for vector spatial data in R. It allows displaying background maps, inspectiong an attribute table etc.\n\nThe package rgeos (Bivand and Rundel 2021) gives access to the GEOS spatial operations library and therefore makes classic GIS operations available: calculation of surfaces or perimeters, calculation of distances, spatial aggregations, buffer zones, intersections, etc.\n\nThe package raster (Hijmans 2022a) is dedicated to the import, manipulation and modeling of raster data.\n\nToday, the main developments concerning vector data have moved away from the old 3 (sp, rgdal, rgeos) to rely mainly on the package sf ((E. Pebesma 2018a), (E. Pebesma 2018b)). In this manual we will rely exclusively on this package to manipulate vector data.\nThe packages stars (E. Pebesma 2021) and terra (Hijmans 2022b) come to replace the package raster for processing raster data. We have chosen to use the package here terra for its proximity to the raster." - }, - { - "objectID": "01-introduction.html#the-package-sf", - "href": "01-introduction.html#the-package-sf", - "title": "1 Introduction", - "section": "1.2 The package sf", - "text": "1.2 The package sf\n The package sf was released in late 2016 by Edzer Pebesma (also author of sp). Its goal is to combine the feature of sp, rgeos and rgdal in a single, more ergonomic package. This package offers simple objects (following the simple feature standard) which are easier to manipulate. Particular attention has been paid to the compatibility of the package with the pipe syntax and the operators of the tidyverse.\nsf directly uses the GDAL, GEOS and PROJ libraries.\n\n\n\n\n\nFrom r-spatial.org\n\n\n\n\n\n\nWebsite of package sf : Simple Features for R\n\n\n\n\n1.2.1 Format of spatial objects sf\n\n\n\n\n\nObjectssf are objects in data.frame which one of the columns contains geometries. This column is the class of sfc (simple feature column) and each individual of the column is a sfg (simple feature geometry). This format is very practical insofa as the data and the geometries are intrinsically linked in the same object.\n\n\n\n\n\n\nThumbnail describing the simple feature format: Simple Features for R\n\n\n\n\n\n\n\n\n\nTip\n\n\n\nA benchmark of vector processing libraries is available here." - }, - { - "objectID": "01-introduction.html#package-mapsf", - "href": "01-introduction.html#package-mapsf", - "title": "1 Introduction", - "section": "1.3 Package mapsf", - "text": "1.3 Package mapsf\nThe free R software spatial ecosystem is rich, dynamic and mature and several packages allow to import, process and represent spatial data. The package mapsf (Giraud 2022) relies on this ecosystem to integrate the creation of quality thematic maps into processing chains with R.\nOther packages can be used to make thematic maps. The package ggplot2 (Wickham 2016), in association with the package ggspatial (Dunnington 2021), allows for example to display spatial objects and to make simple thematic maps. The package tmap (Tennekes 2018) is dedicated to the creation of thematic maps, it uses a syntax close to that of ggplot2 (sequence of instructions combined with the ‘+’ sign). Documentation and tutorials for using these two packages are readily available on the web.\nHere, we will mainly use the package mapsf whose functionalities are quite complete and the handling rather simple. In addition, the package is relatively light.\n\nmapsf allows you to create most of the types of map usually used in statistical cartography (choropleth maps, typologies, proportional or graduated symbols, etc.). For each type of map, several parameters are used to customize the cartographic representation. These parameters are the same as those found in the usual GIS or cartography software (for example, the choice of discretizations and color palettes, the modification of the size of the symbols or the customization of the legends). Associated with the data representation functions, other functions are dedicated to cartographic dressing (themes or graphic charters, legends, scales, orientation arrows, title, credits, annotations, etc.), the creation of boxes or the exporting maps.\nmapsf is the successor of cartography (Giraud and Lambert 2016), it offers the same main functionalities while being lighter and more ergonomic.\nTo use this package several sources can be consulted:\n\nThe package documentation accessible on the internet or directly in R (?mapsf),\nA cheat sheet,\n\n\n\n\n\n\n\nThe vignettes associated with the package show sample scripts,\nThe R Geomatics blog which provides resources and examples related to the package and more generally to the R spatial ecosystem." - }, - { - "objectID": "01-introduction.html#the-package-terra", - "href": "01-introduction.html#the-package-terra", - "title": "1 Introduction", - "section": "1.4 The package terra", - "text": "1.4 The package terra\n The package terra was release in early 2020 by Robert J. Hijmans (also author of raster). Its objective is to propose methods of treatment and analysis of raster data. This package is very similar to the package raster; but it has more features, it’s easier to use, and it’s faster.\n\n\n\n\n\n\nWebsite of package terra : Spatial Data Science with R and “terraâ€\n\n\n\n\n\n\n\n\n\nTip\n\n\n\nA benchmark of raster processing libraries is available here.\n\n\n\n\n\n\nBivand, Roger, Tim Keitt, and Barry Rowlingson. 2022. “Rgdal: Bindings for the ’Geospatial’ Data Abstraction Library.†https://CRAN.R-project.org/package=rgdal.\n\n\nBivand, Roger, and Colin Rundel. 2021. “Rgeos: Interface to Geometry Engine - Open Source (’GEOS’).†https://CRAN.R-project.org/package=rgeos.\n\n\nDunnington, Dewey. 2021. “Ggspatial: Spatial Data Framework for Ggplot2.†https://CRAN.R-project.org/package=ggspatial.\n\n\nGDAL/OGR contributors. n.d. GDAL/OGR Geospatial Data Abstraction Software Library. Open Source Geospatial Foundation. https://gdal.org.\n\n\nGiraud, Timothée. 2022. “Mapsf: Thematic Cartography.†https://CRAN.R-project.org/package=mapsf.\n\n\nGiraud, Timothée, and Nicolas Lambert. 2016. “Cartography: Create and Integrate Maps in Your r Workflow†1. https://doi.org/10.21105/joss.00054.\n\n\nHijmans, Robert J. 2022a. “Raster: Geographic Data Analysis and Modeling.†https://CRAN.R-project.org/package=raster.\n\n\n———. 2022b. “Terra: Spatial Data Analysis.†https://CRAN.R-project.org/package=terra.\n\n\nPebesma, Edzer. 2018a. “Simple Features for r: Standardized Support for Spatial Vector Data†10. https://doi.org/10.32614/RJ-2018-009.\n\n\n———. 2018b. “Simple Features for R: Standardized Support for Spatial Vector Data.†The R Journal 10 (1): 439. https://doi.org/10.32614/rj-2018-009.\n\n\n———. 2021. “Stars: Spatiotemporal Arrays, Raster and Vector Data Cubes.†https://CRAN.R-project.org/package=stars.\n\n\nPebesma, Edzer J., and Roger S. Bivand. 2005. “Classes and Methods for Spatial Data in r†5. https://CRAN.R-project.org/doc/Rnews/.\n\n\nPROJ contributors. 2021. PROJ Coordinate Transformation Software Library. Open Source Geospatial Foundation. https://proj.org/.\n\n\nTennekes, Martijn. 2018. “Tmap: Thematic Maps in r†84. https://doi.org/10.18637/jss.v084.i06.\n\n\nWickham, Hadley. 2016. “Ggplot2: Elegant Graphics for Data Analysis.†https://ggplot2.tidyverse.org." - }, - { - "objectID": "02-data_acquisition.html", - "href": "02-data_acquisition.html", - "title": "2 Data Acquisition", - "section": "", - "text": "The function st_as_sf() makes it possible to transform a data.frame container of geographic coordinates into an object sf. Here we use the data.frame places2 created in the previous point.\n\nlibrary(sf)\nplace_sf <- st_as_sf(read.csv(\"data_cambodia/adress.csv\"), coords = c(\"long\", \"lat\"), crs = 4326)\nplace_sf\n\nSimple feature collection with 2 features and 1 field\nGeometry type: POINT\nDimension: XY\nBounding box: xmin: 104.8443 ymin: 11.54366 xmax: 104.9047 ymax: 11.55349\nGeodetic CRS: WGS 84\n address\n1 Phnom Penh International Airport, Phnom Penh, Cambodia\n2 Khmer Soviet Friendship Hospital, Phnom Penh, Cambodia\n geometry\n1 POINT (104.8443 11.55349)\n2 POINT (104.9047 11.54366)\n\n\n\n\nSpherical geometry (s2) switched off\n\n\nTo create a sf POINT type object with only one pair of coordinate (WGS84, longitude=0.5, latitude = 45.5) :\n\nlibrary(sf)\ntest_point <- st_as_sf(data.frame(x = 0.5, y = 45.5), coords = c(\"x\", \"y\"), crs = 4326)\ntest_point\n\nSimple feature collection with 1 feature and 0 fields\nGeometry type: POINT\nDimension: XY\nBounding box: xmin: 0.5 ymin: 45.5 xmax: 0.5 ymax: 45.5\nGeodetic CRS: WGS 84\n geometry\n1 POINT (0.5 45.5)\n\n\nWe can display this object sf on an OpenStreetMap basesmap with the package maptiles maptiles (Giraud 2021).\n\nlibrary(maptiles)\nosm <- get_tiles(x = place_sf, zoom = 12)\nplot_tiles(osm)\nplot(st_geometry(place_sf), pch = 2, cex = 2, col = \"red\", add = TRUE)" - }, - { - "objectID": "02-data_acquisition.html#online-databases", - "href": "02-data_acquisition.html#online-databases", - "title": "2 Data Acquisition", - "section": "2.2 Online databases", - "text": "2.2 Online databases" - }, - { - "objectID": "02-data_acquisition.html#openstreetmap", - "href": "02-data_acquisition.html#openstreetmap", - "title": "2 Data Acquisition", - "section": "2.3 OpenStreetMap", - "text": "2.3 OpenStreetMap\n\n\n\nOpenStreetMap (OSM) is a participatory mapping project that aims to built a free geographic database on a global scale. OpenStreetMap lets you view, edit and use geographic data around the world.\nTerms of use\n\nOpenStreetMap is open data : you are free to use it for ant purpose as long as you credit OpenStreetMap and its contributers. If you modify or rely data in any way, you may distribute the result only under the same license. (…)\n\nContributors\n\n(…) Our contributors incloude enthusiastic mapmakers, GIS professional, engineers running OSM servers, humanitarians mapping disaster-stricken areas and many mmore.(…)\n\n\n2.3.1 Display and interactive map\nThe two main packages that allow to display as interactive map based on OSM are leaflet (Cheng, Karambelkar, and Xie 2022) and mapview (Appelhans et al. 2022).\n\n2.3.1.1 leaflet\n leaflet uses the javascript library Leaflet (Agafonkin 2015) to create interactive maps.\n\nlibrary(sf)\nlibrary(leaflet)\n\ndistrict <- st_read(\"data_cambodia/cambodia.gpkg\", layer = \"district\", quiet = TRUE)\nhospital <- st_read(\"data_cambodia/cambodia.gpkg\", layer = \"hospital\", quiet = TRUE)\n\n\nbanan <- district[district$ADM2_PCODE == \"KH0201\", ] #Select one district (Banan district: KH0201)\nhealth_banan <- hospital[hospital$DCODE == \"201\", ] #Select Health centers in Banan\n\nbanan <- st_transform(banan, 4326) #Transform coordinate system to WGS84\nhealth_banan <- st_transform(health_banan, 4326)\n\nbanan_map <- leaflet(banan) %>% #Create interactive map\n addTiles() %>%\n addPolygons() %>%\n addMarkers(data = health_banan)\nbanan_map\n\n\n\n\n\n\n\n\n\n\n\nWebsite of leaflet\nLeaflet for R\n\n\n\n\n\n2.3.1.2 mapview\n mapview relies on leaflet to create interactive maps, its use is easier and its documentation is a bit dense.\n\nlibrary(mapview)\nmapview(banan) + mapview(health_banan)\n\n\n\n\n\n\n\n\n\n\n\n\nWebsite of mapview\nmapview\n\n\n\n\n\n\n2.3.2 Import basemaps\nThe package maptiles (Giraud 2021) allows downlaoding and displaying raster basemaps.\nThe function get_tiles() allow you to download OSM background maps and the function plot_tiles() allows to display them.\nRenders are better if the input data used the same coordinate system as the tiles (EPSG:3857).\n\nlibrary(sf)\nlibrary(maptiles)\ndistrict <- st_read(\"data_cambodia/cambodia.gpkg\", layer = \"district\", quiet = TRUE)\ndistrict <- st_transform(district, 3857)\nosm_tiles <- get_tiles(x = district, zoom = 10, crop = TRUE)\nplot_tiles(osm_tiles)\nplot(st_geometry(district), border = \"grey20\", lwd = .7, add = TRUE)\nmtext(side = 1, line = -2, text = get_credit(\"OpenStreetMap\"), col=\"tomato\")\n\n\n\n\n\n\n2.3.3 Import OSM data\n\n2.3.3.1 osmdata\n The package osmdata (Padgham et al. 2017) allows extracting vector data from OSM using the Overpass turbo API.\n\nlibrary(sf)\nlibrary(osmdata)\nlibrary(sf)\n\ncountry <- st_read(\"data_cambodia/cambodia.gpkg\", layer = \"country\", quiet = TRUE)\next <- opq(bbox = st_bbox(st_transform(country, 4326))) #Define the bounding box\nquery <- add_osm_feature(opq = ext, key = 'amenity', value = \"hospital\") #Health Center Extraction\nhospital <- osmdata_sf(query)\nhospital <- unique_osmdata(hospital) #Result reduction (points composing polygon are detected)\n\nThe result contains a point layer and a polygon layer. The polygon layer contains polygons that represent fast food-food place. To obtain a coherent point layer we can use the centroids of the polygons.\n\nhospital_point <- hospital$osm_points\nhospital_poly <- hospital$osm_polygons #Extracting centroids of polygons\nhospital_poly_centroid <- st_centroid(hospital_poly)\n\ncambodia_point <- intersect(names(hospital_point), names(hospital_poly_centroid)) #Identify fields in Cambodia boundary\nhospitals <- rbind(hospital_point[, cambodia_point], hospital_poly_centroid[, cambodia_point]) #Gather the 2 objects\n\nResult display\n\nlibrary(mapview)\nmapview(country) + mapview(hospitals)\n\n\n\n\n\n\n\n\n\n\n\n\nWebsite of osmdata\nosmdata\n\n\n\n\n\n2.3.3.2 osmextract\n The package osmextract (Gilardi and Lovelace 2021) allows to extract data from an OSM database directly. This package make it possible to work on very large volumes of data.\n\n\n\n\n\n\nWebsite of osmextract\nosmextract\n\n\n\nFor administrative boundaries, check here the administrative levels by country:\n\nlibrary(osmextract)\nlibrary(mapsf)\nprovince <- oe_get(\n place = \"Cambodia\",\n download_directory = \"data_cambodia/\",\n layer = \"multipolygons\",\n extra_tags = c(\"wikidata\", \"ISO3166-2\", \"wikipedia\", \"name:en\"),\n vectortranslate_options = c(\n \"-t_srs\", \"EPSG:32648\",\n \"-nlt\", \"PROMOTE_TO_MULTI\",\n \"-where\", \"type = 'boundary' AND boundary = 'administrative' AND admin_level = '4'\"\n ))\n\n0...10...20...30...40...50...60...70...80...90...100 - done.\nReading layer `multipolygons' from data source \n `/home/lucas/Documents/Framagit/rspatial-for-onehealth/data_cambodia/geofabrik_cambodia-latest.gpkg' \n using driver `GPKG'\nSimple feature collection with 25 features and 29 fields\nGeometry type: MULTIPOLYGON\nDimension: XY\nBounding box: xmin: 211418.1 ymin: 1047956 xmax: 784614.9 ymax: 1625621\nProjected CRS: WGS 84 / UTM zone 48N\n\nmf_map(x = province)\n\n\n\n\n\nroads <- oe_get(\n place = \"Cambodia\",\n download_directory = \"data_cambodia/\",\n layer = \"lines\",\n extra_tags = c(\"access\", \"service\", \"maxspeed\"),\n vectortranslate_options = c(\n \"-t_srs\", \"EPSG:32648\",\n \"-nlt\", \"PROMOTE_TO_MULTI\",\n \"-where\", \"\n highway IS NOT NULL\n AND\n highway NOT IN (\n 'abandonded', 'bus_guideway', 'byway', 'construction', 'corridor', 'elevator',\n 'fixme', 'escalator', 'gallop', 'historic', 'no', 'planned', 'platform',\n 'proposed', 'cycleway', 'pedestrian', 'bridleway', 'footway',\n 'steps', 'path', 'raceway', 'road', 'service', 'track'\n )\n \"\n),\n boundary = subset(province, name_en == \"Phnom Penh\"),\n boundary_type = \"clipsrc\"\n)\n\n0...10...20...30...40...50...60...70...80...90...100 - done.\nReading layer `lines' from data source \n `/home/lucas/Documents/Framagit/rspatial-for-onehealth/data_cambodia/geofabrik_cambodia-latest.gpkg' \n using driver `GPKG'\nSimple feature collection with 18794 features and 12 fields\nGeometry type: MULTILINESTRING\nDimension: XY\nBounding box: xmin: 469524.2 ymin: 1263268 xmax: 503494.3 ymax: 1296780\nProjected CRS: WGS 84 / UTM zone 48N\n\nmf_map(x = roads)" - }, - { - "objectID": "02-data_acquisition.html#geocoding", - "href": "02-data_acquisition.html#geocoding", - "title": "2 Data Acquisition", - "section": "2.4 Geocoding", - "text": "2.4 Geocoding\nServeral pakages alow you to geocode addresses. The package tidygeocoder (Cambon et al. 2021) allow the use of a large number of online geocoding sevices. The package banR (Gombin and Chevalier 2022), which is based on the National Address Base, is the particularly suitable for geocoding addresses in France.\n\n2.4.1 tidygeocoder\n\nlibrary(tidygeocoder)\ntest_adresses <- data.frame(\n address = c(\"Phnom Penh International Airport, Phnom Penh, Cambodia\",\n \"Khmer Soviet Friendship Hospital, Phnom Penh, Cambodia\"))\nplaces1 <- geocode(test_adresses, address)\nplaces1\n\n# A tibble: 2 × 3\n address lat long\n <chr> <dbl> <dbl>\n1 Phnom Penh International Airport, Phnom Penh, Cambodia 11.6 105.\n2 Khmer Soviet Friendship Hospital, Phnom Penh, Cambodia 11.5 105.\n\n\n\n\n\n\n\n\nWebsite by tidygeocoder :\ntidygeocoder\n\n\n\n\n\n2.4.2 banR (Base Adresse Nationale)\n\n# remotes::install_github(\"joelgombin/banR\")\nlibrary(banR)\nmes_adresses <- data.frame(\n address = c(\"19 rue Michel Bakounine, 29600 Morlaix, France\",\n \"2 Allee Emile Pouget, 920128 Boulogne-Billancourt\")\n)\nplaces2 <- geocode_tbl(tbl = mes_adresses, adresse = address)\nplaces2\n\n# A tibble: 2 × 18\n address latit…¹ longi…² resul…³ resul…ⴠresul…ⵠresul…ⶠresul…ⷠresul…â¸\n <chr> <dbl> <dbl> <chr> <dbl> <chr> <chr> <chr> <chr> \n1 19 rue Michel… 48.6 -3.82 19 Rue… 0.81 housen… 29151_… 19 Rue Mi…\n2 2 Allee Emile… 48.8 2.24 2 Allé… 0.83 housen… 92012_… 2 Allée …\n# … with 9 more variables: result_street <chr>, result_postcode <chr>,\n# result_city <chr>, result_context <chr>, result_citycode <chr>,\n# result_oldcitycode <chr>, result_oldcity <chr>, result_district <chr>,\n# result_status <chr>, and abbreviated variable names ¹​latitude, ²​longitude,\n# ³​result_label, â´â€‹result_score, âµâ€‹result_type, â¶â€‹result_id,\n# â·â€‹result_housenumber, â¸â€‹result_name\n\n\n\n\n\n\n\n\nWebsite of banR :\nAn R client for the BAN API" - }, - { - "objectID": "02-data_acquisition.html#digitization", - "href": "02-data_acquisition.html#digitization", - "title": "2 Data Acquisition", - "section": "2.5 Digitization", - "text": "2.5 Digitization\nThe package mapedit (Appelhans, Russell, and Busetto 2020) allows you to digitize base map directly in R. Although it can be practical in some cases, in package cannot replace the functionalities of a GIS for important digitization tasks.\n\n\n\nGif taken from mapedit website\n\n\n\n\n\n\nAgafonkin, Vladimir. 2015. “Leaflet Javascript Libary.â€\n\n\nAppelhans, Tim, Florian Detsch, Christoph Reudenbach, and Stefan Woellauer. 2022. “Mapview: Interactive Viewing of Spatial Data in r.†https://CRAN.R-project.org/package=mapview.\n\n\nAppelhans, Tim, Kenton Russell, and Lorenzo Busetto. 2020. “Mapedit: Interactive Editing of Spatial Data in r.†https://CRAN.R-project.org/package=mapedit.\n\n\nCambon, Jesse, Diego Hernangómez, Christopher Belanger, and Daniel Possenriede. 2021. “Tidygeocoder: An r Package for Geocoding†6: 3544. https://doi.org/10.21105/joss.03544.\n\n\nCheng, Joe, Bhaskar Karambelkar, and Yihui Xie. 2022. “Leaflet: Create Interactive Web Maps with the JavaScript ’Leaflet’ Library.†https://CRAN.R-project.org/package=leaflet.\n\n\nGilardi, Andrea, and Robin Lovelace. 2021. “Osmextract: Download and Import Open Street Map Data Extracts.†https://CRAN.R-project.org/package=osmextract.\n\n\nGiraud, Timothée. 2021. “Maptiles: Download and Display Map Tiles.†https://CRAN.R-project.org/package=maptiles.\n\n\nGombin, Joel, and Paul-Antoine Chevalier. 2022. “banR: R Client for the BAN API.â€\n\n\nPadgham, Mark, Bob Rudis, Robin Lovelace, and Maëlle Salmon. 2017. “Osmdata†2. https://doi.org/10.21105/joss.00305." - }, - { - "objectID": "03-vector_data.html", - "href": "03-vector_data.html", - "title": "3 Vector Data", - "section": "", - "text": "The st_read() and st_write() function are used to import and export many types of files. The following lines import the administrative data in district level layer located in the cambodia.gpkg geopackage file.\n\nlibrary(sf)\n\ndistrict = st_read(\"data_cambodia/cambodia.gpkg\", layer = \"district\") #import district data\n\nReading layer `district' from data source \n `/home/lucas/Documents/Framagit/rspatial-for-onehealth/data_cambodia/cambodia.gpkg' \n using driver `GPKG'\nSimple feature collection with 197 features and 10 fields\nGeometry type: MULTIPOLYGON\nDimension: XY\nBounding box: xmin: 211534.7 ymin: 1149105 xmax: 784612.1 ymax: 1625495\nProjected CRS: WGS 84 / UTM zone 48N\n\n\nThe following lines export the district object to a data folder in geopackage and shapefile format.\n\nst_write(obj = district, dsn = \"data_cambodia/district.gpkg\", delete_layer = TRUE)\n\nDeleting layer `district' using driver `GPKG'\nWriting layer `district' to data source \n `data_cambodia/district.gpkg' using driver `GPKG'\nWriting 197 features with 10 fields and geometry type Multi Polygon.\n\nst_write(obj = district, \"data_cambodia/district.shp\", layer_options = \"ENCODING=UTF-8\", delete_layer = TRUE)\n\nDeleting layer `district' using driver `ESRI Shapefile'\nWriting layer `district' to data source \n `data_cambodia/district.shp' using driver `ESRI Shapefile'\noptions: ENCODING=UTF-8 \nWriting 197 features with 10 fields and geometry type Multi Polygon." - }, - { - "objectID": "03-vector_data.html#display", - "href": "03-vector_data.html#display", - "title": "3 Vector Data", - "section": "3.2 Display", - "text": "3.2 Display\nPreview of the variables via the function head() and plot().\n\nhead(district)\n\nSimple feature collection with 6 features and 10 fields\nGeometry type: MULTIPOLYGON\nDimension: XY\nBounding box: xmin: 300266.9 ymin: 1180566 xmax: 767313.9 ymax: 1563861\nProjected CRS: WGS 84 / UTM zone 48N\n ADM2_EN ADM2_PCODE ADM1_EN ADM1_PCODE Male Female T_POP Area.Km2.\n1 Aek Phnum KH0205 Battambang KH02 41500 43916 85416 1067.8638\n2 Andoung Meas KH1601 Ratanak Kiri KH16 7336 7372 14708 837.7064\n3 Angk Snuol KH0808 Kandal KH08 45436 47141 92577 183.9050\n4 Angkor Borei KH2101 Takeo KH21 26306 27168 53474 301.0502\n5 Angkor Chey KH0701 Kampot KH07 42448 44865 87313 316.7576\n6 Angkor Chum KH1701 Siemreap KH17 34269 34576 68845 478.6988\n Status DENs geom\n1 <4500km2 79.98773 MULTIPOLYGON (((306568.1 14...\n2 <4500km2 17.55747 MULTIPOLYGON (((751459.2 15...\n3 <4500km2 503.39580 MULTIPOLYGON (((471954.3 12...\n4 <4500km2 177.62485 MULTIPOLYGON (((490048.2 12...\n5 <4500km2 275.64610 MULTIPOLYGON (((462702.2 12...\n6 <4500km2 143.81696 MULTIPOLYGON (((363642.5 15...\n\nplot(district)\n\n\n\n\nfor Geometry display only.\n\nplot(st_geometry(district))" - }, - { - "objectID": "03-vector_data.html#coordinate-systems", - "href": "03-vector_data.html#coordinate-systems", - "title": "3 Vector Data", - "section": "3.3 Coordinate systems", - "text": "3.3 Coordinate systems\n\n3.3.1 Look up the coordinate system of an object\nThe function st_crs() makes it possible to consult the system of coordinates used and object sf.\n\nst_crs(district)\n\nCoordinate Reference System:\n User input: WGS 84 / UTM zone 48N \n wkt:\nPROJCRS[\"WGS 84 / UTM zone 48N\",\n BASEGEOGCRS[\"WGS 84\",\n ENSEMBLE[\"World Geodetic System 1984 ensemble\",\n MEMBER[\"World Geodetic System 1984 (Transit)\"],\n MEMBER[\"World Geodetic System 1984 (G730)\"],\n MEMBER[\"World Geodetic System 1984 (G873)\"],\n MEMBER[\"World Geodetic System 1984 (G1150)\"],\n MEMBER[\"World Geodetic System 1984 (G1674)\"],\n MEMBER[\"World Geodetic System 1984 (G1762)\"],\n MEMBER[\"World Geodetic System 1984 (G2139)\"],\n ELLIPSOID[\"WGS 84\",6378137,298.257223563,\n LENGTHUNIT[\"metre\",1]],\n ENSEMBLEACCURACY[2.0]],\n PRIMEM[\"Greenwich\",0,\n ANGLEUNIT[\"degree\",0.0174532925199433]],\n ID[\"EPSG\",4326]],\n CONVERSION[\"UTM zone 48N\",\n METHOD[\"Transverse Mercator\",\n ID[\"EPSG\",9807]],\n PARAMETER[\"Latitude of natural origin\",0,\n ANGLEUNIT[\"degree\",0.0174532925199433],\n ID[\"EPSG\",8801]],\n PARAMETER[\"Longitude of natural origin\",105,\n ANGLEUNIT[\"degree\",0.0174532925199433],\n ID[\"EPSG\",8802]],\n PARAMETER[\"Scale factor at natural origin\",0.9996,\n SCALEUNIT[\"unity\",1],\n ID[\"EPSG\",8805]],\n PARAMETER[\"False easting\",500000,\n LENGTHUNIT[\"metre\",1],\n ID[\"EPSG\",8806]],\n PARAMETER[\"False northing\",0,\n LENGTHUNIT[\"metre\",1],\n ID[\"EPSG\",8807]]],\n CS[Cartesian,2],\n AXIS[\"(E)\",east,\n ORDER[1],\n LENGTHUNIT[\"metre\",1]],\n AXIS[\"(N)\",north,\n ORDER[2],\n LENGTHUNIT[\"metre\",1]],\n USAGE[\n SCOPE[\"Engineering survey, topographic mapping.\"],\n AREA[\"Between 102°E and 108°E, northern hemisphere between equator and 84°N, onshore and offshore. Cambodia. China. Indonesia. Laos. Malaysia - West Malaysia. Mongolia. Russian Federation. Singapore. Thailand. Vietnam.\"],\n BBOX[0,102,84,108]],\n ID[\"EPSG\",32648]]\n\n\n\n\n3.3.2 Changing the coordinate system of an object\nThe function st_transform() allows to change the coordinate system of an sf object, to re-project it.\n\nplot(st_geometry(district))\ntitle(\"WGS 84 / UTM zone 48N\")\n\n\n\ndist_reproj <- st_transform(district, \"epsg:4326\")\nplot(st_geometry(dist_reproj))\ntitle(\"WGS84\")\n\n\n\n\nThe Spatial Reference site provides reference for a large number of coordinate systems." - }, - { - "objectID": "03-vector_data.html#selection-by-attributes", - "href": "03-vector_data.html#selection-by-attributes", - "title": "3 Vector Data", - "section": "3.4 Selection by attributes", - "text": "3.4 Selection by attributes\nThe object sf are data.frame, so you can select their rows and columns in the same way as data.frame.\n\n# row Selection\ndistrict[1:2, ]\n\nSimple feature collection with 2 features and 10 fields\nGeometry type: MULTIPOLYGON\nDimension: XY\nBounding box: xmin: 300266.9 ymin: 1449408 xmax: 767313.9 ymax: 1563861\nProjected CRS: WGS 84 / UTM zone 48N\n ADM2_EN ADM2_PCODE ADM1_EN ADM1_PCODE Male Female T_POP Area.Km2.\n1 Aek Phnum KH0205 Battambang KH02 41500 43916 85416 1067.8638\n2 Andoung Meas KH1601 Ratanak Kiri KH16 7336 7372 14708 837.7064\n Status DENs geom\n1 <4500km2 79.98773 MULTIPOLYGON (((306568.1 14...\n2 <4500km2 17.55747 MULTIPOLYGON (((751459.2 15...\n\ndistrict[district$ADM1_EN == \"Phnom Penh\", ]\n\nSimple feature collection with 12 features and 10 fields\nGeometry type: MULTIPOLYGON\nDimension: XY\nBounding box: xmin: 468677.5 ymin: 1262590 xmax: 505351.9 ymax: 1297419\nProjected CRS: WGS 84 / UTM zone 48N\nFirst 10 features:\n ADM2_EN ADM2_PCODE ADM1_EN ADM1_PCODE Male Female T_POP\n29 Chamkar Mon KH1201 Phnom Penh KH12 52278 54478 106756\n31 Chbar Ampov KH1212 Phnom Penh KH12 64816 68243 133059\n43 Chraoy Chongvar KH1210 Phnom Penh KH12 30920 31087 62007\n48 Dangkao KH1205 Phnom Penh KH12 46999 48525 95524\n50 Doun Penh KH1202 Phnom Penh KH12 33844 36471 70315\n93 Mean Chey KH1206 Phnom Penh KH12 68381 70366 138747\n117 Praek Pnov KH1211 Phnom Penh KH12 27566 27698 55264\n118 Prampir Meakkakra KH1203 Phnom Penh KH12 31091 33687 64778\n133 Pur SenChey KH1209 Phnom Penh KH12 95050 109297 204347\n141 Russey Keo KH1207 Phnom Penh KH12 67357 68419 135776\n Area.Km2. Status DENs geom\n29 11.049600 <4500km2 9661.5265 MULTIPOLYGON (((494709.4 12...\n31 86.780498 <4500km2 1533.2823 MULTIPOLYGON (((498855.3 12...\n43 85.609156 <4500km2 724.3034 MULTIPOLYGON (((491161.3 12...\n48 113.774833 <4500km2 839.5881 MULTIPOLYGON (((489191.1 12...\n50 7.734808 <4500km2 9090.7234 MULTIPOLYGON (((492447.1 12...\n93 28.998026 <4500km2 4784.7051 MULTIPOLYGON (((491068.2 12...\n117 115.384300 <4500km2 478.9560 MULTIPOLYGON (((481483.3 12...\n118 2.224892 <4500km2 29115.1253 MULTIPOLYGON (((491067.6 12...\n133 148.357984 <4500km2 1377.3913 MULTIPOLYGON (((479078.8 12...\n141 23.381517 <4500km2 5806.9800 MULTIPOLYGON (((490264.8 12...\n\n# column selection\ndistrict[district$ADM1_EN == \"Phnom Penh\", 1:4] \n\nSimple feature collection with 12 features and 4 fields\nGeometry type: MULTIPOLYGON\nDimension: XY\nBounding box: xmin: 468677.5 ymin: 1262590 xmax: 505351.9 ymax: 1297419\nProjected CRS: WGS 84 / UTM zone 48N\nFirst 10 features:\n ADM2_EN ADM2_PCODE ADM1_EN ADM1_PCODE\n29 Chamkar Mon KH1201 Phnom Penh KH12\n31 Chbar Ampov KH1212 Phnom Penh KH12\n43 Chraoy Chongvar KH1210 Phnom Penh KH12\n48 Dangkao KH1205 Phnom Penh KH12\n50 Doun Penh KH1202 Phnom Penh KH12\n93 Mean Chey KH1206 Phnom Penh KH12\n117 Praek Pnov KH1211 Phnom Penh KH12\n118 Prampir Meakkakra KH1203 Phnom Penh KH12\n133 Pur SenChey KH1209 Phnom Penh KH12\n141 Russey Keo KH1207 Phnom Penh KH12\n geom\n29 MULTIPOLYGON (((494709.4 12...\n31 MULTIPOLYGON (((498855.3 12...\n43 MULTIPOLYGON (((491161.3 12...\n48 MULTIPOLYGON (((489191.1 12...\n50 MULTIPOLYGON (((492447.1 12...\n93 MULTIPOLYGON (((491068.2 12...\n117 MULTIPOLYGON (((481483.3 12...\n118 MULTIPOLYGON (((491067.6 12...\n133 MULTIPOLYGON (((479078.8 12...\n141 MULTIPOLYGON (((490264.8 12..." - }, - { - "objectID": "03-vector_data.html#spatial-selection", - "href": "03-vector_data.html#spatial-selection", - "title": "3 Vector Data", - "section": "3.5 Spatial selection", - "text": "3.5 Spatial selection\n\n3.5.1 Intersections\nSelection of roads that are intersecting dangkao district\n\nroad <- st_read(\"data_cambodia/cambodia.gpkg\", layer = \"road\", quiet = TRUE) %>% st_cast(\"LINESTRING\")\ndangkao <- district[district$ADM2_EN == \"Dangkao\", ]\ninter <- st_intersects(x = road, y = dangkao, sparse = FALSE)\nhead(inter)\n\n [,1]\n[1,] FALSE\n[2,] FALSE\n[3,] FALSE\n[4,] FALSE\n[5,] FALSE\n[6,] FALSE\n\ndim(inter)\n\n[1] 108285 1\n\n\nThe inter object is a matrix which indicates for each of element of the road object (6 elements) whether it intersects each elements the dangkao object (1 element). The dimension of the matrix is therefore indeed 6 rows * 1 column. Note the use of the parameter sparse = FALSE here. It is then possible to create a column from this object:\n\nroad$intersect_dangkao <- inter\nplot(st_geometry(dangkao), col = \"lightblue\")\nplot(st_geometry(road), add = TRUE)\nplot(st_geometry(road[road$intersect_dangkao, ]),\n col = \"tomato\", lwd = 1.5, add = TRUE)\n\n\n\n\n\n3.5.1.1 Difference between sparse = TRUE and sparse = FALSE\n\n\n\n\n\n\nsparse = TRUE\n\n\ninter <- st_intersects(x = grid, y = pt, sparse = TRUE)\ninter\n\nSparse geometry binary predicate list of length 4, where the predicate\nwas `intersects'\n 1: (empty)\n 2: 6, 7\n 3: 1, 4\n 4: 2, 3, 5, 8\n\n\n\nsparse = FALSE\n\n\ninter <- st_intersects(x = grid, y = pt, sparse = FALSE)\nrownames(inter) <- grid$id\ncolnames(inter) <- pt$id\ninter\n\n a b c d e f g h\n1 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE\n2 FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE\n3 TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE\n4 FALSE TRUE TRUE FALSE TRUE FALSE FALSE TRUE\n\n\n\n\n\n3.5.2 Contains / Within\nSelection of roads contained in the municipality of Dangkao. The function st_within() works like the function st_intersects()\n\nroad$within_dangkao <- st_within(road, dangkao, sparse = FALSE)\nplot(st_geometry(dangkao), col = \"lightblue\")\nplot(st_geometry(road), add = TRUE)\nplot(st_geometry(road[road$within_dangkao, ]), col = \"tomato\",\n lwd = 2, add = TRUE)" - }, - { - "objectID": "03-vector_data.html#operation-of-geometries", - "href": "03-vector_data.html#operation-of-geometries", - "title": "3 Vector Data", - "section": "3.6 Operation of geometries", - "text": "3.6 Operation of geometries\n\n3.6.1 Extract centroids\n\ndist_c <- st_centroid(district)\nplot(st_geometry(district))\nplot(st_geometry(dist_c), add = TRUE, cex = 1.2, col = \"red\", pch = 20)\n\n\n\n\n\n\n3.6.2 Aggregate polygons\n\ncambodia_dist <- st_union(district) \nplot(st_geometry(district), col = \"lightblue\")\nplot(st_geometry(cambodia_dist), add = TRUE, lwd = 2, border = \"red\")\n\n\n\n\n\n\n3.6.3 Aggregate polygons based on a variable\n\ndist_union <- aggregate(x = district[,c(\"T_POP\")],\n by = list(STATUT = district$Status),\n FUN = \"sum\")\nplot(dist_union)\n\n\n\n\n\n\n3.6.4 Create a buffer zone\n\ndangkao_buffer <- st_buffer(x = dangkao, dist = 1000)\nplot(st_geometry(dangkao_buffer), col = \"#E8DAEF\", lwd=2, border = \"#6C3483\")\nplot(st_geometry(dangkao), add = TRUE, lwd = 2)\n\n\n\n\n\n\n3.6.5 Making an intersection\nBy using the function st_intersection() we will cut one layer by another.\n\nlibrary(magrittr)\n# creation of a buffer zone around the centroid of the municipality of Dangkao district\n# using the pipe\nzone <- st_geometry(dangkao) %>%\n st_centroid() %>%\n st_buffer(30000)\nplot(st_geometry(district))\nplot(zone, border = \"#F06292\", lwd = 2, add = TRUE)\n\n\n\ndist_z <- st_intersection(x = district, y = zone)\nplot(st_geometry(district))\nplot(st_geometry(dist_z), col=\"#AF7AC5\", border=\"#F9E79F\", add=T)\n\n\n\nplot(st_geometry(dist_z))\n\n\n\n\n\n\n3.6.6 Create regular grid\nThe function st_make_grid() allows you to create regular grid. The function produce and object sfc, you must then use the function st_sf() to transform the object sfc into and object sf. During this transformation we add here a column of unique identifiers.\n\ngrid <- st_make_grid(x = district, cellsize = 10000)\ngrid <- st_sf(ID = 1:length(grid), geom = grid)\n\nplot(st_geometry(grid), col = \"grey\", border = \"white\")\nplot(st_geometry(district), border = \"grey50\", add = TRUE)\n\n\n\n\n\n\n3.6.7 Counting points in a polygon (in a grid tile)\n\n# selection of grid tiles that intersect the district\n\ninter <- st_intersects(grid, cambodia_dist, sparse = FALSE)\ngrid <- grid[inter, ]\n\ncase_cambodia <- st_read(\"data_cambodia/cambodia.gpkg\", layer = \"cases\" , quiet = TRUE)\nplot(st_geometry(grid), col = \"grey\", border = \"white\")\nplot(st_geometry(case_cambodia), pch = 20, col = \"red\", add = TRUE, cex = 0.8)\n\n\n\ninter <- st_intersects(grid, case_cambodia, sparse = TRUE)\nlength(inter)\n\n[1] 1964\n\n\nHere we use the argument sparse = TRUE. The inter object is a list the length of the grid and each item in the list contain the index of the object items of cases and grid intersection.\nFor example grid tile 35th intersect with four cases 97, 138, 189, 522, 624, 696\n\ninter[35]\n\n[[1]]\n[1] 97 138 189 522 624 696\n\nplot(st_geometry(grid[35, ]))\nplot(st_geometry(case_cambodia), add = T)\nplot(st_geometry(case_cambodia[c(97, 138, 189, 522, 624, 696), ]), \n col = \"red\", pch = 19, add = TRUE)\n\n\n\n\nTo count number of case, simply go to the list and report length of the elements.\n\ngrid$nb_case <- sapply(X = inter, FUN = length) # create 'nb_case' column to store number of health centers in each grid tile \nplot(grid[\"nb_case\"])\n\n\n\n\n\n\n3.6.8 Aggregate point values into polygons\nIn this example we import a csv file that contain data from a population grid. Once import we transform it data.frame into an object sf.\nThe objective is to aggregate the values id these points (the population contained in the “DENs†field) in the municipalities of the district.\n\npp_pop_raw <- read.csv(\"data_cambodia/pp_pop_dens.csv\") # import file\npp_pop_raw$id <- 1:nrow(pp_pop_raw) # adding a unique identifier\npp_pop <- st_as_sf(pp_pop_raw, coords = c(\"X\", \"Y\"), crs = 32648) # Transform into object sf\npp_pop <- st_transform(pp_pop, st_crs(district)) # Transform projection\ninter <- st_intersection(pp_pop, district) # Intersection\ninter\n\nSimple feature collection with 1295 features and 12 fields\nGeometry type: POINT\nDimension: XY\nBounding box: xmin: 469177.5 ymin: 1263090 xmax: 505177.5 ymax: 1297090\nProjected CRS: WGS 84 / UTM zone 48N\nFirst 10 features:\n DENs id ADM2_EN ADM2_PCODE ADM1_EN ADM1_PCODE Male Female T_POP\n149 NA 149 Angk Snuol KH0808 Kandal KH08 45436 47141 92577\n150 NA 150 Angk Snuol KH0808 Kandal KH08 45436 47141 92577\n151 NA 151 Angk Snuol KH0808 Kandal KH08 45436 47141 92577\n186 NA 186 Angk Snuol KH0808 Kandal KH08 45436 47141 92577\n187 NA 187 Angk Snuol KH0808 Kandal KH08 45436 47141 92577\n188 NA 188 Angk Snuol KH0808 Kandal KH08 45436 47141 92577\n223 NA 223 Angk Snuol KH0808 Kandal KH08 45436 47141 92577\n224 NA 224 Angk Snuol KH0808 Kandal KH08 45436 47141 92577\n225 NA 225 Angk Snuol KH0808 Kandal KH08 45436 47141 92577\n226 3.400075 226 Angk Snuol KH0808 Kandal KH08 45436 47141 92577\n Area.Km2. Status DENs.1 geometry\n149 183.905 <4500km2 503.3958 POINT (469177.5 1267090)\n150 183.905 <4500km2 503.3958 POINT (470177.5 1267090)\n151 183.905 <4500km2 503.3958 POINT (471177.5 1267090)\n186 183.905 <4500km2 503.3958 POINT (469177.5 1268090)\n187 183.905 <4500km2 503.3958 POINT (470177.5 1268090)\n188 183.905 <4500km2 503.3958 POINT (471177.5 1268090)\n223 183.905 <4500km2 503.3958 POINT (469177.5 1269090)\n224 183.905 <4500km2 503.3958 POINT (470177.5 1269090)\n225 183.905 <4500km2 503.3958 POINT (471177.5 1269090)\n226 183.905 <4500km2 503.3958 POINT (472177.5 1269090)\n\n\nBy using the function st_intersection() we add to each point of the grid all the information on the municipality in which it is located.\nWe can then use the function aggregate() to aggregate the population by municipalities.\n\nresultat <- aggregate(x = list(pop_from_grid = inter$DENs), \n by = list(ADM2_EN = inter$ADM2_EN), \n FUN = \"sum\")\nhead(resultat)\n\n ADM2_EN pop_from_grid\n1 Angk Snuol NA\n2 Chamkar Mon 10492.7159\n3 Chbar Ampov 1593.9593\n4 Chraoy Chongvar 1434.1785\n5 Dangkao 942.3595\n6 Doun Penh 10781.8026\n\n\nWe can then create a new object with this result.\n\ndist_result <- merge(district, resultat, by = \"ADM2_EN\", all.x = TRUE)\ndist_result\n\nSimple feature collection with 197 features and 11 fields\nGeometry type: MULTIPOLYGON\nDimension: XY\nBounding box: xmin: 211534.7 ymin: 1149105 xmax: 784612.1 ymax: 1625495\nProjected CRS: WGS 84 / UTM zone 48N\nFirst 10 features:\n ADM2_EN ADM2_PCODE ADM1_EN ADM1_PCODE Male Female T_POP\n1 Aek Phnum KH0205 Battambang KH02 41500 43916 85416\n2 Andoung Meas KH1601 Ratanak Kiri KH16 7336 7372 14708\n3 Angk Snuol KH0808 Kandal KH08 45436 47141 92577\n4 Angkor Borei KH2101 Takeo KH21 26306 27168 53474\n5 Angkor Chey KH0701 Kampot KH07 42448 44865 87313\n6 Angkor Chum KH1701 Siemreap KH17 34269 34576 68845\n7 Angkor Thum KH1702 Siemreap KH17 13802 14392 28194\n8 Anlong Veaeng KH2201 Oddar Meanchey KH22 24122 23288 47410\n9 Aoral KH0504 Kampong Speu KH05 19874 19956 39830\n10 Ba Phnum KH1401 Prey Veng KH14 46562 49852 96414\n Area.Km2. Status DENs pop_from_grid geometry\n1 1067.8638 <4500km2 79.98773 NA MULTIPOLYGON (((306568.1 14...\n2 837.7064 <4500km2 17.55747 NA MULTIPOLYGON (((751459.2 15...\n3 183.9050 <4500km2 503.39580 NA MULTIPOLYGON (((471954.3 12...\n4 301.0502 <4500km2 177.62485 NA MULTIPOLYGON (((490048.2 12...\n5 316.7576 <4500km2 275.64610 NA MULTIPOLYGON (((462702.2 12...\n6 478.6988 <4500km2 143.81696 NA MULTIPOLYGON (((363642.5 15...\n7 357.8890 <4500km2 78.77862 NA MULTIPOLYGON (((376584.4 15...\n8 1533.5702 <4500km2 30.91479 NA MULTIPOLYGON (((404936.4 15...\n9 2381.7084 <4500km2 16.72329 NA MULTIPOLYGON (((414000.6 13...\n10 342.3439 <4500km2 281.62910 NA MULTIPOLYGON (((545045.4 12..." - }, - { - "objectID": "03-vector_data.html#measurements", - "href": "03-vector_data.html#measurements", - "title": "3 Vector Data", - "section": "3.7 Measurements", - "text": "3.7 Measurements\n\n3.7.1 Create a distance matrix\nIf the dataset’s projection system is specified, the distance are expressed in the projection measurement unit (most often in meter)\n\nmat <- st_distance(x = dist_c, y = dist_c)\nmat[1:5,1:5]\n\nUnits: [m]\n [,1] [,2] [,3] [,4] [,5]\n[1,] 0.0 425993.7 232592.12 298254.12 299106.92\n[2,] 425993.7 0.0 386367.88 414428.82 452431.87\n[3,] 232592.1 386367.9 0.00 67060.05 82853.88\n[4,] 298254.1 414428.8 67060.05 0.00 40553.15\n[5,] 299106.9 452431.9 82853.88 40553.15 0.00\n\n\n\n\n3.7.2 Calculate routes\n The package osrm (R-osrm?) acts as an interface R and the OSRM (luxen-vetter-2011?). This package allows to calculate time and distance matrices, road routes, isochrones. The package uses the OSRM demo server by default. In case of intensive use it is strongly recommended to use your own instance of OSRM (with Docker).\n\n3.7.2.1 Calculate a route\nThe fonction osrmRoute() allows you to calculate routes.\n\nlibrary(sf)\nlibrary(osrm)\nlibrary(maptiles)\ndistrict <- st_read(\"data_cambodia/cambodia.gpkg\",layer = \"district\", quiet = TRUE)\ndistrict <- st_transform(district, 32648)\n\nodongk <- district[district$ADM2_PCODE == \"KH0505\", ] # Itinerary between Odongk district and Toul Kouk\ntakmau <- district[district$ADM2_PCODE == \"KH0811\",]\nroute <- osrmRoute(src = odongk, \n dst = takmau, \n returnclass = \"sf\")\nosm <- get_tiles(route, crop = TRUE)\nplot_tiles(osm)\nplot(st_geometry(route), col = \"#b23a5f\", lwd = 6, add = T)\nplot(st_geometry(route), col = \"#eee0e5\", lwd = 1, add = T)\n\n\n\n\n\n\n3.7.2.2 Calculation of a time matrix\nThe function osrmTable() makes it possible to calculate matrices of distances or times by road.\nIn this example we calculate a time matrix between 2 addresses and health centers in Phnom Penh on foot.\n\nlibrary(sf)\nlibrary(tidygeocoder)\nhospital <- st_read(\"data_cambodia/cambodia.gpkg\",layer= \"hospital\", quiet = TRUE)\n\nhospital_pp <- hospital[hospital$PCODE == \"12\", ] # Selection of health centers in Phnom Penh\n\nadresses <- data.frame(adr = c(\"Royal Palace Park, Phnom Penh Phnom, Cambodia\",\n \"Wat Phnom Daun Penh, Phnom Penh, Cambodia\")) # Geocoding of 2 addresses in Phnom Penh\n\nplaces <- tidygeocoder::geocode(.tbl = adresses,address = adr)\nplaces\n\n# A tibble: 2 × 3\n adr lat long\n <chr> <dbl> <dbl>\n1 Royal Palace Park, Phnom Penh Phnom, Cambodia 11.6 105.\n2 Wat Phnom Daun Penh, Phnom Penh, Cambodia 11.6 105.\n\n# Calculation of the distance matrix between the 2 addresses and the health center in Phnom Penh\n\ncal_mat <- osrmTable(src = places[,c(1,3,2)], \n dst = hospital_pp, \n osrm.profile = \"foot\")\n\ncal_mat$durations[1:2, 1:5]\n\n 684 685 686 687 691\nRoyal Palace Park, Phnom Penh Phnom, Cambodia 55.9 71.6 64.4 40.2 76.7\nWat Phnom Daun Penh, Phnom Penh, Cambodia 60.1 80.4 40.1 32.8 53.1\n\n# Which address has better accessibility to health center in Phnom Penh?\n\nboxplot(t(cal_mat$durations[,]), cex.axis = 0.7)" - }, - { - "objectID": "04-raster_data.html", - "href": "04-raster_data.html", - "title": "4 Work with Raster Data", - "section": "", - "text": "This chapter is largely inspired by two presentation; Madelin (2021) and Nowosad (2021); carried out as part of the SIGR2021 thematic school." - }, - { - "objectID": "04-raster_data.html#format-of-objects-spatraster", - "href": "04-raster_data.html#format-of-objects-spatraster", - "title": "4 Work with Raster Data", - "section": "4.1 Format of objects SpatRaster", - "text": "4.1 Format of objects SpatRaster\nThe package terra (Hijmans 2022) allows to handle vector and raster data. To manipulate this spatial data, terra store it in object of type SpatVector and SpatRaster. In this chapter, we focus on the manipulation of raster data (SpatRaster) from functions offered by this package.\nAn object SpatRaster allows to handle vector and raster data, in one or more layers (variables). This object also stores a number of fundamental parameters that describe it (number of columns, rows, spatial extent, coordinate reference system, etc.).\n\n\n\nSource : (Racine 2016)" - }, - { - "objectID": "04-raster_data.html#importing-and-exporting-data", - "href": "04-raster_data.html#importing-and-exporting-data", - "title": "4 Work with Raster Data", - "section": "4.2 Importing and exporting data", - "text": "4.2 Importing and exporting data\nThe package terra allows importing and exporting raster files. It is based on the GDAL library which makes it possible to read and process a very large number of geographic image formats.\n\nlibrary(terra)\n\nThe function rast() allows you to create and/or import raster data. The following lines import the raster file elevation.tif (Tagged Image File Format) into an object of type SpatRaster (default).\n\nelevation <- rast(\"data_cambodia/elevation.tif\") \nelevation\n\nclass : SpatRaster \ndimensions : 5235, 6458, 1 (nrow, ncol, nlyr)\nresolution : 0.0008333394, 0.0008332568 (x, y)\nextent : 102.2935, 107.6752, 10.33984, 14.70194 (xmin, xmax, ymin, ymax)\ncoord. ref. : lon/lat WGS 84 (EPSG:4326) \nsource : elevation.tif \nname : elevation \n\n\nModifying the name of the stored variable (altitude).\n\nnames(elevation) <- \"Altitude\" \n\nThe function writeRaster() allow you to save an object SpatRaster on your machine, in the format of your choice.\n\nwriteRaster(x = elevation, filename = \"data_cambodia/new_elevation.tif\")" - }, - { - "objectID": "04-raster_data.html#displaying-a-spatraster-object", - "href": "04-raster_data.html#displaying-a-spatraster-object", - "title": "4 Work with Raster Data", - "section": "4.3 Displaying a SpatRaster object", - "text": "4.3 Displaying a SpatRaster object\nThe function plot() is use to display an object SpatRaster.\n\nplot(elevation)\n\n\n\n\n\n\n\n\nA raster always contains numerical data, but it can be both quantitative data and numerically coded qualitative (categorical) data (ex: type of land cover).\nSpecify the type of data stored with the augment type (type = \"continuous\" default), to display them correctly.\nImport and display of raster containing categorical data: Phnom Penh Land Cover 2019 (land cover types) with a resolution of 1.5 meters:\n\nlulc_2019 <- rast(\"data_cambodia/lulc_2019.tif\") #Import Phnom Penh landcover 2019, landcover types\n\nThe landcover data was produced from SPOT7 satellite image with 1.5 meter spatial resolution. An extraction centered on the municipality of Phnom Penh was then carried out.\n\nplot(lulc_2019, type = \"classes\")\n\n\n\n\n\n\n\n\nTo display the actual tiles of landcover types, as well as the official colors of Phnom Penh Landcover nomenclature (available here), you can proceed as follows.\n\nclass_name <- c(\n \"Roads\",\n \"Built-up areas\",\n \"Water Bodies and rivers\",\n \"Wetlands\",\n \"Dry bare area\",\n \"Bare crop fields\",\n \"Low vegetation areas\",\n \"High vegetation areas\",\n \"Forested areas\")\n\nclass_color <- c(\"#070401\", \"#c84639\", \"#1398eb\",\"#8bc2c2\",\n \"#dc7b34\", \"#a6bd5f\",\"#e8e8e8\", \"#4fb040\", \"#35741f\")\nplot(lulc_2019,\n type = \"classes\",\n levels = class_name,\n col = class_color,\n plg = list(cex = 0.7),\n mar = c(3.1, 3.1, 2.1, 10) #The margin are (bottom, left, top, right) respectively\n )" - }, - { - "objectID": "04-raster_data.html#change-to-the-study-area", - "href": "04-raster_data.html#change-to-the-study-area", - "title": "4 Work with Raster Data", - "section": "4.4 Change to the study area", - "text": "4.4 Change to the study area\n\n4.4.1 (Re)projections\nTo modify the projection system of a raster, use the function project(). It is then necessary to indicate the method for estimating the new cell values.\n\n\n\nSource : Centre Canadien de Télédétection\n\n\nFour interpolation methods are available:\n\nnear : nearest neighbor, fast and default method for qualitative data;\n\nbilinear : bilinear interpolation. Default method for quantitative data;\n\ncubic : cubic interpolation;\n\ncubicspline : cubic spline interpolation.\n\n\n# Re-project data \n\nelevation_utm = project(x = elevation, y = \"EPSG:32648\", method = \"bilinear\") #from WGS84(EPSG:4326) to UTM zone48N(EPSG:32648) \nlulc_2019_utm = project(x = lulc_2019, y = \"EPSG:32648\", method = \"near\") #keep original projection: UTM zone48N(EPSG:32648)\n\n\n\n\n\n\n\n\n\n\n\n\n4.4.2 Crop\nClipping a raster to the extent of another object SpatVector or SpatRaster is achievable with the crop().\n\n\n\n\n\n\n\n\n\n\n\nSource : (Racine 2016)\n\n\n\nImport vector data of (municipal divisions) using function vect. This data will be stored in an SpatVector object.\n\ndistrict <- vect(\"data_cambodia/cambodia.gpkg\", layer=\"district\")\n\nExtraction of district boundaries of Thma Bang district (ADM2_PCODE : KH0907).\n\nthma_bang <- subset(district, district$ADM2_PCODE == \"KH0907\") \n\nUsing the function crop(), Both data layers must be in the same projection.\n\ncrop_thma_bang <- crop(elevation_utm, thma_bang)\n\nplot(crop_thma_bang)\nplot(thma_bang, add=TRUE)\n\n\n\n\n\n\n\n\n\n\n4.4.3 Mask\nTo display only the values of a raster contained in a polygon, use the function mask().\n\n\n\nSource : (Racine 2016)\n\n\nCreation of a mask on the crop_thma_bang raster to the municipal limits (polygon) of Thma Bang district.\n\nmask_thma_bang <- mask(crop_thma_bang, thma_bang)\n\nplot(mask_thma_bang)\nplot(thma_bang, add = TRUE)\n\n\n\n\n\n\n\n\n\n\n4.4.4 Aggregation and disaggregation\nResampling a raster to a different resolution is done in two steps.\n\n\n\n\n\n\n1\n\n\n\n\n\n\n\n2\n\n\n\n\n\n\n\n3\n\n\n\n\n\n\nSource : (Racine 2016)\n\n\n\nDisplay the resolution of a raster with the function res().\n\nres(elevation_utm) #check cell size\n\n[1] 91.19475 91.19475\n\n\nCreate a grid with the same extent, then decrease the spatial resolution (larger cells).\n\nelevation_LowerGrid <- elevation_utm\n# elevation_HigherGrid <- elevation_utm\n\nres(elevation_LowerGrid) <- 1000 #cells size = 1000 meter\n# res(elevation_HigherGrid) <- 10 #cells size = 10 meter\n\nelevation_LowerGrid\n\nclass : SpatRaster \ndimensions : 484, 589, 1 (nrow, ncol, nlyr)\nresolution : 1000, 1000 (x, y)\nextent : 203586.3, 792586.3, 1142954, 1626954 (xmin, xmax, ymin, ymax)\ncoord. ref. : WGS 84 / UTM zone 48N (EPSG:32648) \n\n\nThe function resample() allows to resample the atarting values in the new spatial resolution. Several resampling methods are available (cf. partie 5.4.1).\n\nelevation_LowerGrid <- resample(elevation_utm, \n elevation_LowerGrid, \n method = \"bilinear\") \n\nplot(elevation_LowerGrid, \n main=\"Cell size = 1000m\\nBilinear resampling method\")\n\n\n\n\n\n\n\n\n\n\n4.4.5 Raster fusion\nMerge multiple objects SpatRaster into one with merge() or mosaic().\n\n\n\nSource : https://desktop.arcgis.com/fr/arcmap/10.3/manage-data/raster-and-images/what-is-a-mosaic.htm\n\n\nAfter cutting the elevation raster by the municipal boundary of Thma Bang district (cf partie 5.4.2), we do the same thing for the neighboring municipality of Phnum Kravanh district.\n\nphnum_kravanh <- subset(district, district$ADM2_PCODE == \"KH1504\") # Extraction of the municipal boundaries of Phnum Kravanh district\n\ncrop_phnum_kravanh <- crop(elevation_utm, phnum_kravanh) #clipping the elevation raster according to district boundaries\n\nThe crop_thma_bang and crop_phnum_kravanh elevation raster overlap spatially:\n\n\n\n\n\n\n\n\n\nThe difference between the functions merge() and mosiac() relates to values of the overlapping cells. The function mosaic() calculate the average value while merge() holding the value of the object SpaRaster called n the function.\n\n#in this example, merge() and mosaic() give the same result\nmerge_raster <- merge(crop_thma_bang, crop_phnum_kravanh) \nmosaic_raster <- mosaic(crop_thma_bang, crop_phnum_kravanh)\n\nplot(merge_raster)\n\n\n\n\n\n\n\n# plot(mosaic_raster)\n\n\n\n4.4.6 Segregate\nDecompose a raster by value (or modality) into different rasterlayers with the function segregate.\n\nlulc_2019_class <- segregate(lulc_2019, keep=TRUE, other=NA) #creating a raster layer by modality\nplot(lulc_2019_class)" - }, - { - "objectID": "04-raster_data.html#map-algebra", - "href": "04-raster_data.html#map-algebra", - "title": "4 Work with Raster Data", - "section": "4.5 Map Algebra", - "text": "4.5 Map Algebra\nMap algebra is classified into four groups of operation (Tomlin 1990):\n\nLocal : operation by cell, on one or more layers;\n\nFocal : neighborhood operation (surrounding cells);\n\nZonal : to summarize the matrix values for certain zones, usually irregular;\nGlobal : to summarize the matrix values of one or more matrices.\n\n\n\n\nSource : (Li 2009)\n\n\n\n4.5.1 Local operations\n\n\n\nSource : (Mennis 2015)\n\n\n\n4.5.1.1 Value replacement\n\nelevation_utm[elevation_utm[[1]]== -9999] <- NA #replaces -9999 values with NA\n\nelevation_utm[elevation_utm < 1500] <- NA #Replace values < 1500 with NA\n\n\nelevation_utm[is.na(elevation_utm)] <- 0 #replace NA values with 0\n\n\n\n4.5.1.2 Operation on each cell\n\nelevation_1000 <- elevation_utm + 1000 # Adding 1000 to the value of each cell\n\nelevation_median <- elevation_utm - global(elevation_utm, median)[[1]] # Removed median elevation to each cell's value\n\n\n\n\n\n\n\n\n\n\n\n\n4.5.1.3 Reclassification\nReclassifying raster values can be used to discretize quantitative data as well as to categorize qualitative categories.\n\nreclassif <- matrix(c(1, 2, 1, \n 2, 4, 2,\n 4, 6, 3,\n 6, 9, 4), \n ncol = 3, byrow = TRUE)\n\nValues between 1 and 2 will be replaced by the value 1.\nValues between 3 and 4 will be replaced by the value 2.\nValues between 5 and 6 will be replaced by the value 3. Values between 7 and 9 will be replaced by the value 4.\n…\n\nreclassif\n\n [,1] [,2] [,3]\n[1,] 1 2 1\n[2,] 2 4 2\n[3,] 4 6 3\n[4,] 6 9 4\n\n\nThe function classify() allows you to perform the reclassification.\n\nlulc_2019_reclass <- classify(lulc_2019, rcl = reclassif)\nplot(lulc_2019_reclass, type =\"classes\")\n\n\n\n\nDisplay with the official titles and colors of the different categories.\n\nplot(lulc_2019_reclass, \n type =\"classes\", \n levels=c(\"Urban areas\",\n \"Water body\",\n \"Bare areas\",\n \"Vegetation areas\"),\n col=c(\"#E6004D\",\n \"#00BFFF\",\n \"#D3D3D3\", \n \"#32CD32\"),\n mar=c(3, 1.5, 1, 11))\n\n\n\n\n\n\n\n\n\n\n4.5.1.4 Operation on several layers (ex: NDVI)\nIt is possible to calculate the value of a cell from its values stored in different layers of an object SpatRaster.\nPerhaps the most common example is the calculation of the Normalized Vegetation Index (NDVI). For each cell, a value is calculated from two layers of raster from a multispectral satellite image.\n\n# Import d'une image satellite multispectrale\nsentinel2a <- rast(\"data_cambodia/Sentinel2A.tif\")\n\nThis multispectral satellite image (10m resolution) dated 25/02/2020, was produced by Sentinel-2 satellite and was retrieved from plateforme Copernicus Open Access Hub. An extraction of Red and near infrared spectral bands, centered on the Phnom Penh city, was then carried out.\n\nplot(sentinel2a)\n\n\n\n\n\n\n\n\nTo lighten the code, we assign the two matrix layers in different SpatRaster objects.\n\nB04_Red <- sentinel2a[[1]] #spectral band Red\n\nB08_NIR <-sentinel2a[[2]] #spectral band near infrared\n\nFrom these two raster objects , we can calculate the normalized vegetation index:\n\\[{NDVI}=\\frac{\\mathrm{NIR} - \\mathrm{Red}} {\\mathrm{NIR} + \\mathrm{Red}}\\]\n\nraster_NDVI <- (B08_NIR - B04_Red ) / (B08_NIR + B04_Red )\n\nplot(raster_NDVI)\n\n\n\n\n\n\n\n\nThe higher the values (close to 1), the denser the vegetation.\n\n\n\n4.5.2 Focal operations\n\n\n\nSource : (Mennis 2015)\n\n\nFocal analysis conisders a cell plus its direct neighbors in contiguous and symmetrical (neighborhood operations). Most often, the value of the output cell is the result of a block of 3 x 3 (odd number) input cells.\nThe first step is to build a matrix that determines the block of cells that will be considered around each cell.\n\n# 5 x 5 matrix, where each cell has the same weight\nmon_focal <- matrix(1, nrow = 5, ncol = 5)\nmon_focal\n\n [,1] [,2] [,3] [,4] [,5]\n[1,] 1 1 1 1 1\n[2,] 1 1 1 1 1\n[3,] 1 1 1 1 1\n[4,] 1 1 1 1 1\n[5,] 1 1 1 1 1\n\n\nThe function focal() Then allows you to perform the desired analysis. For example: calculating the average of the values of all contiguous cells, for each cell in the raster.\n\nelevation_LowerGrid_mean <- focal(elevation_LowerGrid, \n w = mon_focal, \n fun = mean)\n\n\n\n\n\n\n\n\n\n\n\n4.5.2.1 Focal operations for elevation rasters\nThe function terrain() allows to perform focal analyzes specific to elevation rasters. Six operations are available:\n\nslope = calculation of the slope or degree of inclination of the surface;\n\naspect = calculate slope orientation;\n\nroughness = calculate of the variability or irregularity of the elevation;\n\nTPI = calculation of the index of topgraphic positions;\n\nTRI = elevation variability index calculation;\n\nflowdir = calculation of the water flow direction.\n\nExample with calculation of slopes(slope).\n\n#slope calculation\nslope <- terrain(elevation_utm, \"slope\", \n neighbors = 8, #8 (or 4) cells around taken into account\n unit = \"degrees\") #Output unit\n\nplot(slope) #Inclination of the slopes, in degrees\n\n\n\n\n\n\n\n\n\n\n\n4.5.3 Global operations\n\n\n\nSource : https://gisgeography.com/map-algebra-global-zonal-focal-local\n\n\nGlobal operation are used to summarize the matrix values of one or more matrices.\n\nglobal(elevation_utm, fun = \"mean\") #average values\n\n mean\nAltitude 80.01082\n\n\n\nglobal(elevation_utm, fun = \"sd\") #standard deviation\n\n sd\nAltitude 155.885\n\n\n\nfreq(lulc_2019_reclass) #frequency\n\n layer value count\n1 1 1 47485325\n2 1 2 13656289\n3 1 3 14880961\n4 1 4 37194979\n\ntable(lulc_2019_reclass[]) #contingency table\n\n\n 1 2 3 4 \n47485325 13656289 14880961 37194979 \n\n\nStatistical representations that summarize matrix information.\n\nhist(elevation_utm) #histogram\n\nWarning: [hist] a sample of3% of the cells was used\n\n\n\n\n\n\n\n\ndensity(elevation_utm) #density\n\n\n\n\n\n\n\n\n\n\n4.5.4 Zonal operation\n\n\n\nSource : (Mennis 2015)\n\n\nThe zonal operation make it possible to summarize the matrix values of certain zones (group of contiguous cells in space or in value).\n\n4.5.4.1 Zonal operation on an extraction\nAll global operations can be performed on an extraction of cells resulting from the functions crop(), mask(), segregate()…\nExample: average elevation for the city of Thma Bang district (cf partie 5.4.3).\n\n# Average value of the \"mask\" raster over Thma Bang district\nglobal(mask_thma_bang, fun = \"mean\", na.rm=TRUE)\n\n mean\nAltitude 584.7703\n\n\n\n\n4.5.4.2 Zonal operation from a vector layer\nThe function extract() allows you to extract and manipulate the values of cells that intersect vector data.\nExample from polygons:\n\n# Average elevation for each polygon (district)?\nelevation_by_dist <- extract(elevation_LowerGrid, district, fun=mean)\nhead(elevation_by_dist, 10)\n\n ID Altitude\n1 1 8.953352\n2 2 196.422240\n3 3 23.453937\n4 4 3.973118\n5 5 29.545801\n6 6 41.579593\n7 7 50.162749\n8 8 85.128777\n9 9 269.068091\n10 10 8.439041\n\n\n\n\n4.5.4.3 Zonal operation from raster\nZonal operation can be performed by area bounded by the categorical values of a second raster. For this, the two raster must have exaclty the same extent and the same resolution.\n\n#create a second raster with same resolution and extent as \"elevation_clip\"\nelevation_clip <- rast(\"data_cambodia/elevation_clip.tif\")\nelevation_clip_utm <- project(x = elevation_clip, y = \"EPSG:32648\", method = \"bilinear\")\nsecond_raster_CLC <- rast(elevation_clip_utm)\n\n#resampling of lulc_2019_reclass \nsecond_raster_CLC <- resample(lulc_2019_reclass, second_raster_CLC, method = \"near\") \n \n#added a variable name for the second raster\nnames(second_raster_CLC) <- \"lulc_2019_reclass_resample\"\n\n\n\n\n\n\n\n\n\n\nCalculation of the average elevation for the different areas of the second raster.\n\n#average elevation for each area of the \"second_raster\"\nzonal(elevation_clip_utm, second_raster_CLC , \"mean\", na.rm=TRUE)\n\n lulc_2019_reclass_resample elevation_clip\n1 1 12.83846\n2 2 8.31809\n3 3 11.41178\n4 4 11.93546" - }, - { - "objectID": "04-raster_data.html#transformation-and-conversion", - "href": "04-raster_data.html#transformation-and-conversion", - "title": "4 Work with Raster Data", - "section": "4.6 Transformation and conversion", - "text": "4.6 Transformation and conversion\n\n4.6.1 Rasterization\nConvert polygons to raster format.\n\nchamkarmon = subset(district, district$ADM2_PCODE ==\"KH1201\") \nraster_district <- rasterize(x = chamkarmon, y = elevation_clip_utm)\n\n\nplot(raster_district)\n\n\n\n\n\n\n\n\nConvert points to raster format\n\n#rasterization of the centroids of the municipalities\nraster_dist_centroid <- rasterize(x = centroids(district), \n y = elevation_clip_utm, fun=sum)\nplot(raster_dist_centroid, col = \"red\")\nplot(district, add =TRUE)\n\n\n\n\nConvert lines in raster format\n\n#rasterization of municipal boundaries\nraster_dist_line <- rasterize(x = as.lines(district), y = elevation_clip_utm, fun=sum)\n\n\nplot(raster_dist_line)\n\n\n\n\n\n\n4.6.2 Vectorisation\nTransform a raster to vector polygons.\n\npolygon_elevation <- as.polygons(elevation_clip_utm)\n\n\nplot(polygon_elevation, y = 1, border=\"white\")\n\n\n\n\nTransform a raster to vector points.\n\npoints_elevation <- as.points(elevation_clip_utm)\n\n\nplot(points_elevation, y = 1, cex = 0.3)\n\n\n\n\nTransform a raster into vector lines.\n\nlines_elevation <- as.lines(elevation_clip_utm)\n\n\nplot(lines_elevation)\n\n\n\n\n\n\n4.6.3 terra, raster, sf, stars…\nReference packages for manipulating spatial data all rely o their own object class. It is sometimes necessary to convert these objects from one class to another class to take advance of all the features offered by these different packages.\nConversion functions for raster data:\n\n\n\nFROM/TO\nraster\nterra\nstars\n\n\n\n\nraster\n\nrast()\nst_as_stars()\n\n\nterra\nraster()\n\nst_as_stars()\n\n\nstars\nraster()\nas(x, ‘Raster’) + rast()\n\n\n\n\nConversion functions for vector data:\n\n\n\nFROM/TO\nsf\nsp\nterra\n\n\n\n\nsf\n\nas(x, ‘Spatial’)\nvect()\n\n\nsp\nst_as_sf()\n\nvect()\n\n\nterra\nst_as_sf()\nas(x, ‘Spatial’)\n\n\n\n\n\n\n\n\nHijmans, Robert J. 2022. “Terra: Spatial Data Analysis.†https://CRAN.R-project.org/package=terra.\n\n\nLi, Xingong. 2009. “Map Algebra and Beyond : 1. Map Algebra for Scalar Fields.†https://slideplayer.com/slide/5822638/.\n\n\nMadelin, Malika. 2021. “Analyse d’images Raster (Et Télédétection).†https://mmadelin.github.io/sigr2021/SIGR2021_raster_MM.html.\n\n\nMennis, Jeremy. 2015. “Fundamentals of GIS : Raster Operations.†https://cupdf.com/document/gus-0262-fundamentals-of-gis-lecture-presentation-7-raster-operations-jeremy.html.\n\n\nNowosad, Jakub. 2021. “Image Processing and All Things Raster.†https://nowosad.github.io/SIGR2021/workshop2/workshop2.html.\n\n\nRacine, Etienne B. 2016. “The Visual Raster Cheat Sheet.†https://rpubs.com/etiennebr/visualraster.\n\n\nTomlin, C. Dana. 1990. Geographic Information Systems and Cartographic Modeling. Prentice Hall." - }, - { - "objectID": "05-mapping_with_r.html", - "href": "05-mapping_with_r.html", - "title": "5 Mapping With R", - "section": "", - "text": "The fonction mf_map() is the central function of the package mapsf (Giraud 2022a). It makes it possible to carry out most of the usual representations in cartography. These main arguments are:\n\nx, an sf object ;\nvar, the name of variable to present ;\ntype, the type of presentation.\n\n\n\nThe following lines import the spatial information layers located in the geopackage cambodia.gpkg file.\n\nlibrary(sf)\n\n#Import Cambodia country border\ncountry = st_read(\"data_cambodia/cambodia.gpkg\", layer = \"country\", quiet = TRUE)\n#Import provincial administrative border of Cambodia\neducation = st_read(\"data_cambodia/cambodia.gpkg\", layer = \"education\", quiet = TRUE)\n#Import district administrative border of Cambodia\ndistrict = st_read(\"data_cambodia/cambodia.gpkg\", layer = \"district\", quiet = TRUE)\n#Import roads data in Cambodia\nroad = st_read(\"data_cambodia/cambodia.gpkg\", layer = \"road\", quiet = TRUE)\n#Import health center data in Cambodia\nhospital = st_read(\"data_cambodia/cambodia.gpkg\", layer = \"hospital\", quiet = TRUE)\n\n\n\n\nWithout using types specification, the function mf_map() simply display the background map.\n\nlibrary(mapsf)\n\nmf_map(x = district, border = \"white\")\nmf_map(x = country,lwd = 2, col = NA, add = TRUE)\nmf_map(x = road, lwd = .5, col = \"ivory4\", add = TRUE)\nmf_map(x = hospital, pch = 20, cex = 1, col = \"#FE9A2E\", add = TRUE) \n\n\n\n\n\n\n\nProportional symbol maps are used to represent inventory variables (absolute quantitative variables, sum and average make sense). The function mf_map(..., type = \"prop\") proposes this representation.\n\n#District\nmf_map(x = district) \n\n# Proportional symbol \nmf_map(\n x = district, \n var = \"T_POP\",\n val_max = 700000,\n type = \"prop\",\n col = \"#148F77\", \n leg_title = \"Population 2019\"\n)\n\n# Title\nmf_title(\"Distribution of population in provincial level\")\n\n\n\n\n\n\nIt is possible to fix the dimensions of the largest symbol corresponding to a certain value with the arguments inches and val_max. We can use construct maps with comparable proportional symbols.\n\npar(mfrow = c(1,2)) #Displaying two maps facing each other\n\n#district\nmf_map(x = district, border = \"grey90\", lwd = .5) \n# Add male Population\nmf_map(\n x = district, \n var = \"Male\", \n type = \"prop\",\n col = \"#1F618D\",\n inches = 0.2, \n val_max = 300000, \n leg_title = \"Male\", \n leg_val_cex = 0.5,\n)\nmf_title(\"Male Population by Distict\") #Adding map title\n\n#district\nmf_map(x = district, border = \"grey90\", lwd = .5) \n# Add female Population\nmf_map(\n x = district, \n var = \"Female\", \n type = \"prop\",\n col = \"#E74C3C\",\n inches = 0.2, \n val_max = 300000, \n leg_title =\"Female\", \n leg_val_cex = 0.5\n)\nmf_title(\"Female Population by Distict\") #Adding map title\n\n\n\n\nHere we have displayed two maps facing each other, see the point Displaying several maps on the same figure for more details.\n\n\n\n\nChoropleth maps are used to represent ratio variables (relative quantitative variables, mean has meaning, sum has no meaning).\nFor this type of representation, you must first:\n\nchoose a discretization method to transform a continuous statistical series into classes defined by intervals,\nchoose a number of classes,\nchoose a color palette.\n\nThe function mf_map(…, type = “choroâ€)makes it possible to create choroplete maps. The arguments nbreaks and breaks are used to parameterize the discretizations, and the function mf_get_breaks() makes it possible to work on the discretizations outside the function mf_map(). Similarly, the argument palis used to fill in a color palette, but several functions can be used to set the palettes apart from the (mf_get_pal…) function.\n\n# Population density (inhabitants/km2) using the sf::st_area() function\ndistrict$DENS <- 1e6 * district$T_POP / as.numeric(st_area(district)) #Calculate population density \nmf_map(\n x = district,\n var = \"DENS\",\n type = \"choro\",\n breaks = \"quantile\",\n pal = \"BuGn\",\n lwd = 1,\n leg_title = \"Distribution of population\\n(inhabitants per km2)\", \n leg_val_rnd = 0\n)\nmf_title(\"Distribution of the population in (2019)\")\n\n\n\n\n\ncases = st_read(\"data_cambodia/cambodia.gpkg\", layer = \"cases\", quiet = TRUE)\ncases = subset(cases, Disease == \"W fever\")\npopulation <- read.csv(\"data_cambodia/khm_admpop_adm2_2016_v2.csv\")\npopulation <- population[, c(\"ADM2_PCODE\", \"T_TL\")]\n# Remove commas\npopulation$T_TL <- as.numeric(gsub(\",\",\"\",population$T_TL))\ndistrict$cases <- lengths(st_intersects(district, cases))\ndistrict <- merge(district,\n population,\n by = \"ADM2_PCODE\")\ndistrict$incidence <- district$cases / district$T_TL * 100000\n\nmf_map(x = district,\n var = \"incidence\",\n type = \"choro\",\n leg_title = \"Incidence (per 100 000)\")\nmf_layout(title = \"Incidence of W Fever in Cambodia\")\n\n\n\n\n\n\nThe fonction mf_get_breaks() provides the methods of discretization of classic variables: quantiles, average/standard deviation, equal amplitudes, nested averages, Fisher-Jenks, geometric, etc.\n\neducation$enrol_g_pct = 100 * education$enrol_girl/education$t_enrol #Calculate percentage of enrolled girl student\n\nd1 = mf_get_breaks(education$enrol_g_pct, nbreaks = 6, breaks = \"equal\", freq = TRUE)\nd2 = mf_get_breaks(education$enrol_g_pct, nbreaks = 6, breaks = \"quantile\")\nd3 = mf_get_breaks(education$enrol_g_pct, nbreaks = 6, breaks = \"geom\")\nd4 = mf_get_breaks(education$enrol_g_pct, breaks = \"msd\", central = FALSE)\n\n\n\n\n\n\n\n\n\nThe argument pal de mf_map() is dedicated to choosing a color palette. The palettes provided by the function hcl.colors() can be used directly.\n\nmf_map(x = education, var = \"enrol_g_pct\", type = \"choro\",\n breaks = d3, pal = \"Reds 3\")\n\n\n\n\n\n\n\n\n\nThe fonction mf_get_pal() allows you to build a color palette. This function is especially useful for creating balanced asymmetrical diverging palettes.\n\nmypal <- mf_get_pal(n = c(4,6), palette = c(\"Burg\", \"Teal\"))\nimage(1:10, 1, as.matrix(1:10), col=mypal, xlab = \"\", ylab = \"\", xaxt = \"n\",\n yaxt = \"n\",bty = \"n\")\n\n\n\n\n\n\n\nIt is possible to use this mode of presentation in specific implementation also.\n\ndist_c <- st_centroid(district)\nmf_map(district)\nmf_map(\n x = dist_c,\n var = \"DENS\",\n type = \"choro\",\n breaks = \"quantile\",\n nbreaks = 5,\n pal = \"PuRd\",\n pch = 23,\n cex = 1.5,\n border = \"white\",\n lwd = .7,\n leg_pos = \"topleft\",\n leg_title = \"Distribution of population\\n(inhabitants per km2)\", \n leg_val_rnd = 0, \n add = TRUE\n)\nmf_title(\"Distribution of population in (2019)\")\n\n\n\n\n\n\n\n\nTypology maps are used to represent qualitative variables. The function mf_map(..., type = \"typo\") proposes this representation.\n\nmf_map(\n x = district,\n var=\"Status\",\n type = \"typo\",\n pal = c('#E8F9FD','#FF7396','#E4BAD4','#FFE3FE'),\n lwd = .7,\n leg_title = \"\"\n)\nmf_title(\"Administrative status by size of area\")\n\n\n\n\n\n\nThe argument val_order is used to order the categories in the\n\nmf_map(\n x = district,\n var=\"Status\",\n type = \"typo\",\n pal = c('#E8F9FD','#FF7396','#E4BAD4','#FFE3FE'),\n val_order = c(\"1st largest district\", \"2nd largest district\", \"3rd largest district\",\"<4500km2\"),\n lwd = .7,\n leg_title = \"\"\n)\nmf_title(\"Administrative status by size of area\")\n\n\n\n\n\n\n\nWhen the implantation of the layer is punctual, symbols are used to carry the colors of the typology.\n\n#extract centroid point of the district\ndist_ctr <- st_centroid(district[district$Status != \"<4500km2\", ])\nmf_map(district)\nmf_map(\n x = dist_ctr,\n var = \"Status\",\n type = \"typo\",\n cex = 2,\n pch = 22,\n pal = c('#FF7396','#E4BAD4','#FFE3FE'),\n leg_title = \"\",\n leg_pos = \"bottomright\",\n add = TRUE\n)\nmf_title(\"Administrative status by size of area\")\n\n\n\n\n\n\n\n\n#Selection of roads that intersect the city of Siem Reap\npp <- district[district$ADM1_EN == \"Phnom Penh\", ]\nroad_pp <- road[st_intersects(x = road, y = pp, sparse = FALSE), ]\nmf_map(pp)\nmf_map(\n x = road_pp,\n var = \"fclass\",\n type = \"typo\",\n lwd = 1.2,\n pal = mf_get_pal(n = 6, \"Tropic\"),\n leg_title = \"Types of road\",\n leg_pos = \"topright\",\n leg_frame = T,\n add = TRUE\n)\nmf_title(\"Administrative status\")\n\n\n\n\n\n\n\n\nThe function mf_map(..., var = c(\"var1\", \"var2\"), type = \"prop_choro\") represents proportional symbols whose areas are proportional to the values of one variable and whose color is based on the discretization of a second variable. The function uses the arguments of the functions mf_map(..., type = \"prop\") and mf_map(..., type = \"choro\").\n\nmf_map(x = district)\nmf_map(\n x = district,\n var = c(\"T_POP\", \"DENS\"),\n val_max = 500000,\n type = \"prop_choro\",\n border = \"grey60\",\n lwd = 0.5,\n leg_pos = c(\"bottomright\", \"bottomleft\"),\n leg_title = c(\"Population\", \"Density of\\n population\\n(inhabitants per km2)\"),\n breaks = \"q6\",\n pal = \"Blues 3\",\n leg_val_rnd = c(0,1))\nmf_title(\"Population\")\n\n\n\n\n\n\n\nThe function mf_map(..., var = c(\"var1\", \"var2\"), type = \"prop_typo\") represents proportional symbols whose areas are proportional to the values of one variable and whose color is based on the discretization of a second variable. The function uses the arguments of the mf_map(..., type = \"prop\") and function mf_map(..., type = \"typo\").\n\nmf_map(x = district)\nmf_map(\n x = district,\n var = c(\"Area.Km2.\", \"Status\"),\n type = \"prop_typo\",\n pal = c('#E8F9FD','#FF7396','#E4BAD4','#FFE3FE'),\n val_order = c(\"<4500km2\",\"1st largest district\", \"2nd largest district\", \"3rd largest district\"),\n leg_pos = c(\"bottomleft\",\"topleft\"),\n leg_title = c(\"Population\\n(2019)\",\n \"Statut administratif\"),\n)\nmf_title(\"Population\")" - }, - { - "objectID": "05-mapping_with_r.html#layout", - "href": "05-mapping_with_r.html#layout", - "title": "5 Mapping With R", - "section": "5.2 Layout", - "text": "5.2 Layout\nTo be finalized, a thematic map must contain certain additional elements such as: title, author, source, scale, orientation…\n\n5.2.1 Example data\nThe following lines import the spatial information layers located in the geopackage lot46.gpkg file.\n\nlibrary(sf)\ncountry = st_read(\"data_cambodia/cambodia.gpkg\", layer = \"country\", quiet = TRUE) #Import Cambodia country border\neducation = st_read(\"data_cambodia/cambodia.gpkg\", layer = \"education\", quiet = TRUE) #Import provincial administrative border of Cambodia\ndistrict = st_read(\"data_cambodia/cambodia.gpkg\", layer = \"district\", quiet = TRUE) #Import district administrative border of Cambodia\nroad = st_read(\"data_cambodia/cambodia.gpkg\", layer = \"road\", quiet = TRUE) #Import roads data in Cambodia\nhospital = st_read(\"data_cambodia/cambodia.gpkg\", layer = \"hospital\", quiet = TRUE) #Import hospital data in Cambodia\ncases = st_read(\"data_cambodia/cambodia.gpkg\", layer = \"cases\", quiet = TRUE) #Import example data of fever_cases in Cambodia\n\n\n\n5.2.2 Themes\nThe function mf_theme() defines a cartographic theme. Using a theme allows you to define several graphic parameters which are then applied to the maps created with mapsf. These parameters are: the map margins, the main color, the background color, the position and the aspect of the title. A theme can also be defined with the mf_init() and function mf_export().\n\n5.2.2.1 Use a predefined theme\nA series of predefined themes are available by default (see ?mf_theme).\n\nlibrary(mapsf)\n# use of a background color for the figure, to see the use of margin\nopar <- par(mfrow = c(2,2))\n# Using a predefined theme\nmf_theme(\"default\")\nmf_map(district)\nmf_title(\"Theme : 'default'\")\n\nmf_theme(\"darkula\")\nmf_map(district)\nmf_title(\"Theme : 'darkula'\")\n\nmf_theme(\"candy\")\nmf_map(district)\nmf_title(\"Theme : 'candy'\")\n\nmf_theme(\"nevermind\")\nmf_map(district)\nmf_title(\"Theme : 'nevermind'\")\npar(opar)\n\n\n\n\n\n\n5.2.2.2 Modify an existing theme\nIt is possible to modify an existing theme. In this example, we are using the “default†theme and modifying a few settings.\n\nlibrary(mapsf)\nopar <- par(mfrow = c(1,2))\nmf_theme(\"default\")\nmf_map(district)\nmf_title(\"default\")\n\nmf_theme(\"default\", tab = FALSE, font = 4, bg = \"grey60\", pos = \"center\")\nmf_map(district)\nmf_title(\"modified default\")\npar(opar)\n\n\n\n\n\n\n5.2.2.3 Create a theme\nIt is also possible to create a theme.\n\nmf_theme(\n bg = \"lightblue\", # background color\n fg = \"tomato1\", # main color\n mar = c(1,0,1.5,0), # margin\n tab = FALSE, # \"tab\" style for the title\n inner = FALSE, # title inside or outside of map area\n line = 1.5, # space dedicated to title\n pos = \"center\", # heading position\n cex = 1.5, # title size\n font = 2 # font types for title\n)\nmf_map(district)\nmf_title(\"New theme\")\n\n\n\n\n\n\n\n5.2.3 Titles\nThe function mf_title() adds a title to a map.\n\nmf_theme(\"default\")\nmf_map(district)\nmf_title(\"Map title\")\n\n\n\n\nIt is possible to customize the appearance of the title\n\nmf_map(district)\nmf_title(\n txt = \"Map title\", \n pos = \"center\", \n tab = FALSE, \n bg = \"tomato3\", \n fg = \"lightblue\", \n cex = 1.5, \n line = 1.7, \n font = 1, \n inner = FALSE\n)\n\n\n\n\n\n\n5.2.4 Arrow orientation\nThe function mf_arrow() allows you to choose the position and aspect of orientation arrow.\n\nmf_map(district)\nmf_arrow()\n\n\n\n\n\n\n5.2.5 Scale\nThe function mf_scale() allows you to choose the position and the aspect of the scale.\n\nmf_map(district)\nmf_scale(\n size = 60,\n lwd = 1,\n cex = 0.7\n)\n\n\n\n\n\n\n5.2.6 Credits\nThe function mf_credits() displays a line of credits (sources, author, etc.).\n\nmf_map(district)\nmf_credits(\"IRD\\nInstitut Pasteur du Cambodge, 2022\")\n\n\n\n\n\n\n5.2.7 Complete dressing\nThe function mf_layout() displays all these elements.\n\nmf_map(district)\nmf_layout(\n title = \"Cambodia\",\n credits = \"IRD\\nInstitut Pasteur du Cambodge, 2022\",\n arrow = TRUE\n)\n\n\n\n\n\n\n5.2.8 Annotations\n\nmf_map(district)\nmf_annotation(district[district$ADM2_EN == \"Bakan\",], txt = \"Bakan\", col_txt = \"darkred\", halo = TRUE, cex = 1.5)\n\n\n\n\n\n\n5.2.9 Legends\n\nmf_map(district)\nmf_legend(\n type = \"prop\", \n val = c(1000,500,200,10), \n inches = .2, \n title = \"Population\", \n pos = \"topleft\"\n)\nmf_legend(\n type = \"choro\", \n val = c(0,10,20,30,40),\n pal = \"Greens\", \n pos = \"bottomright\", \n val_rnd = 0\n)\n\n\n\n\n\n\n5.2.10 Labels\nThe function mf_label() is dedicated to displaying labels.\n\ndist_selected <- district[st_intersects(district, district[district$ADM2_EN == \"Bakan\", ], sparse = F), ]\n\nmf_map(dist_selected)\nmf_label(\n x = dist_selected,\n var = \"ADM2_EN\",\n col= \"darkgreen\",\n halo = TRUE,\n overlap = FALSE, \n lines = FALSE\n)\nmf_scale()\n\n\n\n\nThe argument halo = TRUE allows to display a slight halo around the labels and the argument overlap = FALSE allows to create non-overlapping labels.\n\n\n5.2.11 Center the map on a region\nThe function mf_init() allows you to initialize a map by centering it on a spatial object.\n\nmf_init(x = dist_selected)\nmf_map(district, add = TRUE)\nmf_map(dist_selected, col = NA, border = \"#29a3a3\", lwd = 2, add = TRUE)\n\n\n\n\n\n\n5.2.12 Displaying several maps on the sam figure\nHere you have to use mfrow of the function par(). The first digit represents the number of of rows and second the number of columns.\n\n# define the figure layout (1 row, 2 columns)\npar(mfrow = c(1, 2))\n\n# first map\nmf_map(district)\nmf_map(district, \"Male\", \"prop\", val_max = 300000)\nmf_title(\"Population, male\")\n\n# second map\nmf_map(district)\nmf_map(district, \"Female\", \"prop\", val_max = 300000)\nmf_title(\"Population, female\")\n\n\n\n\n\n\n5.2.13 Exporting maps\nIt is quite difficult to export figures (maps or others) whose height/width ratio is satisfactory. The default ratio of figures in png format is 1 (480x480 pixels):\n\ndist_filter <- district[district$ADM2_PCODE == \"KH0808\", ]\npng(\"img/dist_filter_1.png\")\nmf_map(dist_filter)\nmf_title(\"Filtered district\")\ndev.off()\n\n\n\n\n\n\nOn this map a lot of space is lost to the left and right of the district.\nThe function mf_export() allows exports of maps whose height/width ratio is controlled and corresponds to that of a spatial object.\n\nmf_export(dist_filter, \"img/dist_filter_2.png\", width = 480)\nmf_map(dist_filter)\nmf_title(\"Filtered district\")\ndev.off()\n\n\n\n\n\n\nThe extent of this map is exactly that of the displayed region.\n\n\n5.2.14 Adding an image to a map\nThis can be useful for adding a logo, a pictograph. The function readPNG() of package png allows the additional images on the figure.\n\nmf_theme(\"default\", mar = c(0,0,0,0))\nlibrary(png)\n\nlogo <- readPNG(\"img/ird_logo.png\") #Import image\npp <- dim(logo)[2:1]*200 #Image dimension in map unit (width and height of the original image)\n\n#The upper left corner of the department's bounding box\nxy <- st_bbox(district)[c(1,4)]\nmf_map(district, col = \"#D1914D\", border = \"white\")\nrasterImage(\n image = logo,\n xleft = xy[1] ,\n ybottom = xy[2] - pp[2],\n xright = xy[1] + pp[1],\n ytop = xy[2]\n)\n\n\n\n\n\n\n5.2.15 Place an item precisely on the map\nThe function locator() allows clicking on the figure and obtaining the coordinate of a point in the coordinate system of the figure (of the map).\n\n# locator(1) # click to get coordinate on map\n# points(locator(1)) # click to plot point on map\n# text(locator(1), # click to place the item on map\n# labels =\"Located any texts on map\", \n# adj = c(0,0))\n\n\nVideo\nlocator()peut être utilisée sur la plupart des graphiques (pas ceux produits avec ggplot2).\n\n\n\n\n\n\nHow to interactively position legends and layout elements on a map with cartography\n\n\n\n\n\n5.2.16 Add shading to a layer\nThe function mf_shadow() allows to create a shadow to a layer of polygons.\n\nmf_shadow(district)\nmf_map(district, add=TRUE)\n\n\n\n\n\n\n5.2.17 Creating Boxes\nThe function mf_inset_on() allows to start creation a box. You must then “close†the box with mf_inset_off().\n\nmf_init(x = dist_selected, theme = \"agolalight\", expandBB = c(0,.1,0,.5)) \nmf_map(district, add = TRUE)\nmf_map(dist_selected, col = \"tomato4\", border = \"tomato1\", lwd = 2, add = TRUE)\n\n# Cambodia inset box\nmf_inset_on(x = country, pos = \"topright\", cex = .3)\nmf_map(country, lwd = .5, border= \"grey90\")\nmf_map(dist_selected, col = \"tomato4\", border = \"tomato1\", lwd = .5, add = TRUE)\nmf_scale(size = 100, pos = \"bottomleft\", cex = .6, lwd = .5)\nmf_inset_off()\n\n# District inset box\nmf_inset_on(x = district, pos = \"bottomright\", cex = .3)\nmf_map(district, lwd = 0.5, border= \"grey90\")\nmf_map(dist_selected, col = \"tomato4\", border = \"tomato1\", lwd = .5, add = TRUE)\nmf_scale(size = 100, pos = \"bottomright\", cex = .6, lwd = .5)\nmf_inset_off()\n\n# World inset box\nmf_inset_on(x = \"worldmap\", pos = \"topleft\")\nmf_worldmap(dist_selected, land_col = \"#cccccc\", border_col = NA, \n water_col = \"#e3e3e3\", col = \"tomato4\")\n\nmf_inset_off()\nmf_title(\"Bakan district and its surroundings\")\nmf_scale(10, pos = 'bottomleft')" - }, - { - "objectID": "05-mapping_with_r.html#d-maps", - "href": "05-mapping_with_r.html#d-maps", - "title": "5 Mapping With R", - "section": "5.3 3D maps", - "text": "5.3 3D maps\n\n5.3.1 linemap\nThe package linemap (Giraud 2021) allows you to make maps made up of lines.\n\nlibrary(linemap)\nlibrary(mapsf)\nlibrary(sf)\nlibrary(dplyr)\n\npp = st_read(\"data_cambodia/PP.gpkg\", quiet = TRUE) # import Phnom Penh administrative border\npp_pop_dens <- getgrid(x = pp, cellsize =1000, var = \"DENs\") # create population density in grid format (pop density/1km)\n\nmf_init(pp)\n\nlinemap(\n x = pp_pop_dens, \n var = \"DENs\",\n k = 1,\n threshold = 5, \n lwd = 1,\n col = \"ivory1\",\n border = \"ivory4\",\n add = T)\n\nmf_title(\"Phnom Penh Population Density, 2019\")\nmf_credits(\"Humanitarian Data Exchange, 2022\\nunit data:km2\")\n\n\n\n# url = \"https://data.humdata.org/dataset/1803994d-6218-4b98-ac3a-30c7f85c6dbc/resource/f30b0f4b-1c40-45f3-986d-2820375ea8dd/download/health_facility.zip\"\n# health_facility.zip = \"health_facility.zip\"\n# download.file(url, destfile = health_facility.zip)\n# unzip(health_facility.zip) # Unzipped files are in a new folder named Health\n# list.files(path=\"Health\")\n\n\n\n5.3.2 Relief Tanaka\nWe use the tanaka package (Giraud 2022b) which provides a method (Tanaka 1950) used to improve the perception of relief.\n\nlibrary(tanaka)\nlibrary(terra)\n\nrpop <- rast(\"data_cambodia/khm_pd_2019_1km_utm.tif\") # Import population raster data (in UTM)\ndistrict = st_read(\"data_cambodia/cambodia.gpkg\", layer = \"district\", quiet = TRUE) # Import Cambodian districts layer\ndistrict <- st_transform(district, st_crs(rpop)) # Transform data into the same coordinate system\n\nmat <- focalMat(x = rpop, d = c(1500), type = \"Gauss\") # Raster smoothing\nrpopl <- focal(x = rpop, w = mat, fun = sum, na.rm = TRUE)\n\n# Mapping\ncols <- hcl.colors(8, \"Reds\", alpha = 1, rev = T)[-1]\nmf_theme(\"agolalight\")\nmf_init(district)\ntanaka(x = rpop, breaks = c(0,10,25,50,100,250,500,64265),\n col = cols, add = T, mask = district, legend.pos = \"n\")\nmf_legend(type = \"choro\", pos = \"bottomright\", \n val = c(0,10,25,50,100,250,500,64265), pal = cols,\n bg = \"#EDF4F5\", fg = NA, frame = T, val_rnd = 0,\n title = \"Population\\nper km2\")\nmf_title(\"Population density of Cambodia, 2019\")\nmf_credits(\"Humanitarian Data Exchange, 2022\",\n bg = \"#EDF4F5\")\n\n\n\n\n\n\n\n\n\n\nThe tanaka package" - }, - { - "objectID": "05-mapping_with_r.html#cartographic-transformation", - "href": "05-mapping_with_r.html#cartographic-transformation", - "title": "5 Mapping With R", - "section": "5.4 Cartographic Transformation", - "text": "5.4 Cartographic Transformation\n\nclassical anamorphosis is a representation of States(or any cells) by rectangle or any polygons according to a quantities attached to them. (…) We strive to keep the general arrangement of meshes or the silhouette of the continent.â€\nBrunet, Ferras, and Théry (1993)\n\n3 types of anamorphoses or cartograms are presented here:\n\nDorling’s cartograms (Dorling 1996)\nNon-contiguous cartograms (Olson 1976)\nContiguous cartograms (Dougenik, Chrisman, and Niemeyer 1985)\n\n\n\n\n\n\n\nA comprehensive course on anamorphoses : Les anamorphoses cartographiques (Lambert 2015).\n\n\n\n\n\n\n\n\n\nMake cartograms with R\n\n\n\nTo make the cartograms we use the package cartogram (Jeworutzki 2020).\n\n5.4.1 Dorling’s cartograms\nThe territories are represented by figures (circles, squares or rectangles) which do not overlap, the surface of which are proportional to a variable. The proportion of the figures are defined according to the starting positions.\n\n\n\n\n\n\n\n\nSpace is quite poorly identified.\nYou can name the circles to get your bearings and/or use the color to make clusters appear and better identify the geographical blocks.\n\n\n\n\n\nThe perception of quantities is very good. The circle sizes are really comarable.\n\n\n\nlibrary(mapsf)\nlibrary(cartogram)\ndistrict <- st_read(\"data_cambodia/cambodia.gpkg\", layer = \"district\" , quiet = TRUE)\ndist_dorling <- cartogram_dorling(x = district, weight = \"T_POP\", k = 0.7)\nmf_map(dist_dorling, col = \"#40E0D0\", border= \"white\")\nmf_label(\n x = dist_dorling[order(dist_dorling$T_POP, decreasing = TRUE), ][1:10,], \n var = \"ADM2_EN\",\n overlap = FALSE, \n # show.lines = FALSE,\n halo = TRUE, \n r = 0.15\n)\nmf_title(\"Population of District - Dorling Cartogram\")\n\n\n\n\nThe parameter k allows to vary the expansion factor of the circles.\n\n\n5.4.2 Non-continuous cartograms\nThe size of the polygons is proportional to a variable. The arrangement of the polygons relative to each other is preserved. The shape of the polygons is similar.\n\n\n\n\n\n(Cauvin, Escobar, and Serradj 2013)\n\n\n\nThe topology of the regions is lost.\n\n\n\n\n\nThe converstion of the polygons shape is optimal.\n\n\n\ndist_ncont <- cartogram_ncont(x = district, weight = \"T_POP\", k = 1.2)\nmf_map(district, col = NA, border = \"#FDFEFE\", lwd = 1.5)\nmf_map(dist_ncont, col = \"#20B2AA\", border= \"white\", add = TRUE)\nmf_title(\"Population of District - Non-continuous cartograms\")\n\n\n\n\nThe parameter k allows to vary the expansion of the polygons.\n\n\n5.4.3 Continuous cartograms\nThe size of the polygons is proportional to variable. The arrangement of the polygons relative to each other is preserved. To maintain contiguity, the sape of the polygons is heavily transformed.\n\n\n\n\n\n(Paull and Hennig 2016)\n\n\n\nThe shape of the polygond is strongly distorted.\n\n\n\n\n\nIt is a “real geographical mapâ€: topology and contiguity are preserved.\n\n\n\ndist_ncont <- cartogram_cont(x = district, weight = \"DENs\", maxSizeError = 6)\n\nMean size error for iteration 1: 15.8686749410166\n\n\nMean size error for iteration 2: 12.1107731631101\n\n\nMean size error for iteration 3: 9.98940057337996\n\n\nMean size error for iteration 4: 8.62323208787643\n\n\nMean size error for iteration 5: 7.60706404894655\n\n\nMean size error for iteration 6: 6.83561617758241\n\n\nMean size error for iteration 7: 10.1399490743501\n\n\nMean size error for iteration 8: 5.79418495291592\n\nmf_map(dist_ncont, col = \"#66CDAA\", border= \"white\", add = FALSE)\nmf_title(\"Population of District - Continuous cartograms\")\nmf_inset_on(district, cex = .2, pos = \"bottomleft\")\nmf_map(district, lwd = .5)\nmf_inset_off()\n\n\n\n\n\n\n5.4.4 Stengths and weaknessses of cartograms\ncartograms are cartographic representations perceived as innovative (although the method is 40 years old). These very generalize images capture quantities and gradients well. These are real communication images that provoke, arouse interest, convey a strong message, challenge.\nBut cartograms induce a loss of visual cues (difficult to find one’s country or region on the map), require a reading effort which can be significant and do not make it possible to manage missing data.\n\n\n\n\nBrunet, Roger, Robert Ferras, and Hervé Théry. 1993. Les Mots de La géographie: Dictionnaire Critique. 03) 911 BRU.\n\n\nCauvin, Colette, Francisco Escobar, and Aziz Serradj. 2013. Thematic Cartography, Cartography and the Impact of the Quantitative Revolution. Vol. 2. John Wiley & Sons.\n\n\nDorling, Daniel. 1996. Area Cartograms: Their Use and Creation, Concepts and Techniques in Modern Geography. Vol. 59. CATMOG: Concepts and Techniques in Modern Geography. Institute of British Geographers.\n\n\nDougenik, James A, Nicholas R Chrisman, and Duane R Niemeyer. 1985. “An Algorithm to Construct Continuous Area Cartograms.†The Professional Geographer 37 (1): 75–81.\n\n\nGiraud, Timothée. 2021. “Linemap: Line Maps.†https://CRAN.R-project.org/package=linemap.\n\n\n———. 2022a. “Mapsf: Thematic Cartography.†https://CRAN.R-project.org/package=mapsf.\n\n\n———. 2022b. “Tanaka: Design Shaded Contour Lines (or Tanaka) Maps.†https://CRAN.R-project.org/package=tanaka.\n\n\nJeworutzki, Sebastian. 2020. “Cartogram: Create Cartograms with r.†https://CRAN.R-project.org/package=cartogram.\n\n\nLambert, Nicolas. 2015. “Les Anamorphoses Cartographiques.†Blog. Carnet Néocartographique. https://neocarto.hypotheses.org/366.\n\n\nOlson, Judy M. 1976. “Noncontiguous Area Cartograms.†The Professional Geographer 28 (4): 371–80.\n\n\nPaull, John, and Benjamin Hennig. 2016. “Atlas of Organics: Four Maps of the World of Organic Agriculture.†Journal of Organics 3 (1): 25–32.\n\n\nTanaka, Kitiro. 1950. “The Relief Contour Method of Representing Topography on Maps.†Geographical Review 40 (3): 444. https://doi.org/10.2307/211219." - }, - { - "objectID": "06-advanced_spatial_analysis.html", - "href": "06-advanced_spatial_analysis.html", - "title": "6 Advanced Spatial Analysis", - "section": "", - "text": "RGeoHealth (Herbreteau, Révillion, and Trimaille 2018)\n\n# remotes::install_git(\"https://framagit.org/espace-dev/geohealth/RGeoHealth\")\n# library(geohealth)\n\n\n\n\n\nHerbreteau, Vincent, Christophe Révillion, and Etienne Trimaille. 2018. “GeoHealth and QuickOSM, two QGIS plugins for health applications.†In Earth Systems - Environmental Sciences : QGIS in Remote Sensing Set, edited by Nicolas Baghdadi, Clément Mallet, and Mehrez Zribi, 1:257–86. QGIS and Generic Tools. ISTE. https://hal.archives-ouvertes.fr/hal-01787435." - }, - { - "objectID": "07-basic_statistics.html", - "href": "07-basic_statistics.html", - "title": "7 Basic statistics for spatial analysis", - "section": "", - "text": "This section aims at providing some basic statistical tools to study the spatial distribution of the cases." - }, - { - "objectID": "07-basic_statistics.html#import-and-visualize-epidemiological-data", - "href": "07-basic_statistics.html#import-and-visualize-epidemiological-data", - "title": "7 Basic statistics for spatial analysis", - "section": "7.1 Import and visualize epidemiological data", - "text": "7.1 Import and visualize epidemiological data\nIn this section, we load data that reference the cases of an imaginary disease throughout Cambodia.\n\nlibrary(sf)\n\n#Import Cambodia country border\ncountry = st_read(\"data_cambodia/cambodia.gpkg\", layer = \"country\", quiet = TRUE)\n#Import provincial administrative border of Cambodia\neducation = st_read(\"data_cambodia/cambodia.gpkg\", layer = \"education\", quiet = TRUE)\n#Import district administrative border of Cambodia\ndistrict = st_read(\"data_cambodia/cambodia.gpkg\", layer = \"district\", quiet = TRUE)\n\n# Import locations of cases from an imaginary disease\ncases = st_read(\"data_cambodia/cambodia.gpkg\", layer = \"cases\", quiet = TRUE)\ncases = subset(cases, Disease == \"W fever\")\n\n# Aggregate cases over districts\ndistrict$cases <- lengths(st_intersects(district, cases))\n\nThe first step of any statistical analysis always consists on visualizing the data to check they were correctly loaded and to observe general pattern of the cases.\n\n# View the cases object\nhead(cases)\n\nSimple feature collection with 6 features and 2 fields\nGeometry type: MULTIPOINT\nDimension: XY\nBounding box: xmin: 255891 ymin: 1179092 xmax: 506647.4 ymax: 1467441\nProjected CRS: WGS 84 / UTM zone 48N\n id Disease geom\n1 0 W fever MULTIPOINT ((280036.2 12841...\n2 1 W fever MULTIPOINT ((451859.5 11790...\n3 2 W fever MULTIPOINT ((255891 1467441))\n4 5 W fever MULTIPOINT ((506647.4 12322...\n5 6 W fever MULTIPOINT ((440668 1197958))\n6 7 W fever MULTIPOINT ((481594.5 12714...\n\n# Map the cases\nlibrary(mapsf)\n\nmf_map(x = district, border = \"white\")\nmf_map(x = country,lwd = 2, col = NA, add = TRUE)\nmf_map(x = cases, lwd = .5, col = \"#990000\", pch = 20, add = TRUE)" - }, - { - "objectID": "07-basic_statistics.html#basics-statistics", - "href": "07-basic_statistics.html#basics-statistics", - "title": "7 Basic statistics for spatial analysis", - "section": "7.2 Basics statistics", - "text": "7.2 Basics statistics\nThe problem is usually expressed by defining two hypothesis : the null hypothesis (H0), i.e. an a priori hypothesis of the studied phenomenon (e.g. the situation is a random) and the alternative hypothesis (HA), e.g. the situation is not random. The main principle is to measure how likely the observed situation belong to the ensemble of situation that are possible under the H0 hypothesis.\nThe statistical analysis performed relies on the type of data.\n\n7.2.1 Spatial autocorrelation (Moran’s I test)\nA popular test for spatial autocorrelation is the Moran’s test.\nMoran’s I test tells us whether nearby units tend to exhibit similar rates. It ranges from -1 to +1, whith a value of -1 denoting that units with low rates are located near other units with high rates, while a Moran’s I value of +1 indicates a concentration of spatial units exhibiting similar rates.\nWe will compute the Moran’s statistics using spdep and Dcluster packages. This package provides a collection of functions to analyze spatial correlations of polygons and works with sp objects. Dcluster package provides a set of functions for the detection of spatial clusters of disease using count data.\n\n# Compte incidence in each district (per 100 000 population)\ndistrict$incidence <- district$cases/district$T_POP * 100000\n\n# Plot the incidence histogramm\nhist(log(district$incidence))" - }, - { - "objectID": "07-basic_statistics.html#cluster-analysis", - "href": "07-basic_statistics.html#cluster-analysis", - "title": "7 Basic statistics for spatial analysis", -<<<<<<< HEAD - "section": "7.2 Cluster analysis", - "text": "7.2 Cluster analysis\nSince this W fever seems to have a heterogeneous distribution across Cambodia, it would be interesting to study where excess of cases appears, i.e. to identify clusters of the disease. The first question is to wonder if data are auto correlated or spatially independent, i.e. study if neighboring districts are likely to have similar incidence.\nIn statistics, problems are usually expressed by defining two hypothesis : the null hypothesis (H0), i.e. an a priori hypothesis of the studied phenomenon (e.g. the situation is a random) and the alternative hypothesis (HA), e.g. the situation is not random. The main principle is to measure how likely the observed situation belong to the ensemble of situation that are possible under the H0 hypothesis.\n\n7.2.1 Spatial autocorrelation (Moran’s I test)\nA popular test for spatial autocorrelation is the Moran’s test. This test tells us whether nearby units tend to exhibit similar incidences. It ranges from -1 to +1. A value of -1 denote that units with low rates are located near other units with high rates, while a Moran’s I value of +1 indicates a concentration of spatial units exhibiting similar rates.\nHere the statistics hypothesis are :\n\nH0 :\nH1: , i.e. Moran’s I value is different than 0.\n\nWe will compute the Moran’s statistics using spdep and Dcluster packages. spdep package provides a collection of functions to analyze spatial correlations of polygons and works with sp objects. Dcluster package provides a set of functions for the detection of spatial clusters of disease using count data.\n\nlibrary(spdep) # Functions for creating spatial weight, spatial analysis\nlibrary(DCluster) # Package with functions for spatial cluster analysis)\n\nqnb <- poly2nb(district)\nq_listw <- nb2listw(qnb, style = 'W') # row-standardized weights\n\n# Moran's I test\nmoranI.test(cases ~ offset(log(expected)), \n data = district,\n model = 'poisson',\n R = 499,\n listw = q_listw,\n n = 159,\n S0 = Szero(q_listw))\n\nMoran's I test of spatial autocorrelation \n\n Type of boots.: parametric \n Model used when sampling: Poisson \n Number of simulations: 499 \n Statistic: 0.1264291 \n p-value : 0.016 \n\n\n\n\n7.2.2 Spatial scan statistics\nWhile Moran’s indice focuses on finding correlation between neighboring polygons, the spatial scan statistic compare the incidence level of a given windows of observation with the incidence level outside of this windows.\nThe package SpatialEpi\n\n\n7.2.3 Population-based clusters (kulldorf statistic)\nKulldorff ’s spatial scan statistic identifies the most likely disease clusters maximizing the likelihood that disease cases are located within a set of concentric circles that are moved across the study area.\n\n\n7.2.4 Expectation-based cluster\nIn many case, population is not specific enough to\n\n\n7.2.5 To go further …" -======= - "section": "7.3 Cluster analysis", - "text": "7.3 Cluster analysis\nIn epidemiology, the definition of a cluster\n\n7.3.1 Population-based clusters (kulldorf statistic)\nKulldorff ’s spatial scan statistic identifies the most likely disease clusters maximizing the likelihood that disease cases are located within a set of concentric circles that are moved across the study area.\n\n\n7.3.2 Expectation-based cluster\nIn many case, population is not specific enough to\n\n\n7.3.3 To go further …" ->>>>>>> refs/remotes/origin/main - }, - { - "objectID": "references.html", - "href": "references.html", - "title": "References", - "section": "", -<<<<<<< HEAD - "text": "This section aims at providing some basic statistical tools to study the spatial distribution of epidemiological data." - }, - { - "objectID": "07-basic_statistics.html#basics-statistics", - "href": "07-basic_statistics.html#basics-statistics", - "title": "7 Basic statistics for spatial analysis", - "section": "7.2 Basics statistics", - "text": "7.2 Basics statistics\nThe problem is usually expressed by defining two hypothesis : the null hypothesis (H0), i.e. an a priori hypothesis of the studied phenomenon (e.g. the situation is a random) and the alternative hypothesis (HA), e.g. the situation is not random. The main principle is to measure how likely the observed situation belong to the ensemble of situation that are possible under the H0 hypothesis.\nThe statistical analysis performed relies on the type of data.\n\n7.2.1 Spatial autocorrelation (Moran’s I test)\nA popular test for spatial autocorrelation is the Moran’s test.\nMoran’s I test tells us whether nearby units tend to exhibit similar rates. It ranges from -1 to +1, whith a value of -1 denoting that units with low rates are located near other units with high rates, while a Moran’s I value of +1 indicates a concentration of spatial units exhibiting similar rates.\nWe will compute the Moran’s statistics using spdep and Dcluster packages. spdep package provides a collection of functions to analyze spatial correlations of polygons and works with sp objects. Dcluster package provides a set of functions for the detection of spatial clusters of disease using count data.\n\n# Plot the incidence histogramm\nhist(log(district$incidence))" - }, - { - "objectID": "07-basic_statistics.html#import-and-visualize-epidemiological-data", - "href": "07-basic_statistics.html#import-and-visualize-epidemiological-data", - "title": "7 Basic statistics for spatial analysis", - "section": "7.1 Import and visualize epidemiological data", - "text": "7.1 Import and visualize epidemiological data\nIn this section, we load data that reference the cases of an imaginary disease throughout Cambodia. Each point correspond to the geolocalisation of a case.\n\nlibrary(sf)\n\n#Import Cambodia country border\ncountry = st_read(\"data_cambodia/cambodia.gpkg\", layer = \"country\", quiet = TRUE)\n#Import provincial administrative border of Cambodia\neducation = st_read(\"data_cambodia/cambodia.gpkg\", layer = \"education\", quiet = TRUE)\n#Import district administrative border of Cambodia\ndistrict = st_read(\"data_cambodia/cambodia.gpkg\", layer = \"district\", quiet = TRUE)\n\n# Import locations of cases from an imaginary disease\ncases = st_read(\"data_cambodia/cambodia.gpkg\", layer = \"cases\", quiet = TRUE)\ncases = subset(cases, Disease == \"W fever\")\n\nThe first step of any statistical analysis always consists on visualizing the data to check they were correctly loaded and to observe general pattern of the cases.\n\n# View the cases object\nhead(cases)\n\nSimple feature collection with 6 features and 2 fields\nGeometry type: MULTIPOINT\nDimension: XY\nBounding box: xmin: 255891 ymin: 1179092 xmax: 506647.4 ymax: 1467441\nProjected CRS: WGS 84 / UTM zone 48N\n id Disease geom\n1 0 W fever MULTIPOINT ((280036.2 12841...\n2 1 W fever MULTIPOINT ((451859.5 11790...\n3 2 W fever MULTIPOINT ((255891 1467441))\n4 5 W fever MULTIPOINT ((506647.4 12322...\n5 6 W fever MULTIPOINT ((440668 1197958))\n6 7 W fever MULTIPOINT ((481594.5 12714...\n\n# Map the cases\nlibrary(mapsf)\n\nmf_map(x = district, border = \"white\")\nmf_map(x = country,lwd = 2, col = NA, add = TRUE)\nmf_map(x = cases, lwd = .5, col = \"#990000\", pch = 20, add = TRUE)\n\n\n\n\nIn epidemiology, the true meaning of point is very questionable. If it usually gives the location of an observation, its not clear if this observation represents an event of interest (e.g. illness, death, …) or a person at risk (e.g. a participant that may or may not experience the disease). Considering a ratio of event compared to a population at risk is often more informative than just considering cases. Administrative divisions of countries appears as great areal units for cases aggregation since they make available data on population count and structures. In this study, we will use district as the areal unit of the study.\n\n# Aggregate cases over districts\ndistrict$cases <- lengths(st_intersects(district, cases))\n\nThe incidence (\\(\\frac{cases}{population}\\)) is commonly use to represent cases distribution related to population density but other indicators exists. As example, the standardized incidence ratios (SIRs) represents the deviation of observed and expected number of cases and is expressed as \\(SIR = \\frac{Y_i}{E_i}\\) with \\(Y_i\\), the observed number of cases and \\(E_i\\), the expected number of cases. In this study, we computed the expected number of cases in each district by assuming infections are homogeneously distributed across Cambodia, i.e. the incidence is the same in each district.\n\n# Compute incidence in each district (per 100 000 population)\ndistrict$incidence = district$cases/district$T_POP * 100000\n\n# Compute the global risk\nrate = sum(district$cases)/sum(district$T_POP)\n\n# Compute expected number of cases \ndistrict$expected = district$T_POP * rate\n\n# Compute SIR\ndistrict$SIR = district$cases / district$expected\n\n\npar(mfrow = c(1, 3))\n# Plot number of cases using proportional symbol \nmf_map(x = district) \nmf_map(\n x = district, \n var = \"cases\",\n val_max = 50,\n type = \"prop\",\n col = \"#990000\", \n leg_title = \"Cases\")\nmf_layout(title = \"Number of cases of W Fever\")\n\n# Plot incidence \nmf_map(x = district,\n var = \"incidence\",\n type = \"choro\",\n pal = \"Reds 3\",\n leg_title = \"Incidence \\n(per 100 000)\")\nmf_layout(title = \"Incidence of W Fever\")\n\n# Plot SIRs\n# create breaks and associated color palette\nbreak_SIR = c(0, exp(mf_get_breaks(log(district$SIR), nbreaks = 8, breaks = \"pretty\")))\ncol_pal = c(\"#273871\", \"#3267AD\", \"#6496C8\", \"#9BBFDD\", \"#CDE3F0\", \"#FFCEBC\", \"#FF967E\", \"#F64D41\", \"#B90E36\")\n\nmf_map(x = district,\n var = \"SIR\",\n type = \"choro\",\n breaks = break_SIR, \n pal = col_pal, \n cex = 2,\n leg_title = \"SIR\")\nmf_layout(title = \"Standardized Incidence Ratio of W Fever\")\n\n\n\n\nThese maps illustrates the spatial heterogenity of the cases. The incidence shows how the disease vary from one district to another while the SIR highlight districts that have :\n\nhigher risk than average (SIR > 1) when standardized for population\nlower risk than average (SIR < 1) when standardized for population\naverage risk (SIR ~ 1) when standardized for population\n\nIn this example, we standardized the cases distribution for population count. This simple standardization assume that the risk of contracting the disease is similar for each person. However, assumption does not hold for all diseases and for all observed events since confounding effects can create nuisance into the interpretations (e.g. the number of childhood illness and death outcomes in a district are usually related to the age pyramid) and you should keep in mind that other standardization can be performed based on variables known to have an effect but that you don’t want to analyze (e.g. sex ratio, occupations, age pyramid)." -======= - "text": "Agafonkin, Vladimir. 2015. “Leaflet Javascript Libary.â€\n\n\nAppelhans, Tim, Florian Detsch, Christoph Reudenbach, and Stefan\nWoellauer. 2022. “Mapview: Interactive Viewing of Spatial Data in\nr.†https://CRAN.R-project.org/package=mapview.\n\n\nAppelhans, Tim, Kenton Russell, and Lorenzo Busetto. 2020.\n“Mapedit: Interactive Editing of Spatial Data in r.†https://CRAN.R-project.org/package=mapedit.\n\n\nBivand, Roger, Tim Keitt, and Barry Rowlingson. 2022. “Rgdal:\nBindings for the ’Geospatial’ Data Abstraction Library.†https://CRAN.R-project.org/package=rgdal.\n\n\nBivand, Roger, and Colin Rundel. 2021. “Rgeos: Interface to\nGeometry Engine - Open Source (’GEOS’).†https://CRAN.R-project.org/package=rgeos.\n\n\nBrunet, Roger, Robert Ferras, and Hervé Théry. 1993. Les Mots de La\ngéographie: Dictionnaire Critique. 03) 911 BRU.\n\n\nCambon, Jesse, Diego Hernangómez, Christopher Belanger, and Daniel\nPossenriede. 2021. “Tidygeocoder: An r Package for\nGeocoding†6: 3544. https://doi.org/10.21105/joss.03544.\n\n\nCauvin, Colette, Francisco Escobar, and Aziz Serradj. 2013. Thematic\nCartography, Cartography and the Impact of the Quantitative\nRevolution. Vol. 2. John Wiley & Sons.\n\n\nCheng, Joe, Bhaskar Karambelkar, and Yihui Xie. 2022. “Leaflet:\nCreate Interactive Web Maps with the JavaScript ’Leaflet’\nLibrary.†https://CRAN.R-project.org/package=leaflet.\n\n\nDorling, Daniel. 1996. Area Cartograms: Their Use and Creation,\nConcepts and Techniques in Modern Geography. Vol. 59. CATMOG:\nConcepts and Techniques in Modern Geography. Institute of British\nGeographers.\n\n\nDougenik, James A, Nicholas R Chrisman, and Duane R Niemeyer. 1985.\n“An Algorithm to Construct Continuous Area Cartograms.â€\nThe Professional Geographer 37 (1): 75–81.\n\n\nDunnington, Dewey. 2021. “Ggspatial: Spatial Data Framework for\nGgplot2.†https://CRAN.R-project.org/package=ggspatial.\n\n\nGDAL/OGR contributors. n.d. GDAL/OGR Geospatial Data\nAbstraction Software Library. Open Source Geospatial Foundation. https://gdal.org.\n\n\nGilardi, Andrea, and Robin Lovelace. 2021. “Osmextract: Download\nand Import Open Street Map Data Extracts.†https://CRAN.R-project.org/package=osmextract.\n\n\nGiraud, Timothée. 2021a. “Linemap: Line Maps.†https://CRAN.R-project.org/package=linemap.\n\n\n———. 2021b. “Maptiles: Download and Display Map Tiles.†https://CRAN.R-project.org/package=maptiles.\n\n\n———. 2022a. “Mapsf: Thematic Cartography.†https://CRAN.R-project.org/package=mapsf.\n\n\n———. 2022b. “Tanaka: Design Shaded Contour Lines (or Tanaka)\nMaps.†https://CRAN.R-project.org/package=tanaka.\n\n\nGiraud, Timothée, and Nicolas Lambert. 2016. “Cartography: Create\nand Integrate Maps in Your r Workflow†1. https://doi.org/10.21105/joss.00054.\n\n\nGombin, Joel, and Paul-Antoine Chevalier. 2022. “banR: R Client\nfor the BAN API.â€\n\n\nHerbreteau, Vincent, Christophe Révillion, and Etienne Trimaille. 2018.\n“GeoHealth and QuickOSM, two QGIS plugins for\nhealth applications.†In Earth\nSystems - Environmental Sciences : QGIS in Remote Sensing\nSet, edited by Nicolas Baghdadi, Clément Mallet, and Mehrez\nZribi, 1:257–86. QGIS and Generic Tools. ISTE. https://hal.archives-ouvertes.fr/hal-01787435.\n\n\nHijmans, Robert J. 2022a. “Raster: Geographic Data Analysis and\nModeling.†https://CRAN.R-project.org/package=raster.\n\n\n———. 2022b. “Terra: Spatial Data Analysis.†https://CRAN.R-project.org/package=terra.\n\n\nJeworutzki, Sebastian. 2020. “Cartogram: Create Cartograms with\nr.†https://CRAN.R-project.org/package=cartogram.\n\n\nLambert, Nicolas. 2015. “Les Anamorphoses Cartographiques.â€\nBlog. Carnet Néocartographique. https://neocarto.hypotheses.org/366.\n\n\nLi, Xingong. 2009. “Map Algebra and Beyond : 1. Map Algebra for\nScalar Fields.†https://slideplayer.com/slide/5822638/.\n\n\nMadelin, Malika. 2021. “Analyse d’images Raster (Et\nTélédétection).†https://mmadelin.github.io/sigr2021/SIGR2021_raster_MM.html.\n\n\nMennis, Jeremy. 2015. “Fundamentals of GIS : Raster\nOperations.†https://cupdf.com/document/gus-0262-fundamentals-of-gis-lecture-presentation-7-raster-operations-jeremy.html.\n\n\nNowosad, Jakub. 2021. “Image Processing and All Things\nRaster.†https://nowosad.github.io/SIGR2021/workshop2/workshop2.html.\n\n\nOlson, Judy M. 1976. “Noncontiguous Area Cartograms.â€\nThe Professional Geographer 28 (4): 371–80.\n\n\nPadgham, Mark, Bob Rudis, Robin Lovelace, and Maëlle Salmon. 2017.\n“Osmdata†2. https://doi.org/10.21105/joss.00305.\n\n\nPaull, John, and Benjamin Hennig. 2016. “Atlas of Organics: Four\nMaps of the World of Organic Agriculture.†Journal of\nOrganics 3 (1): 25–32.\n\n\nPebesma, Edzer. 2018b. “Simple Features for r:\nStandardized Support for Spatial Vector Data†10. https://doi.org/10.32614/RJ-2018-009.\n\n\n———. 2018a. “Simple Features for R: Standardized Support for\nSpatial Vector Data.†The R Journal 10 (1): 439. https://doi.org/10.32614/rj-2018-009.\n\n\n———. 2021. “Stars: Spatiotemporal Arrays, Raster and Vector Data\nCubes.†https://CRAN.R-project.org/package=stars.\n\n\nPebesma, Edzer J., and Roger S. Bivand. 2005. “Classes and Methods\nfor Spatial Data in r†5. https://CRAN.R-project.org/doc/Rnews/.\n\n\nPROJ contributors. 2021. PROJ Coordinate Transformation\nSoftware Library. Open Source Geospatial Foundation. https://proj.org/.\n\n\nRacine, Etienne B. 2016. “The Visual Raster Cheat Sheet.â€\nhttps://rpubs.com/etiennebr/visualraster.\n\n\nTanaka, Kitiro. 1950. “The Relief Contour Method of Representing\nTopography on Maps.†Geographical Review 40 (3): 444. https://doi.org/10.2307/211219.\n\n\nTennekes, Martijn. 2018. “Tmap: Thematic\nMaps in r†84. https://doi.org/10.18637/jss.v084.i06.\n\n\nTomlin, C. Dana. 1990. Geographic Information Systems and\nCartographic Modeling. Prentice Hall.\n\n\nWickham, Hadley. 2016. “Ggplot2: Elegant Graphics for Data\nAnalysis.†https://ggplot2.tidyverse.org." ->>>>>>> refs/remotes/origin/main - } -] \ No newline at end of file -- GitLab