From e849094c8fea30bbf12fe0cfe95f2a52445473d7 Mon Sep 17 00:00:00 2001
From: "lea.douchet_ird.fr" <ldouchet@hotmail.fr>
Date: Sun, 27 Nov 2022 17:27:32 +0700
Subject: [PATCH] tes hypothesis of kulldorff

---
 07-basic_statistics.qmd                       |  36 ++-
 public/07-basic_statistics.html               | 228 ++++++++++--------
 .../figure-html/LocalMoransI-1.png            | Bin 14830 -> 0 bytes
 .../figure-html/LocalMoransI_plt-1.png        | Bin 44331 -> 44382 bytes
 .../figure-html/MoransI-1.png                 | Bin 18402 -> 17140 bytes
 .../figure-html/incidence_visualization-1.png | Bin 53684 -> 0 bytes
 .../figure-html/kd_test-1.png                 | Bin 15750 -> 15735 bytes
 public/search.json                            |   2 +-
 8 files changed, 149 insertions(+), 117 deletions(-)
 delete mode 100644 public/07-basic_statistics_files/figure-html/LocalMoransI-1.png
 delete mode 100644 public/07-basic_statistics_files/figure-html/incidence_visualization-1.png

diff --git a/07-basic_statistics.qmd b/07-basic_statistics.qmd
index 3e8443b..758bef2 100644
--- a/07-basic_statistics.qmd
+++ b/07-basic_statistics.qmd
@@ -43,7 +43,7 @@ mf_map(x = cases, lwd = .5, col = "#990000", pch = 20, add = TRUE)
 
 ```
 
-In epidemiology, the true meaning of point is very questionable. If it usually gives the location of an observation, we cannot precisely tell if this observation represents an event of interest (e.g., illness, death, ...) or a person at risk (e.g., a participant that may or may not experience the disease). Considering a ratio of event compared to a population at risk is often more informative than just considering cases. Administrative divisions of countries appear as great areal units for cases aggregation since they make available data on population count and structures. In this study, we will use the district as the areal unit of the study.
+In epidemiology, the true meaning of point is very questionable. If it usually gives the location of an observation, we cannot precisely tell if this observation represents an event of interest (e.g., illness, death, ...) or a person at risk (e.g., a participant that may or may not experience the disease). If you can consider that the population at risk is uniformly distributed in small area (a city for example), this is likely not the case at a country scale. Considering a ratio of event compared to a population at risk is often more informative than just considering cases. Administrative divisions of countries appear as great areal units for cases aggregation since they make available data on population count and structures. In this study, we will use the district as the areal unit of the study.
 
 ```{r district_aggregate, eval = TRUE, echo = TRUE, nm = TRUE, fig.width=8, class.output="code-out", warning=FALSE, message=FALSE}
 # Aggregate cases over districts
@@ -213,7 +213,7 @@ plot(m_test)
 
 The Moran's statistics is here $I =$ `r signif(m_test$t0, 2)`. When comparing its value to the H0 distribution (built under `r m_test$R` simulations), the probability of observing such a I value under the null hypothesis, i.e. the distribution of cases is spatially independent, is $p_{value} =$ `r signif(( 1+ (sum((-abs(as.numeric(m_test$t0-mean(m_test$t))))>as.numeric(m_test$t-mean(m_test$t)))) + (sum(abs(as.numeric(m_test$t0-mean(m_test$t)))<as.numeric(m_test$t-mean(m_test$t)))) )/(m_test$R+1), 2)`. We therefore reject H0 with error risk of $\alpha = 5\%$. The distribution of cases is therefore autocorrelated across districts in Cambodia.
 
-#### Moran's I local test
+#### The Local Moran's I LISA test
 
 The global Moran's test provides us a global statistical value informing whether autocorrelation occurs over the territory but does not inform on where does these correlations occurs, i.e., what is the locations of the clusters. To identify such cluster, we can decompose the Moran's I statistic to extract local information of the level of correlation of each district and its neighbors. This is called the Local Moran's I LISA statistic. Because the Local Moran's I LISA statistic test each district for autocorrelation independently, concern is raised about multiple testing limitations that increase the Type I error ($\alpha$) of the statistical tests. The use of local test should therefore be study in light of explore and describes clusters once the global test detected autocorrelation.
 
@@ -228,7 +228,6 @@ $$I_i = \frac{(Y_i-\bar{Y})}{\sum_{i=1}^N(Y_i-\bar{Y})^2}\sum_{j=1}^Nw_{ij}(Y_j
 The `localmoran()`function from the package `spdep` treats the variable of interest as if it was normally distributed. In some cases, this assumption could be reasonable for incidence rate, especially when the areal units of analysis have sufficiently large population count suggesting that the values have similar level of variances. Unfortunately, the local Moran’s test has not been implemented for Poisson distribution (population not large enough in some districts) in `spdep` package. However, Bivand **et al.** [@bivand2008applied] provided some code to manual perform the analysis using Poisson distribution and was further implemented in the course "[Spatial Epidemiology](https://mkram01.github.io/EPI563-SpatialEPI/index.html)”.
 
 
-
 ```{r LocalMoransI, eval = TRUE, echo = TRUE, nm = TRUE, fig.width=8, class.output="code-out", warning=FALSE, message=FALSE}
 
 # Step 1 - Create the standardized deviation of observed from expected
@@ -259,7 +258,6 @@ for(i in 1:nsim){
   sims[, i] <- sd_lmi * wsd_lmi # this is the I(i) statistic under this iteration of null
 }
 
-hist(sims[1,])
 # Step 6 - For each county, test where the observed value ranks with respect to the null simulations
 xrank <- apply(cbind(district$I_lm, sims), 1, function(x) rank(x)[1])
 
@@ -319,8 +317,6 @@ mf_map(x = district,
 
 mf_layout(title = "Cluster using Local Moran's I statistic")
 
-
-
 ```
 
 
@@ -329,16 +325,35 @@ mf_layout(title = "Cluster using Local Moran's I statistic")
 
 While Moran's indices focus on testing for autocorrelation between neighboring polygons (under the null assumption of spatial independence), the spatial scan statistic aims at identifying an abnormal higher risk in a given region compared to the risk outside of this region (under the null assumption of homogeneous distribution). The conception of a cluster is therefore different between the two methods.
 
-The function `kulldorff` from the package `SpatialEpi` [@SpatialEpi] is a simple tool to implement spatial-only scan statistics. Briefly, the kulldorff scan statistics scan the area for clusters using several steps:
+The function `kulldorff` from the package `SpatialEpi` [@SpatialEpi] is a simple tool to implement spatial-only scan statistics. 
+
+::: callout-note
+##### Kulldorf test
+
+Under the kulldorff test, the statistics hypotheses are:
+
+-   **H0**: the risk is constant over the area, i.e., there is a spatial homogeneity of the incidence.
+
+-   **H1**: a particular window have higher incidence than the rest of the area , i.e., there is a spatial heterogeneity of incidence.
+
+:::
+
+
+Briefly, the kulldorff scan statistics scan the area for clusters using several steps:
 
 1.  It create a circular window of observation by defining a single location and an associated radius of the windows varying from 0 to a large number that depends on population distribution (largest radius could include 50% of the population).
 
 2.  It aggregates the count of events and the population at risk (or an expected count of events) inside and outside the window of observation.
 
-3.  Finally, it computes the likelihood ratio to test whether the risk is equal inside versus outside the windows (H0) or greater inside the observed window
+3.  Finally, it computes the likelihood ratio and test whether the risk is equal inside versus outside the windows (H0) or greater inside the observed window (H1). The H0 distribution is estimated by simulating the distribution of counts under the null hypothesis (homogeneous risk).
 
 4.  These 3 steps are repeated for each location and each possible windows-radii.
 
+
+While we test the significance of a large number of observation windows, one can raise concern about multiple testing and Type I error. This approach however suggest that we are not interest in a set of signifiant cluster but only in a most-likely cluster. This **a priori** restriction eliminate concern for multpile comparison since the test is simplified to a statistically significance of one single most-likely cluster.
+
+Because we tested all-possible locations and window-radius, we can also choose to look at secondary clusters. In this case, you should keep in mind that increasing the number of secondary cluster you select, increases the risk for Type I error.
+
 ```{r spatialEpi, eval = TRUE, echo = TRUE, nm = TRUE, class.output="code-out", warning=FALSE, message=FALSE}
 
 library("SpatialEpi")
@@ -370,7 +385,8 @@ kd_Wfever <- kulldorff(district_xy,
 
 ```
 
-All outputs are saved into an R object, here called `kd_Wfever`. Unfortunately, the package did not develop any summary and visualization of the results but we can explore the output object.
+The function plot the histogram of the distribution of log-likelihood ratio simulated under the null hypothesis that is estimated based on Monte Carlo simulations. The observed value of the most significant cluster identified from all possible scans is compared to the distribution to determine significance. All outputs are saved into an R object, here called `kd_Wfever`. Unfortunately, the package did not develop any summary and visualization of the results but we can explore the output object.
+
 
 ```{r kd_outputs, eval = TRUE, echo = TRUE, nm = TRUE, fig.width=6, class.output="code-out", warning=FALSE, message=FALSE}
 names(kd_Wfever)
@@ -447,7 +463,7 @@ mf_layout(title = "Cluster using kulldorf scan statistic")
 
 In this example, the expected number of cases was defined using the population count but note that standardization over other variables as age could also be implemented with the `strata` parameter in the `kulldorff()` function.
 
-In addition, this cluster analysis was performed solely using the spatial scan but you should keep in mind that this method of cluster detection can be implemented for spatio-temporal data as well where the cluster definition is an abnormal number of cases in a delimited spatial area and during a given period of time. The windows of observation are therefore defined for a different center, radius and period of time. You should look at the function `scan_ep_poisson()` function in the package `scanstatistic` [@scanstatistics] for this analysis.
+In addition, this cluster analysis was performed solely using the spatial scan but you should keep in mind that this method of cluster detection can be implemented for spatio-temporal data as well where the cluster definition is an abnormal number of cases in a delimited spatial area and during a given period of time. The windows of observation are therefore defined for a different center, radius and time-period. You should look at the function `scan_ep_poisson()` function in the package `scanstatistic` [@scanstatistics] for this analysis.
 :::
 
 
diff --git a/public/07-basic_statistics.html b/public/07-basic_statistics.html
index 6c97dbb..872ac41 100644
--- a/public/07-basic_statistics.html
+++ b/public/07-basic_statistics.html
@@ -242,7 +242,7 @@ div.csl-indent {
   <li><a href="#test-for-spatial-autocorrelation-morans-i-test" id="toc-test-for-spatial-autocorrelation-morans-i-test" class="nav-link" data-scroll-target="#test-for-spatial-autocorrelation-morans-i-test"><span class="toc-section-number">7.2.2</span>  Test for spatial autocorrelation (Moran’s I test)</a>
   <ul class="collapse">
   <li><a href="#the-global-morans-i-test" id="toc-the-global-morans-i-test" class="nav-link" data-scroll-target="#the-global-morans-i-test"><span class="toc-section-number">7.2.2.1</span>  The global Moran’s I test</a></li>
-  <li><a href="#morans-i-local-test" id="toc-morans-i-local-test" class="nav-link" data-scroll-target="#morans-i-local-test"><span class="toc-section-number">7.2.2.2</span>  Moran’s I local test</a></li>
+  <li><a href="#the-local-morans-i-lisa-test" id="toc-the-local-morans-i-lisa-test" class="nav-link" data-scroll-target="#the-local-morans-i-lisa-test"><span class="toc-section-number">7.2.2.2</span>  The Local Moran’s I LISA test</a></li>
   </ul></li>
   <li><a href="#spatial-scan-statistics" id="toc-spatial-scan-statistics" class="nav-link" data-scroll-target="#spatial-scan-statistics"><span class="toc-section-number">7.2.3</span>  Spatial scan statistics</a></li>
   </ul></li>
@@ -490,17 +490,17 @@ Moran’s I test
     Model used when sampling: Poisson 
     Number of simulations: 499 
     Statistic:  0.1566449 
-    p-value :  0.012 </code></pre>
+    p-value :  0.01 </code></pre>
 </div>
 <div class="sourceCode cell-code" id="cb11"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(m_test)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
 <p><img src="07-basic_statistics_files/figure-html/MoransI-1.png" class="img-fluid" width="768"></p>
 </div>
 </div>
-<p>The Moran’s statistics is here <span class="math inline">\(I =\)</span> 0.16. When comparing its value to the H0 distribution (built under 499 simulations), the probability of observing such a I value under the null hypothesis, i.e.&nbsp;the distribution of cases is spatially independent, is <span class="math inline">\(p_{value} =\)</span> 0.012. We therefore reject H0 with error risk of <span class="math inline">\(\alpha = 5\%\)</span>. The distribution of cases is therefore autocorrelated across districts in Cambodia.</p>
+<p>The Moran’s statistics is here <span class="math inline">\(I =\)</span> 0.16. When comparing its value to the H0 distribution (built under 499 simulations), the probability of observing such a I value under the null hypothesis, i.e.&nbsp;the distribution of cases is spatially independent, is <span class="math inline">\(p_{value} =\)</span> 0.01. We therefore reject H0 with error risk of <span class="math inline">\(\alpha = 5\%\)</span>. The distribution of cases is therefore autocorrelated across districts in Cambodia.</p>
 </section>
-<section id="morans-i-local-test" class="level4" data-number="7.2.2.2">
-<h4 data-number="7.2.2.2" class="anchored" data-anchor-id="morans-i-local-test"><span class="header-section-number">7.2.2.2</span> Moran’s I local test</h4>
+<section id="the-local-morans-i-lisa-test" class="level4" data-number="7.2.2.2">
+<h4 data-number="7.2.2.2" class="anchored" data-anchor-id="the-local-morans-i-lisa-test"><span class="header-section-number">7.2.2.2</span> The Local Moran’s I LISA test</h4>
 <p>The global Moran’s test provides us a global statistical value informing whether autocorrelation occurs over the territory but does not inform on where does these correlations occurs, i.e., what is the locations of the clusters. To identify such cluster, we can decompose the Moran’s I statistic to extract local information of the level of correlation of each district and its neighbors. This is called the Local Moran’s I LISA statistic. Because the Local Moran’s I LISA statistic test each district for autocorrelation independently, concern is raised about multiple testing limitations that increase the Type I error (<span class="math inline">\(\alpha\)</span>) of the statistical tests. The use of local test should therefore be study in light of explore and describes clusters once the global test detected autocorrelation.</p>
 <div class="callout-note callout callout-style-default callout-captioned">
 <div class="callout-header d-flex align-content-center">
@@ -546,20 +546,16 @@ Statistical test
 <span id="cb12-26"><a href="#cb12-26" aria-hidden="true" tabindex="-1"></a>  sims[, i] <span class="ot">&lt;-</span> sd_lmi <span class="sc">*</span> wsd_lmi <span class="co"># this is the I(i) statistic under this iteration of null</span></span>
 <span id="cb12-27"><a href="#cb12-27" aria-hidden="true" tabindex="-1"></a>}</span>
 <span id="cb12-28"><a href="#cb12-28" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb12-29"><a href="#cb12-29" aria-hidden="true" tabindex="-1"></a><span class="fu">hist</span>(sims[<span class="dv">1</span>,])</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
-<div class="cell-output-display">
-<p><img src="07-basic_statistics_files/figure-html/LocalMoransI-1.png" class="img-fluid" width="768"></p>
-</div>
-<div class="sourceCode cell-code" id="cb13"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Step 6 - For each county, test where the observed value ranks with respect to the null simulations</span></span>
-<span id="cb13-2"><a href="#cb13-2" aria-hidden="true" tabindex="-1"></a>xrank <span class="ot">&lt;-</span> <span class="fu">apply</span>(<span class="fu">cbind</span>(district<span class="sc">$</span>I_lm, sims), <span class="dv">1</span>, <span class="cf">function</span>(x) <span class="fu">rank</span>(x)[<span class="dv">1</span>])</span>
-<span id="cb13-3"><a href="#cb13-3" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb13-4"><a href="#cb13-4" aria-hidden="true" tabindex="-1"></a><span class="co"># Step 7 - Calculate the difference between observed rank and total possible (nsim)</span></span>
-<span id="cb13-5"><a href="#cb13-5" aria-hidden="true" tabindex="-1"></a>diff <span class="ot">&lt;-</span> nsim <span class="sc">-</span> xrank</span>
-<span id="cb13-6"><a href="#cb13-6" aria-hidden="true" tabindex="-1"></a>diff <span class="ot">&lt;-</span> <span class="fu">ifelse</span>(diff <span class="sc">&gt;</span> <span class="dv">0</span>, diff, <span class="dv">0</span>)</span>
-<span id="cb13-7"><a href="#cb13-7" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb13-8"><a href="#cb13-8" aria-hidden="true" tabindex="-1"></a><span class="co"># Step 8 - Assuming a uniform distribution of ranks, calculate p-value for observed</span></span>
-<span id="cb13-9"><a href="#cb13-9" aria-hidden="true" tabindex="-1"></a><span class="co"># given the null distribution generate from simulations</span></span>
-<span id="cb13-10"><a href="#cb13-10" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>pval_lm <span class="ot">&lt;-</span> <span class="fu">punif</span>((diff <span class="sc">+</span> <span class="dv">1</span>) <span class="sc">/</span> (nsim <span class="sc">+</span> <span class="dv">1</span>))</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<span id="cb12-29"><a href="#cb12-29" aria-hidden="true" tabindex="-1"></a><span class="co"># Step 6 - For each county, test where the observed value ranks with respect to the null simulations</span></span>
+<span id="cb12-30"><a href="#cb12-30" aria-hidden="true" tabindex="-1"></a>xrank <span class="ot">&lt;-</span> <span class="fu">apply</span>(<span class="fu">cbind</span>(district<span class="sc">$</span>I_lm, sims), <span class="dv">1</span>, <span class="cf">function</span>(x) <span class="fu">rank</span>(x)[<span class="dv">1</span>])</span>
+<span id="cb12-31"><a href="#cb12-31" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb12-32"><a href="#cb12-32" aria-hidden="true" tabindex="-1"></a><span class="co"># Step 7 - Calculate the difference between observed rank and total possible (nsim)</span></span>
+<span id="cb12-33"><a href="#cb12-33" aria-hidden="true" tabindex="-1"></a>diff <span class="ot">&lt;-</span> nsim <span class="sc">-</span> xrank</span>
+<span id="cb12-34"><a href="#cb12-34" aria-hidden="true" tabindex="-1"></a>diff <span class="ot">&lt;-</span> <span class="fu">ifelse</span>(diff <span class="sc">&gt;</span> <span class="dv">0</span>, diff, <span class="dv">0</span>)</span>
+<span id="cb12-35"><a href="#cb12-35" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb12-36"><a href="#cb12-36" aria-hidden="true" tabindex="-1"></a><span class="co"># Step 8 - Assuming a uniform distribution of ranks, calculate p-value for observed</span></span>
+<span id="cb12-37"><a href="#cb12-37" aria-hidden="true" tabindex="-1"></a><span class="co"># given the null distribution generate from simulations</span></span>
+<span id="cb12-38"><a href="#cb12-38" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>pval_lm <span class="ot">&lt;-</span> <span class="fu">punif</span>((diff <span class="sc">+</span> <span class="dv">1</span>) <span class="sc">/</span> (nsim <span class="sc">+</span> <span class="dv">1</span>))</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>For each district, we obtain a p-value based on permutations process</p>
 <p>A conventional way of plotting these results is to classify the districts into 5 classes based on local Moran’s I output. The classification of cluster that are significantly autocorrelated to their neighbors is performed based on a comparison of the scaled incidence in the district compared to the scaled weighted averaged incidence of it neighboring districts (computed with <code>lag.listw()</code>):</p>
@@ -571,35 +567,35 @@ Statistical test
 <li><p>Districts with non-significant values for the <span class="math inline">\(I_i\)</span> statistic are defined as <strong>Non-significant</strong>.</p></li>
 </ul>
 <div class="cell" data-nm="true">
-<div class="sourceCode cell-code" id="cb14"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1" aria-hidden="true" tabindex="-1"></a><span class="co"># create lagged local raw_rate - in other words the average of the queen neighbors value</span></span>
-<span id="cb14-2"><a href="#cb14-2" aria-hidden="true" tabindex="-1"></a><span class="co"># values are scaled (centered and reduced) to be compared to average</span></span>
-<span id="cb14-3"><a href="#cb14-3" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>lag_std   <span class="ot">&lt;-</span> <span class="fu">scale</span>(<span class="fu">lag.listw</span>(q_listw, <span class="at">var =</span> district<span class="sc">$</span>incidence))</span>
-<span id="cb14-4"><a href="#cb14-4" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>incidence_std <span class="ot">&lt;-</span> <span class="fu">scale</span>(district<span class="sc">$</span>incidence)</span>
-<span id="cb14-5"><a href="#cb14-5" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb14-6"><a href="#cb14-6" aria-hidden="true" tabindex="-1"></a><span class="co"># extract pvalues</span></span>
-<span id="cb14-7"><a href="#cb14-7" aria-hidden="true" tabindex="-1"></a><span class="co"># district$lm_pv &lt;- lm_test[,5]</span></span>
-<span id="cb14-8"><a href="#cb14-8" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb14-9"><a href="#cb14-9" aria-hidden="true" tabindex="-1"></a><span class="co"># Classify local moran's outputs</span></span>
-<span id="cb14-10"><a href="#cb14-10" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>lm_class <span class="ot">&lt;-</span> <span class="cn">NA</span></span>
-<span id="cb14-11"><a href="#cb14-11" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>lm_class[district<span class="sc">$</span>incidence_std <span class="sc">&gt;=</span><span class="dv">0</span> <span class="sc">&amp;</span> district<span class="sc">$</span>lag_std <span class="sc">&gt;=</span><span class="dv">0</span>] <span class="ot">&lt;-</span> <span class="st">'High-High'</span></span>
-<span id="cb14-12"><a href="#cb14-12" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>lm_class[district<span class="sc">$</span>incidence_std <span class="sc">&lt;=</span><span class="dv">0</span> <span class="sc">&amp;</span> district<span class="sc">$</span>lag_std <span class="sc">&lt;=</span><span class="dv">0</span>] <span class="ot">&lt;-</span> <span class="st">'Low-Low'</span></span>
-<span id="cb14-13"><a href="#cb14-13" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>lm_class[district<span class="sc">$</span>incidence_std <span class="sc">&lt;=</span><span class="dv">0</span> <span class="sc">&amp;</span> district<span class="sc">$</span>lag_std <span class="sc">&gt;=</span><span class="dv">0</span>] <span class="ot">&lt;-</span> <span class="st">'Low-High'</span></span>
-<span id="cb14-14"><a href="#cb14-14" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>lm_class[district<span class="sc">$</span>incidence_std <span class="sc">&gt;=</span><span class="dv">0</span> <span class="sc">&amp;</span> district<span class="sc">$</span>lag_std <span class="sc">&lt;=</span><span class="dv">0</span>] <span class="ot">&lt;-</span> <span class="st">'High-Low'</span></span>
-<span id="cb14-15"><a href="#cb14-15" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>lm_class[district<span class="sc">$</span>pval_lm <span class="sc">&gt;=</span> <span class="fl">0.05</span>] <span class="ot">&lt;-</span> <span class="st">'Non-significant'</span></span>
-<span id="cb14-16"><a href="#cb14-16" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb14-17"><a href="#cb14-17" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>lm_class <span class="ot">&lt;-</span> <span class="fu">factor</span>(district<span class="sc">$</span>lm_class, <span class="at">levels=</span><span class="fu">c</span>(<span class="st">"High-High"</span>, <span class="st">"Low-Low"</span>, <span class="st">"High-Low"</span>,  <span class="st">"Low-High"</span>, <span class="st">"Non-significant"</span>) )</span>
-<span id="cb14-18"><a href="#cb14-18" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb14-19"><a href="#cb14-19" aria-hidden="true" tabindex="-1"></a><span class="co"># create map</span></span>
-<span id="cb14-20"><a href="#cb14-20" aria-hidden="true" tabindex="-1"></a><span class="fu">mf_map</span>(<span class="at">x =</span> district,</span>
-<span id="cb14-21"><a href="#cb14-21" aria-hidden="true" tabindex="-1"></a>       <span class="at">var =</span> <span class="st">"lm_class"</span>,</span>
-<span id="cb14-22"><a href="#cb14-22" aria-hidden="true" tabindex="-1"></a>       <span class="at">type =</span> <span class="st">"typo"</span>,</span>
-<span id="cb14-23"><a href="#cb14-23" aria-hidden="true" tabindex="-1"></a>       <span class="at">cex =</span> <span class="dv">2</span>,</span>
-<span id="cb14-24"><a href="#cb14-24" aria-hidden="true" tabindex="-1"></a>       <span class="at">col_na =</span> <span class="st">"white"</span>,</span>
-<span id="cb14-25"><a href="#cb14-25" aria-hidden="true" tabindex="-1"></a>       <span class="co">#val_order = c("High-High", "Low-Low", "High-Low",  "Low-High", "Non-significant") ,</span></span>
-<span id="cb14-26"><a href="#cb14-26" aria-hidden="true" tabindex="-1"></a>       <span class="at">pal =</span> <span class="fu">c</span>(<span class="st">"#6D0026"</span> , <span class="st">"blue"</span>,  <span class="st">"white"</span>) , <span class="co"># "#FF755F","#7FABD3" ,</span></span>
-<span id="cb14-27"><a href="#cb14-27" aria-hidden="true" tabindex="-1"></a>       <span class="at">leg_title =</span> <span class="st">"Clusters"</span>)</span>
-<span id="cb14-28"><a href="#cb14-28" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb14-29"><a href="#cb14-29" aria-hidden="true" tabindex="-1"></a><span class="fu">mf_layout</span>(<span class="at">title =</span> <span class="st">"Cluster using Local Moran's I statistic"</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb13"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1" aria-hidden="true" tabindex="-1"></a><span class="co"># create lagged local raw_rate - in other words the average of the queen neighbors value</span></span>
+<span id="cb13-2"><a href="#cb13-2" aria-hidden="true" tabindex="-1"></a><span class="co"># values are scaled (centered and reduced) to be compared to average</span></span>
+<span id="cb13-3"><a href="#cb13-3" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>lag_std   <span class="ot">&lt;-</span> <span class="fu">scale</span>(<span class="fu">lag.listw</span>(q_listw, <span class="at">var =</span> district<span class="sc">$</span>incidence))</span>
+<span id="cb13-4"><a href="#cb13-4" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>incidence_std <span class="ot">&lt;-</span> <span class="fu">scale</span>(district<span class="sc">$</span>incidence)</span>
+<span id="cb13-5"><a href="#cb13-5" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb13-6"><a href="#cb13-6" aria-hidden="true" tabindex="-1"></a><span class="co"># extract pvalues</span></span>
+<span id="cb13-7"><a href="#cb13-7" aria-hidden="true" tabindex="-1"></a><span class="co"># district$lm_pv &lt;- lm_test[,5]</span></span>
+<span id="cb13-8"><a href="#cb13-8" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb13-9"><a href="#cb13-9" aria-hidden="true" tabindex="-1"></a><span class="co"># Classify local moran's outputs</span></span>
+<span id="cb13-10"><a href="#cb13-10" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>lm_class <span class="ot">&lt;-</span> <span class="cn">NA</span></span>
+<span id="cb13-11"><a href="#cb13-11" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>lm_class[district<span class="sc">$</span>incidence_std <span class="sc">&gt;=</span><span class="dv">0</span> <span class="sc">&amp;</span> district<span class="sc">$</span>lag_std <span class="sc">&gt;=</span><span class="dv">0</span>] <span class="ot">&lt;-</span> <span class="st">'High-High'</span></span>
+<span id="cb13-12"><a href="#cb13-12" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>lm_class[district<span class="sc">$</span>incidence_std <span class="sc">&lt;=</span><span class="dv">0</span> <span class="sc">&amp;</span> district<span class="sc">$</span>lag_std <span class="sc">&lt;=</span><span class="dv">0</span>] <span class="ot">&lt;-</span> <span class="st">'Low-Low'</span></span>
+<span id="cb13-13"><a href="#cb13-13" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>lm_class[district<span class="sc">$</span>incidence_std <span class="sc">&lt;=</span><span class="dv">0</span> <span class="sc">&amp;</span> district<span class="sc">$</span>lag_std <span class="sc">&gt;=</span><span class="dv">0</span>] <span class="ot">&lt;-</span> <span class="st">'Low-High'</span></span>
+<span id="cb13-14"><a href="#cb13-14" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>lm_class[district<span class="sc">$</span>incidence_std <span class="sc">&gt;=</span><span class="dv">0</span> <span class="sc">&amp;</span> district<span class="sc">$</span>lag_std <span class="sc">&lt;=</span><span class="dv">0</span>] <span class="ot">&lt;-</span> <span class="st">'High-Low'</span></span>
+<span id="cb13-15"><a href="#cb13-15" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>lm_class[district<span class="sc">$</span>pval_lm <span class="sc">&gt;=</span> <span class="fl">0.05</span>] <span class="ot">&lt;-</span> <span class="st">'Non-significant'</span></span>
+<span id="cb13-16"><a href="#cb13-16" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb13-17"><a href="#cb13-17" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>lm_class <span class="ot">&lt;-</span> <span class="fu">factor</span>(district<span class="sc">$</span>lm_class, <span class="at">levels=</span><span class="fu">c</span>(<span class="st">"High-High"</span>, <span class="st">"Low-Low"</span>, <span class="st">"High-Low"</span>,  <span class="st">"Low-High"</span>, <span class="st">"Non-significant"</span>) )</span>
+<span id="cb13-18"><a href="#cb13-18" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb13-19"><a href="#cb13-19" aria-hidden="true" tabindex="-1"></a><span class="co"># create map</span></span>
+<span id="cb13-20"><a href="#cb13-20" aria-hidden="true" tabindex="-1"></a><span class="fu">mf_map</span>(<span class="at">x =</span> district,</span>
+<span id="cb13-21"><a href="#cb13-21" aria-hidden="true" tabindex="-1"></a>       <span class="at">var =</span> <span class="st">"lm_class"</span>,</span>
+<span id="cb13-22"><a href="#cb13-22" aria-hidden="true" tabindex="-1"></a>       <span class="at">type =</span> <span class="st">"typo"</span>,</span>
+<span id="cb13-23"><a href="#cb13-23" aria-hidden="true" tabindex="-1"></a>       <span class="at">cex =</span> <span class="dv">2</span>,</span>
+<span id="cb13-24"><a href="#cb13-24" aria-hidden="true" tabindex="-1"></a>       <span class="at">col_na =</span> <span class="st">"white"</span>,</span>
+<span id="cb13-25"><a href="#cb13-25" aria-hidden="true" tabindex="-1"></a>       <span class="co">#val_order = c("High-High", "Low-Low", "High-Low",  "Low-High", "Non-significant") ,</span></span>
+<span id="cb13-26"><a href="#cb13-26" aria-hidden="true" tabindex="-1"></a>       <span class="at">pal =</span> <span class="fu">c</span>(<span class="st">"#6D0026"</span> , <span class="st">"blue"</span>,  <span class="st">"white"</span>) , <span class="co"># "#FF755F","#7FABD3" ,</span></span>
+<span id="cb13-27"><a href="#cb13-27" aria-hidden="true" tabindex="-1"></a>       <span class="at">leg_title =</span> <span class="st">"Clusters"</span>)</span>
+<span id="cb13-28"><a href="#cb13-28" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb13-29"><a href="#cb13-29" aria-hidden="true" tabindex="-1"></a><span class="fu">mf_layout</span>(<span class="at">title =</span> <span class="st">"Cluster using Local Moran's I statistic"</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
 <p><img src="07-basic_statistics_files/figure-html/LocalMoransI_plt-1.png" class="img-fluid" width="768"></p>
 </div>
@@ -609,22 +605,42 @@ Statistical test
 <section id="spatial-scan-statistics" class="level3" data-number="7.2.3">
 <h3 data-number="7.2.3" class="anchored" data-anchor-id="spatial-scan-statistics"><span class="header-section-number">7.2.3</span> Spatial scan statistics</h3>
 <p>While Moran’s indices focus on testing for autocorrelation between neighboring polygons (under the null assumption of spatial independence), the spatial scan statistic aims at identifying an abnormal higher risk in a given region compared to the risk outside of this region (under the null assumption of homogeneous distribution). The conception of a cluster is therefore different between the two methods.</p>
-<p>The function <code>kulldorff</code> from the package <code>SpatialEpi</code> <span class="citation" data-cites="SpatialEpi">(<a href="references.html#ref-SpatialEpi" role="doc-biblioref">Kim and Wakefield 2010</a>)</span> is a simple tool to implement spatial-only scan statistics. Briefly, the kulldorff scan statistics scan the area for clusters using several steps:</p>
+<p>The function <code>kulldorff</code> from the package <code>SpatialEpi</code> <span class="citation" data-cites="SpatialEpi">(<a href="references.html#ref-SpatialEpi" role="doc-biblioref">Kim and Wakefield 2010</a>)</span> is a simple tool to implement spatial-only scan statistics.</p>
+<div class="callout-note callout callout-style-default callout-captioned">
+<div class="callout-header d-flex align-content-center">
+<div class="callout-icon-container">
+<i class="callout-icon"></i>
+</div>
+<div class="callout-caption-container flex-fill">
+Kulldorf test
+</div>
+</div>
+<div class="callout-body-container callout-body">
+<p>Under the kulldorff test, the statistics hypotheses are:</p>
+<ul>
+<li><p><strong>H0</strong>: the risk is constant over the area, i.e., there is a spatial homogeneity of the incidence.</p></li>
+<li><p><strong>H1</strong>: a particular window have higher incidence than the rest of the area , i.e., there is a spatial heterogeneity of incidence.</p></li>
+</ul>
+</div>
+</div>
+<p>Briefly, the kulldorff scan statistics scan the area for clusters using several steps:</p>
 <ol type="1">
 <li><p>It create a circular window of observation by defining a single location and an associated radius of the windows varying from 0 to a large number that depends on population distribution (largest radius could include 50% of the population).</p></li>
 <li><p>It aggregates the count of events and the population at risk (or an expected count of events) inside and outside the window of observation.</p></li>
-<li><p>Finally, it computes the likelihood ratio to test whether the risk is equal inside versus outside the windows (H0) or greater inside the observed window</p></li>
+<li><p>Finally, it computes the likelihood ratio and test whether the risk is equal inside versus outside the windows (H0) or greater inside the observed window (H1). The H0 distribution is estimated by simulating the distribution of counts under the null hypothesis (homogeneous risk).</p></li>
 <li><p>These 3 steps are repeated for each location and each possible windows-radii.</p></li>
 </ol>
+<p>While we test the significance of a large number of observation windows, one can raise concern about multiple testing and Type I error. This approach however suggest that we are not interest in a set of signifiant cluster but only in a most-likely cluster. This <strong>a priori</strong> restriction eliminate concern for multpile comparison since the test is simplified to a statistically significance of one single most-likely cluster.</p>
+<p>Because we tested all-possible locations and window-radius, we can also choose to look at secondary clusters. In this case, you should keep in mind that increasing the number of secondary cluster you select, increases the risk for Type I error.</p>
 <div class="cell" data-nm="true">
-<div class="sourceCode cell-code" id="cb15"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb15-1"><a href="#cb15-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(<span class="st">"SpatialEpi"</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb14"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(<span class="st">"SpatialEpi"</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
 </div>
 <p>The use of R spatial object is not implements in <code>kulldorff()</code> function. It uses instead matrix of xy coordinates that represents the centroids of the districts. A given district is included into the observed circular window if its centroids fall into the circle.</p>
 <div class="cell" data-nm="true">
-<div class="sourceCode cell-code" id="cb16"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb16-1"><a href="#cb16-1" aria-hidden="true" tabindex="-1"></a>district_xy <span class="ot">&lt;-</span> <span class="fu">st_centroid</span>(district) <span class="sc">%&gt;%</span> </span>
-<span id="cb16-2"><a href="#cb16-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">st_coordinates</span>()</span>
-<span id="cb16-3"><a href="#cb16-3" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb16-4"><a href="#cb16-4" aria-hidden="true" tabindex="-1"></a><span class="fu">head</span>(district_xy)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb15"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb15-1"><a href="#cb15-1" aria-hidden="true" tabindex="-1"></a>district_xy <span class="ot">&lt;-</span> <span class="fu">st_centroid</span>(district) <span class="sc">%&gt;%</span> </span>
+<span id="cb15-2"><a href="#cb15-2" aria-hidden="true" tabindex="-1"></a>  <span class="fu">st_coordinates</span>()</span>
+<span id="cb15-3"><a href="#cb15-3" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb15-4"><a href="#cb15-4" aria-hidden="true" tabindex="-1"></a><span class="fu">head</span>(district_xy)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output cell-output-stdout">
 <pre class="code-out"><code>         X       Y
 1 330823.3 1464560
@@ -637,20 +653,20 @@ Statistical test
 </div>
 <p>We can then call kulldorff function (you are strongly encouraged to call <code>?kulldorff</code> to properly call the function). The <code>alpha.level</code> threshold filter for the secondary clusters that will be retained. The most-likely cluster will be saved whatever its significance.</p>
 <div class="cell" data-nm="true">
-<div class="sourceCode cell-code" id="cb18"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb18-1"><a href="#cb18-1" aria-hidden="true" tabindex="-1"></a>kd_Wfever <span class="ot">&lt;-</span> <span class="fu">kulldorff</span>(district_xy, </span>
-<span id="cb18-2"><a href="#cb18-2" aria-hidden="true" tabindex="-1"></a>                <span class="at">cases =</span> district<span class="sc">$</span>cases,</span>
-<span id="cb18-3"><a href="#cb18-3" aria-hidden="true" tabindex="-1"></a>                <span class="at">population =</span> district<span class="sc">$</span>T_POP,</span>
-<span id="cb18-4"><a href="#cb18-4" aria-hidden="true" tabindex="-1"></a>                <span class="at">expected.cases =</span> district<span class="sc">$</span>expected,</span>
-<span id="cb18-5"><a href="#cb18-5" aria-hidden="true" tabindex="-1"></a>                <span class="at">pop.upper.bound =</span> <span class="fl">0.5</span>, <span class="co"># include maximum 50% of the population in a windows</span></span>
-<span id="cb18-6"><a href="#cb18-6" aria-hidden="true" tabindex="-1"></a>                <span class="at">n.simulations =</span> <span class="dv">499</span>,</span>
-<span id="cb18-7"><a href="#cb18-7" aria-hidden="true" tabindex="-1"></a>                <span class="at">alpha.level =</span> <span class="fl">0.2</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb17"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb17-1"><a href="#cb17-1" aria-hidden="true" tabindex="-1"></a>kd_Wfever <span class="ot">&lt;-</span> <span class="fu">kulldorff</span>(district_xy, </span>
+<span id="cb17-2"><a href="#cb17-2" aria-hidden="true" tabindex="-1"></a>                <span class="at">cases =</span> district<span class="sc">$</span>cases,</span>
+<span id="cb17-3"><a href="#cb17-3" aria-hidden="true" tabindex="-1"></a>                <span class="at">population =</span> district<span class="sc">$</span>T_POP,</span>
+<span id="cb17-4"><a href="#cb17-4" aria-hidden="true" tabindex="-1"></a>                <span class="at">expected.cases =</span> district<span class="sc">$</span>expected,</span>
+<span id="cb17-5"><a href="#cb17-5" aria-hidden="true" tabindex="-1"></a>                <span class="at">pop.upper.bound =</span> <span class="fl">0.5</span>, <span class="co"># include maximum 50% of the population in a windows</span></span>
+<span id="cb17-6"><a href="#cb17-6" aria-hidden="true" tabindex="-1"></a>                <span class="at">n.simulations =</span> <span class="dv">499</span>,</span>
+<span id="cb17-7"><a href="#cb17-7" aria-hidden="true" tabindex="-1"></a>                <span class="at">alpha.level =</span> <span class="fl">0.2</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
 <p><img src="07-basic_statistics_files/figure-html/kd_test-1.png" class="img-fluid" width="576"></p>
 </div>
 </div>
-<p>All outputs are saved into an R object, here called <code>kd_Wfever</code>. Unfortunately, the package did not develop any summary and visualization of the results but we can explore the output object.</p>
+<p>The function plot the histogram of the distribution of log-likelihood ratio simulated under the null hypothesis that is estimated based on Monte Carlo simulations. The observed value of the most significant cluster identified from all possible scans is compared to the distribution to determine significance. All outputs are saved into an R object, here called <code>kd_Wfever</code>. Unfortunately, the package did not develop any summary and visualization of the results but we can explore the output object.</p>
 <div class="cell" data-nm="true">
-<div class="sourceCode cell-code" id="cb19"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb19-1"><a href="#cb19-1" aria-hidden="true" tabindex="-1"></a><span class="fu">names</span>(kd_Wfever)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb18"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb18-1"><a href="#cb18-1" aria-hidden="true" tabindex="-1"></a><span class="fu">names</span>(kd_Wfever)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output cell-output-stdout">
 <pre class="code-out"><code>[1] "most.likely.cluster" "secondary.clusters"  "type"               
 [4] "log.lkhd"            "simulated.log.lkhd" </code></pre>
@@ -658,22 +674,22 @@ Statistical test
 </div>
 <p>First, we can focus on the most likely cluster and explore its characteristics.</p>
 <div class="cell" data-nm="true">
-<div class="sourceCode cell-code" id="cb21"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb21-1"><a href="#cb21-1" aria-hidden="true" tabindex="-1"></a><span class="co"># We can see which districts (r number) belong to this cluster</span></span>
-<span id="cb21-2"><a href="#cb21-2" aria-hidden="true" tabindex="-1"></a>kd_Wfever<span class="sc">$</span>most.likely.cluster<span class="sc">$</span>location.IDs.included</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb20"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb20-1"><a href="#cb20-1" aria-hidden="true" tabindex="-1"></a><span class="co"># We can see which districts (r number) belong to this cluster</span></span>
+<span id="cb20-2"><a href="#cb20-2" aria-hidden="true" tabindex="-1"></a>kd_Wfever<span class="sc">$</span>most.likely.cluster<span class="sc">$</span>location.IDs.included</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output cell-output-stdout">
 <pre class="code-out"><code> [1]  48  93  66 180 133  29 194 118  50 144  31 141   3 117  22  43 142</code></pre>
 </div>
-<div class="sourceCode cell-code" id="cb23"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb23-1"><a href="#cb23-1" aria-hidden="true" tabindex="-1"></a><span class="co"># standardized incidence ratio</span></span>
-<span id="cb23-2"><a href="#cb23-2" aria-hidden="true" tabindex="-1"></a>kd_Wfever<span class="sc">$</span>most.likely.cluster<span class="sc">$</span>SMR</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb22"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb22-1"><a href="#cb22-1" aria-hidden="true" tabindex="-1"></a><span class="co"># standardized incidence ratio</span></span>
+<span id="cb22-2"><a href="#cb22-2" aria-hidden="true" tabindex="-1"></a>kd_Wfever<span class="sc">$</span>most.likely.cluster<span class="sc">$</span>SMR</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output cell-output-stdout">
 <pre class="code-out"><code>[1] 2.303106</code></pre>
 </div>
-<div class="sourceCode cell-code" id="cb25"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb25-1"><a href="#cb25-1" aria-hidden="true" tabindex="-1"></a><span class="co"># number of observed and expected cases in this cluster</span></span>
-<span id="cb25-2"><a href="#cb25-2" aria-hidden="true" tabindex="-1"></a>kd_Wfever<span class="sc">$</span>most.likely.cluster<span class="sc">$</span>number.of.cases</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb24"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb24-1"><a href="#cb24-1" aria-hidden="true" tabindex="-1"></a><span class="co"># number of observed and expected cases in this cluster</span></span>
+<span id="cb24-2"><a href="#cb24-2" aria-hidden="true" tabindex="-1"></a>kd_Wfever<span class="sc">$</span>most.likely.cluster<span class="sc">$</span>number.of.cases</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output cell-output-stdout">
 <pre class="code-out"><code>[1] 122</code></pre>
 </div>
-<div class="sourceCode cell-code" id="cb27"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb27-1"><a href="#cb27-1" aria-hidden="true" tabindex="-1"></a>kd_Wfever<span class="sc">$</span>most.likely.cluster<span class="sc">$</span>expected.cases</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb26"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb26-1"><a href="#cb26-1" aria-hidden="true" tabindex="-1"></a>kd_Wfever<span class="sc">$</span>most.likely.cluster<span class="sc">$</span>expected.cases</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output cell-output-stdout">
 <pre class="code-out"><code>[1] 52.97195</code></pre>
 </div>
@@ -681,49 +697,49 @@ Statistical test
 <p>17 districts belong to the cluster and its number of cases is 2.3 times higher than the expected number of cases.</p>
 <p>Similarly, we could study the secondary clusters. Results are saved in a list.</p>
 <div class="cell" data-nm="true">
-<div class="sourceCode cell-code" id="cb29"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb29-1"><a href="#cb29-1" aria-hidden="true" tabindex="-1"></a><span class="co"># We can see which districts (r number) belong to this cluster</span></span>
-<span id="cb29-2"><a href="#cb29-2" aria-hidden="true" tabindex="-1"></a><span class="fu">length</span>(kd_Wfever<span class="sc">$</span>secondary.clusters)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb28"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb28-1"><a href="#cb28-1" aria-hidden="true" tabindex="-1"></a><span class="co"># We can see which districts (r number) belong to this cluster</span></span>
+<span id="cb28-2"><a href="#cb28-2" aria-hidden="true" tabindex="-1"></a><span class="fu">length</span>(kd_Wfever<span class="sc">$</span>secondary.clusters)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output cell-output-stdout">
 <pre class="code-out"><code>[1] 1</code></pre>
 </div>
-<div class="sourceCode cell-code" id="cb31"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb31-1"><a href="#cb31-1" aria-hidden="true" tabindex="-1"></a><span class="co"># retrieve data for all secondary clusters into a table</span></span>
-<span id="cb31-2"><a href="#cb31-2" aria-hidden="true" tabindex="-1"></a>df_secondary_clusters <span class="ot">&lt;-</span> <span class="fu">data.frame</span>(<span class="at">SMR =</span> <span class="fu">sapply</span>(kd_Wfever<span class="sc">$</span>secondary.clusters, <span class="st">'[['</span>, <span class="dv">5</span>),  </span>
-<span id="cb31-3"><a href="#cb31-3" aria-hidden="true" tabindex="-1"></a>                          <span class="at">number.of.cases =</span> <span class="fu">sapply</span>(kd_Wfever<span class="sc">$</span>secondary.clusters, <span class="st">'[['</span>, <span class="dv">3</span>),</span>
-<span id="cb31-4"><a href="#cb31-4" aria-hidden="true" tabindex="-1"></a>                          <span class="at">expected.cases =</span> <span class="fu">sapply</span>(kd_Wfever<span class="sc">$</span>secondary.clusters, <span class="st">'[['</span>, <span class="dv">4</span>),</span>
-<span id="cb31-5"><a href="#cb31-5" aria-hidden="true" tabindex="-1"></a>                          <span class="at">p.value =</span> <span class="fu">sapply</span>(kd_Wfever<span class="sc">$</span>secondary.clusters, <span class="st">'[['</span>, <span class="dv">8</span>))</span>
-<span id="cb31-6"><a href="#cb31-6" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb31-7"><a href="#cb31-7" aria-hidden="true" tabindex="-1"></a><span class="fu">print</span>(df_secondary_clusters)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb30"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb30-1"><a href="#cb30-1" aria-hidden="true" tabindex="-1"></a><span class="co"># retrieve data for all secondary clusters into a table</span></span>
+<span id="cb30-2"><a href="#cb30-2" aria-hidden="true" tabindex="-1"></a>df_secondary_clusters <span class="ot">&lt;-</span> <span class="fu">data.frame</span>(<span class="at">SMR =</span> <span class="fu">sapply</span>(kd_Wfever<span class="sc">$</span>secondary.clusters, <span class="st">'[['</span>, <span class="dv">5</span>),  </span>
+<span id="cb30-3"><a href="#cb30-3" aria-hidden="true" tabindex="-1"></a>                          <span class="at">number.of.cases =</span> <span class="fu">sapply</span>(kd_Wfever<span class="sc">$</span>secondary.clusters, <span class="st">'[['</span>, <span class="dv">3</span>),</span>
+<span id="cb30-4"><a href="#cb30-4" aria-hidden="true" tabindex="-1"></a>                          <span class="at">expected.cases =</span> <span class="fu">sapply</span>(kd_Wfever<span class="sc">$</span>secondary.clusters, <span class="st">'[['</span>, <span class="dv">4</span>),</span>
+<span id="cb30-5"><a href="#cb30-5" aria-hidden="true" tabindex="-1"></a>                          <span class="at">p.value =</span> <span class="fu">sapply</span>(kd_Wfever<span class="sc">$</span>secondary.clusters, <span class="st">'[['</span>, <span class="dv">8</span>))</span>
+<span id="cb30-6"><a href="#cb30-6" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb30-7"><a href="#cb30-7" aria-hidden="true" tabindex="-1"></a><span class="fu">print</span>(df_secondary_clusters)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output cell-output-stdout">
 <pre class="code-out"><code>       SMR number.of.cases expected.cases p.value
-1 3.767698              16       4.246625   0.008</code></pre>
+1 3.767698              16       4.246625   0.016</code></pre>
 </div>
 </div>
 <p>We only have one secondary cluster composed of one district.</p>
 <div class="cell" data-nm="true">
-<div class="sourceCode cell-code" id="cb33"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb33-1"><a href="#cb33-1" aria-hidden="true" tabindex="-1"></a><span class="co"># create empty column to store cluster informations</span></span>
-<span id="cb33-2"><a href="#cb33-2" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>k_cluster <span class="ot">&lt;-</span> <span class="cn">NA</span></span>
-<span id="cb33-3"><a href="#cb33-3" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb33-4"><a href="#cb33-4" aria-hidden="true" tabindex="-1"></a><span class="co"># save cluster information from kulldorff outputs</span></span>
-<span id="cb33-5"><a href="#cb33-5" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>k_cluster[kd_Wfever<span class="sc">$</span>most.likely.cluster<span class="sc">$</span>location.IDs.included] <span class="ot">&lt;-</span> <span class="st">'Most likely cluster'</span></span>
-<span id="cb33-6"><a href="#cb33-6" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb33-7"><a href="#cb33-7" aria-hidden="true" tabindex="-1"></a><span class="cf">for</span>(i <span class="cf">in</span> <span class="dv">1</span><span class="sc">:</span><span class="fu">length</span>(kd_Wfever<span class="sc">$</span>secondary.clusters)){</span>
-<span id="cb33-8"><a href="#cb33-8" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>k_cluster[kd_Wfever<span class="sc">$</span>secondary.clusters[[i]]<span class="sc">$</span>location.IDs.included] <span class="ot">&lt;-</span> <span class="fu">paste</span>(</span>
-<span id="cb33-9"><a href="#cb33-9" aria-hidden="true" tabindex="-1"></a>  <span class="st">'Secondary cluster'</span>, i, <span class="at">sep =</span> <span class="st">''</span>)</span>
-<span id="cb33-10"><a href="#cb33-10" aria-hidden="true" tabindex="-1"></a>}</span>
-<span id="cb33-11"><a href="#cb33-11" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb33-12"><a href="#cb33-12" aria-hidden="true" tabindex="-1"></a><span class="co">#district$k_cluster[is.na(district$k_cluster)] &lt;- "No cluster"</span></span>
-<span id="cb33-13"><a href="#cb33-13" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb33-14"><a href="#cb33-14" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb33-15"><a href="#cb33-15" aria-hidden="true" tabindex="-1"></a><span class="co"># create map</span></span>
-<span id="cb33-16"><a href="#cb33-16" aria-hidden="true" tabindex="-1"></a><span class="fu">mf_map</span>(<span class="at">x =</span> district,</span>
-<span id="cb33-17"><a href="#cb33-17" aria-hidden="true" tabindex="-1"></a>       <span class="at">var =</span> <span class="st">"k_cluster"</span>,</span>
-<span id="cb33-18"><a href="#cb33-18" aria-hidden="true" tabindex="-1"></a>       <span class="at">type =</span> <span class="st">"typo"</span>,</span>
-<span id="cb33-19"><a href="#cb33-19" aria-hidden="true" tabindex="-1"></a>       <span class="at">cex =</span> <span class="dv">2</span>,</span>
-<span id="cb33-20"><a href="#cb33-20" aria-hidden="true" tabindex="-1"></a>       <span class="at">col_na =</span> <span class="st">"white"</span>,</span>
-<span id="cb33-21"><a href="#cb33-21" aria-hidden="true" tabindex="-1"></a>       <span class="at">pal =</span> <span class="fu">mf_get_pal</span>(<span class="at">palette =</span> <span class="st">"Reds"</span>, <span class="at">n =</span> <span class="dv">3</span>)[<span class="dv">1</span><span class="sc">:</span><span class="dv">2</span>],</span>
-<span id="cb33-22"><a href="#cb33-22" aria-hidden="true" tabindex="-1"></a>       <span class="at">leg_title =</span> <span class="st">"Clusters"</span>)</span>
-<span id="cb33-23"><a href="#cb33-23" aria-hidden="true" tabindex="-1"></a></span>
-<span id="cb33-24"><a href="#cb33-24" aria-hidden="true" tabindex="-1"></a><span class="fu">mf_layout</span>(<span class="at">title =</span> <span class="st">"Cluster using kulldorf scan statistic"</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
+<div class="sourceCode cell-code" id="cb32"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb32-1"><a href="#cb32-1" aria-hidden="true" tabindex="-1"></a><span class="co"># create empty column to store cluster informations</span></span>
+<span id="cb32-2"><a href="#cb32-2" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>k_cluster <span class="ot">&lt;-</span> <span class="cn">NA</span></span>
+<span id="cb32-3"><a href="#cb32-3" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb32-4"><a href="#cb32-4" aria-hidden="true" tabindex="-1"></a><span class="co"># save cluster information from kulldorff outputs</span></span>
+<span id="cb32-5"><a href="#cb32-5" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>k_cluster[kd_Wfever<span class="sc">$</span>most.likely.cluster<span class="sc">$</span>location.IDs.included] <span class="ot">&lt;-</span> <span class="st">'Most likely cluster'</span></span>
+<span id="cb32-6"><a href="#cb32-6" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb32-7"><a href="#cb32-7" aria-hidden="true" tabindex="-1"></a><span class="cf">for</span>(i <span class="cf">in</span> <span class="dv">1</span><span class="sc">:</span><span class="fu">length</span>(kd_Wfever<span class="sc">$</span>secondary.clusters)){</span>
+<span id="cb32-8"><a href="#cb32-8" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>k_cluster[kd_Wfever<span class="sc">$</span>secondary.clusters[[i]]<span class="sc">$</span>location.IDs.included] <span class="ot">&lt;-</span> <span class="fu">paste</span>(</span>
+<span id="cb32-9"><a href="#cb32-9" aria-hidden="true" tabindex="-1"></a>  <span class="st">'Secondary cluster'</span>, i, <span class="at">sep =</span> <span class="st">''</span>)</span>
+<span id="cb32-10"><a href="#cb32-10" aria-hidden="true" tabindex="-1"></a>}</span>
+<span id="cb32-11"><a href="#cb32-11" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb32-12"><a href="#cb32-12" aria-hidden="true" tabindex="-1"></a><span class="co">#district$k_cluster[is.na(district$k_cluster)] &lt;- "No cluster"</span></span>
+<span id="cb32-13"><a href="#cb32-13" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb32-14"><a href="#cb32-14" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb32-15"><a href="#cb32-15" aria-hidden="true" tabindex="-1"></a><span class="co"># create map</span></span>
+<span id="cb32-16"><a href="#cb32-16" aria-hidden="true" tabindex="-1"></a><span class="fu">mf_map</span>(<span class="at">x =</span> district,</span>
+<span id="cb32-17"><a href="#cb32-17" aria-hidden="true" tabindex="-1"></a>       <span class="at">var =</span> <span class="st">"k_cluster"</span>,</span>
+<span id="cb32-18"><a href="#cb32-18" aria-hidden="true" tabindex="-1"></a>       <span class="at">type =</span> <span class="st">"typo"</span>,</span>
+<span id="cb32-19"><a href="#cb32-19" aria-hidden="true" tabindex="-1"></a>       <span class="at">cex =</span> <span class="dv">2</span>,</span>
+<span id="cb32-20"><a href="#cb32-20" aria-hidden="true" tabindex="-1"></a>       <span class="at">col_na =</span> <span class="st">"white"</span>,</span>
+<span id="cb32-21"><a href="#cb32-21" aria-hidden="true" tabindex="-1"></a>       <span class="at">pal =</span> <span class="fu">mf_get_pal</span>(<span class="at">palette =</span> <span class="st">"Reds"</span>, <span class="at">n =</span> <span class="dv">3</span>)[<span class="dv">1</span><span class="sc">:</span><span class="dv">2</span>],</span>
+<span id="cb32-22"><a href="#cb32-22" aria-hidden="true" tabindex="-1"></a>       <span class="at">leg_title =</span> <span class="st">"Clusters"</span>)</span>
+<span id="cb32-23"><a href="#cb32-23" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb32-24"><a href="#cb32-24" aria-hidden="true" tabindex="-1"></a><span class="fu">mf_layout</span>(<span class="at">title =</span> <span class="st">"Cluster using kulldorf scan statistic"</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
 <div class="cell-output-display">
 <p><img src="07-basic_statistics_files/figure-html/plt_clusters-1.png" class="img-fluid" width="768"></p>
 </div>
@@ -739,7 +755,7 @@ To go further …
 </div>
 <div class="callout-body-container callout-body">
 <p>In this example, the expected number of cases was defined using the population count but note that standardization over other variables as age could also be implemented with the <code>strata</code> parameter in the <code>kulldorff()</code> function.</p>
-<p>In addition, this cluster analysis was performed solely using the spatial scan but you should keep in mind that this method of cluster detection can be implemented for spatio-temporal data as well where the cluster definition is an abnormal number of cases in a delimited spatial area and during a given period of time. The windows of observation are therefore defined for a different center, radius and period of time. You should look at the function <code>scan_ep_poisson()</code> function in the package <code>scanstatistic</code> <span class="citation" data-cites="scanstatistics">(<a href="references.html#ref-scanstatistics" role="doc-biblioref">Allévius 2018</a>)</span> for this analysis.</p>
+<p>In addition, this cluster analysis was performed solely using the spatial scan but you should keep in mind that this method of cluster detection can be implemented for spatio-temporal data as well where the cluster definition is an abnormal number of cases in a delimited spatial area and during a given period of time. The windows of observation are therefore defined for a different center, radius and time-period. You should look at the function <code>scan_ep_poisson()</code> function in the package <code>scanstatistic</code> <span class="citation" data-cites="scanstatistics">(<a href="references.html#ref-scanstatistics" role="doc-biblioref">Allévius 2018</a>)</span> for this analysis.</p>
 </div>
 </div>
 
diff --git a/public/07-basic_statistics_files/figure-html/LocalMoransI-1.png b/public/07-basic_statistics_files/figure-html/LocalMoransI-1.png
deleted file mode 100644
index fe0f3cdb57e1064e4264569d8af69d3c66451bab..0000000000000000000000000000000000000000
GIT binary patch
literal 0
HcmV?d00001

literal 14830
zcmeHu2UJs8*XT*;Afhs&f)qzbtbiim&;nRc8H7<0qy<Gmihy*bBqM`3qX;7^DkV64
z3Q|N2O(_YYAR+`sngJ5JKp+7^LP*Gc7eb=n`e&_w&G*)O>;3CZNN#dZ*=L{K_db{3
zY>!&X%PPwP0OSuJ+J6iHN%*H2QCbZCdQG)B0)LI${&eC1{0)F103N{55E#POMBq^Z
z-@`Wx4GS+1Ll5|!Xb86_l06oOdKdx^L5Bxe=v;UudL+W{5)XJx3H*i<4MC!zVWI~}
z^nkC6or&<PBr%b^a49KCEP;POiDYsj87lDrB_4()iSXNFp%d<2{FIcC;lC0xe1%FN
zsHLTaoM=c+^dOhO@5F^3xDN)f_(di|@F@5~h9DRsL{5arC5w0P)P=T>Y2S^(+m#78
zbSek{)wqQZB4Kdy8~_^N@P6|X;i==@7<Z?0w=^%WL%Lc>l|3U*Gy<cM&Q7aP>7;J`
z6y{5r2*rtb#eg2D;l-^%^;;pEa(&g?k6$*$VKi>;v_E=h)W^!wFi8Ofd);yY;74&_
zmi7PlXXE8k)cv1W(d*}?)zLel)(kY?>(kT(v3{E50o^3Q{24P1%Ed4|vf}&$2R&{+
z#_+$;KNMV9hag__TLTKJ(j$Ki{G~Lc&>2-Pi)~3+4Z3asxBaCuShme$Tyr=`<!?M1
z^|E`oCkhy+NCUs0fX<&}apH)Fk1@DOVna%?Hx+@UB7)c`0}d8#08i~UfSXP1(fZ2B
z@|K#?S+|yYo1`%@DpQfL1}s|vZe(8vW&B>KJWvnxU`$qmuB-5RNb1p@QpAy@O-L*m
z9&>(d7`V<~3e_JR=*`TUMxjm1Oz%gAv3@MTy*C~1pSJlCdguSRlr!01I!!i>(qf%g
zQ-x-I`D>07P?+#Jx5nWFQt2?B6NdV6{yGVl-u)@>*Sawlr<G1{=zkYPw1>>CAnJG(
zXViL!1aVNY8Hr6<1uxqG%EBK6j#iJvofM;Xw<qHQ*CDd5U*MbZTEXndR4#P!5;wxL
zV8=Z=6|*Dt&85lkcZ_uBdA<tLZAN|13XnqJG+XCM5_|g5;=n)?to;y*2&i~A)?`|;
z3Rqsp1x~(geq~b~0kH#taVjRfL^-aC6)c6S;C<1ANat4W8w;lDw@DF+sPlS2A2VH@
z;vj>y)E>5j34ahKd_K}`vhYTI=hbp$P}hJ9EP10H%}2Ywwrs%7`gtX%?`-h2Cj`#4
zt&xv{iV-?Y1xFcdBPDWn^Ib72WEfR(2n5I>u`69VD}(IC+^SyjFU(;GB=wT}s3H99
zCPt+CM5BI>HaEF+7rI)3KRy+CFBhT1t!PoX%$VXO-3?`|Aw=!vu<@iQMjx-uKE2Il
zdcNIQ#+awzD36t2Sm@+Yv3U(pwi*_%5?O3!tTjaIC-4~LPDm>{{Paju@}#eP69#cl
zn}A14Dv43Am#W_-d^q(Z#igt7RgL-Z^_lYlxaAlq1fc^1mBCss02K#e3t~4e=0+cB
zEpU;>a+*vqZbP%YgGww8M_ma?J@a!qZ>~KKr`6ST4y2AZW;Wmo<Jcn)=!9M1B;Op~
zY`=kel?;NYstB_=7wm=pl>kjm_xU+VV+VgQfKEdV+tt%C!5cso_gSAe4C3P(+?*8p
z$+IDDfgH9M)7%O=W*g)DEkHn>IN11k^f2{JRv=rg(irNB1!d1YacTK;g9<oIaId`b
z-P8(xGD$0`cM6{z_Qeh4ark3Mw^{XIn5ogzy(ud|*RBNu8Obvf8jjO6r?Y%KpGp!3
zf72hvIJ**(aYb```P^ZOGhb`>df-`#Hw7mN&}Vz30zXDyf;eiRULo8{!<s8;#^}iG
zFSMA_W!P8~PQ#Sg&;3$FDr$=oh%wjz%G_awUw}fJ2`GqmhTLf1zf&FglE=g+i=%iA
zB#3@z7+4^l&F?d-fim2{vhH62^(L&!-<7KoQ=rMlfxtAE=}n9<n9Y%en!}po#+9?_
z2GUqP3iR0^#%WIKjhNe@h(qb((eu0%h|&K}(;1`u<&`PgL_U~f5c7uoo0J)2PjfHE
zb_=*FqT*&SM4oAhwQ=CcyHR5u@FdEt#j|OX7XcrK`Zy0C0tZ;U#EB0uwwpj(*Aiky
zt^UBXAT}-S%hc#tL&z+RmRW!?f+nMDoXjg+FKxdz2s*f|KI_$ftAI}x^ne1cLgo+Q
ztAF1da0siGKoB(+j33h@z*Aw=xgwL4d>!L3ciY-uvNSTZ`Og-L<Qc>Q+ht(3{~NXw
zhpF2O*6;&+gS7dP<79IT6W1nA?9+-0pS=5_dJ$Pz7iJZHH<2+8S43isHp2$st|wxr
za~FeI{on=O(zi)}FgI52xpNQoP3#G^3g?Kxp*N45Syd+UkF&_Tl|c;!(|yWpACy6b
zuOjY6DSzQ&eylWoSBFEnRBY~}Eqj{)1@rHor$dH>P5sv&`CptnjBnWX6lDYrBzMN+
zTvey~?hgilWzo<~)-O-_F|XijkAQ%o`(v-arF^snd3%)&H4g!uL%_DJo~@t|9lk4|
z3VQl^GkBaE{iSlNIM^o+&ZVXGz6iL?zgbXr0Z9!Xl%3H<V$G4*mp7Zzq4@y51=a_>
z!j3$H(20<H@i0aMtlb2%eFiV<md{H!4-&%0x1n6Q+w>7cfG|64?}`iQp3ZD_A-uEU
zH>?>$-+@iV5n$W-(P_S5qDnOgZ>I$utbi>!7lljTNnmsODbKCer7cP%_NWZ_=kxby
z5ZdssM4I~n_Ir);O%adk&Z_Tx=_%RyLsC7YwGSjVEqiVy4#e-7hyDhzK=-ZIO0dEW
z?nVM6JYhdD!>&7<EDfY}VrZ)n0O677@;%TX{*Rb+!!$<IKib6Dn8#@(7ZO&&yI2<{
ziALRbzRW!Hi7tTz7PYC>Y_!c?li7=}>5}mM!PM&h`Oc4+a2<9hO(B93&mK1eW^coF
zXY1@+Vxiz(v4Y3HFg{Q$xzQRx<7~w`W5-i${Gr*vBDz#7G9!^zyZhz`<%p^Ivw<@R
zTz~z5qNmud?-4q;1RX~67cqmA=?@dCRdZH@&eguwfVK@m)Y@8fLIQAVBc;#NM^E9@
zkY~=u-pv6Tl<@edlIP=|Hgb`MpV?vvomGfuxwSsD@_8?0h4U<tJHkhE9)XEt4<Bs<
zZw=14CwOQo&{TN=d#6h|+pAM0-et?~v_qIx?NZ@3@b4V2XH}_Amj43Q{subiGWA&l
zoHODy6PCEn#_a+G{Al%KHN#R;QV9y^4*rdT=3}eDK#N1@;l%~A3Td}2tn5G{X?1nS
z4~rP$wqGf<T3o}_UfezTJI5R(Hu9--?b42%SKe?rcK(Shn0oR3+VX!bf(tsJvjnfb
zS>m*F+)XFJ;-8lTcgvp^7iwp&uD+pazPJLq#a>)DRDAU!WNY-w_Z=%wEJD<aI-uij
zY5O-ObUTQ~2fN3M;K%C;!EZ##@EU7S^J9ZCPzpu%%$>rG*^4-<;0vJ+LLe&vxGiy}
zLtES^gnxGh68nb$wf?HruVb?Odw6@e^vH2JaPZ_JmhqPlJmc8#@jf*qMKhrDe35>1
z)2Gt<TuRFhILggiT%bHz?o}#5p-2RO-gzaB7RV5RX9pjC8^*<3A*6+nyX%60Ze3En
zrM3iE;@?3Nxi2k)sAwiZ9Q1D!urx}Qm`Txscr>QoX(V=+0NIU%RpA#Y&?d0fNgz5?
zKWs>5&C^!>AsW(OrSc`0u){@)HjovCAl?%Q(qk1LnzR7&1HU{Wd3;_L*51rm+*-j%
zt+LUTe+K_UjV0CjM>aSI{b}_nXaxlYO!PEM5-rl8+6%NX%_OS?*ZqVpp;e3T><~Dl
zU7=z^o$`NOt41f?<=4c#AbDUqxLUz-qOOWs{$y)#FUn<>nCqnx$z;E^UMtkUN#%&5
z=M$cPFwPBZ7MfGa`FImf^zIjPSkmO#slx-l8bX_B;OL%(nkX>t(Pb7|3y0%?+mcat
zHx(}mo5{0LK<pA2G5?BMQ>RWAK1;$hzUx<^DNrdWq_eVQ7=gWF^eirBF!@Tn5EkWH
zyoq7dNPD$HoGvDXuxdxJQZ~@Y5gJ$m4GqWbmHzGqZbB1t@B*!V`i*o)#QG>pTM?e2
z?l!LKrl`Gp!y{+=B<WHYgv0;ZBGIE^e>~PpBD^7pd`EnH2ZfSaz_Xv0tD!~p9(EI2
zYsl416XlXF1t&f?M7W_qdZRvsTfV&N{sHXvE4y+QEuB9T>`i|<&v8fLORoeR&^c%)
zF!*YKq(uRKERO)#4=$O_LNT|IS8hGaA1pZwcPZjWJvV*y3Xk1xd7~Xa3w)`F)@;Ul
z;vifZ886?oDN|r=56WXZhfuEJeeFR)pP`})9-Hz>+I&u*J+?D0RpRy1YJZ5iO)xLw
zk}$LgRgr7(g<bnFg@%?S?pS#ySzHP1U-DZp5)Y8W2nKbq7)N+5l*4YcyA9tnU|tTq
z`afaJ>8?GpX95RZHk4>Jb*wzTNI4m>6c-q{x>GPaL7BfG2)gGlxu#N*Co2?y($5`9
zIQnQwvX(SPQKSgPg_uY^4)0BO*X)oFK$C<Uk(VTX$~3CS_LEJd&k7|)Qkm<`r;Yby
zGROu6dpZ1*1f)o7s%z7YA>VXF0;YVhkzllUmTmxfi`ITxIJ}MlSDe_6q*bEEhlK<b
z4*h{$-IBLVM;J_`s6^aFL>wkaiXg|wN6ifIBq}0MJ@)3;MQSluTQxUCLu9nuJYPi=
zqMh$W>m>0#6XxH$e&misoeZfJ_Q>n8W;!>blC{OdOEKli%$`J{?m4lKQ0rr|8q^iR
zceaZpm6sy6wnRTx=WgoV|5eey17dW<<dCWNsnbG&{I%-%Tf;&?qHTas{C>jbD#b*g
zAqZDgd}&<&A<cQ-Wb0WvZsJA80TCav3+uQ^aCL9|T$KMC5zc#9-N6t&>f&4niH<r~
zDc`(RNIZk)4$q|6BtCAiLgsa<Xe+Shv#+C=HW<~n;W8bfc9qB<7_Z2tn<~E<s|c3D
zQh&yVjQX%O7{l~%>1&1pvHhi1ZD%S+*J$Gwy75;N(%jL4hty4?riU5}@N!}U^GFSF
zO`vF3mAQVHz^!n>8i~yoDEe%^hL)Bj>e6kFhnZ-f-6_@cbL}xPF$81lDDAxnvlD_y
z^sggJYlAisEeu%9b=V-xq=in-mc<zDDO?`u%h$-xTr`DFK_+mTd{`j+3@7uSOrhS!
zSjq$;M_07?Y$J8*DFQFjR{1K`;2|<<$8MqUwYw;2e2rcsrQ!5mfS&;mF5~2?H;QcR
z)dH#Jw*^21x>2s0rABzcK6Y}Q(2rDW{!+Q(#-ED>H5Fwml1OSwT!ZNvaN_4hS=0M(
z!|O3+F1NRr<c~@ns8sxNL&$3tKbkhKk;Lcp=SpeQzm=tDg{U+f|30rNLxf&-A%6QS
z<Jkgk3%KW^LQN{NLdpRFYE^p4zw$!oY9N|~8(#cvgy-IGWh~2HJVlBa*Z;mD=Ih4B
z5bxF4C^_s%f!L)4gs8pPUff6y`-y#3Ur0|Rb}5g!Bz<k^mpq&-3?2aMFRi*~A(Ay*
zrKGPCXo13%w}c3iA+h+hG%kT1tOPV6Q<&%51i9W-<?>)_9e)Y)4FX2HxqA}CQYSqE
zP6+ZPSpT`2c(zz~1hX$X_r)ur^!)c!7Ap|vk5xY>g#VypCqN;FE>ZM80`c>~MG4ge
zOSv1x%pHRXn((*T96_n#jPr91-G%1hsTZ7M)|ax6zg;1uVVH}1!fuM32oaa|j*$WY
zyR_Yc&5tRM{qDAe{DnysEXcSa$aUt1f%B?cOX?UOZ*obu{QLLg>0)~?O^@|1h=bp)
z?}hB8&#k%AJ+uQhg-U)~_&py*?VmwMIcE$$D~KA@d!umW)EObBi&B_uiiw<VN2o6b
zN%+#+T-qM%Gi&Y{2)Wm<7s^U`-P01QQ1LmTsz78g;b6sb`&hJ+4Ems-Xk+nh9i6d*
z1*X)X^~PDBgmi~nA11G`M4$8(tqkXIM*f&qQneyS0>}ucuv1Gq2;cB3HIgtVi~JfY
z6@giX?>RClT}iq!uR{n^-c+0!iP_C*QHYC!cF)r@RZPYAM5w%|*VJBP%HVUqH2f~i
zQYp6X32aStYCbo!e&Bja5A(x_6=8Yw-o^w%BU(nuQ0@d+A&5WZ_k@lp>yS>`40V0h
z=Gv<r{JkpwYjk#=hJPdF{n#sDx-`c0Qq@{SL_(&)SGR~0cMX5VE`i1WQq(MuN~KQr
zURQa2O{A$t!0)R~Pn9TQsxAL;oK3$i8gQQ0S6)_`P=z7O+KczA2||n-PefW}!gM{&
zIGxNxQh#^rDi9b}MhKXWh3kj1)MPPSp(;G1N-!fPJ}TrAYe>_80>MF4rJz92wujY<
z^CWZoEe+6c^T8{NK>n&0Q56zDKhK;;*+iF5%GYU2>oPZgGT^hAPXw{%qP-~qj5>P-
zzquV)pkXdZf;&2JP1*?E?vBDR24UcLw@m``d{x;fVk0C4g<zBcUTVsJ&O!&qlrO;4
z$5n<m&WwXPGxhe_4Eoitt}ep}G@3dCJWyFAF*jDW^_Mu7#Mg~TQsjeKL35`-*U%Lm
zxH)QRf36DD9l$Td1i;|a1>iF!iBj-gwBQbo!GnE-I^jQin5wOfq<$H)K~mDc;lO04
z577gmQ@)2NZzERuHH*k7#0Np_^d=;AfTDT-n-Fkcd|Ks&>A@F929evZm5V%sq>2$&
zmCD<8v$Sl}`+Sjc)QgXT&az&0SI&lXeZ%?uLaT(0F0z%`q7X)Y4=YQ`#vZkHGdLs&
zNAjaKbmUh;jv#;{P?utViHi~VtXuAM{-v+(iYHI?LsIqEDBcqle#GJ{%fm2b<Jw;X
zzU)E*%|?yK7}D~apAA(&iV*xI4$HsH7*0X?M+}zuu>)?2XcM_=R!MWhd2)hEB~bo^
z-GiXqWUvBIjGbAWZsQ*!MdbQhg$)0~!Z6n66=5Rf$d|!VD7?GJnsy8Ar@?v<&(jhS
zR~#&r!$i@G4S2RxNfWu)zc;9S6^KBsZ{l5mc+lhM=#-Oi)bv<TU0Mb9O+~K}g{C5J
zwiB)aw%2S>L;fi+)_-f$|Jh&_KHe9AwJ8hF0>G8Ye+o+f85#c}9bAY0Tcq=6)}~i*
zW*7{{uz|lnqgZ4|yK1Z8f(Y}=0cL~9-QI(Z+|1d|81-+f5x%rZzV8Ui_#W4n6<0~O
zC>3clT$5KvTd(0SL>LbwUs+-j{;eYNmqA7nT{9_HVRpUEX59WJNm1mUsTVre&wtl%
zvQM2XitoRs#zXteBJ4?X%oQtyHG3Z#{>}wdgd?@(-%3Al7V`is#1YXiA^Yg99dCtE
zM|?*|W=nFk=#;?1^A}lR1T8oxD816b)&Hja^a;+0(KoP_bsxgSMYVEw1J=My?=+kM
z)x~N1F`}D=^elK-dsOml`~F>vZV<gM9)6m{anZqsq2Sun3}cwmhxQOgQ84A`{!RA$
zTu$t1RuyBD=qLiCosopoB8mO(qHs_c+r+B_l1B<;BPB(7|2=Va^;$cD<Gu{m+qCm}
zg}6>9^Rn;P3QHymSkGjCU=X3Z7e1T#N#K<`5YK{7>-bAGz7=?&h02Vwj+S(d;QniR
zGtv7aw!sHfkk^14OEoGz052Zi`x}~sSSsZEzX$i`W>JLM;p=FGhkBsW3iqXQ&2sFE
zmb$2;{6cz&s9sZ8s9Au+;4$j}e*ZO>RSu$UVa)G&$)-vXW0KpW`J%Ey7zQR6u6jlr
zNDBglzfRKsmJ<9kcwnI*{d8rL#q+R1mTc>2dRguQU41NAM-u9L?vS^i$c^ZG>b)>X
zCRWMr(IdwvC)uxETH(CjMNxKV&JnBPWBC)mmFK_*9p#(9b3Ae9uJ<FyZpARW7Wg2^
zdP`CEww<j<ieG9@<Sh8M2e#*bwsXw6;~iqtWw%fT(0kbYXHL<H?cc2Y@PM7ylao2E
zCKv4&(!2IwEw1N$JeL3e9U_KXf8Z`Zez---YI};1Y>loXyE?<}9eH5t;Mgf7jL*Yk
zCeEurGOItn+x+Pz+tdD8rA4vQHaqa^o~UO<&t-}y=Hau|0^9u9Bdfs%YxN!Zz83ir
zm{19ryYO5IvqOS4#(Hor)vypaW}iT;_y^oSwEMpxC_bf5KR(&WHLWx$zWJx^6Qst!
zMq-K^^56H2Z0KZ<j6VtaZb@kKT>Q>GEI;w^SgYYpi${Dq4R`m<N49M!B4t25ee%1P
zR;#z!<@awnkpr%cKcpe`>rux2TZ5Cgoyc*l`#Jm5nc~NEQS+Y1u}AF2_R8LI%xhzs
z+;$;u=EQj#$JQ3vKJiwye0c17>w~Je=W-pJAjXZX=6kRzEkO1zbZq&$pmK}FqnwcS
zu}5~E^qEt8r{$K!tI<ujaEFzr_-3Z<lQ-Vhlzr})m?Q&&nwlD)H#9C^rT<^yHD{Od
z=jvarD_A)8GX9JHYo+u2vF+NI!x`>0$teX=xNN-F5)qVg^`aEw!&>UN_(u@KZ35q^
z&Z?5@w&3@!vw65{=eIlm;KxZQcq|8vypnRY7VFI<So(ec7mJ-QjT9Y`^~DWW^;Gw3
zomHT;$==CnyZGI<Vu$<>@?q@<w^IkW^#h|~rto>Y<{$W9{*2RHc#`Jd1{TVPu@7!{
z69#WiTh5u$B6`@eQf2Y89+gf=pm8`7-;=*f9r?NZa+@b}g9fP8bw!#iouR3Ya}g_c
zyTSnnZZoj~jw5js&>gfaIJCRZ-PRHxSH^<NJ*gZr?~dC;ycuHchkG^_yyuufnS@Gz
zOP(M2^~T%|rr@-UCgX+;y%DAS@!N+vfc0UN!fNb#B*-}acRxl-KoPt9qk%^#B5Z5<
zeXw%GNVgnYejBs5)IPgyNi6Jq@~+U36UX?yU9Jxu<pcz@%P*9DE>~v7i3^H|^<Lu8
ziQ?LAZ?&jegX&G=t8<E%WUy5^SK}X`|9dnA{~3S(t~@M^9~7ewaBAw$PEBSei(%OO
zdj8qx2DA2;__L##gn~#0tT3_kRlh6iJ9x*$g<LSVR&A4y%P-#O*pGG1*`2K$-wowT
z5w*F)b>r8IF{Nx9HoD!h<)p$gqB>eHyiQrGxU%MDRmR=rV^?e1KCjHbXr^tq?$iCY
z3FwU&b#|)E+SCOKlW!cw*EfS5d?UxLthr<4?BIRo@~Um)Ilg_@+V*B7=PVojDToby
zM(D^jNohZZrsu}InxV3}FzsQC-mKi2t1ajm$($d(y$%hx-TvHly8DE!QC!HrJNc>~
zl%<%*?wF@}(fMd2a8o;a0;k$Jh(<iFV<wdjV`c^`ll8x}j%Ys;6JzA1tuw(t{WP?E
z?D3V)Kjx|A_>M2EzUJMs(YVcYs922Jc`l%ej2dI#_ac)pKa|bcpX#x}DBU-nyPVP9
zawa94@#^!j6r;QpS?}Rze%a3#sg$0pn;qW+`A8A3jQB@d)dlpD<nW2!bGr3Cr7<>0
z>+6+s%MLy*exx7fV6ggA)9G&8b3T?uwFnb?Pg|8ri0%v4Ya4H3=EYlTC9tZ(jUttZ
zMIH1WjP5*#I-RvHHs8_7J18#XxcT_{HhH^}(EUE^n}b3mi$8FoCUN2<{6z50HEOdy
z15a`(o(R3Yz%r>4g-a7-WXGaUwkQ7=VmYUoUtsbH+YvhR5^kLKiZ_qd4W@TAKR|?+
z1SmNuD%hthZ!3OL^YTeXD9qArPDX#~E&p<BRm|nb#a!s7IFZKud?yL}ZW)ng99voE
z@2TyQy2o_^!9|XCOJlEo9quPiBsOf{CQp1-plx{}t*DDX@BJ6Uj*1h#uDD)GCwv4u
zpb*6b`=;Av=nM9?tkd1`z#%cpEcy1@PrCWt(3k}A4cWsvkH^l{7V|p`PWn{(0gsTZ
zPcP3sX;f|7DfiAWFPRcuiqzm@wY)-YrHVo!$}iwv<#0>PL*3jd60*!3oRuHDyTFXn
z9a}C*(cYdi^D*7&gpV=IDCT13!M)J1sW+p#!`7)%6-kKZw$t6uGkBmQwjHqp<2Z(B
z{&d=;{qsD*6*y0}JQ!|-&pD}2c1BD1o^!COAO<#Exur06vtm`a`Mw}WcUuy?et{aW
z6jOk3-i%7KqxqLAri^P&x{?ylH?H%!0IQmWUa&)0e<fDgFvIG|vQdHFxXsD6So&zq
zw)B-FqSvZnM}AF@@|~Gk_FG%U`NF~_bvs(2a^6ZR_~&@@G@tPW;nyD=<P;+xTt+eE
zwZ%ECaq2nwRrwK=oRZ~Zb5|S<^Hi2QEef8?33uCJ$8xBBIX1KY&z5~*_hqbISDyC*
zTHaBmm{UF}sJuOq4)(I%Q_r3jJb$rZ3ADEC&d!3TBrnG%#aeAGkR--oilVKX8yqQ7
zCSC<?y~oH#dG>PN)1n!RwgYCFl@zh>(QPRtwT7$Nva%zhXz1{j^*&c;23l#|Zm4LU
zljG@JSfzVTS01y?j0=gn)3~V87Wd8Pn|tO7!2kpV{U>Jc|M@vs*R)6!=L`K|!EAqS
z{imJ;Idz8!IXcS|r^1sAfFBI3d>I9NUrHd%5J;?Rw;?#1exU<?&JZaMe0`LGoJy3k
zMv4J%Dr;ZFLW@@>;U&v55@9yBaCbVB09}4LuO77%Y_SH-2}x+RqwTD^1WXF##a~Yh
zw#H1c29imelca1s)uT-3>-qiuQiL<7Gu5r(Lq^x>9alg`2ome}9+#ZP31rp9f?22v
z1<j7wu#V%FN4+@%Xi<}_msx*EfP6*3JQKZ~)D@<F7fHpDOe@&_6z%BR)&hr)F9gDT
z!1$&8NNk%7xO{QXedF+5^K|aWEofl;40sRq&5yjqFar6!i7YYn#gI%n@H-5xuaj3d
zd%d!91;CH<dut}o_Cg*|(9CvmU~~{PUmqb&<KTyCr!Bzyb{-RIavcaMd07x03*73Y
z;YA|nwm>-k%y=ixJ~|K0A>^VrfR0`8UW|<}IbqQ!hi4E0LRj%F$9dYM(XQ{o)5xXy
zQ=|2Rrj)M@hSOY1`g;<qQwt~&EWk5&aggTF(Kg)}c>&}JCr#35@~S1vv3Ckq0NPrF
znYM>!Nc1kFl;N57ENy1@#Gd9iOFafnHlxN7DiF~t!xLS&6=<Okgqnk9Lxh>ZQLUbl
z@#+M1_#aJzIZK=Uqus`1cm~5~G9OhsrNQTTtC3jMjlj(*#bE9akfDqK<j)l!a4z#k
zON{S7h~n^*N*mNyf}*2<STbZUT|Re+bUzbsaK}`a@Zet{!wU&YinoHJ{Dx91j1u@x
t0|uvp5i7F*wpakZ-2NZ(`2;EK(|F3Ko~eBR{~sebeBkK*rxtEk{uf2NsZ0O>

diff --git a/public/07-basic_statistics_files/figure-html/LocalMoransI_plt-1.png b/public/07-basic_statistics_files/figure-html/LocalMoransI_plt-1.png
index ff3163fba9e3801f4b0c53aefb5844775faaf11d..1d002093a2d7f1da4e99c7efdd6790b4ba42ef23 100644
GIT binary patch
delta 21271
zcmX_nc_5VE7x$ep!`R0zSw^;GCz8U@A`!Bt>^l*%3(tdu%94FIN!GHIY*|K>lx*3e
zLe}j2&b-t2_rCA{_uTWjpL6cH=iGa4=?L=o2(rS|1hRBg>3EaY|6z$)tjm;fV(S#8
zA?+76ES%!8eiL52y!lu!9PW&zOKq+_U!unf``zq5Guh+KZo0T2kf526`BtwX(qQN%
zJItRA(w|-eC2Hp}$R4h~b|sFABFxZrG=b<CA<jnFCAnqd^4DCHUP{cmwTj*2sjbZ^
zkQA$@y5=03Dv;rlIBFsYWpIzZxRLkc%7A!iBL9wT_c*ks<)3A7?mW@NGzOtOvIB@D
z#AyySz;&rM^2hpE+nQ2^EtjEFs2ES!e!g}-+R9wC;lRj7_StaOs#%ye3kRE}t$D59
z`3tYEhRyf9ppstg$Yo55#DUlRri8x@q~%EMnKa0d1|~eco?isX8iR1pamvxXUDxH$
zlcs2FY9XfoW$CM4!sT~W^b(E+-zhlv#=EJ$T*1OK@i!WGNJpRDbp<Zvc|Ch|`52r2
z)*Lm*iQXL+A~aF;;Qma6(Og)sEk>SxH2>nzb3puTR^??si96D*PYKXN_#wdzg_uL8
z11w}1{@(Dcd^i+wM_nSptj_I3qaSj97V&NxvP9M%j#+}J;iMKP7WYTT8Sw}A)oAhj
z=XO=W^eGIU!y}`v{Y{^nzv5szWnyCd7xz1FXkK;-c6bJ7n4pVpQCHj;bZ#M~*1vy!
zu?(CJ!?#%`ELIiD7hHTnEAM4-;+EX`ouqY1pal3&^FeB$9$uT_xhNx_`Cf2QgOt*z
z*;PU3^~~X`IihVUI6HqVjPzH&Gicp}nkf1xgZBETQP%2<rK6((d-mb!k{u*88jvCh
zLF9FXuhVXBMGdUF>%kU)M(Xzxnz(|(xbZ?~t&e}zMlF0p!92g-Pjx!EeLF6oGB;Qf
zx<!IMWq(a%h1D6YRxhcZJk6&Dl=yoM;~bxFV*A5ifRB%>OknXCCFeuvZGhPWE!~qC
zSdwxI;v$yRZ{AnPnZR9JiHmqYZhnk~|7cMw0bxQG8A(L{H9M;LvBzg3X}oRQ7CSE{
zMHSmbzN~KI6#{R}pP=3iEMH)YKO9swg)DYi%GV<f(q~8wNIW>DrxOM?k;;w2L#wZE
z8iGM$_Iwh!Vsl%C9mj|6X%PJSMS2`U&+;CQ5bC#(s~r-XIg_i69P#4fndiS}XsE7z
z4_#+Q5jdh!Mv{+@@YlAzJ0Aaeim^xgd)XB9U(vL?!nq0!T*Td!v~V+GdMlQAcpC>*
z*YdXHYZjx<##U3$9tf6SH!CZ7bGU!{)5{ayxmI5F_Fp!{_pbi`xf!;7PL4AC3|Z5E
zLy(;CHtGvP3yPnir;zulV<KhJ;4@BMk!OZ9)g?ebZSarVB^np@qjMROQgI*~`+8|!
zc10vi;P`gP-&7-W$KfHhtI&(S(|X@^Qj@{y_L{$EgoM*H7tVNl#{jdj8)r)@?YNIV
z>r#Eu!om!zk+|>f6W`Rle9)5*DN46E`h5os-vK*i`!-TZ=@~=O;bf=uv>(+v@<<PR
zufbi!2_>$hVO^?u2Q_fJ6}@tN<V*r5-uFKAZ*A~>EG#4(1Drmcg?7@Px*t$kUaNnW
zP%>fkQYTyC*Kzt+`!Hxy$%qCv;C#`}a8-5xZD_qI79PY{K67M(ORS^dJuiW;>Tkal
z>z^yOx9&+k_npr@>oypCY(i)7+2)}Ua`kW0uvewD0L#s|-ne5|!aa5rK_<`YD;^Og
zK$3rQbQD57b`NGGu!|a%<-JUE)Me)xt>mImU<GfvG{uY(E6w<zJ?rVE<^hf&3os?8
z#`0GGmqJtEr)Iia#y+O$TL!*H2}WPkLH?%h56+{-|E)8_Mtri}$sk>T*U-6Xt7qyw
zA~m<rPy_>vJRX0yKcq)gQ2M;Zfg3Vxq#9;8{BU8B7IT;J^Vbs5G68|Iw;H7bo!8Tn
z%#4Dr+}IaX`*5A9zwujm>9jWn&sLO)MmRk-!NOjN5%roW0Z1C?C6(=o<afn4iBB(~
z$GIbZG^b3WXiJvv`b_NEGBRU`dWlcWPeNa-*RAJYSNGm*J=5VbtrGD5=s-Y784WHG
zP4v#uB70cN`9XyFOxo2qn=Im%_a8i;4}LB&Up3^aDSwY{{0*<Is*8z$^Sf$l6T}|m
zJwxi%J$_19W<wD~XPDucL_M*^@9w=_B77Pi&-`<_tX~dq-nvmyDEfmfxJO`hkRKwH
zFb=vmAM~p3<|2I(aX><5NRSZ6KtqtQny3)_TkF;|eJ}U|7rQ7Ifz|j)cbtQ@AKP~e
zS<?+@+Al2i%nzoZiOsp$5PiLK=zm~^!3c6&+PCfeTEn-t9;uoh1<M<2^B1C=ix*@$
z;58Z#I`JuyBpdWCnttU_aP}kQjg+>>&INsBJP}zSZ`1nOH<_hzfN>GgZ`5$JQPQVG
zfHWO?oAfzIh;uU+<)i!0I+>tTktW_uS8JUsxXS34%4KbrOZ8XfGKCkBhC!k;>sBv~
zGh_U}tRUxe@E`+;)VsDEh3&q2u1YjeOvm`<o04bAXKqe$<}3+;7Z59)?{mM-bcgED
zm~fApOdAgD_5ZC~(7e<}%`O*8S|~Mc{*}mfWDpE`AVfdUKhO)*@I!&JmP3y+)iFAO
zceeqGpTN(pwE@v0{7aY7PTT%kYx^HrQ3Nm_OGfZ#8ihZF=zrhv$mtf6(7c+1Boy1%
zFc6JD)`vjA67e`w>AhlbJJmr7VVMd=5GuGsMM$S9K7A>B@$m8Uidy~s3?Y}GdsDJb
z>rYEUe3FfETSjLseA35uZC2}O`~3WK+!^M5@!+<N$}wq9nk{KdJ?Eez&&JI};S!s5
zWu4(0PgJ&{QAgXY^KbhC=d$NH?<l{W`}v)@N0kEV{|1Aqwk)J{Z4|ecqR4D=0#MXp
z<af-~jN<O1n@hY#C^9E8;61KzMW$RpbnXOTV9fuQF-AQ8_{3zv!D}fO;q)4CA2(Mx
z*1Er)j|nuS8ZWB)@?vk8@j}*Qm-da^NfCsP7!J_OOkjx=m(YYo76XJwswy-!?nY~_
z^NiuBJo8RzNs6N6skJk6^X4ZGfAC3r13|(v3Ps?zNFjM4^`4zey~sq<dpo8x$vIvv
zY36K(vB3f32fGEy-1>|kU)9!OHN^iFm|=yV(^#omlY-g{9oUM$UG=@r{h83w7ZC9B
zP1~pe1uKnJ3u#4z4?u_A2p@rexC+50wKlcFeXD6Z!R{4ijWV1=s?oT9rlfkkH}kt>
zg@=l+j(rG!)qQ{k3`G|Z2&X6$b}Rmw4*=kR=4CZQxQ{k~|AmI<%l&=#J;bEO0o{30
zn?r81)9W_)%HydXCz{UdkMFus{q1}$NP1FiChK(ghXDPzJ~CWMe%u>QVXdsBnjkFh
zodYbJ`CwXvinjLdASYd#>gyLq7E3PkZs>I6tt)U!VQ1qdaO?kaa|e_KmFLdnbZcsa
zN?!Q(tRO9;Esyw9lc)5}nbgvqteb>QPU)fs{-QhoFpHuIvp@SQiZTXjJKtLCL6PJ8
zT8<xdz#H-MQ#Roj2E0^?@^52d#Q!EI11pPQdu08?H_h?aw29t{`(|MVuVs){YfO?x
zb>GA?nZf0aJ7M)KSojePZrx}Tr$au30$Lk8>ZKW|G}E|?6cgY1y-));-PV-Lnf{xU
zXT}Wk^SwU%T~AsXEF^_i9NP?#DO%JITSCPlKZ;zZd=e}AeDXAmM--`%_uO4QKP0k;
z!D}7bxy@q`IR9!&E2>aS_-c?rDa+5ME9Nf0r|}3(zjmdWwrN#$edp~^(m{AV6BhPO
zGXRg0f9QZ~^_G9L?tV014?&Hl#InM14GPK9FOg==vzTLP^47VE2P4)x2u{7y7+reT
zB<6_H52y{jUt6iPuB+;z9Y?>b9?p09cp_CFa=Z{vJZmcsNx4guuloP6a)D?=ED436
z=sg%GF%Xt1Py`+vu&87^$>qwvD>S|C;fQ>l4cFM(eP3(Z6}o64t1&R>w(vr}G;P!!
z+un2o3orjCb)sO3bQ7t^_kh{1n=P4(vVhS&|F4QH-+j70skKUtI|@EiKtpM*?yKI$
zF{};&6%+E&K+zuzgR`wkNa=enF7_R7ex_Tg2AmNAw6E(nn$bwX?@mrNJ<bW<#fKGX
zdBS<Oy-GKU{A8fK|5Hh}?fVq*&Muy13GPM@*>Esqvb5_#Aw2Mn+NBia(O8SkHW8K)
zD8dOGC=j|M3Vu;s%Wq`n-g$pV@)=DP7MPcpyhffz0h%7#er0kLX?;o~tq109@asR~
zqB*8Ac!`;-Ut<d?tC+yRQkDjS`zriCte)zhWo`n>Gx%Sp;WO^9K|IsOPwk8ayF3Y;
zps;yjwOu*%O+MijCe5CQsDA>3H__Vx$R6hJ!Aw@J!7gYk(~kX?6d4tgNNQyA%%MkJ
zc?`(%da79L!{)5N)+jqpD*F$$s4xrM5@sj_4pKfJl;5XRqh~&}EVv-NvnPhMG2$PJ
zsWe7>PH1OyruczdotxcwhyO)^!Qbh83C=<6pt!Q_LStKs$41R!6TLM9M`kSsfBdIx
zz;=a*d*LNx*UI!Fw~K?qhY<(dWKzLTMbzb6UuDZ$tS64U=@5$Ss9mWQ_q^VR-|cF@
zI-b9jRY-lA2kvE@Ee)-w#=_NUSAp4TcaKt9`d7O8ZDu&}{dpePOYPQf`E?Ms327tZ
z*Xvj@;2Yh%Bpz_tGNXt6;viwf=cOHi$3SxsVR=5TB{-FyKbE44q@kX#lQHo^g9^W@
z#@Pe;>FpqpJ)Er{mM6~j?T{d9gh#PgM?`&e>mp9id0|E(CRL2?s9h-eq7RRTq@AKm
zFXv)qRB!jRSlGW^GsxLiCxrO*z`*h9b=dPqIs>c+m?P7(Ok#<OHcQft=5xP=PLCM$
z+>1;^JHCQg3?A*iGAS$0x{4m$W^9_3^PvWHI}sC!eRSJ=n19D#J>kMc%4xfJ<ZwzR
z&m0@7X<i95bnnnapLLgb=J?}`s8{+MrPCg(2bG>0iX8Nts;q`DVBoFh-eiB7slH!8
zvZ@Ybq1&zqStKNucOko~<C=?5gbF#QI3u72W%`Y(mPRrioM0$1`ln0k*SbRlW3-k$
zE8vhI-5;vDeCzbL)S!_`L!(bkdzpzf_8wQR3ySi#HW|P!tXNobP8>Wc7JrtOZECx+
z>os;JLn+{pIfiyMAkN5yKXpDvXmaHZ*JngRF1KOnKUgMj>~(2Zeo|j6>n@R<gKl|+
zaQjG`@FC2*gh4F($Tm`XUzB2<kU_3AX!mLG;YmKLw?>Q+KZ_BmUj2;K;M#D4P`>{D
z>nMa<D`LpZO$Z#SUMMOcS4LqbY;baPwZ!R8G){FQYu~dYUK%&~We)`_^lW+&G2jMc
ziKrUbCln$vUtG9QBb4?#kZjgFFcrx<w`NraKG(+GG%-L}1(!a`+7Nsdk^kWZp9}$2
zBJ@wF6lmuG8T3m^n}Kbw!7zl)ywe||@2yY4#Y&3VjjwJtso5~b`yycm;vs>H44$!`
z8uoUoc?r%+N{_x!3|IME{QU2t1F}M*Z$R4RcqAa7+eqUkMDOdPp=yn1GQ31C&eRG|
zoO^5&C<dDbL@=NOGL$KC0?ql)xW2sRLKC#dk4PWY<OMN!zS_7W`wHitE6K%1$@*HZ
zuRCX7_ZEtwi8tLhx3r?aM+lY2I;uU>FdgV+<kX`ah{u6oY#aZneBS$_XT;@i!usBy
zJ_Lra?#`P*#o)3XM41w_{^G{1)z`(~tRYw>@!<bcGj*-|I_;VJerzC9MI+!^`mlf4
zN#y=;^T2!K6s!J8tH;MT=Bkashq{U-8$1@i0J~hn!YWqG7Ho3H-e8}Gs4*Q8IJgnI
zzW&UPaU45kgerU3Kuw|CRcR+{JvjA_+RGNA2l#ga7`#Zuo=*4EbJ5^L^4~DXF8xb#
zltb(?Pnf@<{Bv8296|ea&N>%XVn;$L;<%Zr$boEbRPWEAAD4C5*b;=bd#`|p#;nMS
zBb{f;1BJu&45nQ{lQ)>Y#CS%@Zm4>Q>!SWi8UK@-$Sf&pt@w71BN=-~W(b1UIZDnf
zJs{c7;3Q?)T4oPO37%2~;y@&!<GxU8z)16b%5rzh%|C)(E#<w897N>6V;pG230}N<
z-<{TuV!N6R_V;o)KxX$`6~4uClCAjqzDA0=Tyw+ZUfz?7!3B1b+;{HGugN_>`Bj6j
zJ6b=SPaLK#VIp5ms9pEZih}}8n`-=a&0a{Ov)!PUlpoh(wy$p36%}6!YCTjlNdZaw
zdRNp{#SE_hO^J(kqxUI3*#DY6+jxB4-{q$OItnjOzBM`bnYtVsEzS5dQxk|i%nRuL
zEi%L1%U#B#Qvv<bu$+I02iqBSAI|nDM(GraCY#x9HHM%Ow+iKinxWabFoQ_LS7#9W
z&5T7?$plf+H}+A)bv-#w``{oBJF2g4FYCB8=9GwczHntLsw?=YW|ewW$19d<#tLd`
zlBHevKKfQSryDlWu`I6ltU4n))&5~po#TAORh#sw*&gjHOT1xh<-qI7p^?9p=w80#
zxR7N?4GL+EurL%EV|zTWwy}IDAkO1@yhz|;LJ|1-SJG}KJ?Gge7xI?T^Zj(}a8KXj
zJ=0%rkK(J~){r4H_|vGG(Zs?XioAIKKhV??-~1^&7TjO*SXi5jS2#q=T6QkT=lQFc
zCki8p?-%m`E7Lviv-@jcB+TV97A}*vSx!OXGEq>+9qubaqSSCc`^$}F>cLdIbmWvH
z;^VB1+Ub5ju{;ZqXQQFYi#O1VA>RYCox{S5se{pv^#tB#Jw<ofvv%p2#VSm9&zPQ<
z(ay~dgqT3!_g?kaZh!fZtN&Y!m}}a5Q4+*m)zn?9Ej&u0@5%g|TkpMS*}LrM53bPY
zEnvp^>_vev6E~l}+wo@{0!Cgu_urx(Kfn-m{vIckx=KvZ;N=S2kgA^MR1@3+^b9Dm
z{B60>hOemh1MNGCeRt__Wo>h_6i(FtdDaJqVk0kvRq|{CB<HxiIgd1?#=CIc*!|Qb
z{`FR>LGROJcA;ioTBx$@_8qk~G#-(2!cc%5em;Ju1zw>UuR(wMm+i|=DU!1O&nY~f
z!CwhrHt)n!Nfc^4{XgSc{?rF^NS?iL)0#{S-X$?dHgTCG>_~CNJZe{bHt)&1cnX@;
zwnXoH{1ETFC@mPswKDgq<I=~298SZN|1>G1aWX?PyU&JSi8xB7ngz!E?bGlEgO}U!
zGTFpEXDP??L!HHuSUq?aJ@AMezSb@y^>)x13Dhy3O8PHz1q^!;7>&Tcit*>Hg3M_a
zIUmy?$hFQ07DbR+J_Cl*b9|B&9d+25A*ZJ~RGf_o3P_I=Q!o93bWATgrZ|*Zltpsu
z!G-^u+w%@0YNzqs+XA|uNwN|fvZ~6`WH(DsFbC|UO8_txDUi1X9ql^rDS&vN!6nu$
zlW-@vVGp|fobRp<vpB@AHxaLub@DX$e=}xV<A2-kTB-~r+CyUYWyU}y`}5WG``IVH
z^MdotdRQ1Q9KA9~pamHGJ5LPWJ*`RE554lv(BbahgQv(>C->~sFK02}U2^n1|LCSE
zzdJc6^QiJk@)I)?oR<tYYCJ$q{ytgkrv+Gylv%urU`EDg@m94(Cn!Ip)4B)crv!K&
zFdXb~O}_Aiu9&M!FQGwhK#+xA3^%feX8@(74YJJFdbz@Em@9wSFcNuM+lsB{1T}fh
z{vMr5T#Xee1VTrXZdY#Gc%Q(Ny6H-iFM;}256T;k`PHg}X^-hx><4~G&=O}S_pmoJ
zgv0$+)@Y<yV69UvA8*qV=OQVbFeUWlBlCqZLJ6XURhQ>VI6&5;gyuo@yG!+NfWJ)M
zZg}Po#=ws!FV<>#H(v$2CdYHF(sVQc;qRd5hCxb$8fHNHx|r~dm&RDGxrpL^YnMHG
zT<L1X((ktoJ&w(@yE9SL%3q&NRdv;TSR=;Ixwx?b<Z373HWp<CmW99qWPj&K`gI>f
z7N%)+MJPI)t8|vFEZcdC{)@)@PY1kYrua9Wi##4hSKa&fk-|rL7TC+OFMdMc$*lA2
z)`{A)ri#hS_}bM{SwotM0WMm=Iv%YikHZi-`{m4}=$PO$Xpi5r<L1Cjaj1QP=X2oz
zZSxj$j<P|o=u3`RH9(H@M-U!-0?2r&%jWZSRC>~F@8^j!otd1tYAiT0W-&ymRc>Nv
zQK#~PkB-1ov`vBFq`<(7HJu*$pb#50V%%Tgfbl$a=Fws9Z`3u9mJiGu11FBm0KJ+#
z9~s6RmEnVOWSRx&I&r=KWJnRX`&mTpQj*N|yJtW~T#MFS@gmC3xpt%z^;^38&k+#r
zNOXrav5Yj`kTOJzAI_+C)ir+5BS5|s9)NMcR;C$jno<WzD4ds5IaHzdwBQGKbP_nq
zHMCkmODbX=A&|Y(@FXUKC3U&D{%HUbzV{z};sqSA&K<S<1ao=9S)KS9(iA8D9+#8L
zEa_ru&TI`m!GL-?hgNF456b!TcvT4TFEIWylemQe5d8J{s{{RCuZ7Agz?y;xinl&_
z&+PP-QYsb$ets{6zn|mu;F@(4AcrV!L)tL#^y4P7=M+j%_QcWvc8ZM}*762X=AuD=
zbmQpWs;p|+U8uz12T}(y=v$8HCHKuaB)CvSi9&GFPP`yNtURD@uFkErJ4)1^2WT8#
zStqq~wT*GA$epY5UFfN4G$5G3g3h@s8;4Tn+s^C6(|Yt|XJp3$9ZC)N!xyYzr{lok
zmam$+HJ5H33z31<`Bx{-ZO}Xa9rM!Y1!=4y#XpFP$ez1=IJpbrh}Gje;`xszgw{A-
zGTw@TT=y7l^<74*8R#hgBYf>KQqRqM>^N8HV>HO7(F@rq3vB1;{L;UL$WNk2``hbD
z{8Rsymbj{kH{52_xcV@~i*@V$H4xkS^s%-C_(QnitevNMl1dmc@Q`dl{s)T(8zfhA
z*cO-8%osmvu`Lyh7+gFV0|aM+`k;npsetdN;jD^Yw7<394f5QaZ$zKnk1e`-5*^>i
zv+=@|mGpjzR9=bugaMN*(rwo#WY<<ikKWkv?&*1h$BF9vfE*6Ud;636)rXf*gkJq|
z_Fz6)FtvsJ(*oN(e^q>(I$-X)FD2>n*+lo!(9{PMDK&tF$^kJDg#(Z+zZr|rG=_!l
z7oB=ih5(3_0I?UIh~()hkcI*-YYwO#{j~X5uKHhq6TlE}UE|$XJ5-H8Rxn3C56NB8
zMXYvnpy9Yl<$9Z$!isZ6_wGN4Iodh$+EB{$rPs!kocIS!5HN>SwB0}vZ;mQ+d#Q}l
z5QUL%x)J@S@eulE?x@iLm7jUhy*}bA!Uz+}N_w~ZQ2Kaf&vZPaZJDJPtvC~8fhH)T
zaI9eM+(h)dZ^cSXnp-!PV;*m<T(C5J=V0ZaM^8&8&JPPy&xG9<c3pn*AUM{~aSl4V
zBaISg2hI#GC-W{FmAyr~)Pv}?@LCgak)x;pjo^gn6zCaFB6idGDchLf@CC*XJ5)ix
zd@GE=wGB64V-Dhyz`NdwUI~uclSK{;2u`{t;K4Ft+hfx5&^h=`VRcB;QwG+~jtgK)
zEp<;xurB@MOI|~RmP{oa<v=Gt`KgZ<!Rc-y3^>+BVrAJwjW(d#4?9ZeT+f%W_r%5_
zJVaMgM`kE*mn&mDqRh!yq51AjDIjSkWK}`0rvpAme63V_1TOOh`%PJcaoFV^7H+|C
zgg?rvTnx}$SO4Xh|Iq1H!gG+cI~K9fChi-0Z56uTO*2Tv|ALa~UCMy;E}!22q@tQV
zn@GPkr*?y%Q~NE)e>bM%;+oBX%9epEU+DRraKh|(?t^d9k)SJ%w0sKR|BN5Bykpjm
zOIL!K4ey47r&qbBshw0WawS|Q%19WEACs#ls$<1M8uL9Udgwuz*c9p94*O#1<Y&zs
zN+bZ+^<L8>rFpHB+OJGx=Yy%@R_r7ie&_CW8zB2cno-py%g5c3kOPBWRq4pdx{pv2
zVUBz|U`16@NhU;q8E`~|3h30vUtV*Pc*KZMysGXuaqtj`X9IoRniCi9YN)l4+Ma7k
zv_AWjaEC~O`HQM45oy3XZOk#;$>o~t&+pd|86Q&>jRUUCqHxCG6tarld-rx1X*1Qj
zY(PAVv6KP<=pZ$Dc?=PSrNxJxTQ4l>xrVrfB)&DAfpigNw#47L`N-Ni%N)SUiW3D4
z?j-npQNceg+6a&66KX?KGkPI!;_Yjb!W<*>9&qrTk3`5K@gL!?Z#jwC6#KjK7_w9O
zoDKATi^`!h)FP9pku%g?(WY`Oy|B%}eg5?$DD6gBBo^%at*1Dx1=#mv0)lSBT4Uq8
z&$!Ow>Vc%+wl~c#pETt_9}Y}D8;4W{8=0gRCMP7KGI*n_WwUwvqBPpR8=pqtnh@jL
zZFSB@lE&~Buj@`Y7Va!TxZu(%gD8+7E!@Qk3$G0i@m_g4rO;;@{b4T~zPK2j0lj)2
zGhyqZlV`Ym`T1A4`~q|hJ>G}LO!F^tCaEA_c#hck{6kM~Xb=uM;RV|2Cj!UJyfPy5
zzX*GZumH(0X_^+Unc6u6?qySPQN!;KJ2Aw{npxp55u%sEXwL^yy6?);S}~M#r~wDC
zR<>|)kWFJeCP3-Z_vA<B^N@z3M4_2W1xHo)jtpsKe*92Y>V0*<%3k!fZz_U#ZO%S1
zcq5YR;IKrIFcl&V$?=$RCk(6m;nl2j`RDk8Qi%h5vo9BE>6w#fX(F=tq?<?^le_mD
zF8sNBIqjIRRW-?T2c+F3_zTIPKm~eW9tRAFV>@1jghWo(%GBFXj_>lgZK{5Oi=HP*
zOQvDX(XVM7dhEdlPftG6(DeSet^BJ`hz4cl<uG$53eWr~6mdt7o)IZcRqgafS8Zy{
z)o`s!x4CX;^R^!C%RIRUPd_a%#Z!DjjZ$U9wyL$$vy-GZYzK-qhsCVzrk_eCf}ix{
zpJe7^86EjFTtIyhqAjW>FN?xcyk2Eq|I+sytdK=~3?74*zO>HFqEz_lYF!_);$uX$
z6k2MksYt!rV)~bqPV^aCV%HqC*7*sKTg-qn)FlWDi+ZHfJ2Uy3ObOVi*qwQ6ffsJO
z|AVbtOkojQyK&dDtp*Nu_Q?6bDg-~EUP4)QpQ{f*>LQ?$H8n5;>mIHZ6=vKOI^m~d
z$CCRDW!EbHBM1@w9-iGmR?JH4gK8isfS=BKktwoDN8sW^SutdV=bA7N%Du*kD9^Tk
z_J1Ik0|Z~-O+H2q-fmO)q0gy1Udawl11s=PgK+5jm0I9ye53YS&dc-@q&soZr+X^Z
zhtbdpStkBx8=FYtyc!+>yXd_pb4x4R>mkWxG-VXSG3-$j%@j88j2LdBOP@Ps*sop3
z4e$LufgxTy{O;a#{8RCG-hIdt+S}u3mayC1SjimHM3fw<fdaJz_jw0zu7WSq%wIwU
zBHs^0q2Ocj!(w13G9i21cw@|QNUfCw{p3esh>C}M91r-`3TewZ(BtjRUSqz+=~%-J
zvd4#`h74r|#ooVpYFk#|U72yAIsKj#s6sx>yn?li`Ei%sP|m#NZW{)<nzZ|UXj!Cr
zKefB+c*pX6#NHF+YHBXIR-vE6A#QNHdieI;%-o(74okJ)aX14|*#?omL8qV(mw)#~
z-gS$Pg)hwTXAdzV{MCaTHgbcTkN0M`bTOcZ@<t%wrnt&-Bb}x~>WNQk@v)uFr;_kR
zTGI3_HBgr7`J-sEmGq4TUMx_@!U1dV!%1UfkO!kfBmglzR}qi*VrDi_ujU$lJ<PjI
zB_ye3zCjsad1@R3(;CyxLMT|W>t#qFB&q~1A^<5)9Y3Rb+)i3OFb5$Xmd7nxtCM4-
z%;2nDzpr9nO%7Ue57!Umf2ER!#?J42AKTYF2y+R>!s%E^!*?_Zn=HUxs;1^hE;`l3
zapsBVt+$6X?-IabDBp@<)=NdiY2_<XKhW0(vRg=4*m^kNHw7dFRF4B6I5e-L#-&E*
z)^te~`3LLJ{^3q4w3@h$9yr7SIerU7!3ZX4JZ&Czm^T>V%HMvF%C^B{095X`oVrh?
zm~ohnjQ>%vy#J(53>z#E@Ey+&UaV$wAV%=iM8D-H?I(};Qmy|q8m!*k`B?sYj5KEH
zDnQkB^nL|`4kM+VP4t$?UdJ}#+W6xpP*LIT2%i;JxsFggxO%z7j0)zYXJ89s1ulX(
zgST6`r(!HiyUi#8nloa|+_GO3fk|*fuC`uXTj=g49i6eSWGND%LrQaq7w_7o&!ax9
zJ8d7}_9X8pF!?)T@T*^RY2cb*v+JNtEf;Q#hRUZ_e@_c!UObKjPmy;((_v$()e{;w
z)8;#W)KvY(T-lqstF)g6e!zjm=MhM4e()7`FY_Y4;?w}lw>@~@&*Ys8zZQF_552wW
z^#aG2N+Ks6L{^yZr)|}a<u+<mjHD2B*eXEjeMpz!i{5%jj>4BH&~p+%(?W~8`!cj+
zYIFlb6x!u$TCzN#e>mMa?9s#H54TSC4&+ftUr4hBE2OPT(}xE({M(lRLy%73d}wZ!
z*new0Nr{1{9eGW{wJk10%e=e(xMXqbO7=3y_j^?E#?vJ}Q|!w$gdx7hb|LrOo3(FH
z1e4a9#l1qh)W-9{uIBqNmoW$n|FtRy-#5X1*7kBv1CVeCE$@45v&t@1F{?)T-*gsT
zeNLgT%a1%uH<4F1_PT}J5*%-CrH}JLlU+`_RovqHbwW!tB>|T}K`TJa$zk+PotLF-
zEf(ho9jm&lZ&n)4=QUVFsXpIQ(mkzp{M&S9M239guiD~sJB~A<w^S8PEeFVojt?@J
z!x+ceHy6`xS@&=nE<6I-ksRd9>p963NkOgEU*~mP{@<hMvgVFs;e`#)&$U!~7^L}j
z<Q>w=<ovtN_TaIw<xoRF0F&_}v`!+&W6IT$il2Y8z}<b7GKYT0IFB?kb)V=FX$*oj
z{jl}d`{bv3dG3r;^>Ih<E*i<)H?*2OKAMJvNS(8xJ5P&qT3*5xln1}@YwJ@}iy|Cx
z(EA|vkuP(P_VRWo7JP`?maV_=sx14d&CufEVs(U7^ZqM(QmqdYdo1a&+qPp!AexVf
zhHUqNYJTv&#Z5fJO5nUA(#kmPcncEwnk>Nr@!b`?q~80AZ^hO!LJ}XOsEqYk%2?D0
zewSAs-K1ApjsxMVg&PmR=!dc^R3W$Gj>;#Dv2l_g)+fbQE+I3yUm>xAWcuwd0f*N5
zqt*xO8{qzC3@~aSX*{eM)skpdV%X>Al~t0Ui2ahjfW(R+vmjR%L@030=6R+{fXLHN
zsvbX>e_}=2O&^2yYYv(ip~ITEy`$#a28Zo8sCh@5g4c#d9qqPdV4SnA9{owAG!Jk8
zn<M*6oztd-0t8Oxy9o8lt1&LN>xSNph~WCzqx$g$>GoCPvqTAygftt(2>#wO7!qNF
zE59+<Di`^Z`Nu2>gj{}*JplQ8bZOtC%r7}Dhgd~UKQKy6U3EU{ndC}XJ3uaYtTLTc
zGPD_cl_3F!u2@%2Iu&$(qf3YuLV+TRff9bOVPzfS7rTA_tt39s`+M5)OZRsHpKRIp
zJ)>EeHej>MJN=QNPt0G=aX5<J3VGrbDn}&Yg^Co&0H|_L*z+J1p*YSh1oJZ%$BQI6
z7R(SH2d3V<`g#z&8a^Tz<r8Xw=rvtG^~U71$0y<=>WfrG!v91av8}2O$icufnd)>@
z2*Ho~B9e5ugB0wfg9xU1O*4O$F9IHHyL?5I0|c_!iFbIWcw7s?;FIR{ME>dVL0vI0
z<o*G}3Uek1L%#J6%k(X)X!43E2Xe^6VRk?%;_30u_A5!{B$p`O5AoTRiityG`L?I^
zVS>PJDe=?0>*E1<c}EQK?CRv#{+2UXnfn4?P3~sD2OV{4=;K1aCt?Re^7r3JT5tFr
zidx`CS@Zyb*RV7KbW)Vi_BhF>tx@*WmuIm$$3dow!Bv+@9ZTw3O`1L|KR*owg|uTq
z56k~X>jEx6#Jv`hJ%UhUcSkpQPqog{yX8X1`FD3-$1R*&M9{e=6TibQ@5m?L_-9Fc
z%G2Q}zpARsuCEOk$A2coD7BB1{y2F4y<gnQp-(;#4MJV2v2b*c4!FHel12<4LziOO
z@Bb#rMV~bXHIZ-+1(-n%xRMP^_;r@>wM;$*C(K#Adwl)D4}J67z-6zwN(5z|9Y1*f
z;Gz|lbB?-1<`S4`QAWc#SZCN(W12Ji<s-Y&KdJ|NwzNv0*di?-SSMa!M^Y%ODU;t}
z0`N3&1hP%cctK(&<^(mq=_llMV|m(8nM9@eHI>_}Vze1y(4-zJ_lQifGhSJPjMd|Q
z2Gn!&pet(C4jCUPH>P{Am~G>uKw_C7=y%@bhcH0;WKkg+Da~{Zq3BC}L)HS3WpYct
z2opVU58ttuvd0y$vb;R`bHi;+pvnS7sYJ&9s$>9j)bpO9KpR3SQL^T;<oy-K3X(QN
zn}~snvf+Q?bWv1PgVZnXeW$vBxD}aKJd(<TK!CuoKnwD5++u<FETf++)TiX5{b9|t
zPfNQ-eCRW2ZfJkh(x!4g^cko<lKaFJLgt&iY-w_K5YGaVk%CRniz?cx@9ips->lq!
zyj3h_%w9skKl$_WwpjzdNo>F7%J^TrG96jKN&*z8I=vXM-@K_%>KPShdU|E?+2egK
zZDWw<IZL38FAn}YKYVX)j5TzYVoMwk9Mtte(hFkAX{FI!45DJ3Brj?S7#bDji3PMo
zAM$3X09)MuhTR6<ENbSbt_#$()!3W?kSAvp8~8JjBLz6*VF3J4|Aq;N@tM}<#DA|I
zZI0uG-d}f(uE@^H@34~>-ic_0Cy*7qYiOKT<I628EFg#!%>pv}%*YDQ*J;%hGf55C
zv|=JfP@7%jO;!qe#lIy`@O920?k0c4m&A~I>l@7er}VlJC@Wz-egY)7EFOb=dA`{K
z$kKYI=YO(ovcI`>uWq-Py#w8kA&P_o!*47j-|1Zw$$lQlfCDU{i-@B13mn_U#_&_b
zCG>F3EsM^OW6w+EhyS4MpO2@<LfzIsPIz;gyK(h<0dlD0K-4~5*<&@q91NYoiy&4%
zdmLT5Q>>*gN#a03gofWHL+Ig^1KB?f?;@Vv*f8QZm0gyP>m4XiQ^t_}Z+yw)#8HYt
z*4N`#zbwk$0)LI9<a)t(OrWcYg9d?d?^1ZGy7XjPj$CDKUTPz?jYuhcyuw38it$-7
zHav|FDGlMRlf&PuOcXQqK=>dl#K6MsA2j&xA4+9+^>0G~E_eWktbTg1Bf#<JPw&YS
zpszjg@;m9D^syJyMAIR3Smb#D&>%KV4PIy|h?ZZJ!vVbR<(0sGg|qf4@3&9RacKGQ
z5wOwjVjx{AV(ma9;h%sR`q~P6V32Bp!H#CYboxK%J;e&9Wi7U@$y~T|{3>C&oHbpk
ztOPQS?<=ArHX5rVwpR|bn9g5)*RIfIf<l40sHH0&vm_LKQgmLY(BpiKl$OKtLp^+2
z|8+1-<AL*G$}0OcJh=Cm>^0^ST>+3N`gG)DayzW2{5|=N6}t5EMh_&6kwha9w_`rf
zERB-pCnI<Ce|zM8QRMN$X%xYL3MU2uJDyJ%cynW=15M9~%E4lR73b9Zz4DEZS{Iq8
z;sqV1=01?lh8jzuw*Q<xt`sM2Nd7QCHXeZVEdm_K)ZM(cQj?xdDPRC9f%iN};utoz
z_?kR?X+$-Na2o90WuPFr`yi!7D=*660Fl#9gtBZwJ-W5?ub>6H=AZk}qkD(C!D3gL
zk++pORo+Ga<8FEY4AFYpO@A#j*ME91S&E7UvAg_aOp<i`ccJ_@bhy>sw4-xH)!z9f
zA%hiVrC+<~OFyb_0fjZYxKlaj{0Yel>}rm;<L`Lq+Tr6$I*lfxeeEu&3}FB(;T#zR
zPCUHjFuA#2^yt$e<Sq!#9CIxB`NdAmqpUc7{kmS?eV+}aj*}C|hteD{#uRb-WpbFy
zO)Ol;f9q$Pj%i}C1|z<ml)ALCt!S$7S|6w=3@FoT-M|Q?zysR0AEoh@WL}<+Hw~XN
z{Vvue^M=BM37)ne&9-E^_0B3eLhkjsb+JFt2e!?@D{av8j0jgfxXg(axxXQmb?_J3
z-_LCCCanxDKOtR7Hl`_2CReXiad|$Q?oD*KoVC8kBu$1Giw@<xvmsxGoZp0Sz=98&
z0G1|x7=3MGM48?<V)?NGa<#C0sCpN-m3wS+r1gwEjT$-erix_SUxN;kiFx1HB&R=}
zl(ahm`E?kN2hQKR4kU9UHDhS==k;?i^}-L%KIvUrm$woC?XEG&{m|jN1HZ9m(&P|r
z@%!AP<D=&K^0Q?6Z<FaK_ekE4ZZy?9U{aZo{BhA@mYUc?+BD4hnrEpNT+65IyQ`ut
za+V2}Xd<<$&y%1Bj>MDaVt=jmbQR>>4TP3vvN{kSm*f=`BpCd@p?+N{zw)^DbDrM=
zg~fO6W2Co+%%YF;csn#6ClvLPs1_Z>Z=TW+Xj0wVy*4Ou+}^mo+@2p35%>}ZUbb>^
z+2wcmSl>kUSlFK3pF|Pf?*HV6LolZUwBp#&UnhgBTC;G-@3PUfb2?@ns#3|Bmb{Q_
z!-ZE>(Uy+_3vu9MD=mYy;3=uj;Ep*NxPReADnr6Yx6)U(5pxqk)?HrMW8^e5?AR8e
zLyrRD^iqls6QgRyn}Ohndn~_hQ!GCyD_LX$D|y;$PtqxKB~R>EZH@-~(LM!~YhvyD
zZTmi{HyV-~_tQ@?e9q`#4R9OxhTe}F`CiBg$?i66_NgH?BFBT7kE!DO(S#bR+xtrw
zJ%yRz-^6=(5aew8{P!6Qer<{czPA+R8{04VwtZ8HZI3=+-ACp9ZB=?lqit$@4=t-D
z*H{lS!255_Mq9cH-B}!Hs;bnJBENzLz1f2=ucQ=z)sSX?*h4*e1@~?RiWdhZ`L2jL
zAH+pJZOIsc+Rw>>EgW7H+UJ=T8Ivqkh26ya4=50)bIp)e51$G$a&4^3GGD$+WJcn4
zX`}-fiDrfBQs*cB62*6I?!ls|;bm05b#3`R>W!*cczxm<mR{uVFS)GW0lC9}+MMyG
z%5W%Bx*dGN;4l2r@=$`Dv9M<PWx%^L7F2d;yQDH#!VNQj6bfF!<RUhTGuL;XC~c$s
zAxT%p7aOEPjU2aRvo&-c(claj{wG;L<>6EqC=;c55)OoLKn%8~{Ik@SFGocgy=$!O
zx#@4mNHj<{--g=i{U>s@qP1Mx8SEUm5dQm~B5hxHUO~)l`Skck6)en#o%C|dj1EBK
z6jkvzW|9Y0)e!ovc%#1wC|n)YxGDX$Nayo80zMtc@+o6tO1xD-?agyJtZg?$Xb|_4
zqI%Uir0TD*_FwNZqu{%aHM5Hp1xKU#w6LvKg>`#}<>L06J<E>Q00Gd%6K9_)FhwKd
zGtMkREPwTjEbujLagc-CEpWdMe%0c(A~DGZ$KQY|-zRh)U%!XKkngb^hOP30)2z5E
z3a?potMG%RLSwYL0EHI@{(Ktr3)t}Fd1da!{G`DGJurzPZYc><6Qk^O5{F~`$(Oo#
z#HWZ~g2N=47sQ{u0D2v(?$$LD3ScC}DFp73@D0d{llk6i4cn@MAOxM}gdMgf*~d4L
zQmE0_w-L&h5CsS%ps~saiWFCD*kEOk#R~WSoakR>h4H|jBmJa2<svKSJN|kqlE=Mw
zTh)j4me3NZO0FU0BtE~=yVAL+h7wtUL~g5|23<4OS>W<3o~g4Q%B4=w4R3l{Sc4*s
z7uWvtb|Hv*el$y|{&5ug^P8#iwsNaM85{D6TBAJKKI1#`UfK_}KprbjxKi%*51lu<
zYp>2L8$A^Rv50vqDp;Aqb=NIQiU@g-L%?y@eWvGo7J3yl|8(mqow6bYRJR29jj+dk
z7E^Neqc;E+bO#71^hc}tWVYn(VTv|$RMNfzuktBL+QX#=9k*4FMLQlE5U968k0N-e
z52g<sGiD-F3?5uXV5F#eZ}2SNI4K~d%?iFFSdV@s_&((RoxN7N`RQioJswt&rdQ60
zB6xq&LE4TWbfj>f_`m5mo7r;t{l1TFOo7Cx?dlzuNG6a>;p>T4q}e&pAcV&MdQ5Wr
zgCYigdA`PXN2+rNjRe|7=P+dWa@4@K<@sJ9xHQQdYReod88S9IkhZ~zz$)`hgrt*G
zPTs16VguDEpQW}H;ahC|S}4Tn?3?@q8Dp!4KF(-44DrceE{h1t+ok!WL<v=o1?z$R
zFwzPd%dFn8r6jcoKmU!z;Q!XD&tG|8=`JZCEjfHv{&m0!>&_+l2~H&5Sv})O>M~fI
zJ;4%7iw0ct^r0XrRxCfq%`u&q5VWn@LE6x!fh}0>WdYRs4Q4prPbCs?-V+PyI=XP<
z&^L@ttr16#eV*P3*-?1Si#~y7=>3^4=+!JU7*zL|TCD6}`QXp0R9$$o)@sIe%;`@J
z%PXpRbSPl${)3Dk@72_YwUKyl!NVWI+dv<UTlcJ1(+YiM9*!iJYwC@B<hf6Xf}aWm
zk>Q7#M%ULm?>6{mzXmfleOb=;I+Vd!D)%&k%c1XpVanuw9f}_iA_5z65cnu(3_eXK
zj%4W8eY!jFqB_~VFjB^~%)PN42L4U<R}p$4IP1e3oDWRw&Y(b*UO5LjlG@zKjiw|j
zk8tZ2NcZIYnxZ92yCono?b=pdL)tl%3aismj#{AJ+gFpEZ%}R3tAQ_$h8$MZh^P!%
z2Qzl(0TB+c@pf`#7h3s~IrMUHm37-%PE6+F%Q*eY>)**&aQ1rcJY+q_{NSj#y5a8P
z9c>ZN^vpz;5l7xZg_FN)h(4hnhs@zA&B588@forTEwt2w)LXy*DS8Sn_mdl+d*0#C
zF9<3wGr0{4=m$2)3j~7Y7)G0==7mD+w#a?U>yb)y_aM4zx~)HCDUm_aPpz{GCzk`i
z&-3+)s+~=wfk!v%7gcqEnXbfju$bE+0@}iQZPGp~X7AXe79s+-a9~>Q)J2hk?YIsH
z4;%^Sp^ekyMR-V1Es^GrSJWBj7(;|x^BCWQ@Y2TVPyo<d%m46^hm0(GC?qYMH>-vw
z<VAh6b9?^2w$?_iKE+)QVLS6McfaFfMa#-Ea<fTiciAda&;1OUi|Z?h9+vn&7Z3&*
z__j`$Do<xIVxQa;f!Y>%E3R;4OE-Cx9UF4NrHJoL(q9QwX=I=gKR^qFBY8H!x)fEG
z0%m+OOzyFxIg|BpUB|<T^XvCMYC(7L`i!`_lKCt5$$cr-q|ZuU&gfBUtq=fSy|Eb!
zhus_uy=P_6JcBc`3)#GJX!>+6ci2Q*0OU^y-R~9wE$hYJALOp;zTWz_j`$m{B+m-Y
z>XnnfyjU526S}zg!xqnT;`}$QT0wgZp7gd{y9z|b13k}kbcj_h(o78wvbQ`|?MM5k
zkUzxK(;)#@(GUkxPvy9Rk+D}k_ulnD*(lkkEq`<*05wZkL?2=-VtZ`DNjUa~ulz#s
z8^v%{w3Ji@b<sH*q~2-s#&_*>KT_nM&%Dpf_GW1MS@&_VEbTVvuQ=m&g`8PPR3Gj1
zzAuv>#l0_}lYYEP*R9G4sW<9kVf9|$Q?<+uiN$DKMenI*!V=qg6rqNuC|J{N-zd*|
zxoRbn9}F@YUa+*#J4lPJ-S)rC$(91A(LDRq_p#u)1rIrL4D<84mP%KGhl}6!kv$o=
z*O_}A{xAWfaI^_nl=vCf=X#d3`3l;MYgt)fiu?lwNekXnb%Bm-rOaKq<_F08JSOc9
zxWzCt<J5ud3FfT&FbYN1-9_ldow@-olRRmdeyyLAbW}b6M^8P(3Xl`9DDv5rUJvq5
zW7ZUKh_4v9Lgk8h2QC3k;CSV(+&#$&fd^H&ib*+Qb1;CXIVBl%O?(T@uXT9&r&{-0
zD=OYUfq>@r%o<D-sSuaPj=fOC!?N^J6}g|O7t?A4Pm-f=N_ZL-cMb8woFrVq!S27@
z2}L8NceyJio8xE3SV2mkvhMl6k2hGYNrmM4ll>D7(*6!?DAu##Nax5)-K8M<TfMFv
zWAZ9$;|y<Wwr_mn_Hlo3c^8Q#gUTxC2lWS4h%=6fe4mH~71GM#u0!iYSw{gh(P?;|
z@yJTk<kMx-)~D=n?a1|uoy+{E54x9-MQ*0TMZ4SxB9>@}2gDC)Ujxs()MbrcPJfht
zxc`HC@`b$V8DXV_mbn2uc_v<ql`Swr?(pKkq#Ols9q2NAk<RgcF6`t(7FJJNf_evA
z$BU;n>3Z{@jy}0lD&<YFvqWxvY!u(P6Nzv?mGdDY_sb0PrPbEX$mjym&KWY3FR>a+
zNd$%4+-YJT*ph_7QD=s~u3A|tHxo~X^{e37E*1r8FK8j;_Nj}acV!Wr4&TV##Ud}t
z=rQ0{Y*&#U5})5~Lzz_P?r!}Ex^$Hq@6CZ5BrY^sBstFxLksS5esLh4aY!=w!wZLF
zTzD4e_bmc2B`f|Yee}gwG1k_lctGP?7UaSp>R;2jb)sz%DSgXSgKz!nf&aahk&KW2
z(!W3IvgDj4aa3-EAv-U#BWhVp8h#E_e<%FDgTdFOX<=?5$6x&_xbhu3Nz*oSH-jne
z$nVaj5kd6#2T$L*O-7J^7Ry9x{5iFoZEa$Zap%k1_F)!s%NBy1i6MEMB$3IZa{^C0
zwSL=+B6=vB<?0GHa;!&-A8T^E$i)S!S5s<_{1m=%L4XxQBh5>eL44n79lq}I^Kq3B
z2A17z%b<@vb7GzEyki9P7hB4t>ugLF|HW<9EQ(6Wx>x~;0<19I$Nr^peBVs2OkKKy
zof^WwfWpEoSyE3#xo|4@1)ssAE_Sip7M6+)zl)+6qW>FOVryhJb}U3i#k{%xb+;Ms
zKzq?cXT4+wWCcxz^^bzC$TL2awsx@swM&qH@WX59xz|%On(UDK1V!OAhvw~z58hA{
zuL_5^3l<qnv4kU^3e|w0D;Z^Td#RJ(ezZ@n;Ur_*+mGyBKb$QxK_M&H`}+uT{muoT
zO+2CFgC1;(#-Gnh;5C|j_VtKj^KC_wN^oq56&9|XVu!>1y&eSZ8>VmUkAL4%HDo_7
zt6uda8^eML0}<=f1Zv~NzyvS81i4%0Rlf4KJn{H#ck$r;ekWR~@Z+Jv?(;dEtX6{Q
z=yA_6MbDhF?&gcjQY8+@D<NBJ{za}2?8uPLp^(6}RuUJNyqzi3jn0#AUl!C<P*Lo7
zHBQ{K`24IwXOGXj*wR_vjvYS8_Wsj<FT1sLG;;$Y{jeOMJTCLyF_UGE4GX+PKCgvG
zIq?a|UE_0Z`sC6r1}T0t{tGi3gtm$GUvZW&_?>92j;Osrx?iivE4l1v5`vIsAxo-}
zB_Ayz|A;?J;fVvglz~1O!rVz1>TG*|d(>;`5v26b%EFzh6w$>F>1^7fH*2If%@=<|
z4g1f%7Asf^{>zS%Wg1_6s8~3b8DD258VEg*``kvWE-Ab-6Bn5^&fj1w@ewL~lYS3d
z%R78zG|-^>AebpvntuKW2Cryj!VANAP;DnDKTCn88%+(#vRQ#IKlPQiiXG{^jMoIL
zCT`x2EL~m(Q~@f>F~g8AnYA4X2w8Eab8AAlQ+;#<22;6oGtH(OTLP{PJNY<c&Wz0t
zok$Jj;C?a<e+}T~Q!z9?`qsTQabW(v;hfEdAOAKKBZgSdS@(rv_W02n<_D?27(~Cp
zAs0eE(ZCgP<wLh^SpB&wxX%tV9}S>CjY1=X2aSU{4<hEXcLXOk_@J!QRWq_4%Dr15
zFHVuS_<GvCmEzxjkk*Ltr$__AZNw*P_~5AwML?d&1*+}x)P@h}f5E&jt&7_3wPeZ*
zit(yxO^%3p^LfqSvYw2uAA5#py2&pC*Koi}Za6caoLDQm1@v8Md7SF6<1SIXsT+Ud
z)1OcxEeiafR<1l8>hA5I8HT~bj1aO-lx#)FmKYN~k0lXOF(Q(ZB^lFW`%YQXs^wP{
zin2AtM1^caiewpN$sUD_rLr$G^B%o_{{DNf_n&iJbI$pmbMAAWbDz(>%{jp_6BZ(C
z0($q0Qym#2WzxdGXJxa;ukPeXe9K-h6Fmh3boy$NQ6FCNyvf8@0^79s&-Sj+;&7?E
zUX9%vp08@lhe9;W^AM_qg_&@R*e}u_#n<wo+IiEsujjiwmZ!iz0!Vi*!U?1txTuP{
z*yaE5A^W(=Hky-coX#F%Y(TZ0D-zy`5rNjh_ZcM9Eh4E4RlV)H%}D&2DiZHd^ISk8
zE~usG+iQ+=tv*NVi%y_}-*?P)s6%FLJ=>xA=s>u=|MsWTyrZMqdU_SyeY1&=by?A4
zI8^cgI3j9xb%DU-zuj@PRtvtcSf;gS&v>f#qn9J=73ksWLwV>BS%L?mbtvepYXy)z
z9)*$-bg3qQymzl!k4X`axj$ZM%>fmC4KGmxA_T#RhxMfA1TefUV^WIWlVYa{`WF!c
zlxK@j2S=jQW=9z1ycKva3?xD7Hs{LAAphp$OD$gX-iU@@N2@rksvv)Do<E%;9ETZ>
zL!RkiL66u*HzZ&5SC>w^_j+e|P4eW4J&hVCr;uH!VG1f-<vnMHNQ5c`0d@xeJ7%x@
z=^v<sK*2@7rRu{^)b=X9nQpsE0DzG}htZ>PKH?xmHXcS09i7qnfo46CgImSqbBTe5
zfy{BVjmX}xrq^Uk)B!B*i{MW!era`pIDp`54pLY&gJidN=Z@I-9<zfMIxurnjVXhg
zkR(v@{(-Y&oi{8J;(d14OI?(rHX9a5FiHW#HxkmDefg48ES-p_?NR<5f+yRWp8dMS
z>hF8F2AZyd`H?nx6{Q_Ohc~RBL5KTx|DXD5gHDR4g8?eJS^~dY7W)6}+@=#YSIwF>
znH#y}+Q1wPJ+d_6tUSRlX#BC5!EqFc&Cy$msX3WG9Gfu-4Q|cb?1l8k4;$M}SCD}^
zimPkfsC6=BxvB%s68mSC&g5s{yz7eKWp7Es=rw%RG(kZEbyUENp;F;t6<#zXMEjnh
z0r#sDdkW!<_VTtC54Z)K+=aR*7K$=OGmrjk*7KSQUE&j9{-KQW%okPH!z+nKCAi_#
z3PIfyr@{P$k5w_JEZf!v`)C`~Q&gUI$4F#<Q8em$*37F#vmQgWK7JC<T#xCvLN|sT
zB&4|N+AQDl0oQi@%(gM}9JHM}xP@?O>wnGR41mi80${5i0ZojpUa~)9yLjQ@KoLcp
zQ#yyHj}bxF!TbeX40Cz8NuNiW5dE<O4}v6b^J+s;v=u?QOB*xXzc+!J)MUE(j-F7f
z5q}fzb256PG38IAsF&e@vBA(L5S0fbP3DA%dktmAl+Fnv8-p9fp86%>&OLciGam5o
zP-Mqi=RB6+C*I=Ja$`g-I_2Tr!Rw#8IqK`#qK73m6qS5H^3k!I8MY1}8DXgBUgJX<
z2|=3sY>bY9`Fy?tkWh2QA!H9>Kw(oV+lk-v_X!N`Zn}mT|F9(9LWr@SdKg1oLQTmW
zE<vn<%!B1Ep7!Nbv5ga$x)!Yro~N?q7F+3*_zj{K-bMb<6`}RsQ}t_qedhE6I^6oL
zi)~C^(i^A9mBnh7jqo+)opl*3>U9kbeoxLT&05i0ZuHylF+Tk-JoNS5rEehKm~`sp
zJ1(&TOfH`oG!L0flV8g@03h-aCRiiRBW8Rl1{0hA$_|EBm;Io0ukj-!_FnPKs2#r`
zzCjpbkwijswMszHYIlMds1E$=!-apZ3Z6FN2=*Yir69Ob^g1?1JnOCW@hFC2BH7eS
zurqW}+dXbJvn?20f)bMWD<LC5Of|`NwXR@2Xy~e&Qa&PU{o`KQNeht|NP4;v6p|N1
zaWuBT-DaL&JXJc?D7_`P?~Gu#z|P2F{VDSXD6IdJ=+IZos7Kx9XHuxQ1h63{NeWhV
zx6~<V@qktV#jvp7$=@sGF?)8eLy7)D^c{u79l9no$sG$-)xC+5JigE3(nc@520meJ
z<UNiTFCbg`p-&7Eo>o0X|5!U1!LJAHVH*Nn7;l48-j(o%ccU}Dg7TE(I$^anLHrW)
zbCDL>!Ec&>I~oP@(tl0XZBM+ww>!|@mUdfpXnjphbF(qPAN^euu^A0??^%Jsx>Iwr
zoSDl>?2d&zx7MrmR8j?X`|joUt0|CI!<GpWK*|{ThUL%dy6HU_#-dA)d3iT0d+iN9
zipB?TI?oRlm41HQ22Lxnkqbghi-ckXC&J`$IZ0d;Jr_@N+8P+Kd_-Fwt>bQx5HSR^
zu1iAu(>;0?pX>mw9-^LD7*}@*t1CqF%irS$)=kMz5TP7;Xs!JLDJgWYvgIyPo=QBT
zhLH(Wz*GD~T>5))K3T;Y2WOuUF&8pNu*5n;RLYJ-kjg18HSv|CF_v;*Ty1|3d$o@Y
z?r4D)d5*+Ym28o{QiKY5wJGz2t@ptCnG<r}>Hwz{Mv7c3+x?BVWS`3M$cb2WPFq<R
z@2WGekQhlp`p8>^*b-FAbj1X6cYSnxwYRV^&S-7sjqO?}c?bJ`%*I(}-zI~$xCdiJ
zJm;=To6(Z#7?W)Cd1Y%ao`t=x5VO8KT)tGCwnm;SIC7blJaO%l!9d2!+!PGRzwh9_
zMQA7Lw)NS7GTF>H00bZS$IqbUzZ=|rDI#k1pe|SM!=TrVEnNrY^pM8Q{ZaypN_BT^
z!L2KkFz-Zc<Y1>g&-u$(qveVIBiZGz+Y{H`I`Uk;tV~V?1tywLXF9qH$rTs!TonrK
zxr73`ZEIdMlT&5fH7L1@Kx~%=jocIibKMHHf^EK8Tg_JddxFy~6hj{&JqX^~0986v
z`St~dcznf|;3_tT(D~|DJHC`4+?9*}d91j{Gq@W|Okrq)#E55cyl!(I+ut#VWeADb
z#53^vphKH5K}+1vboGCG=&O45V7YL|M2B}f2yRdXF3;BKZ+<M5e_Biq9rZ74$(kQk
z`#YMFuV@(9P8C{1vj*9@3bq<?cJTaq!K@z>-i|kqkWAdf!`<Jz5!ar`+gBpdKTFMd
zvos*j`<+od;s}3A^X3N-&M6!UoO51_W=*;(5;Ac1#{{l4!*>n%C_e%6vvsz8n9Kl5
zy|#Jfy>`|GR2!OAM$0^IN&*09T%j2&{;RO>6KR)bTUv6FyjY6TBb=$%9WVh6*A(P-
z;vQ_jG_CO)FVfV^-4-<=ita!=Z2uR@zw7Rd4nFTzAG?Sl`u17CL(8zTlp9xv&+LO@
z%PTy)7r+_~>cx_;r=o+aCCD;<a#Lp(fsc%zrl_xs+D@QhP06dTbg0Sta4-ljAS~ZN
zQE{f>DifJa`)Iogie<%q28bc%UjKrLJ5Ip4Zv5SqM&Ig{6(dPnj*?~!_jgo~a*vX!
zHymf5cs}>%Z%&Q;(cJDE>_f6p=D-Y$;LL+`m~`)4>X?I3L?ttfV5&@{v7bu&X?^HL
zeOl|&P(tb24Jt`$F9T$ty`mum?q^}jB5wBF-&`z|dWn5$h;p44nsx0qS2Gv<1eauw
zF$B~9<}ZSX(7j1Y*;l`e^aW|X);cF8K*L~&iC7<KW>{|ejA2}enn@Jg514ng%mi*r
zU_pYXED9SS;@~%c&Jlv(c5|COK4p)SOPsq~mE`df<{8NKKC7nw^`wWwUpIpuL`M@E
z9mt4fzuCK$qO4}~t}wm}5b(MkSSDG`eb?>Z8KQ<_a6O|TkREMfiQp~o%L+3;X8}*z
zKi)r1c0jpqT6<J2^r?J9AC*mlZ_9>uoN%B?Nw{~c|4r7n^q=b(Fq{d&x?i2!?qAtD
zUzHtpDFdQB9^ey`y=9CX_(K6eWS}c8ld+usfG7xPZE)00w$Nwt4h@bpIaThy;m&^H
zu{1rkw^G{<Ng9rX?HSD4n41}4=g%F9Fq_{T4O#I5?v~sr!6T}`@Jh9b;_PIAg3@58
zl0U?SAh^+VMoyC#N`AeDYc4pkw6_yOgVjv+xzeODZh9CJZa7ud-xh^%%S={Ea3fPo
z&A~M(zn((i2)!e$eY834<0389`n;|U-bG-pxDIv4@XZ#od5J^vifB00_Tb#U`9n|m
zA(ku;tROWT)f_5c<(+tcu^P`0n{9@pT@Bf-9{12cqr7?FhlvB$4SG5{BtUN$n?qKS
zM7pP8QLd@txf5L-iG_Jreol`sYx4oX{{FRuw7xobX%nsM>xBtBh^c~e?>CyLUJsR#
zr>g8fp*_uapWiY83qY#CYjFiJ^b^h*Z89+n%S<aZ{p&`kiu;T3m!%TYCAf&u>-`Ca
z=1Pgxk&VMcXh7>ExV2Cz5y@D-O2j`q?!Gd3Ej^i?mYrTUM5go3KOe9flfE<f!g~!8
z;3?Pd{Nn5Aq4M6};u1BF3)s~*;<V%0Gd{n3u2=7BzKI`Mx1}tz3&dRZbt!VwLVgXU
zBG26xPWTJ*sJ<~g8~Z5#GorkX6A?+&hp(t-TcRTJ4nL3RErHyor1uXY?cL_?!XweH
zoI*UxZ_6b8xi%&J4U3ZDFMDyo<kxpb*l4pc)R9-uQlBnWPJU_$JFF?$xjh{8lvaGQ
z9C*Gr$Be9R^)e6#fM&+yfrZ061(x0g?=Ib+B^rk%j^-S0iI$ze(7kww{<!f=MA=iT
zEI*eyPR7hz=fCsJZk`)L%%>LA&MWZEQ#nD73lVjONWQsjlH9|Fy)NU?8&(VM)U(yk
zmLE4342G2*!M99(;|m9WI0R&L$^?7ov8#i8g0dAGONaIxSvl|}4C*XX)U`{+)korj
zCWG5&LR2LF&5=_u&U7M+Z7h;${S@@)rp@>}ox3<bONIL1x3|YwB!l;CNou1f61B4>
zw1+oZRWwIks4E#-oL+RA{${9csC#B6v;Nwt*!-}xg+Id_d<0&-TqWId?H*kDFf~L$
zs7KsZufP51<+4^qA%DztDdvzP7C$U|dIb7}bWqH~PdN&EL)RamrRbylM$LmvX4f->
zJOYpd8qWOeQzfO2luX%jhcrF~GkR@;80iY?wE_nIJIQxn)uO(wWYS1uGR1S~&-dF<
ztmfJBE`n?GjOt?^2`ALQ2kCxSjGMLWlfBsAy_UAmy`*`4ZQzSiN@eS-{na*(iIL_U
zRw-@%`vKJ#djC`;J=dstKC|*EvHW@sG7T?Usr4o>Q1`&`;WYZdO~dSfJ9(QCY5KqF
zg`dx-iR$(&r11LBq(q%IN@^k;PP=+*-}b{_HqMU~{{6`Zx>n%P3RW~E<uZg<D{ceJ
z=FxPmB7GKJ$w51C{&%I=sFL01v&VVx>81wF52UP+wNGt|D!XGHk@JME5`xqc6%1E5
z%`pLZ&v<oz$xBl2Ipj28*0&!Sym`z9UN3MCrUm`q%L4c<)L-!%rP_a$=l{Fv|E-3H
YV`(_|>N*{(+gO6NmAz#F$@B960C;sc#{d8T

delta 21184
zcmX_mcOcbY`2V@ry<Gd+BjX|~vqZM5Br~%lBU>R`w)fi%DM}e-Ttp~^kO)^PvI`A6
zdt~o<f49%~`~CfYp7T8C^^Eg+o^wVAkuL|4<(3wZh1RMRdi=JIC_bnm9x)K*i$xKH
zv%*+$DohQ6{W#oPp-<B?o)1p3qQ`Ce-?l5B&A!NfupjUAXlh1seM|ST4iAgvHD4Y+
zcGt2vgD(PLfWU)7+@zm(%%;6&9^+n!G#-C@K8?oskW^!c{T?Kr{XK0%L1gT>K-^&P
zV*PUpi~ESwF^iLs9vI!`%J*&hAsLw}uydw|#zMd2WoMJi`jxAW_~dOhunK|pi&*#z
zR_#j3*D&^E5tSm%SoYfQ0>wt{TGzpkCm-u?2#c^JbW!)vKHJLBeJ(!bAhcTfC5l@u
z1W@E2?%{(m$X@P8=%+1<1$X4RZdplzs57TDH%M0ybYGyzXP&cWJgjZ5t}e!?1qT+B
zVnbKq*J(9*(;jXiK!~3#|DG(*Q(3Ze+{C}PbjwM{U;5FLHhw|BntOn^0PxqN`gZ`g
zmTK6&h>|6gxvlnNjqP`_adK&MubpXKGMF}#u_@Tc_i(@l#{wpj-MrHii(JaR^@}g+
zff`5}9#TOFA_$CD=I313R=J@M`T06FU~a)P`kTlo-I2V&&U6$zeBSeaagesVkJwjv
zums7juMwy7&7&q#-Ks@hOu>&A!B^nKCt%1aoBhy;;VAKx1S4|(t#sy1BX@&fZ4S4Y
z4`<3<e3!+iZGb;GZ>$~#{1KB-mr9U>n?j)OujFH?!qhB#t{K4+;8l-||9Zfk?A1)#
zoO|#6+|0JvldU;TY5G>IRL{cp9ovZCc18N@kS2mi5)k9p1p9<TWVo7x{NV{!0tfuD
z-Xj#Ts)9KGtd-v|LqodoMS|l%qytK+pj!Um8K1vlb-LZri9l&1QvlJZ!Oe_E9)vIy
zVlGC@jQ(eo0{Rjnk?qzSz=gP0b65Z1jN?Y_c3O@C7sXGfRSkMvTc+RUP^ErW|CEa&
z=KF!;AL*cU4HRM5G>QSH78BJ3Ap-Kuza#hG<+tY{M>tQb$T12#l>V|WDSLB?8us{^
zFXZ^6D^vp?oig?A82Y;YF*oRm%y7?H(kvT5Vk3Q-Q3Q^;dHMHoUib5n<&?|jFHmC4
zed`rqPYj+Bw!9jbz+@AoUy$I8Fn)kW#VoOh^!V(K((16Mb!FY^D#+cP#|Kj*dujWz
z_Ivh~TJ~2Rw!XBgIpArf8kE+CN~HA!B^~0~gmwLPNrpSfGC1|{x&Wj=9XS;z;^@nK
z-E-0V<*o8AImyfn^{cUwivGEFes#|68<Kn48f$%#>;KGS*bX>hNjDs^W?Jb~T9<pa
z%|#G+xG+<RS(~L>W!A95XV1}mkX%8}q2Z7`87uv*o0tAimL<R1#%AV7%e&=9hs;ss
zsjdg-EQiiOZjXM~lsI&Mh~=8zRR~^?I^AqA<@~<D9W}o1nQwAmcyjJigtD<MIc8uD
zRAvON7sJz+5}cwu*UFl3Tt^ZiARwSKr2X%mQ?E}2xb2w9vh?YW3||4SJ-WFya2GBW
z@E^?MM<g+L_uBE1CXFS2oa4EtSg(wqm%lx4dCml&u8bM=)V15Baa!GTzMm2%Iv?dO
zTQ4?9A3f@WToK+hj+?)l=Pp4C#^-3s$^1uRT@q<5Psbz+c{*9%tPz*GEjJS|FxXmT
zvo5q?MoYZzL%-#2Z6gYDKlCiregx&Y3B|4dU!K#X+?fDc9+IAZK910^BfV?nr0O*X
zSHGEdz7@UqVCfhAd<Hd~vn*j_lUi=g57{WxzxkFrVyu5vdB-4SI{(JA5rxJ<2d!2;
zgd`e2<xY!8`L5yYxcOFtxA++vaWk<ZiNC<m`9Y9z;ogr6sk12Sh#b>w958Pdzns2y
z4n^ed?}`FvKbs$p=>dlIH*aNduheidFN<m)BoTt6<-@OR;2YEvp8oy1_}Dz&NfmPa
zE)N59xXuy_7X_gaisvkgpE+fU65{WqMpq=Y5B7`MeaS<5Klu3fMu$%ndcZ*E@J=DA
zg&KpmNKLjm0o9ipsT(v5C@5e5yfYQxySVXnXlaaJd|n)IA{(RrXIpxN*xxg)XCD>j
z+U<SUtXl}rlUk_y>7gs{Nr!v-B$ThL@NoBhti`xB{+K^|586!C5GoG+ci8tR!rsY#
zngjpNk9$*-7-{AeGoe@J6d_e*6FHL~Nfc-t<Rfr|0&hqsi=UD2h=lhdh;V;na2r8;
z*G9MX_J&m8;?TEpoo}G9{CZf#*@IWl5^u?5zS<kZPy9s@?5H=5qU*%}om?K#%U*uB
z!qN2pN#WC*9a2?Y7G{!4zT##%(fix4+15_jW`Ab>vz2_l@>}xJbHXw;iXdLZ0*gb@
z_*sdFHpR1LOeeH!US^3sI#W*Nt+s7#1BctM)O<X*@x-ndV(wRqBs;|eDLW|!>v!3R
z2H#g7EcN6U6sdk_QIKiKatCp$k<~A_-1KFaw(4{sBESd-3=s&ilYv_Cq8&vGWr|y$
zSa`*K#d}09Q6M-A!O61Jj;=b5ap)Z~K>xqBZ7(kO*cfpOUM|m|KD=>%-`?{+^5o5<
zK`L;>fgfSQ;LSed03F2%?oP(p{f#bJ)0b#G7HP`P^ti~Hs_0EM<_R<5_oUS4MGiA8
zj4W0`lJQSx0o1W3E9>0(_SEq4$50yh%lUT<#0b|?E%*)iY?y5WWi?JlhwB^fP#}Am
z`^qSc8ywm@j73$N9K<AFKW=nM;Lbe}y#0O5?PphB>B}nQ6?eW28e(SGWYi{a&g`@3
zI$kWCmXS=-P&Pn2H>8NFzp7<Psw(%0tGjsJT6&tb!iz_Mb6ooAtI{gIkQd5duJ%YO
z?^K~Sdq9934oIDbUI032!B(E`ufc^U!GpdFZNFWa1wTC^J+WOEic1{aS^>KpWshF@
zio$#9j0kLG9oIjFX5h;yd_~Zj+la^OBRNpU27e-PY$r9ID%y9bXlxhhy;!zh!GA}w
zH9PaEdaDs~;VK?*JA4#?sp4qxzeS6X<I+%D^C<gu=$6Y^>y0bbEk61WWUOmTN1rt3
z9w9DJ;gJiM$s!ZZdm5sEE!giXOCGjtpv@qYvO_`dz{Y*y32kAfNf`Chl9!ncJSQ1B
zS^rnU;WC1=6l}9>H(>OBTs1=*qhMAMhkKS2OC<;zbon@Gr+^V0&%$*~SU4`j3<CS8
zqRkEKDkPpWFrg`#?r$ZHb^9FXFE19dH!fmpu~$iDARc_9f`K=Fgq*b(K2(Cowr#Xr
zYKam9KcNmr&OjN_YyfaTS4-1eW6-sY-(y7lansGRG=$|OMqE~+<WxW9_e?9@V-B<T
zPQAOIHUHbDQykcw$2&o%4bl|Fy|{P`%eV-gGq!tQn~_B_rK4lPlsW|;1}!;WmX;R3
zzRE<H7WZ4h0`_7R1mb4=Pj*;hZ1Kf=j$cnC*DL#YZY7rJR<kPVfte&^VJoaTO|LmZ
zL$=jG9H`9}#a$eD^~E`dK3W;|^M*3Z9c0Qho{j0ma7oUFCL}x%1?WJ4C=Sq{egXWY
zUdhsR)O=E1lx~V@Pnl%Sa=Xt2?u|^FPb<9f&;!^mFY5msgGAcNGrg6?V2`KicSIIH
zD)O8xnZ_4_;hR{zxm8$?JL*46?<#R1cV3$(-jBUniP#n!*emL}r|F!|>>(P&n(-<x
z%}iC!qU%Dd35Y}*M*{-s2Voh7BJj>kk(R5Ki#Gc$zoui2(hZV!i>`{+hTp5}|IiVM
z#1>}`C)gZ-!_+kgRvpoupSp6J!Yh}`Z_n!>cH7*|sLf6hw?ZF`lV%8>|Lw*KBdP~?
z`-$4(Cbg#wWElr+p!Y;dna7Xl1a46eWG_yjB4ou=jT|MR6|1fsf*Z5QDV}7%$Gv8t
z--b+bsf>3J$X*64c=Icfo?e0W@R4tDtz6`f%fzA6m3x+e)4)v<Y+CfyY<+urrE}?A
zyyKV%1|RsJ6rI^RNeoe(tVUfqo2W-m(RcUUcmHRsvb!>lZ4V4D@?(Qi8s8l}d@V9?
zrLn&qVkD_x@QnW}NkgnHDS0B?;p-Z8G*!avr4o4j4i8s_(?4N<7uub5|ND;tEpvCz
zCwz)1a5zTM9}a`FpR$nNKOe>Ze*dW<wt(ZZ3l^tjd8xa8n)XK*wcAUOPh&4J+elbO
zpa@(zP$X<64vyk-bV7v{mm7Q6>aN9zn3wLydy~@!1ITo-I20gm-sNJmBY^(T@YGv=
z7MV7AHTc~lq?WMWPp0@1^U3eQtVDZMt;GK>McWaO{r8c@>py6~*P-{BXMcXx8mzEL
z?RR?P$#6PeVItR=muSjGzWt1Mz`v3g&Sd8i?uNGGGCZ>D;LIhZc6`$Fi>Mv`sSO^i
zqmj5Woz%pYCkRp?I)IT}r%z`BI`-$M5Wn7OjY3c4Fm5U1q%$L@-}mSTny_7(OIlTV
z5+zg7CT>HSy5`IUvAa%EiEO=>y?f8l8b!YBelGafsF<PVC=SOs`qf}i_1PNfJ&DEI
zOLf#z-nBf?*r@f=pV>AnJWAg=_wDA#TW5x+-)0GP_o4C`h;w&02Jj;&4BpB>2uSa`
z-sJ7<bf&Zkr6ztI$zmYxnMAJMcmh!KnMmBUpEwpg<%0Tc$UgaUlBRrxk7R&M8Cto-
zig@&jqS2Qx`oLjOLr#grPyJB&R$MY4FKDK+$CE}hN2oA(M>^X2yP*%4NF-+DxasU8
z+5ncjzcmTpe{@-K%UE#kC+nXIUQm8u-R9k&fBKgrQ$cQr1u8%Y2g**z`%%>G6m=&(
z29uR?CwM^~ILRQV^oA$Wr)BWZ&GjB7J>s}YSB6h|s<7)T$h~P&BIoU=Jd?=kqXLRO
z0~;iMIoy8t`Pt|rs;D|4EG#{DxmK8l>p7^IcA*MEN4}|J04o~}=LNg0^rtLq^xCb9
zUNO+{97cEyGj(62IATN(h>_c=-e+E1CNa`m@wB(4fh)qtBq4oj>g8Mb?b4*oDKeX(
z8+2sD_s&2g+dT{REfI0iZfyT_>A(A6`RBrfDLtBav7>2NUW$obZ$mhDTk*=13a{gt
zsoPxE51DlnTgz8i3EXHDfmWFowm+qR(#7@1FO}orcZo%p`I@vQkzu2b16SG#Lma>E
z*1w|kg{MTR22TAm>xswjzK<$_$VZEBOX-w<Kw12kcsmC!;nUwz!v(Q54In9^9ab$a
zB6mDdjmTb{Gp}k|%@q*nMx5r^ik1S*HBQtek0T@;@I&52c?&CQK<Z&A71soH<5$pj
z&iS`#Y5WjvMv5;Ytk0aJYpeBDM-b@G9`VQ`@qN*5dRSO}t^`C?KBbJT(fr*&2f0dt
zJppuxYK8<jv+USEU=FU0l?u$NQo9S3tj=Ac6N_}y{U>w^q>AAUG)p3{RUc(l+rb&i
zPZi5~(|m4}GF*0*aewTU@{8hmHXu;QY81zjjgR(3;&=ydi-Y^Lo!esF1fvkQo67Z>
zz~i33eA3gVJAC4o229MOA)AqJMx4f|ffO7F@4fZqetyO%jonq-ybGE+F3E_tHkn(`
z<9uIgBg9yONRW>)J-K<JT6ToEJh=T$oZYSz_A^^aYy`V+&g&t(`%i=)nNIlIe|<S=
zX*^|eHDHs1^0B7;NerGJ<r9x7xoe$Bqi@JcV9l;5&*4WmDqEa_0MqZ>Na5VWn=I^M
z?xz4f8#pAF+yB%keSiBsDsk8bO)Tm$;WHIc$Qh4=)wjL2UOy4$+)~WQhgj;!yu(}C
zqn;Cs8fPGIliM%Gj2Mg0No>4uBXZRwI4@@_jPN1s<ZlW^R4`klgn-vae6pWpra^{$
z@a>Po*C-%hyhNTLP<u4?$xRvx;<cUY#`!Iae1-Ef3qtSW_^uevWu%MhW~yqx=0<y0
zPPxIP6+|hQCQ#Nqd+vt9L$iyq&#BG)nLr*}EbwSDb28czuX%kT;h7~e<vqKJ%Q4l1
z=>#Ha2Mi?QKsGMSj4gn(W^X2+*+F84+xYlAbfqwSrKyvr<zkWGZW!stndQ%q(c@au
zmX%Xyj1DZi$G4X5*=9LO@5=B0L0%(VXCgP4F)^(=%eNyvh@&+~tXH?k4Fbzx8_M0G
zK=6t#$<D`5;Z~#I#Ugby{0?VNis{hZsN$C74_6h{qmL*D(#6{3=%5t;<D<Udyf+Gs
z{_(s2k=4KE2yNveBtLkfD>bi(VU2!+%El6Dyl{by`skH`c%hZLNR51d;qszPV9w6I
z#GewMWL6w<ARY%saH1d1pZuum?InVEg-x7M3(d{&)AFm;R%|{F;14fhK_Y&+&(QSY
zC%-vqbLUS9zFgUozz~(Q#rM=Mab!Wt&mFE%_maZ#@`4z=#?84Wd_n%Uo2{%0jtEtj
zsCR*Zri)wV&h~uHFY*2J1&SD+OF8Yj#gFbG$G2;kwU-Khb#I?bZBMt4vf<-amx7i4
zJ02D9Cu55A@4N3_5ie8Lex>Q`6k48$ui7syQ9Jh&Dn-G4v8OP^PhU<$&=w&$@VG)W
zG!+B9t&H!JV}WrYuv4tP_rbwW<~mL>6-P+!ocNoOcz@+ub0P4`{S-A=8|60~qke!#
z<nWjaMS;zjG?x#E+O2or8QzpjvtN6wl_@i`#ciUR`&yR;F>Z6m1hmsI9daH8f!mt@
zj%mSpI#3^xVi+|g1wF`r^caOVz4v{u9kr-mX@FRN3s0y@L&_%J4M6Mjg9uf)h`>#D
zyM!kW{FW(WVawBYQR1S_>JZDyuI0Jip4;`-*C9h)W$RcFY!(&7UcUeU^?xYPoS5-!
zC-GC2t;k8Ie%*%6vtrIs^?N3|-*(NH9a3Ni9NJS*afz;1tXDHOSOg2ih<?#-T3GmX
z?OpKq@v_YO_8;e8gR_2mlB+B~1F+qvzmMa~&%0^7?W*5oIhmngV=xi++QkJ1s`CG%
z@LA#2E;M{4NB_7h>wVu#T4P~Qa_j7$69<)&jy9JAcsf=k*%WBaSY`GeeMT9>u9O4D
z<PZv9+e8wr2`&;Kpr}&qVG6$yO_Q(dwyXa-xBNXbZ|Uo8%XD~<!}TB5pQX^Sbnior
zjDY$C@LXYDTyFl@%U8j8u2B~SXjVH@b3Fy1MuwM?z#NJS7_h!ROMzT%Aq<iys4~mq
zAmROk=HwO^HKow^Q{UYU($(`R%0-kZ6X#LV77TR&mM>Nyr^h`}X1GqK_p!mvq`rrz
zj(GAC8Su6A6ueZ*?swF9UmvpncteSWXVC+3Wb1t_5VhT#uU@t&`BkRi9XC~p(A<+M
zCOG3e%Z;nLPyD+jyRJ4^Gb#~)5p5|wc^o%EPTQ4GFBe0uT5;#=GtLnqc1fW8jBq`W
zJiZHnpz&>T6mqdosc8Y^9eMeyIgTga?FVg;s?KZt$T~Ln%G3_NYn}f*5(&^j*Z*fR
z<&;_+Y1&N9vc`1A4GoR=C3rj*|CxDu36Ua%KqD|tk9Ixj$;SicC+>pHxcMPJi&a~F
z=bE&pRxx7TLn9HbmU-}ehPqJXxP@vi|3hy|6Yt&nFuIQs8j2X=MwHtW79Oo_0KXU=
zf03JF6i!L)W&(?FD26L-_*h43V`7_k_<e$w_u1FQ`j{f90gTHf_t2I;ya4J7p5pIP
z!*3<juU{}W5LB@Gi>P(XP?V?3KKV6TqTz-U^XS?XE8#ixp-e|VNt$Agl&M+mOD4~p
z-Guq1{_R$7vxoNiuaxVZ5xZfk{DOLYPS_rergtZv>r6Y9mybJ?q3t$5A<m-y`Qpgr
zCCEk-A^t%B0a|eR!q*$_dDVApEWrm(lf&k&zf=tq^nAm@bvJ~-p#-#P&q;|U2d~^e
zpL4=i)G*2U&Q}*k^vlc}{fPJWvz171UZG!iRxEAj-j4Z&`L)F4Ot<+|xlw1%x!oqu
zBUd{K*Rd!&uq+G~A!n;2*|P6V#S}E3AP<C2*XK^}v%DP|j+!9|tZlGuNy~qlD9M@-
z(YO8U@(g{tP~*etXPtK2CW4jU2^l4d(7yQ2i{Xg45~nBd;kqLNMyj4J{wEL}61NyD
zfHW=y-By$zXkpsf{h$Vly{i3*cecK+J?8#;^RbRtFdpTmfrU@Q0GgsTNe@{@u+pu)
zR`#ab5TT5hLgBx>`&!-ncaiOh#p|9qDvFy_rAK)11t4(;QgS@vL~&GZ4O?{y*ZHjY
zL;(_uJDB2-lstVS`&$pX7i+!|36dfs@YOq~;Cb|TR-RVFpSv{WabaiVw73eYijY`m
zW5pp;KqMK_m+rmQ^vy*;@UPc-#OI5U(wpfmB(_FGdMI^(ZxaI=@bWke@mi-02)~NF
zanG<jiLuG(LY4)Fn3g*AdGXtKS^TOq97fccRa<c=m}w~tEtPi60fZC(VR3IBP3XId
zEpf7-7rW2$d{0A(GUXZN)4@HBp2FF^+Z1!==ikqMyw^|#y{Huo(<OthQp`@q@ZL{W
zp!;s3((=OoaEPQ7h;;`1PQT(#aOizoXl^mrX|o2SBbM(2!ZKulF-&HQQ8?gux&c&S
z5D5m_q4KEUi^y?iUf^Isle^m|^ywAjA@lFc<U!|Fq5OHo4@=F16KZvU$WV&V1YgeY
z&S^jwsqoSvo<j?A4tkbUL?-CrA*q6L?Oa?>Cw<w7^5*Ro);Ttu?%?c!DoH;*{Hdxe
zjX6aWNJ69F)aGv|NMdMW_<AE(noWvv#uu|?R5``P>*wTjp2_pxD$_dHW}rh2!2e9F
z2b+UbZJiAI-~)-Bw!}V2_weF8#Z@85>iAQ}<H4FTifGOM0RNCr&i;{iq!*Wc1o1DB
zkH<c|99=`dJrfWP#GNl7Y`M&7$?8A<MaqUTW1k#-ddQSF&2#Zcni-yyEf6%Lg%xj_
zai`w={v}cuFE2p$U>o1T@u7wl$2ccuW`$y^CjChN1}uM|Ed&yja?e65EBd2nX>g(*
z{s>!6a~ATDA<jeZd6rP=H*Lgo|JK8s?4L=V2PAjN_|r(@E{d+gwASD-RIf=g^O8C%
zFFf(w7(<kccDsOuD^i&LU=cT~SZgni-K7J;4RDYw;hLCxDakp2<Js}Od)(^-eZBJU
zWt&OPqb-q^|F{GZx`z3wrK|K2b>Unzwr~amJJQ0F-4h97kGn_#d?uy=#v1Rgtt~Pl
zf^3buFi2VUM|UHzB%?g=s>Qx|Z1%tm9By1hj86t7zs}eb|4U!`Y}nS36iyoc&|PFh
z!4l=BO*RZm4ae|H`mm6>?;Xb0tezTVc>?^`56IIPLz?}wcLt7|Z8%Dwot2d+zC#W|
zx??$wBvNPud#y;tftEkwfl{soLW}`{LE{e%gB))Am0s2|4Nna%a5y^X=D1SEmBD5H
zi45EqUX)$bdqNiVvx5oS+{qEH{Tn29I>bFR{%Q1JoS4azMUTj*(s+kM+%g;JL6_dr
z1e8#;Ve}_$pzacn@Ij4_??<m5A#S|m^<V?v!=7aipuG=tZu<xMcc7OkOEWJ3%4iud
z9J9^2c}3R#dhXwnvRs)03bfxk0|@SQZe-B)bnz*n8ZciiVu;t2_rnnFhR=g9Lr<uQ
zv4;r-Nf+$~4*6fNHe7CYwJs?bqS@ugLeXxXWQ4>T<3xh;B%VI$TDjg&E?pMXoE{X9
zS%B{!Uyl?4@a@tVZ!jlNBs@KVvXlMznIPaQ8EX6JgYgcRxBz#WlNb;_4*a8h`koDr
z`7n3*ZPb=#Td}5AnX^3IF%|3oNKJTUtuzHPD@EM6`7v8%s){W-?#ufk=%or6x@6aV
zgqu^^owfCw5P&x(o9Z#x04EIIyA0LmSj0d;4GiKy0n?>m<RD{m+({;H1AVsICg9N#
zsnK0>-s1Si#8%EY%^s<%0e!Hb==<nJBmgk8xqCE7y2Lr{V-h4P4uThCTY?aFOG8=g
zFueIyCbF!wp0tq%Wm2#%m2PW$uJH?tDWj3#SEQQ<7G8@-5ii=0$FoSEG*P{N@6QGB
z;9;-LuDSrw7lr%#Zhz?>G%;S)@R>91@P1x9#lEUxhbb-71R{WUX6HBVDfc6~owKH}
z%bM_mE4JU15b<nqJSao+Hl}T8964vW%hS$&TEGKv0WvnEN6I2vkSXK$4@*v+H3ey4
zRr1N+m>ImtS-vA$0;KoTMFASELj!*r(y(JFE%~R#3|Kp8lXFSwajv8jmvrIy@4UIu
z&zHLG;Ur*un&9_#)@c@2kDy2TpzL_>^NmPGic$=G$AQU*vs-eK6^y1c;uXK2g}fAi
zTv8VWP{i=MWzfzH$3{5v-C!O6eoissIVF9(G~AJ`mW@27O46)8iy;P`+#O@o^+I*-
z2L;jQ7hTFPGk9_L>;%(V6`LN2_X4$QKAzW~++(wApc*>Dp>S{AU~Y_y<QNRV41t>)
zWv9AbeThlv{eAzd`Q8ztIL6R?5y<_f<8H>&RIw*2CUa-T7rXgQ5w-q^^T8Mu%EDyg
z&8(VhykzTLDF*s+KyG|LYH1?ADdtjVLddzB>I~y;8f?yc$Z@H?1{&CEHd32Buhx)5
zdjDN|pWtiXo-%&^K~D3D#!h5Lw3{y$=E8qiR89`~%oOC9)7|S|XrI0hF<tHuPv`!N
zUfKxnB-JY`Hg$HqzC9WmA!z!Rks8Yqw@EX8m`4t9JKEB(nxKdnJMpOj*ODr`7(6I(
z=J~u^M+8^;nV$2}TGQ{(3(Qg_t&k2C8+le9>~b>|Y1~v>3TkBsF05j<x^xKOp;@hr
zA+oOS91V-lous_@w=fNQk*%`(tMG9NxA`#1l+Nq$cec!KuAnvAZZBxcgxRJd+~}Qu
z0=YZO%6v~Fm=a@eM`Snu6b(8frJnvZ!|t6saYc2h&udw}fxZ8H$y_I2!CDAv3O?Pu
zttmSGi_vp$Z@0<gv-$&0=+tMQv<kPNF~PI*aV@PaH8rPeZXtUhWa*M7n8EYhd!1a@
z-&-ZBmB8U7ghgUIQ$DoBbeB|^ysiQsK6y*}&9v`jN>j=#f_Ltj<+mft<w8E1URLBu
zLji39H$Tdb#@gk=^_UU1z4#2q%=T9tDby9#cRp_<(yO4B4+lBcr0i~RXT6ZUNIh<Q
zUIp=M<GyDO(F}&%!mzN?I18k@P%?8}_e(a*?-tjSh~KjM3ODc*(&Kv{z+a^#R#*yr
z#TYBi&dpG(QWSroLS#_Pj?X@c*)ou5)9u+ieP(ntNfdk)>%DS1znZ<mu!i*uOVBGc
zpaGolKMlHsFeYg@`wENnBiCClUr0Y31!??WVee={aRypCQ>qQ1JOpbD2;An2WNf1h
z&SvRru?1h5L@Ny6c8DQ_Tn9BW7ewkXZ1QH(RCW;|lt@`-(&n=_8s{D~?GJ7Jyb*Ey
z*^8Fz`0!vRz!Y|au<)&vsb_Uu*>NSl?_+$&+x~dUlYb~^&_bucZ{6A?$g6MXcR=r|
z1{8=vAY~b#<Ikg)4(C5EUPSD!tqi}jaT7re9OA$Ru37#G-PiWll9L%P#cf{AbbA#I
z(SkDY$AziI!g2d4`JvKcmHTuQP!&GjtUmbq=6G7JjCAzV)BZRg98S+-0iHrx2hT!v
zA}ia!zv!qoVchw5LnaN-obAu!&5eg-AHLiCbKNRmX#7F2&g|9&kb}+reds#&209Kt
zVnKo`%~U?n3V+iwD?<M5a2Rne)yT}KSil{8gp{sg;YDX_g@xT!Xaj|-FCnvR+rwq@
z)6EY5aP)5hfETJVfgK_W_EZrP%3kO4#J*`JbeR79pgEe3QACbM4SZCB5QKYvCAp(F
z5*dIInV1$}Q}&WcYZ`|U95DZII<(4sxVuAg;TJs~S#Mt-h*%YEI*c&fnI>%ob{}oN
zi}>D1xK0i}kr>)5Wl<-OP{g5*rQ0NfiRppNJqMm2l1=B!PJ+<!Ruwi^@ykHZh{@p&
z!Zg5jRRd+mc_(KF4^b17n?`efzfnc(b|{1#_Gw7YHy-Ayla8kO51)r?%4=YV2Jsef
zi2_nsu}B%wR2(2+)wXu*{5h<Z6;8G;j~_-n5P^z-Q%y<zvBNTr)|k%dSu!UQ3!A+N
zD;OhJvkxZLv`MYb89^(ohlAm3FL!oGI~+r8k$$A*1Ad4kU@*vLeh>`|Vil~s?vVFn
zytF?4J|Wo@bT=|RJoOWS(~iCni$lZQ)NTD9M=x|He=f+SBk&0AKY>3v0`x$X(=%{b
zZgRN4u>m#dS^h;WP?KXAt$#}0vPe0yT=nUZx=v$9njvbG3yJ-(o{Aj5&7aN;yZ4IP
zc}+kPN*@CE+C-8`0-%7%4$D9*!oTv*Tm4u`3+n9|Irr?d43!j1L5?hj=yWp=m|=)#
z#-A<n$Vz-+f@9dTT3^4P>%u(}YU&?*^=(+Jt#um05OK2TajG58rK5DU=I!<-dVbPs
zJc3sv`nip!nmrc&-HS(r(BdEcWNwxF28Ca}!h-asKECU9@H2wKUP(@Y$DfLCd^O0w
zdJc3l%y1G9pl}cNKaJPokFYRBZfZ`*xabnie`kzCAno=tTL*BdKQB8Nls(En6&h~x
zLIuoc=aqP5aZk-8`tI=~y(MDa!pB20W_|cE=uoC3E7uRJC=MdNza|WxgHU$Lza)rf
z)nJ~_YZ6~r;gh7?di5-|*iPlL7Dho^^XoKWb8x>|JfOc&Tf7+PF5AihYlMf3?6!{8
z$_=teQQeF1)UA(l8^yx&vUsphhkUH_AgS5=ls*Q3=8)yXUlp$hVsAJmjBYk`v$Q{I
z3QT){hmL&XA9D7(R+46*zlc{}tBt^;(whzmP5yo_$tZG_^DN~+odD?ja}jMPTz9XK
z_AB#;(C<gT=exsr&X60%D17?SpC6=y+7PJ?pRsp@P#hb1Dx~;)8#$Oj3QS%SV5r<d
zjlZot#cc9_51#%Wbfjzz43EeXO{vcXP(<-nO5W~QB@cwQqrY1ePo5P^8C^-@Vf$4J
zL3=m8YHS3Lt2vgsdW+*;H8-9!{-CO)bnx}_<d}4BY|WWE`$n;d-4NdLqo3aAdV6Ay
zr&st@H0o~){CcDA{z=2rCMI@LgS2sNeM@KJQcM)t@71?4M1SuS_e6f_FgySmY(>z~
z*jHcYjuxnu`)i8v*~Qj_Ulw_^SpLh5DC>HW1CtwNbME;v=6}gUNZjH4As?}(-2Gc5
z{|`r!do5c_!M*as-S&eNq6pPXfcgjjZ*p9fdy-aj4pm{Ea3MU~3W@2@(za>Gn+MVA
zckd=$?tlw?XX-#pBADeL(!%3_mFuM`Mlp!I{cbWTXJ7D_M#Ric?(tIN$|ru(l4Atv
z%@0<Rk6Bb}jn|FCt!=K%a5|jMAdC5@IACy>s@enkjr9v=FTMqIIyZGcsw}?Kj%8*W
zxq#1o?bsx}tK4~7)qBc`78HVXd1ON1QU8`M+Ro!G%9F9w<^mA;xF65|&DK>O;>(gt
zeTFDG)ouVj;P-3?ri8<;Yi!oWIUP0<m3hKi;uxO%I``6rmKb1i?XTj~c|W;mCkJW-
zSio1iVTh{NGRCqC!n<G5rtpoNErRB)Zs)9J#70<8Xtk)~IKHWE*^fI|i0^;4q)8hS
zygp91s$ooBYIp(6G`nhBUIN{akajq%HPyn^L+V6*l*eMgd&$N12>wHY0=0t;!2<7}
z_96Z+8%@^fa(iSCqEz>vC|ApBawc4z(_V!AqzQB@`V(kBz1V_3lOpV6LYO&nlGicT
z=wqr<P5GM`;@Q=!RKZk3;_%kQn?olZrP{4N8sgS7StJ@4_dEg0ew`V5K{gD50HvDM
zuH@weG~BGqW4-iiy{RWoo2J(WoEg$=`TVf{sx@cR6z2F;xlb8$5T9`u7gCn~aQ93=
zIgM7*aNGL8^;v1WucvV&X?|p)Jwo?>)+_yAhrCcCN82`v6%<nqxCwv_cma9#Iz4$1
zT(vAAdU4PZV!zBU^$qf^?|tNDI)ZxVBcD5V8U;2{|E(snz+Y@&t5wJn%t`(JVdi{n
zw9H|%dfE5#($&Suefm&9VI{nJmT+APWyhyjNt+@pq%grNCB<a5*iWJO&Z(gL^lnqF
zrFEV4!fI^403ezZo|2aeR<XcohZ+W;h6EW;R%Gpv3<M21h)V*vO#mxt%3F~gd-ELq
zT&4Sc;dpB8Q;kjEZEMWa+2QNQGE3B&7NXAsy44vuQIsK3Zk<>-*xLv}5Y^(w4Vfru
zJCq3gF5T^kIQ|v&z~}RypSHiI9>fyyM#hZHWE)eEc6neeaUkSgu%k9IMP>)GP7PJM
z(nHexzAj9~@ps#c`1p<Sc#=ICVs7IeCbF$rSu_0p{f%;hs+r*VXy;C!dgzO5*<B<p
z#bVZt>uvl<&`G&)D-sx>Ou+-2^QlP|V3zGF{i*W~)hCR78=V`qN9*ek6nDagb}(fe
zAipQiG4K@y2#E@@#sL;6@&V%WY|PC%YSdR!SfWfhUwtQGcao*KIWpj5@z7@TW$+{K
zX6d%`B|Lz02ss?&>$uzk_$HY<CsbYLP4x~-+hp#O>X2X8*sng`PQUgl#O@^UBqdeE
zjgbim`Pg)1b})s)7lH&Yu~U*2WhWvS;dAJ_irLBON*3Y}uobSXSL2XLSxG#;%@m|;
z%t%2NxJHX#5FWf4z!m<u%Z+Ekk-c3d^m%?GWhxtdb69B(>Ew2!PPyj9{<(|edw4Zk
zES#Cb3Z})%PbGFMsGkRtyO3c!2Yf;1GJW|x(%Xid43c;?s(;Ja!HAY|di?h`skO2U
z8a%{9>41iVs%L457wK_;$gBBpS;F`w_Sd3QRZH6|1+8PRnXLppL`83%vAq8^++N16
z7QDI?hG?_)x~0a60&~<0N-!{pi2)wg5=Bd}lCaEo)5$;7hz7Y@nGAaK(m+}Sftiy3
zu8b|b{yf+7S}H0B)9(im8Pw*OIVed*zW{%$`wa)&dEQ#2WG%zX(!AbEI->NVFG3!<
zs*3|xHe$B@DTYpx<2;7~L)5~B0=Jp&*zi&|oFmZ~u`QLx@irG4HU^a^bJgBC>;>9A
z3-eLr)wXy>xy6Ggm%58U`cJ6(XSR>W)ik}jK=q6@srTx_qsJX2Gy)QPvojEY*gj}X
zQuMlQ@6;D|MJFvOw9C=I`j#;xk{o|QD%RRf)2y?V8t(7X7bU?clXIc8?rjwOb|v;a
z`1tHC{iM->!(J!3%RIuaX;f_AGxRZOZH632>e<+6QpQSiFD=uhSpA*SW4Fd<gTFMy
zx~nzFUcZ_Li%%b4g>tyDfWZG@ZS<%uwl-)}n-bn!J82?C7Z@$X=%P1sBXZon8v|DK
zf|10zM~3YZJ#-k*%kr(BubSR4bNclW<^E^W5h^jQi6I*NjK2Nh@x!Tq0v3qx^|5?o
z$y5E|rnbQ@|ALo1K6;;Ip=R3Iou={f`GLg6q6aTaA-3md7ZBcWo*2VNDjKd@4@{OS
z?r*S>%b~JEDAVwsh9-q`zL;Nv;QT{pS(1bXD^{eM8Pp(obZk&B+|ShnGz#JX-lEoT
z^oAayJ#V52X>5Jps_RhYg3ILr+j~!dHyd#>JiQJ@hcLj9E$15b(BSP!m{6uc%=IJM
zXdqyD_cRiBbQtQZNkJJYib4TS%018H#jrKzWR%j$1TLkzRSiSJ0BvN0;(bW6gY-fF
zPI}Xot=z{JIb2v^$NK%?w#$p=HdeeO$W{i^=$a=#eTBDEwi$)RXz<5RKM_e**}y<g
z(ufS4EamTn$i+J230Xhog!GG#YO|oc6C|^-#D_8PRmM1@+Y@B$@WJxLt@AvVdzJ3#
ztOZun9nD&x@nGUzM-#Na|8j>PI(oa(VD`<(^167j2pW;WDqU~$spj#|-0?SqLz+)t
z)bhW`*^oJDspBhU<;y#yL4NX%<o*4iN1pr=Ge=K00@Gn93r)ZA)N49Tf=*DwiKL4M
zBiW9%%7|YV1K&Mbert^;3h(kGWd%CXxbs(m-mOBybyk#}Cx-o8h1n0Mg>MwSYb57`
zdbP`GhA+vC-7ui%qbbYz1YtY*zH6uHdO66rh}Ft$8~)f#^h^2+tWkEszwgXipsq??
zbN*wnc>geQH`g285WwUE6}t$KKYUAY$HK>lw6hWWxsAs&Ya674>VpZ$r0_|Un-LcN
z+FWpx_vo1nMZD{WstM@Pg#ruTp27FI>j6(+jiGU0b7Vja@+7&jsl8(qZIf4@e;*vq
zFIG#b>m0pkx<)d6PTt0tOpu!GV<Qg7B81Ct`o-$MUyGx)`~uljveo7&r!m7Fv-YNw
z$dbCpqEWBE@^v}**N4&n!VpheISOy_LrcdaJ1eB!t@8`Zu1yf>&9a0c8Gd#${N#^~
z)(&3m{Sh%nwfYLlKZB9ps~T!gW-I3`jQN)@CG$2i_E8(6?C!0Q%2W0y?~`OSH1ZD~
zRhb$a(ja9am1`HGlg?h{dch2<CGUKfVS!V(NTls<_?#zC{bXLYq1w;Q!7im#io_vz
z50C3S%TKB6?%CdB^?7)4W!vMIdvX)WwdABJ>qWIk$*jUA1ti8_UDxup9%zR_>uV3E
z7!aEm@L#P$s>H7GtrYOipqMh!bgl7$6MDzNCBuj7klo~neWBsunSK>CLX6MW8zaON
zY`?6pos4*H%irLiBI#-6%qyYAI7{o76TQkImJU>fr2XA+!0uL1vp|+si}M~D_btMY
zE_gkF4&i;pIT-|TI49odJiF`vwf9BgST~C+Gh*(2fMfw*ssj5$VH9BPVfDfPFeqws
zr+5Jkjl8ZLTH9O<E7~usKU!e}E2*m*@N;R<pw|1{Yc@eH0c=v<p+Ju7pP=2kstFQB
zbAiA6r7FMYBAIGMKTF!Y+EU+a{2ti9rTDVa2t?TucE9h&v9}fIH)V@<Z`u<Oh}FXT
zu_2K-FrC^(bu#3gfsJ}p1uo_?rwp<r9J=d-Fcx;E#lN8)fA8pfi>LYG>wenCj1zY4
z33d?SaR2lz$GlN~41RBl83;L@4DQWHPk)HJPLYNM%@*+2P%xv+7V?$ah{~mz!;iw?
zJ&(Uyd55q_8Oy>^BzVl|6?aoncO~b~X7@o0yXa+#_5}nTE38B*s|^O{ZKL`iU2^B!
zeiFG_OPcW;skFF%<Z<hQ@d_i#4()`6HCuM8%&6j+7MY5|5-Xy|H*~RpRLWVP*Qfq*
z^&b&$CpT^vR0i&88VrK|0}8}71f3k#OH?FVNmi%j-9kb^t57J&Y5!YE68iC(mSnAG
z?Vxf8C)bA|_9d$b*fzRCPjDi)!NOJ~cm;Fjstg%)N`U4)gxi@nRmapcDcqE$dg&*@
zS2fV%hF3P|SmP<tXAcs7hpdS~b$q&CxAq+8sceEtDbPw{uM7Gnl~1_pJHx$e95pVe
zVt|+%6R`n2R#EgSmyaFZrFW6^Jkb~+2D%CMRS7z*aKE`dl&h0|ehXPA9C0Y;{t21V
zfp((z4E5rA17bY(?~Och+P3f&!UH@)_7kPh(kE0OtafodWSbgsQ=|G6mYXZ%0?^V%
z5crrDvDrhNUQ<_L03$g?!Rw!=b%FLtzo#vCTKc>?DQIM+|B5spCv%}^w!yA@0IQqd
z4+a!qg@|GZ?*pm{Hh2VANIOwY5<sj<5VfL-3<omNn@8^q#EdH$=eTHO>9N2V2%(8w
zV$3hW-$=*1;RV|Ue`l0qQN;ST;o{SFFF?xn4R)o!LHBA%B?ZJ&w@5Ft|5OhH!TW{x
z3@<duV_`OIIY|@Yt-v^m!Z|GAUPLZhUWDB9-LC;vZsI0Tn)#uO#?vinoWq_PJ!aW?
z5I?ZMmE&86y+*fCM)nVAdXwoWXpO`cg3}4vx4P~;3Qu(HnlEv%MtIX1Q>lQzTy~$l
zE`%YDqwg`p+kt8KFkL%QQCIN)bbn_;9Q3@U@2>Bw3DUCtrd#ixfn0U?#Ry?K`Ifm?
z{J(wV!z~LE`rob1G5J`Id(8&8Mc;K4T{H&0(IH+q5X(~8{c0Qf#af;<C`W@2Qi}In
z@b((y47Se)84QHEm9#3MsnzAA8-?c{INVtz0Afr?I1Uub-C^eJWAF|^oMyOnM{kn5
zuXZCXdanA=N*C9s=1yvY5|wV#yB=v=q8gVH2MbpZy;wxS4>N}Qq+cQSjWXnm<a~oB
z+5Ajhz)8!{^^<~=dk4dlit%4NP=E6!s}%#!&0}^tv@q}%VZ<nVU-Ol_XvDeZQi3h{
z2g`gC4dQ+Ua`MR+oh(gYTXmeJC_pef7`bVp25;y8lKI3Apo7t>Y<{_2Mg{7vI6Tm6
zWiyo-ydUnz73tGlRC24U1LNrVhPo9C^jN<Cg#?gx8a)}_)?%R7*b9Rq_*)BXd8l-3
zg6X#;-Q!$WQ?U8eo9x{buSX!}!-f)y=xw#;w>)-h;vLH?%mO+RuqGGKru?Q%%5_gM
zuN}SO1G%WBgL3vLA=l)>2#zlWy%lOBM6{gifi_E1ww;=>3|UJMI|qzPzWfO3#0>I<
z{`4qRP^Fv#50l^0U#D?e;$|g>Jo~~COs=asi18YPTC>RTE7L?*+sW!h540>t>WqP(
z{xV{>aY~G_S2lGt5ZCmmLl}bqQvHi)2qBhJfs~cb?f((hE^qsiuevNuMJ>tRFMLsr
z5=GpQlB0pwDX1sCKK`l~G!p=X*pLQtC1n}fH#iHHzs&@liH+R;D{=$G-AZM}E4m>4
z8eP`UmPg85Qnf<%7QWR-B7l1FPkN-WdO;l^&xHCPpPsDLd8z&$WaRSx`~pE7V;`ie
z<6e|AKC?{tBOd-Z@ygTX29!i}$Rb(KTQW^Es-CuS9CJ`ctls|+5(3B>q|Uq3h<;5Q
zGnvj=b-1*c6y5*0g4$N6{BrRQ16h$H3YUMJ%nZLqw_A!f`y}6d%lGj6WEs~t3U9A4
ztUJj@Beq=Q;en}gzr8o)SngcR!AO>>IG(l5ulVi#^VwBW{AKF=Omi??^wXIXj2sVf
zGeO#s4Ac=g_9XUCT3_Zr$Ov7N>3>Ou5X)uyqjb6&GEj)7*rSScL`JS-V0WdPB#Rx0
zBLokv%5kxW|3Y(GFG(??fLL+hKTR7LxX<P8+dS)@Ka~*u8{LY<!<frn^p1kCD@tJf
zrLn+azmaqteMBG!VJF~YAk|Pz2pRclvk*o&2WB0k&NvVHeSMGT?Jm>z-W5XQ$~7{b
zE9UtfIagNvH-}6v92w^scnMrn>wigu5aZ-xoy(v~ft1FpG{FmwEECnmM9imdLlL^3
zhk+8d&~=JOWK1ot$UN%Xv%(x)`eAZ4^31gmDl}kTIEn?VNtF!#6wmhMsY(Pl3cMzI
z9JEL+jSk!h9KFoLP;~?*&8Uzi=X8i$nO7R44u5}19w0=97~%lBz)kv(eGebSLR;G{
z+mFKH7r=gQxN|-lAA^Du>+Lb{&)suPXh{5Eos=g{d|S1@^urkodhrd7Sa^NyZg^1q
z>pg$7@2Q%P?djM9-4Hq%Sjoo>yV6x8hD&lj9+fXGjh=kwIus8Ijx@wKm|)@a^9yBa
zE^RfhsO85-{yz6xo$i)$3H;oTB*b00C9%K;yegKOl1Br|epCLIcZN-3T!W6AA?!jp
znUN&curxmz&o+<(k@wm6(6`^T34n$x_$7U}zBkPDelNl`=n&-*gu%V_sKHi)mg-ia
zkHzJv7W4SCY0?VxTjZxqy;g=bJFD0PG|nlP%qD;IKT3~RU`YnW+>*6OJFh<xk6jA(
zUbr3=Ky(o|k`-A=lhFb`2PV)Wf9SkJpYa<86yaveFp}sid+w4xJG}gfz&3iU(rH5r
zhp^s4;`Wox;^)$ue8^Ksrn}7R6cl6vrr9EfXzNGgE^5ZVLr`DS1~FUW4!V>NB|(E-
z_+l_$>n_Ewf}@taO>0dm6p(E7_6e%1R9QN&m-DHfu7KfF^TQ4dgzuT1X!xjv!R>G7
z3W1rxF6*t#KaEq(AB2C4VL>@hi|TkSnq4~(5z|mk^m9GdXN8+*;{*0$&ytEj`Qzo_
zc3q3C7nlPLUh-<$t5~ri<n!y1IU0_N8#>-Kx@+w1;TLNiE@oM*aV}Ry|E=D6u^bw3
zoZG7kCOa-;kD=zEB=Y2#T*6}Kxt!|LsM3^9hy(3USD`s7{kk(E?c6R^pk?6dg#8^x
z&EJqG2mW@)8O_hL7!U_UD3E~ti}jBVlaA?Ok@mAEr+@Zb=HxH?YI^$HLptp@l-%NA
zdo|<@Rd3vKaU;I`Z%^MZ$k#Y-?K!Qy=F5M=A3dPt8a_%R;TNv)BF@9M!`H*}PSkoC
z>4Lw`nPbXyK`d*m(ud{>>6}sgF6stn4eb^FAsMUa_5xM?ZGvdc^qO!MG3WZDC6vau
zVJd!3hrw}4B`~KvGV{P{r;quMu4O7UQP%wd^06{kz->Gr`udZ{q(Cs7U5?Nh9!e_*
z@tn~E`SqZJ(spGl-$14H*a~{~J`@Fq)!vzB;gjE>;+ks7cuj?FLy{H8&0Exb^5HSl
zFH=81acJhJ(_HWTx(DaN0XMfR@28v_Z1to4@k8=U^qO?U)79sDP4U?rtac)m7-Dwq
z#PpZT8I)V2=Rx~t>+?ir;JTzB^%NR4#wpzBOA7kiG{pT~L_A~E@zw1UGJpF%Br2&g
zb2P8e)j$0{Y?`C?B?n+(@&`ve(;VK9sd!kM-`>e~U0R<SR@lw{DxbYWH+1=m!G!U%
z;C_}$dAsj33bzKi^6<v+8d-)qqmlp1)u_p<&!sfM<7Uwx9^U3(Q%G$}5|F{&Yxjfn
z-YUc9p3$@CReP!RtC?_s0Gz~%JgKN2DUg!Bc2x<`(h%i%S0_sSBbDcsgjY@+Wt{P^
zxwc1_17|l)>XQF5rP=^K^}jK@+Z${1`vbSbXV#0=wS^6$OZ~C%m0r3Ig#dN)5;;yG
zKc42>q)&@NTBq<{!sm=Cp&(j*MX4s8?-RdM4S~WLE>#iDY{6VkRy)b}=<$f3{ug_i
zc)YsR`I4!8d{ot!WgJ<GG#do5a5W)~GCS|G92)2H(11M-*?9`I|9QMw%$;n#%umRT
z-P)S>+oT}>zz}{1cv_wfP4>NL&-zJ~`<j$jxf)m<o2*ZEMj{>pKR)v`hg%~sJHV8U
z7?>RzZUkj-=7wLcPAky13gX&qQV;K5YasxkuaY47;7h`WfB5mV4`d?00qwj@ZoS|<
zB=pZD0Wwwk6o3eRRW&9VER8Kwx+AJvxz?=ff~M-;IsYIgpq)g}Khk?C@D>cOJZE`v
zXOYKtWHbvR^&FQfkPWJzee}?qwf_Y9zE=4C1w3LUzN@>H>cEV+$!a%GwW6&!D}nWE
z2{m%hT+g9np&^d!rGNUo=Izr|zfKEhk|k;XNqTT#T@$MQ2BC=OdSCXP{X@{wnUnk^
zA#^kL8$0~xfm*|hY6E+txOr>*ll!Ffqv<thW`Hr<@ou&({Xcf}DrugVEzV{q8Ik@1
z<ed8bOjE=b>wEhBIY@O1#rTKUUHn+(Ntb^#af`V8rgY}$_u{?Xm|MmxR4BVE@m#8G
ze{r~OS$qUy_4fL7+2cR`67p%bytea!r(z9|gj%-(m1o{L&y?FXe7stY-~L05pZrpN
z#r`$pIeYfOACxE@$w`*f_4EzD{bYkEy5eK+bE7-Ts?6m--k4*^;jp`!SGnL7@tSdL
z<>^cV)6my{2^E1SyRhvFpW@EBq)TnbFD|2X9;2DA?Z{mPG2vkiKbQ-Meeg7)Ic@HZ
zwCw0{U(M)B_4crY`N{`T>Rb{uu9YXB9=VwCdglZi0tFto`iB~Av2$Q(fh%i<U<IS>
zWiafT#MQ>4_FJhOYM5e^#*<6X<1hY~aqa;XJiOqAlu@0S`HHF0f?w<pYw5Tz3Xu8*
zpiTD1v*yv0YL}>pw>na#X|8@~@e6UUD1@RqW!V`~w&eRmMfPVT)ZL5d<x8x+7sb}o
zV4MQ=$f_B6%;)0HP50auJAnbe7{1WSJ~-lEMCQxm>;;Vbx~U|?#{Ki;15qz_?z@mb
z4AoGC(s;*7<HrV1{J++%GpwnlTTenl2p~m-r~wJ!p-K}J1eJhD5k*9r)F^%;C|!^u
z?u`^t!~>#$N<B!CCP<YCiJ~A?1rZK4^j?+Fle_W$y3hT2@1J@0v-g^rHEShnz4Oj2
zTgE)m>nJPhiKYez(J_KkZ4%+}vYv#fbgO?<!_!M0n_KL=+9goQO|s#yQIa<||5FXM
z=PTJD#GEXj@bGsVM!{-lLV_zx?d&h%4ahCkGx$z`Z^B=1=4b-hQ!b5>-eGzQ$~G88
zeAk7Sj^EYWeQgy4-PsNMq36$sRu%%G-%mrCYRD1nEN8LXqHzHZB@HLn@4kj)STZn0
z*PWcW^Zk+V1X88X4zU%EZ3auwmB65j)M0G;w`m@_X6^<SWh0gy(v}CBhL>BQlUPQ-
z!Q)+%j^J2#^Kp?gSQL=KTfQNId}mt(YO_o6z}GZsJ}uWut0X^K0WE8VL@vg`jA>yE
z#r-$$ExwDL1E(H0EYCqlQI!518Blmp_7G6sB1Y%}x_>$%22tFjDkI|#jJ)~DQ*Xh}
zyI>{g%=X2DH$2~na`U%wXf)l60}<xj5vI8R7}ql4C*RU8Hl(tjZRr2IUhMw2DFy}L
zU6v6fpl~o6#5Sww%Yz1=`^E&A)d#o$IFP#^gR+r0K`^uJE^#iJljK&>11%?E7l|q(
z<o+ufz8IcIMs}xHdR&i59AXBo^4;@B$DT&jbCGkvYrE5WfNqdJjW7~1-PdeC6>dzH
zR(YqupRw?f5d|xtBFvjCX@R{53IsEdot^FQ1s>Y{@qxBJ9K{r=0{MG<@46-mUdQF&
zEejF5>1(mdUl(zNy~WeFQsAgYh#uzL<7Qa47&390_2IRiB~tP5VyYTk7y-J$+N-yU
zzjF)NE~LE^=M~|=%J5p|kiZRT?=wlq5}Pi&P0XQ<@QaC!7p@8Rep*e5T*o02JG0b_
zVxy={Is&4ZV4rpPqC0LX2|2i53>6z%k#CRRHU)?HEfGQ}-#`|@UtKKz=W_#YLcVyq
zZ#oY{5Y*rEOvO9rP{mb%^q-XxkMNM{S+o@%a$gWR5KCeuFJC)-mML~f>fyLfH|KxL
z2-X}(R%vC@OAffR2qG}^rVUWHxDUp~lTTW-BBAYN?&A5t(4)O`wNJ7oVve$p2~!Ye
z7W$1FbxDGXQMoS=_C})wO^MuvZ-!;cSX~_)i(KFZn<8X(1cxs6xKfxX2kIMKveyZE
zo<=&MARrUoB4qP`7M*UcKQkoj^P4%L1`ZS1dicl1ol-)-{(R)!`FN9yI@MOPo&YB8
z&V5HEod-SdKB%xM+R&fDB@RWWF_sB+cB&YX=8}!fS*?|167ZQNFvV|j<&7i%oqOqW
zH$*i!d{cFSUP8?gma{Oa40gDOrf-Fv)3p@kq8kf{zynqv8`0@5VqOT1aWec#K5A+{
zmSLYJ3F6uE;3>w^n*?%Tt~0P$b-X;N=BG5oRzr$Go1r6IyZcYBIDFN`B;bQ0w{b!e
z?Kaij>VFm`K5mkD3H(S^*Nrbar=3suX3}10yWhU1EM>U4k{w}XZnno&f-j=h&f<au
zn8|Sv^ziC4k2s`68u3{9Cu69ZvPDz?HA0UHB-H^^+zSDk?XHB?ecffcl@yf-1!#ap
zMAQ2lzi&w;C;N%JNNU1lD+GT8U|d;ZuE8BNgIi$D&sin)on-P60C*C1s;8Sxj%(IU
z>CjnW1qirV;%YvOGbe5u)yu=38I+%#m#ahd9voZsmI>wHx{5@|hlafFzAEqR+hzR6
zpiR@h4a#=2(V4UsVIJG-5ElCx36h^PgMqz9>`j)T+IuSF6Ur~L*HpXe==C9voXc!o
zBv_~43GWe!Ji!-x5EM~;)yc6P?`CBs{m;IhQOAH$WD+Z~Q2f_Hv4RIfU%#PLJoXj|
zEwio8nyqT&sKvSRBH<0sjX|Vfvruv$LHX{QhWZ!!kpX|m?7Bvv`8g5hfK(D519sF!
zWVi*qb<4J03XYBz3eC~<l(}^uabdC({v!zM-H?$L<N`L>7;71&z+_^Sx34WaTz!3f
z(C|{p7Zgl?!aq<d0AimXLVHOmy@VES6W-gW6*=_>nI5kd8m>`z@Im?K;Eu0k^pZjD
z7f8a8BwOww`l}+$sz!yMctZr=n^CtLhU258KrtIWFOAaNv|+zA0epJN+rc(~wYot2
z&2M%(0wi;L_tsSg4GF+QZ*}`NnfC*!StFb)A1m0$Q2|Uha0;m4c=cnAfxdI$zi7t9
z)W(*Hre&6p|KYq`0a!@FN6=PG71EcZd(FVPcJcYcKkt$hQY>AA*ckaFDPcn(S&Q#J
z9*AMgrhV>I%>>~!I!BQ5g?h)X!FhDlRg~BGWSWtvszdi{Ff>L++{F7F!#Ka$v)2R_
zuvRQI-1{{~f=#<UJiDsZ-;p!j@<yjpnl+RnFu2t_-)>}+R+WEa;xv>vDz4MjbvH!u
z)4#VX9eQ$Rv@X37-La3|{aJLBQki<<cFx;*%l$NW@gJ(&83beQO@5yz#^B^Y=LkIp
z!E!Hdm+ua**SEH>nBr?qa}m!1x#7d@M%VH1S@Rpstt3SZ&@8rByG3BgR>nPYxGwwl
zph1c%lh64_u}4o5bfJP#q*BZ#Jw^(Qk6W;hpuGe<^ZYk*nvPmaBQ-#W`wO4l?dyu!
zc+=Eo?E?7*Z@J3ERG;Zi3fZPj2ly@Hye%Dq99KBzS6fS%*<L8rlUiWL94uRp8#?X%
zm#V_9rADW^NRD00=^a~jtS}=a?r+a`x+{YACJl~vJ}Qv4nC8#4w%YAqUmG%i|IS5)
zQ4wZ5JOmZcM^xORvDTfOqO~Gw<uD+2trD*miPG;9Ov*i2W7`qJeSUpqz%t1o?La&y
zeCjAFcmJ4m`8nF4Lq)?YqEoP+QkJ;kvE_W{l`8M}T9a-9%ycxIvoV*ux|<7djR?R$
z*L6xdp@SjhuaD$tEb7Pcu;ZgbaKrXGgu^h_68Tev5e})LW-VudHKQEN1t^(4t6^5O
zWq=RyYC5cWlck9QB%yT-BS6NnM~UQ~uYGrYD&=WpDo>OM+=e~aIV^|<0bhn3BpyXU
z{f;6&mmbW2dOGISz4h%510Rhc8ycW;p|Cpzx{O+2A<do`SsJqCCVL7biNNxWo6gTh
z|Je;k_i9O(DI-@v_;!A@ijqB==aDp9ocx#8mWvzKXgARGr`wP2fj3hoKazVX=Sy*<
zI<lRsN*&o1WoDdbcVa$*Tj_{LP?(AtgIq++K;M}R!Cae1-SSRp^@2Tpp*4In2l?-0
zbh_k8@sk!uH(S3pWPsz_Hv4`jE(8mGU@`V_m>Ew$psd_aT;Lz4>(yMdhniF{pe)G&
zmU1`${0N=?F-A*qk&7Pw8I}HZxLKDNcQO;XfG#8~eX6#w^f78uSnq**-40)ofS5O=
zzYGd+(OxzLC=k*&5ABh-CJ0-F|8~;F!Z@y$FZWJ>6OysWF(u<lk$`Guqi_=|*y>K|
z8x?R!76j>&hysA_l8xMDo$-Z^??r=zt4peIG7^R{&0OT`cCg-zh$ccmQA(ry?{ybE
z&yyeRS<d=ajWrcQz^u}h@o`#<1y?0NV)vy`0M9{^!_0kciHh#5k_uwd4&Xifks$v<
zIdRA%?i3zg!TsVu0isK!BTUL`F$393Siqsb--Pgz6Agw1>-92(#>fM;b_6t2{Lk)K
z{R+$M+tG;%#lLV76UqR{U@<^nYT)4mjR-s;)JG5nhLIE$@JY0e9x9p60U-Ky5+Fr<
z#+75V0C<Fq`ozW-h!RCW@s-r+n9HNKo-5U!E`w7cmp7;wq)HHQV?_?!<SmbOF75f1
zQMssw0XGqAb??P3P5agy+v;2ju=bo;TP$MPAesaC;<)#q&3evEUO#l*f4h3{wGzMp
z08F1Z)TpoG%ApSG<<+sr^P9iEb~e&N1YBsIkvs#B2*^1N0DIthR5JA4){B+3UMaHU
zI|a@68?^^S10V-Bv^BmcfC$Nkp6btrHVzu0)_VO$gx%`#cY8Y7Z29_41d#$@hF+ys
zUxJt~_P`6oO=TQz+Egz!G*l36_RK$t-2p)sSZdtqu_emp+tj;v98QFL>NG(60I*T!
zrwI>trSU%nWqfI;Ts9C)b*j+fr|P9wb&M+FzKtMP@!W$XJ$(Qe>bWtKUIJ^g=Yyxv
z@~6T4r?JbFSHvN=&gjo6RaGI~M5j@M_v`BcTVoeF*&+ZGaQ^F4o8McfzjqRHP*W_}
zgUYQj)0k7owr<axZ~tvFr*xPW_1i<NR|Z)?FC*J+mpIhZnecZK7xR__+wvj!aoA5L
zTE=e6&($MbV8SV{&gr&a?sN%rap7q+dwk2JKaXvzy+%_bZdv<G+nL;0OJns=-#5Ri
zx#&CJYxnF-e@E>JL=BEH7L-uS8ZsAHrA|W;T;vWj>vJKmIm#o7cpRGPGd~|F-!CV6
zwheXicUn`0Y8EV={43&ZGjf%_bI|L@9HggB`;V<m{Ui6#FBq{Her2{O(M`2VJTm%&
zn7q5JKG?7G%!k>Wo<^;J%vUVh2AYKx<xl6oSm5{T%F?o3alN_;u`a(cd@!>&oi+nS
z=M75Lt~+lxR`q?+A9$^`y2Dzmx`=n?NT2z+qc9*mK$B#$8lT@dbKi}pupTDbIj}>d
zg4I^c>bHwZnlzd!6y|Tc(0cikx69@4T)ZFepGbWEMZ16Ui$uz_j~AjOFx`!17|h*r
zdU>Tz8=_I6cB!t`dm?Y;9CNBJa&FGt@XoGdiLX9Oq2<feZdZ6#rn$+`0^h|M`^ucK
zIwW<qe5T;`&M+SBnDm%Vg3tSEW}C(}cF`uaw5Q$a$2q?Ip4GycGtz}G<`#NNHR^G{
ze5B%E7XA9J5N*D9go*U*dxa+x*?}E_6a42E-5@pd3`rYh>gSj|sn+g@Y0=5W3&IAs
z1hjZ_=VXmglS&$Das7N#yLVgH7jSI;>3<Lpd)yr?=X~epud%d62r^<6ty2%Ah6Kp;
zw9!Xu2Nq_Bs@=y27us0evmx1H8<r1)MmMMK*JEEPYaDh>(H*WiYl%1Y`|5PJ&w&^6
z;0J(y?g^Nbu6WdRlc3`EUe!I?zI=^p)@l-%^?2rH?1!SktqIfKS?#)aS2^RR&)%Aq
zi)-3($Dw<&BBf8|(BE1NugCW8c`r2FIyha=Ub^_7xU5jCZ8*p~GjYLhFPrj@RmTRB
zy59$9E)29R1j)ruHpiUp(cZQYi-UwXr>njvCgC`NY-Cp9d;ZKM;~h_flL-~e9xdj2
z$Rj0_{C{Y@ut;Y*C%n@dAbH_`w%-5y)&JX@b!b#FW`1Lmmx{~^j8B{D7wJ*%{TK9^
B^lJbB

diff --git a/public/07-basic_statistics_files/figure-html/MoransI-1.png b/public/07-basic_statistics_files/figure-html/MoransI-1.png
index cf991396958a2c9e41e06c7b4cbd430de36959e3..22359c899718eb23e4b7e0d8f62bb14b4f5a9f7f 100644
GIT binary patch
literal 17140
zcmeHv2Ut_-w)T#}C<-ECp$I`8#Y&K>lmtcPC?Yx*P>`Y$KuSQA4vFFjBPEO|Rf@w1
zDpE$el)!)>5(GqQAOYz$ga9ESBzFfy0yF2#x#!&Z|NpuF$+JmzzPi@C-nG`Z_x{3<
zXV2&guaR5>0D$nxza9G?0AS!Lw0JcX{3z=<dJ6pLK70DYaqtrW)BykusH+3&;Cl#w
z&IZ4OUw8$)7g`++9wF*rc?by&HdP0Yxl%O1tKq#u&>`TFjRqTJg9kT69SA{#hk6KD
z$EyTi*&!h$-dlEdNH%!F4Iz<2NZf2Rkd0Q)4gn7|uM(`D`^(NIWs|^zo6Y6c*VmIm
z)JY*|QZ{&mkml>a-n=H@iwm{_-$-08I2@N0!X;(TeFMAl$^<#PT0kuY9shRO833gH
zcz+Ol56uz)WPy{%j$CkiI@0cW{d`4OqSK!Bn%b+wBfFGWS$`ae6>LA~H*hG#NmfZ)
ztz5Q<%aCZ#+G%g^S=pL(GljvN4K-gol=A9gR=T{gF9rZkLaE?9aAg2ke;fq*+<#8~
z4hRS1@G#$!vG8mZ);pb(atXt2wJm^(7rxb!sA%UhZRi>S!+l*;ks=Cf$~0BkW)*Xr
zVH`8Ga@t`s8g{rAC^Jce6nGxWr8pN4MXh@=a^K7n-wf<mGJqCetOIM4ASRk{O8huX
zLAuO*M!*h@ZvyQ2YEO%VeUK_<eqmEqw-RO2AkFAl7%ur|i2r~!5dN?h_z0uZ0vicr
zL+GK^lE71N!oMlw!b)Rcj=9S3ePOZ>VA{}J2g&Xu(DlweeE@mZa{T6pk{C|}8f&VR
zixk(4q4dtuEA1WjJG_~W#+Re$<y{6DaavmbAJMCt;W<_m@tN_#j}s+P`S>lXXqCfc
z-Fi%$_d)Kt(A9X?n1*Nuh1jeKsJ%f*7QdsPtc9aeXUh@>v{VU=TU*P2d9B~N307-o
zkYH8y(j<;q{n93q*%(nj^On|q-WY1c{hrRr-tsf8UE1CCcyp}Gg<zO$??Yj8=Cu#M
zM%N?k;W}~fREIaMv<&BKtWZ^{;;IG;=lUewkKUA1^RWgcnf9f?Eth>RMW^L0_B?bt
zEnEsx<el%9UC@F*pl{{*{S`^=J|OiIke!IO?KQqGPaW!w4udHKaoVYr>}#3(%PvZ4
z8{f|!IMQPcTuW^PK1zAIbFxyd_rG=z?dcLr4!2nMfNNU_X^ZrBza^A4+djZ_x0-CA
zaw&Vu#`|wtGbIvXV>MD;mr*5GWVYXod^`fH)xzyl#*J9mfAq2?mT&RPQL7+0d8lz}
zv)3D11NNd<l2$!QfcWQq54C>!rRqSDyHHFT<%W-2V644YUL9~r%|rvWIjO6%m(s==
z(6?t`Y=G!4lH_EsZ@+!$n+8B$qPRym-twmEr=0S(gVcT1o~E<vwQtvltKqU&kJS5q
z0BL1s$Be9oDQMj)nqknm-tKvaT#Hgrn+}txrIpYM4E_@8x{Faeo6(@NAzIk{R{ns<
zTPE5mA&XA0z*A0eBPdh7L+=bI>StWqxD9avv9l8?K&f0@QBahx>CHHvk}9|=Dea-p
zub*Rr4o7!X?yv}0Wu+=v+=!6KaUqjH0T28Z9Cf6fhw5kGV^m*tP@GRJsxHS{NJRz~
z87r2db8Skbl8HJ6&d+hAHKN=MlTLMY#%Jj`4;_r3n#obdwFF&)wBp}CnL62W6NrK4
zW<oLz^p(7AiM<6iR8RVrhz5KFIk$@}Zx5u1x_lNIJOOfi5~k4Rv8ST<V5XOOuNO@x
z%CC_v5(G=v4A;eSMn0yL*IZV?^<M9x$2pT50hczya|qFgHEd*z^tqi(>rxxd@cv#^
zN}B=5bA{vY+>9D9zCIeoc+g;LmPCpB!MZR<PfFYNzO;((Tb}p6gzR^?-IYX%(j5S2
z)Z7-H)ZZFzWo8e$;Hs4%UD@e2oMgge%o>eRN-fZfa+)-Z&M}(Z;qKYnC})`gxh>Lh
z3IT18jY4NPM&$PvTHJB1#wO>qlb#F5t9%1+;yXwBo_C#vY5^owRZjWge7DX{R=6QT
z*Tgj5qPl;Uf=N@?p}z~LhNfgehI6qxP@}Ek0T??}(A&E7*01w?5H|O|sR}2wJj}Bt
z=Ohj{vgKZLT{3(y;VQVP)fzWpcX*_1t<okS?Hs7l^pS!V;F1;b3w~%--QWolzRRq@
zBa?OYmqLiLS;nVUAe)NCyRL9m#sy(_=A1cY2yK=rej-^s_4&3MZYIC4(1z9;N1voR
zP)IVu9h}s!9yWa<y)L;|=Qt_tcuNvQIk+chNaWZ%Yak``))=f-Rb`b8kO3dRO^a(^
z`>PeyI!)qp5Eu~#!+km9gHyNEYR-h(A_X$vGTB<Wu0E_0lv*rQK?P^4CGeRH$mf$k
zHvTe90b1dAFfmanuyhIM*})SUsVkLdlDHE^o7L<KbEJjMBXh1NX4}r``>VH1u^)HV
z`fa2XrlEEAyRmw`SOHU+vl((0X8WnmcvyNDC#?=h^(o29I(gU;Y8@AK)nG-Af$mIb
zaln>gwnyecQDcV7WoYh=#K!p{^IAiTsb*R%48g9wV?6w>sz^#o_}x_Q+AOB?uy6+p
zH1|y)pVNDE=9gwkZF;;zf%u(Coz|qpF4r`SaZWo;vG$!=VSPmPl&7ufhF?@Li);g_
zy3W@)NXl*&Ry%&;b+y`e_JyK$PB)a{N39ExpFe|i=H8Jk9&UTey{E+Pqzz5N-(3HG
z${NV%{Fr1l`@a34O7%p_LD%Y;x7Bz(vJ(dMy?q$t`&YlRc|Z-voH3F^bh|Me?_7II
zB(OMLU)J~MZY-Ng(L3^54c8gka~wKl189sA@*%{G9I*WhEPKL!LYLGd*DCj}5$Jts
z_Bt^s1!AXPeTCH+L3hXg>LeJPebR_idzFzr$>~TbuwU@ijHY)Ty>jK_50Q*$tWo|+
z@N1*l^G})T*t9mDDj#9B#G(X<U6HOsm$&Um=rvn_RG&cuu|gjJqktX)mUAl0{c?Yb
zr)?1;PYYCJ!7WElb_7ZL5S&OoafrgL6RzCr?(0+FRn-|^K8`=CE9Y6&RRxEh0?E*I
zuiUuiR`!{PDG=qf;lu2z@d!IiVe-q%abTXRHtgi4vjT>CQL~NZacZL}%xk!*f)vr#
zucrQzjFXR5bK!)(3)%vIrl@g*tbz=&oP-*qB5rgUnfg4g8mk<9rO^nh_2Fv7eXzel
zX#g&@MEjcBL~pzfH7XqA^dhXPpjj;*q(t;}Fh2!{b&g`m4L~;er*;pFZ5qtBnk4hA
z5Peof5*M+LAT;rXT3@4@=fpVPr5xiu*dY?2=W~^9KlM{!TGQw?kAzCy?V~<-IQ=8t
zeg-J%TeFrCVX#^cZoXMn#)qN|$bRIFTe+(Jz0wZ)53?X%Gvnh^>~&Xoaomga6x5fR
zq~^}1kw#&)x$D|;Vi?(`tL(wVY@H(UIS_^;n=qeD0w%S9qjrLoYcSTd$mbCZ038$u
zjUuF{)5g8X>jXXrz;HTISmn;{hK>xwV7iNJys0v<^;2VC_1Nn5XAzRXx|>~v#|xx4
zz7Q7%{IXnrV8Rb`?>?*p9IdGwMQ@eqvC%F(`5bWj83e%XmIMI*pZ|062O!vq`#%lb
zUMhe~PWW?tWL5qM$Uqpxy+-1!TsG`<0e*betwwV09OlavTPF-$+N-id@$}X;!oZpf
zH&5J%IJ8j`*!bde;Clt9-O9l3vo9rnviNe=8aNyOz0&s5vS+nGy!LbSu?IiuJcDT8
zJyq>5B<6P%id*p{N>pOkx*uS`%5MX{_f3I_Ndh6OjG?=f0a+1H0Bb;7#!fh*7QksX
zODcf2cTZO_KMDoL&25YC^Y{IaF#kd3&p6ZXZ5xPWyL))BNPY(16w!zAbBvtOATnxJ
z?PHiSJj{0An<G_yp8`T=U1K}@d4;Er=p3yhW&GTIln+l(x7M`9vMr`F3Hb{(oCnOw
zlIdb>-SltyPCC=04DzVR@p;~}q<UK#olrJ{49|Sj#v^mQAFz)|u<|YGg(CZWOBe-`
zyH)2r=rpEuE7uu2M2pQ%+qQYGNJtm}9Rc*INF;oPq(jkQs2}bN=-2KOIVxwe&&*WT
zugLM38y6Vw$JlxyC0%i9K?sw;8g7c&n)P7!_X!m#PO9ERO|+UMF~Uc(V0p53!rTaX
zDr6aZlQq|-f0<WN7H^tU-hVM;r4XDh;OGTni7x^RW(ShHy1FWo(hkp_k6&=VrQUlU
z9g%=Cz|I(T$JQ#%tAZ_Mk6So(6QaEph-133Fn|0!tlTWz34~!9^b6hmw}g4{DZrUs
za$J#$3jD4ExOMBL=i*8t1LlZCPFdk+Ps^_?dB+o(7ds}%z?n;1aM310!L~;Pbm!5`
zhrISy5D)ha{yK*%)M!R1VpQb5gx%1-ty3q!VDTa!lJ1nO1D@?3+gd!R1R&upu`AJC
zjeanoyUrFG@s!;cB<GV-12!AtHS5oS1h!8nHE|2ro6N^|)+ghdb0>MxXQB;2C*o%U
zIfvd9iQs~a;b6GZ#T#Fr;4~y8T!cp47U<Glk@0m9F4Us@s(BsYP?R?@Wji+lPm9M=
zz5S@b3c|<j$L0g!OOJ@X0qX_lH6OHiwg2dM^HzW5_wvo^pXQnLN+$8cf2+eo(75SN
z7ybA7iCw<`H(nrB2Ic}OizK;4#0C(o1A{87K)fvr1&#fxNu2TZ5ojl)q&!80$DO8>
zx><?h@atcJqBb5PkbSl7+E~1J%xafRuxes$nnwXl0jFz9*<N03%naB5$#MVr=zM-s
z;o|0P8|GQjP<mlb5?*S!D01FXbo+ctxS)0VU+mC*ZnDvQUb=td49q}(v7G!fgy=RH
z`+mjyUq9pF{XdT<znuItXv<v02&+1H^H?;0c1;!MUtlP?=9RpX>JhN~xm%j@#tT=`
zcK29ib^uv$_=Wf5vv(qY6&w_!D@>j-*Bwc?|Eelb|7=`@-%HmO8aLrPzqZyqT`1Ok
zZl>r$FJYeh2Sv_P1zbKCA)YYP<~-vhvGlXXUFj^Uo+T%F&J8wv9dqXUNbbCol>NoS
zAWyw`OKcXH{LwwaLoPjG>fF%=%ko_>48Dqn-!KovHJQYJLHFIy1{JT1eU|IB7>p?n
zZe=`I<j(uY!ff6ziP(8-FHB&zmu@!aTaUitNeTbJHk@;$@BZpx{!I7utLOyE)@zx3
zD(MQ6ET<+*I!0~%zB{l4Mq8+OzM+nY`J(!|f(I<8Mmv9j3O!(uALBEE`AL%**3#cF
za#_TU{p;;m6&~9b4UcV7*rL?|-l#lIe|-*&G<;Z54iXV*!HHTOy=&8C;=!QG*NxyA
zL6=du%~H_@BN9L2eF_vUI8hk8XVZ(5ORKn}7Db-QSfGE_Ic?pt;jk47ecY)y)RdBk
zs(9Pp$eU-D_QjGEC^c~A<wDU8dR<38Wo=^A`K7`VhGL3+qY;gS6VT#geB38V757&8
zl$*_vJAcpyGsc2n;5W2NYFDYqA|Jnh^8-IvOFe8E%X9@bKG;oQ<wTg+St@tXZKtfH
zcF+Q3k87`>x8TtT7L#SJz_#tw*5`wI_p=n@M?9<wrXb#ikhWPeW#;3SJ{l9nc49Tx
zgom4kL!z!NT9!xb1Erc0%BB<8FV3R=5@6WpXDg|6tClS%0m~l3RTvkeFKph%&+eQe
zv0SH?RY?Kb#1~+S<O>r?kYfH}QbZuavGUy8$c}BY%KV15jIata<eWAY?PjQ-T{icD
z(x*i%E;&F1j$|KZngawg;Ks7~h3WJ<^PaaDsJQnuePUuFM`R{bblET?;rEPu#MvF>
zEY2*K<DT%O&C`CJ93SC!TYxt-IBXJ)Ml(R9-eH?*Zhf6^!?wT2Z@38~bYH#hqfy>k
z6B#=(F-~YK<_|WkeHjC~da5X+>Gm&@&W1|@5m=Xz(&h7M!|Aj=mW$Zy3XWK+dc({+
zlL}*38(~o`fs<D)`HkB7Dg5pgc=l!M{0H|Z-)`WqvZ&~T)B?5ge1QejQ@m}KS^BA>
z&}WQw@wt`T>fJ?rp(w{pXmouX#QDvg)@bY-aOJ`uvKy<8z`M`O%HhBB<|fj92(W5g
ztGCRggkd_6+G)pXOzVm>kn@Qt6eGG=o?8YsXlUvF9p+>Q&1g+=<iQ8Lh0X$l!2n6&
ze3w4*P*@|#H07${#IKXWEBTy;mrO_~kq*bW6^A{rtikE&Y1+V$7WqsfpRvHCgsqS&
zd4NZ4#J|yB=Ep;!#eQx(nz!*ujy%<02pRj)Ja2(@yPrLWXui!D9pwn)3<UHRBD}7k
zcbG)n>aerl(#P~Mg@|vR?ivXAE;_f%la}!MdJ588YQ%MC?H;7){^#FvXl8f|iIic;
z_40P4>kkRbSIFJ#*~ph18!d`V3fOc>Ls%A8mKguehY`eCn1+{e?IS{~+{o<k1lnaS
zrd7cJWf*)&@stlkLf4LMae*R3m6zM6v_Ce0x*dME7;y=f5pwl4BT*{2%E-dL3SZif
z=6m?7C+Wa0?(H}=94!s%iG-EO-Fwb2T}<3+RSeLStEvoQagHz2dD;P9+nak@W2aMN
z7<JZLlrmiHZ=R3ja%5Jp%H{4|EgumgY^EmE$)nNK!Ow|`+!2En6f;#^Mj`lAqEoCy
zy-YKrK&<&4arkP?+1l^XeRKv+U$S_bD>4Zw@qAw-cunRsn5VCyr&7=Cw%(IbnXKZ6
z*d=T}fiEFr1T^jsN6Yq>bjK9Wjeq}MwxaRO>2z<zN~hH=YDb8^l^S=i5{cvn!IdeN
zs!VBf2Wmix^wBB(^>p*`Gv+*L?;I@&R?K%py0>s@IeUUvJ@FRf7YSS$SyBWJitGXx
zItP_J4dr-CrzJzb)VJh#O7*rXRqjj7*<@vQKVns=>x%q{$in3F(I4131!B{fiXorY
zp*!))xT<%H>b8PboxGymbST46Ugi@ZFS;nx9D<U?6YqY>PR2U?pjWhdQGz7ZCrpe)
zZ@9=>0unA1=QW*6ts!%}$~JdCLL6Pxm?suOqPH*ME^Wg{{ieLIiDOg8{oNJZ<<bKp
zTk_SjUJ|*MrJDJTS+XC~7_w*opmHmBjbl*N5q#{`Aw%4703T*N`KlhcSL-?<;czaA
zgVmVX&X1bo4-_DEQh}3oV<~nfoUOR7RV$X2-Ue3+rQKo{sgpm2G(B31zavwsWGhN^
z*UT<H*`IZMf+-Y~&j6|WmX^oQ`S2|UjZB3iam%>zs%rm|)*u4lQjNGATW}@YvSr&M
zsd%KlD5A7PL7wS)#7a1t_VnmdQpua;z^9GfRcM+qim?5i=@8em(-!suFq0sM9xky6
zc1TA%Eg0qt_d#mS&P)>+ZmVCYEi=7TFSD+rg6V`+6=xeM*F^o!Fku#{-Y{aN3aXKD
zWr<{hD-T$@d@A6Oa-|#(_ZRUStd{kiW0xRh$R~AXxy@>Ut$d_CTRXlt-m2PfwuX5u
z9Sl%QoYyL7%dDBExX|bp;m?nk+Od|iH@;--T{rgx2Cs>Q#6vFl6D@C~d4GO3=?!Es
zIONDe=(IlVwBGN0%h-=OYVE$#pDJC$omfsn=~6F7_(_pmryBZn4Plv={F9ah7o&vJ
zY23psBV}UZ@6epGC@R#N5x}L1IE;Vih~*1M_F&#pCx!>$aZFacyG8DoC1CUXkMzJ@
z6*-IHRMq7|PRp+?kt*>JTk7P}Q~@7FP6fByWBt$;*xmz6Sa!CS<qm|3+>Zo<cK$t#
zJ>{2>Wt47AzI#T75vK+q*C*;O@<eXqFk2Jn4(*@=9vc@YJPHvmKDQVl1XpSbbnjjy
z`u%%Ta(Af+sbUF(6%0B4@-Rh>IKnEsPrxp?aB-FP%!b7=d66K@;*9AG%IlyFkbo6(
z+hK%X29hc<O$4^jWX;d0MG@zsm~?NqEAFs7tSMn>%%qC<zN1%8YWp!v!}T+^Edhn+
zdV?0|--THrdQbJ19_P#t%l(<cJdrMWV|jaO!Nz04zcZLI78(zE%om7{9?^@;Go7{2
zUz#$G7)KUrNw%?>I<(!SH<){i;)|`h0%krE%?ze*vhFQnQDM1_nMgs+c*w@3qeI<p
zTeV-6)HdM5Y&UoTyKK-`@)=7^|M!B@A0VUVce(DkEc$o4f=_-CaOB&v%i-Rle3SE7
zO$PQdugWfmJr35v#}=Lh$^akfcozL#KtnBK+>#!08<)ivZK&fvqU*BGcFMR;-n~+p
z102k7j)6nxqosyWmDH9(Zg|6IgFh4z>&&|;N*Y^#)@&&Z;8lCZ^1z-fgI=B}|D7E2
z2j()=A})zRM~^gEhAoYyf4(LWTzN74@-oW)3&ZeY*#CKrc_HPMU*vLD{xjxy7C)$1
zwRFw+=e~6R-tv{fzckE$!zGv7_}|d@?<``d-Vq5R*x1-u&Qxc;3|4KqFB2#hMOdU!
z9;21jw1nh>E4{;7-j$ZTjV3hvXfLA>-qMBt!OG_ev1MTjyrNALDPP42DBnU3lKRb+
zVC-{j*%(+$m+U)j23LObuEH-{-uI^vPt?GCt5<n_T;)qWkOup()RbU-Ik%1CQIIrZ
zdv)2&)<E!5@1^wVXqQ$SdXKNKeY+T*c`I^;8Zk7b-e)|s_yA9YZ;J-q?!tt1a`i@U
zC)9{Fx?StWco)1hCSg+VNYbK9Iv*oz3_2<XJ=epRYDQlu8=LN{|Iy5fDxg%jMtSz@
zD)^_oz|%7-yrB*gb9AM+NO9z^v%Dp=bEv0W`VMD_$SK>zUvCfGiAXT4-mKtdSGe68
zj4OGS;0@NrzFNe(nR>$t@PUhg8P!Rv|9AagT1Vu?UAQT>bX2fZ8Mpeq$qDenM`O(;
z%P_l%z5xt;1be{q$h)>~@M;RIo0^R}ht-?vDgE*uWQTb~Ctg#qK)!bu1H1v;tN4c6
z6v!fMuI=v`yrZ36<NIuGxmHFTE=(|Qz(Nm2K4qh}!ckF~08;ez9{ye)7@)7~I(DkL
zru+N#UfYe%6ZJ>IJEh=SkCG-ax%gDbK*08!y2CRn2}M%Ht*d;U4)@<VsFnxbbyf`j
z$%cTI)C=cTSQUfo>7i>5x4?_A8}d8qeX5ni<aya(Y10)okk?3X(IYAx|4k;vk*3qv
z2R?m!a^$|w{OUK6TGJxSKRvI3DY$gSnR4mlhPcXbw@qhtmNn>uDJXfjSxr=kQlUm$
zmV!Ot6p_G4laWr5EdFIjGjhWrkOB)BC(cIM?7zz5YDYM2F;d1wW8@2GdCT>sBkWNl
z)?vl*T=rr`3&ZxrMa1Q)dk+^F!Gq{k`2J-EY|slUjQ<A9j8FB8!JSp6XTQPXO+a6m
zd}N7u5fR-6-j<K7dS7Iw^va|1&6W$_R0Pd(vG7LA+Pw=_oJZ{Y`Q*1?ym_SN)78RQ
znPy6$7tCKlEj7e^^j>PN`Aev!(7c+<rVBdGd(4Ho{I?V$@Ua{3lI$xv|4_i+sllW0
zE7Lc_D>p5S_1B^L{}dActf~Gba{N!BI`6`NF(>|6B<2InpOcmsGyf8o`)5%7x4h$j
z8j1PH_UG>V*SXwZ5y&zR{3a_)Jzxtaz-#Eyq3?DhzzhyP@~+zM2Je}nk>Bu=54xB0
z@!lt1{%<JFQ~{{tIbb^HC8cMPV6cBBvr9N0xvbeQkk5WZ%Q9jc<?`7pVA==6nKF(Q
zk{1{eIis=mR27)aE{cT0&cYSLMU|YfRuI;?$wzg-pw65e)cxA1SEh=R+TL?1eKuxg
zzixxx3Fr%v$SVKHJVFLA`@*Br8kpSXEOAhY;kr2<ei0$DD8-72gu$H&iz48BE)?GQ
zhw~q?;ibhvi%*Lp>^?9L1)mhpEy3*k%J1Z&An}=Css$5=&7v%i!~VB|65P+SGPuEK
zw_{Bx&+W-yO)I1regq0`kmPZ}muOiF?4385th0nN4%{orv+a8mm~i~HIZG^S{$lGy
z{sk?sIj~`oRp8CCz&Umt=~c7_HqF~IBu_|E8{Bx!Gdnm3?CimX=3_<ce`qMFY1ZKu
z>-;=tcd#uL+CJD}HT(?Qv29`Y@>F70aL=;BzbDdvQ-h_=V}rhJ=JI5NH#<NkgKGJQ
zx#O>A&a`Pxh?vkh?p^vshN&@EeF3v$Rd!lB2rV^{S*Vn}jDtzVmtI6RTziggAdGd2
zq%*bqo<{p|?(XZ;4b|a(q!C9d;SUV-QFj->`q@%d=C|-TUK>3#c%TS-OAw+!O6@+?
zCx^XyQH+*bKBfb6VyKhUN97K57WL@Xel^jFOkx<FeyXn*MDDl#7V~r_u7+toR@l>^
zy<j=f0~wvu1+97R{qS4`P9LYSOUvHO_E=tH1$=@|TML}U&z|WDcBa>&9PffZjq}T*
z*t9u0$goz)2gV9Nh)!c=A_W8hnG4AMMFfjjyO^oaq?HbnE?B@(Rv9<M@=_iJFp_4u
z;&EJK!bU**jy2HaqU!$srW>0+P?nbAdN0y+<r+X9EM`nucL@e|hRRTdfpzy`j==oY
z1yQUR*d7nrx@3<SMBoVcyRl!uO;`Wm$749*0ucZ>RtEsu8-;&=BKs5qh>xi2e~2|T
z{UlVM9|#=F9Mat5>EnJ<iRi!f#2m*XyG|;x{nwuS|KW=$90~OQU)k=wrUj6Xg$u(<
zJuxm`Gef>qA2T)=<m-UVGq)6>NJOF29_fRsgo`DbQlAt{n?hbcl6$3j@PmIdK$fWv
zvzl&d#NZ7bv!0s4KmYnPj2PaY`#4zKm@*z`rFRAGhOOM|{__X1gb<u?M}g<v6LP-g
zw^SX5^PbM2r(PEai<2m~;`+Sn6-!mWHhk<RZ2svPCKwy;$xY9*)2pX+Trxu?U)!V~
ziOA!La;2z8t0pm%I7WVSas1d5xf2IzlErR!i@3_nxXRz!DeTew0fc9Ak0$MP!Oru&
zqf%SyMH70A$#lC@RYKGQmv>^5C(Cy4GJ%RCzKn&paD9+bh~ZD~aw|kewM-6lPB%)a
z(ab-zxp&=Czn1A$<r%AQ6WLj~Gr9YwLEx?5RB$w^bHK`*uZP=mn?&N2<334HSeIJ7
z>`zB(U`)>F28LnWYclp6P%6l|@x)~0$8%?L!EKI42Wl&OOYc~f!ci$&NvNX9`T*Uo
zU0BBP$`Gl)+p!Fm?j?>HVn!k8W?@qJqwBbe*c04X3c@9k7^5biwBtloPC;MG<1h)b
z@taerQ)Rp5OrX~Co$f>D^{RU`Z3+^rsL!;{_f}y{jxCi-(~trRHVRX4Z^cee*LTO@
zpcPHqz9Xs5Sz|)D*!zL&O47zxkNO5R4t}U?2a1qJ$N}fx>F>L5kkB*6qx7dmkldQF
zRP*Sg7spM!<xU*VlPYEzw#)o*I@?}dj74;2!D_X4l8%8y0rwz=h4+c8^?8Rok8jZn
z>mWx;=TvV}a+TY!SyQF)#0Eer6%-7uf6}(Gr)*3#6=K5qbWgf!z%3$5QKQJ^%frZg
zvA1@U?6eiFwD#YAzHsaOW3f`*GMHm!K){gE$3i8IA`cd?k%tPd8@$Zsre24xK3A!K
z?u-z8o1}Jq4+haTyEev9FiNqB%c&f_FHe8UjVTts@aANhSi)0B;g0dOfv-_(^7=c2
zk{AI>mZ{t|d*^{@T5&6`^J>Wz2hpTQhB+^W=Mc_iZ}1K3*@~EEW96FIQ~Bk7JDqX1
zyB)l%u(26t!k@7ZTm?uQlOI{_)jas{$0i`rkm1wr^b@T*=Z+>*Isez|8aX$L*yWbD
z%bHnXTuo!psb=&pRVr<Y6@OP|3xxKeH={-B?AfV}`%7wclchY7&#qS%cwdK0N9Gju
zplZTE>T^KqUkH*ru?HemoP$zDc4j0Cpio<1Q<{I=NpB2_xqX9ts(-O5&r7z6f=vVZ
zx>ib)J(alEtptO~`l%xxU9^ffqB%y27;>|oZg0wc4&Ck~=q8A-ZnEPB80Agie-Occ
zAJhLAmBgbbM(gU#6>@3y(G5-Vro(S1hc&<r-BcgS&<t<ww4UyAi&f)=!ax$jeP>40
zOuej{AlMeh-B)!$e2-VH0xGk@j8q3~rnKBCHk<N}zo`uTjknJ#m-(fBnu{!u<nA4t
z?dGP|0xo&OGujQ-K*+7^LlYH9yhd?-CASukeFy{g$oY06s!)OXB`K9y8{Y4=agVcL
z3Y<+Hjf0o(4j`arrtK13>e%Q+mR2%#KfDWG7~{n)@4{;op^8dIXcPhiO%J}irVfzp
zv73n-u7){gd;CzFlnv$3$9EoM5VBNpH6m7KlE?#Eip9a;grQ>W3cRh^O=VmI6Q$Le
zvu?Wb{CnSq>Kv)!L0FKPGVThfpQT5+2zENJMPM_&+aQ=~<LbtB<e1RPt28UH%-$gy
z91)v^<&r9=txytJZYR5CB~N|-%SEEYqXF-#?ryG_W{x+@aDP_Ns#RMz9m-T%Sp~&*
z&2+6(oC)WSV{uX7B%lR4zgR?7WNc2Ky%I}<kX?%7Qpj3t`w`4X0%1_rD&P`taSI#=
ze{pvO*^u7=6tS5(2}f+9hvKw+Cei}Tq_0Q{R3KM?`;Qym(MtxO#koTx%yv7tNBW0V
zO!pBqh_O1&9{&ETe0bZk->Sj~Fa;l+b-^EaU-6XQEe!k$3ekOI_Fxnf9-X#AQpllg
zcA$@Ihh1m>rJX+Mx}p|XzeN~0^|8?`);*gH>`EJds#THSb+RK5K|q=nUJUG;Z?IW}
zMGVA`3=o?8DyF~SGtx4ZaVMlAT>WFxRzzL3T=7B*9Ho5K<QF)TlE^j3$k3Bvj<opM
z!?@6%jCUi#=3c`!*xxD}_vzgQ_hidjvXrTX_8tE30RR%q`@aB9ahox#j5MEUcx&}n
zz6P}#xXN}=02hvy@l`o%D6JgMmzZLZrM(zQ?dR4&?YK*=vS$Q(>PuYGP~2u!dmw;n
zS0r?sw)a^zRZV_#83K3#`unxbO+!zg(y%e!Hsi&$6J<VmUXk34mioK^>V7jA%Z}!X
z;f$yB%+x0XPMjTUB!TV%EHb~BJ1AV3P?_xEvz1$uUnzATqshtiQg`LVG}IHQad4Hi
z9hs9Lj1ZyGad*HU2QF%VwgxvffL#AycfvvK*m1?FckBrG9~{8{x^Vo=vDBmH_x=mg
Cu<+;r

literal 18402
zcmeHv2{@GN-~T;Eqh#rnvK6Xxl2chq6j|DiHcN}82&E`w$(C(qP$`ZmN@W>|lD#Zr
zH!3+oVnR%2lr08h8^es5=Y0kh>im}Xci#VdUGM+Q^<doFcl&&o=YE#!26{Sz{1W^C
z0KxtH_8b8K1%E{n79!z4FWYt<fd6zD96Gia{tJK_0M<ZF4XDAt!+>=z{6G8;w}Jby
zR<nkWFg3V6jARWDRfCVIR%^iR;eNub!{8&=8Xk}fA5fSY2(yL{wJ^Ak+X;Vi!@@}1
zU%9zqx$qY#j6@0}LAll-*IF$%3_h&6opATmPi`(LmjoYBE(8&YL{gX<Da@Lb3m;*m
z={|TicL@A};8E}|5(L4^L8LH<lsokwJeAwFh_kL4mU5BPzT++ctP14*AVNEb&H^9<
z_V3ww>{4`ptGAVi@vTQgx5~~5*0|w2A1LjvtxmtEB;~$wcc?_s;_5ZLi8RPJ_nCui
z%C9NC3BzZ8D-y4zNlQL4C=r*{=S`+|NPs2vFJaXYP_UByPXnNBAOOI^AOrwAm0(iq
zVH5C{1AvVa17L~B--ASuGItdohgWuVL_X5OcxO+f{YK-|+ZFLV%D^POX(vOIMeG>E
zv8rZ<EQRL7`t4beQAc2hF~`si?ZMOyaJB@z#0#JZv%~Yf3n9Hr_T9UWN8QU2ZyyZ{
zfR58}=UHG@e7BV_0q){np1~s<v#5et_uDo=MiizjkF+G4L<?i93?T~tiQ05k&|(;i
zz?unQErkTI4@FRf@-v>A#F`AoRuE(fVAqkky962cAb$&Zomh5B5%`}1ilE@p)YnS1
zKpPvEVslh)fQ-o>cPVi3-8^yLGfG$?ne^dA>lwN#t{UBy_82Fs<xRdOze2E&rnRv|
zX@pL1oru}Wh)tImN-3{<JmUDlJAd-9;pN9HFZ$RJRh%m5w1H&{i;?87Ii5YVOut(v
z6_bXxHQn31{=}<A?<$C+69o}bw<+?vyE`SV-h{eQo4X$&GA9z5L++ySW33vVjJ@wS
z2}fH2-tg_9QU6hNz6Mn9Ajurw*7|e*_+H#yD4`!QXvZXB^tGTf6O&_mp-J!l<I%>U
zO<KuA$J}pFY{6uy1)j&u!a~D>(zo-)+vZINUVv?vc(x-gA1kZhcKkhGv#}p9h_sYq
z7nYu+y*y`fEgJDw<iV32PB#!s4v|4#YJX>ElY7hCz3g>VmTWyyQC1eRa{(Vt`sCa0
z*2Q>`wP=qr&=BV6H8*PV`El_y6hX@&rq-IzE-yIg!TLgE+u))z0@zk!OS+F$b&IGz
z`n@KUHgJ-)o45;Zf3z^9)6WGq+%uGRT5tw_++DKZLs8{3&qFvz-+UENFR03_NLDXt
z;Y1Z`6{q)%UqBJYCi<i4V=<p~_cn_I9lf@3aBh8#5%bku@7~yVq0#77=gh9PBje<D
zxp=m%giW8esWejqbZzP`#6+<vO%}$!-CiRP{wPOlJsH@B_PCFJ6@R>ygLjR5IR=s(
zRH2=CO1eXKotCsuK`e(goQtQVqM3T?%`TIZe14)@zOsbMtlB0bbAQHG(X$?4rJ5g1
z?WwY4kEE46zgg?D+yWPCJJ2_I%h`rjcS9JK(K}sy{1sTZ&JLKpW7VWdW6U+*;z?I+
zJp!s(FXQ)b<gCu0)H&}9HqzwD6MT-nzvdJMsNC;*<Evd$;kX5?P(6USZ+fQQEFuQs
zG{}2H2-{Wvj;Q)7waM4BuiwJ5KJ+eSoKOe1zxqlF1ETwO+_owdOrzb+H)Dr+5l?U)
zsDMUaPiBP$jr@citqgh@w-qpN&Jw|Umq`_*<q%Qy!UbQbE~X`vqGs)KIG2y`aoIMG
zq_)-hURbt)6mMOx0qP_xcu9zkx*CvJ+m~<MCJ8Gz6_Hs`2TPTKukTmM9tfk#7Yucl
z8`~k{KI-}PBQot(=oq?c$&pjFL#6`QPW?le9CYw#Xh-Yo3oFiggO!?osgL~z?mUW3
zQ|c-yXi9j|0Hu*#vmYYkl%B`hp-Pm1f2G%wJWklBN;W=))TqKS!kyF@avG`X>A6N#
zJ@;ObJ*cmhP-%b}K3)7^s}NSB!chqr^<Siiv<4o=ql{)``9lgsB{r8p*0L}eT14NQ
zVOe{QdzNRm6*6x7S4!RzpYav+eqZnW7(AbLuTqMZgG#*X!&cT%hPl@M(qLs_EYrnE
zf{!pT<T!Ys4T-d*T2zMY-L4GW^<`kY-{~3zm-0#n+)}zZW)5f%#yM3nAk4VU_l7Hn
z&+7N1ZtV2<*6#QZXTZCb;ldjAcx9Bf)!`r*DfJ@aAXs{s*sH}7{d5%>H*w$35q6GY
ziV%}Zm2NEbtkYE^FNkm`@ev$omBv6BX%*mvAXd)<u~isrMZ;$ujffJ)c6ql-9?aST
za;+Rn3hQDSJSQfJ7<6ibu4HJg4M-i4N_sc26-f~TW!bD9*ieX7>9eKDJUIv2*@nBZ
zV_}hlK``Gbi}X;>07Pc@_$rh(M>73_Na7$kCtp*-=NDB~Hz_mNyGXq>#$oyC?sF9=
z!p#F0%(o1Na6?7_LE2nv!m+gPL)$n}o2qNqeLgM<+LZ=Hk0Ik&L~Rcgp`<h)#<Dvy
zj+|tt|C_E>LcTH|no&T`?~i@#m(J;JJ+U<^)ChAh>{U_7Ph)1&3%>y-$^q&*l6{k?
zw}ZP<`$d25FIr;Xu({V`^}AT<7F*D_9UY0t{2Wzf;iShI9j)mSZax|zDS$2Sk*~^X
zzQ~Ap6kEc@mtzYjuR}wJBn8wxqt^5l&S01V?qpb{#r`qGaqbn%xMRT{Jm0`8RJ8nM
zU<}^>{YoHP+vq6a6wcL1ARl3~_XseFr3b)qpj5S(y~pKniy-!FZ{(95y4=t@6$_}G
zi_}fq?gwRZ9<XlYjxgI|igdq-QyoGUaA;O)q<tRA<OGI9t@PTGS7Y<!T_Pt+1B|W2
z&_I$61-78YT0FfVrz<{N5)^heGgsFnHt(Z|jeL$OOFTw$TwLsu&7|In8d2H%-lc}1
ziqcl}6y|a49}LVPr9(cW{c)u%Y3gs;&3CB9p9Ywl9-4A}gQ5z0n;8PwG*xA?XGGT1
z_5CPqc8rETr^q3^=Ar6s>#X4rC2H++=qNKd>W&usO(PC}!w9ok+lBmUVNH{O4>u!C
zY>Z10&542R-P#*;k~XUS!D``qmLUCpyzFPw3!d!5^0Kw{g#+2EKuraOW#F)hRe}h6
z)}*g?{?`Llh_Kj87*=Gk+wQbb@}qitL)b2^s|G$s`XVj6mp6y#kS?j1SdqK9#LT$F
z*vfBHF!wRJm1*7zcCD^MPXaI}iaVPcEJUR%$F19!j7S<vU(bV@Cx{*m!Z?gtM;B3%
zB!GR@PQ%FSzb^3rshVeo&$K5{`98=UAR(OC^d{*$eCJkzki>j4H!lf~MD1X^7GuCW
zGT(p~txhE);8784jWP`C-w{~y8LccS>>?E4zpq*9JvPFe2p0gbwgLYM&8L}Tqdw+B
zyyN9Sdw*5vy3|;~l1p9N6!>^1PlLFGnA)h1QZfVu6bNeZy6}?%--4A^ATBk;<1R)U
z;^ThLW?*8qBquw_ME%CYVCD0_tIU6)(8e09b1mL_03joS(%vNpE<XqR)-S*sh=E0k
zU<p4`=79*<bqf3(!K1xi0DJieSa<~yX21^~D1xO25PwqBr|F(CG3Fl(+2nsGHOfn}
zF^9*;DmX5&vO{aHB6xe5y5@n%x$6jU!Ax{fqV_=naIU=oCVJvD(3Wi4yG!ovQY2`}
zlV5tk?~WLF`^xR60e|*OfK^EkzI-I^7Zk{LJ_+-)NeRS-P}lSnix5LG(KsB$8FHcU
zJ=Yck1e4Liy_!Wy#Ty|`lzHeCKSh9j`q?GeOoQxYbB9zqdP!N}G6MX*H`KIaINO%#
zQM&@2#BmxviV1u%JsrQdMC1O}$;cdqBAno58mEyoq__kH6j!h>+zgI!w+Oi$SiDLY
zc?tllI?{@Jnz%!`w88x7LnYnK+PzZ@<nFbGK2Y*YANSZ9yqM-4ft?X&)Km0r<ye+x
z{^D~2(*lkf2N|okmUx-8={Z(#dEiP7H!3{NS~QqDb|vLFM43ng7iT(5f`TUwmcBu2
zW=!T@`bDgkr=ensL_+P6BK20U4cEeLG^7M!_PF}2x08F6L0#L{Atww%5mTDIRdP^?
z?ZjdB_4V~kNESf*6sJ@<ZI#~_nDWB9#Xc3Y4n72JgV;nFon5pkp<uP3&2lCg!NOO!
zdlFs%D*^zo;vojlea`(@zL(u)zXK!?3+C_<Qj$lYp1!{QTY2sR=G0tGAa8R4<4n<~
z8!agkPtxRSvsf5w+#}eQtQyc>EYmS#Pj6uFqbTOcr-7OV22%=1;t($5$W!YInf!r5
z(>fTJ0vjWCPme%d5|Hsl5h981p*&dzQZwtgfnzbyvoV4rsREd+51monc3|zmei4N+
zgZK@6pEP7)zjf^ZE4mo0LlC-U%ne>#XL@n3jpd^+sIrgGgJa7cbn46^03lCVAGO>H
z97;93Sb|d%EH_>ytsz3^nmOV?ldD6g;=S()Fh~FXH!ilFPx7yLy>=S#0dW32Lp{0r
z*^8$JLenCi0$;p=efv|d64EkaM#u?krx-0{?3LkbQ%<%Ym-v2MdpyeW!H#JcgCQY=
zK@B>86_UBB{48GG@0%`6gL+2vN_jH5+Jt?_GuUUlI;$xPx}cH?>&0@Tnd49Y&2L;^
zH;eTD!rOJ~ktrhc#Z5n0w##$c>0i3ZePt|9e!=3-pQgh@Q{q>FJ{5?3mF3Igzh9wl
zdX5@{Rq&sDgJabH9E-CS|Mvm%qZxm_7H6?IdvV1T>G*|`?_q5IC*Qb%{694GzVl$=
zQ}agc_3kqmz?z#V*vW{fPy0?H!ZJoiGLnh?(yw;GP*x5JRLm?q`uIa#TaxvTpn!c|
z$-w*NQa#y*F$n_Ty_0Y2(+xZ7&!?#E7YCUinFUtHmlB9ZZnriA%NKOFiuA#KkJEa8
zJ_`s}sni=MKi<?cZP@=BU<I3+Ruw*98<U$H9)VE&IVffdtuwu1OUw19pgA*F;QDFV
zDcNUMzPjh>vMEH*(A^#Xej0ewTwzxq?wfXmX`TsTb0xCe_eJC%lb_2RkW9}|cfX?Z
zmulnxu|)q&q5rz6{@dF4i*5AJB>E>1`HO)2kF@dcqV7MGhzt4z#*sr>9A`9|!>XuN
z9WR9A{4{F0i0{FRNShzJ#ez>n-QY|)4SgW#YwlqjDjVeh)erDxe)HtIb~g{t6I<DZ
zHjA~6VYW>?Y0$U)=GhNRsRN{k$6sKMv!1h>wZ{h>FQ9q9x-*bupY#w_?=O*9ButuI
zILmju3I`t5%7*u=`^d|N(?~lcuYHRMA>{PJW-W%t0PQ@pW%aCp1DC<KrlST|Ma-hb
zpU<$4<321<M$Hl~LnOn!z?Ys$h*8mk6XvYI0q6Uw9($gmG~bW5jgSXgZrimv{Tg>Z
zo#xbMWZ`Nzlx{L#)YyAGZezs3SxaY$(Dd+R{!bmp3#AFWJio=DaPxyoz9*#-vihWw
zwd)sm&Wc`4dAJgqpk`%dJ??gN7(~CFV~Xi``)9#N^Cy8#U&3qKva&D2V?$c04ovSS
zxEfjikQs$=+h9Xf7B@mhj?dxt@R{%$@(SVfkY#rtEreUBvg=Fel1MLP1baK^4V1RB
z%@_NudB5)qopVJ4@E*EJi93TBf>DI$7=2SfvvE*^KwblrEqSK}BU7DFR&ygn^IN3t
z(3UHar&M;2RYg?;6v1RxkCWV;Epcp8-q3Z+_QdI=0Q+TlK;orR^eW>*;fwd$mzDi?
zU^+o?Ln7<o5T|ljC~l(4lcWzcf3i>b7QvrA7OBFp6lkpTY<<RdxG(x!U;VM52KDg-
zQJ!kfR?5IHW-hR7>%TE_hO)s=7H{Ez?nfc9`n+}zd-faX9rvg*<0dUQFzp`!?*|&P
zGIG3_daxEdpAPh-nap%&)+qxCGV)XVlH=~YEz6G-zgF8R|0VS;_{R<JU0QV^eYZ$9
z9^xpd`pCv@=IQ5uVtzJ8CUPp3D#N~~ze1lmF?R0aaHJoyVeWe83I^njaUV8gemhs#
z<gk4CIpclwU#YzLuH5AM@MA#=`NhYMvdI!$Mk)F81?+)E*&7nPZoBz^6>GPg3c0+$
zL6^)M|IA0DIoBvdc5$}BR}r`&;|yLTiq^h^<<@4cfUpADYZ_8gmvz*`DVpnS5*CZh
zsP(Eo%dXu^sSv>W%$b@{icrJ|*ExjB@SRxyRVr@StG^^_&`<n8LSJj*;9QY@D-I+Z
zAD8_jaVFI(M|_GOtH$+;?^K11eF80{yLdK59Lsp77j_V?H@LCt{QC0Ak0h3Y7J71A
zhh7F$ISbmnIIP`~>VDr1{k1$Y#AApyycs)HhV#znWzuK~RX70mfi`BXZSm#}hu(!z
zf4gh{H%(emqRQAqO|Y*@Tih=ZU5O<85|i|$oLM|ur`-DHpET6@wAM%?OeX63{IJ@E
zyS~Z|Bz178mf?QyApSWkKJ6X>VgMQ5YuLExVh>y=aowQCae-1kW27QS|Hb1I{PQf9
zFj3RyFea{8zF@wj<L+;-;&}2`&z6qsZ&o-y%U|a=zAD6ufq;2*g?T)fVv!fW(=lfU
zkS*nzui9tbS1e`qwS=V38pmC^HAjLFVV;p)nPs!I9DryG_-bRIB7q`=7e);z0jBI%
z#BuAclW`|k|2qvKzD=!7BO??o3;llbqU@z}ePp7*oAKgPvld0F6|L?RS1{Wm+@e$Y
z&ZnjZqE-k+TzS5J9vwM`Tj;{V>DwUVnD$s&jpovA^|N5ZRjh{eq6z!4P^fo-Wdm=f
zw@se*;$OZpKjl9MhHN?4ErStGzUL=~EWdLEw3N16DRdE3qgQ1X3a_8fLose)?n>~8
zCb;U{gE^kP2ua|Z<8jYVYHNNA4qV>4`23{P`3MVyd4y-9P_U`Bb9k#|1Gvl9(nqfH
zpKX%#!rpvHRv`tU$Yv~3;FY{OtMh((VMr}+dzuVtmU%*6QPY{LEU&8u%o#go=3%Um
z%s^`7L)Pz=P3Oiu`1Ii)Hq4Yw->Ir->3D`s6uRR!fjt+rA+!bA*BLw#*st7jBgiQ*
zE;HX0^!C?|3hQKRHPI594M*lfR_DM_r|Yo&T^Zf^@ZW9}w781lzwnzQx~36HU+x7E
z;D*r-6FKWro<aAw$gnwnP;sD4)?aY<tS}%BM@@kG#v3-IJrpr`Gi>*liR{|zOQ|*f
z7lq`zMy=@A6?dQ%!B<-Y`<0m0@FteT7sEX<I>sFgUxZs`&Zo%x1O=bN!O0~psWECn
zr?LQ6)+5|ozu%m%8Vv52g-_t7JMzq{wIlBzLuPVA?$i?Xw>jbw?FAxSy(3JxvHIAC
zWV&_F0Z8Dr^T{ACu)$PfNM7FHmF1d<L3QTI?}c?}3#I~BLy&Fp@q&7-fQu5EKlO!<
ztSgl)TDcJh^j0vHv26F|kT;&}!R_2GF1;|za_H)kA5ogJ+I%|7<OQQl*Ub~e+U{;h
znMLy*;EF$=cjB?2Dq>~8*}~Ghhol7V+wA@!ZwH<Zi7RHT3&){;&yt(R-TKF;lq?!3
z@V<@UCH2pUeX}`V|9EI;TMM!Tt}7H1B(PICHYfgs<BEtEU~uPbjqThnSj*#OUP^*)
z>GMinp3SHKMTr$7@nZ>4icWati=A+~FL*b1G2-OLxXQ|^Ug!}`ZxaS#3Gxz_8BQAr
zo@~LFd8wb)TD}2G5sE#(>22b=?`#4GG<FYjl}w3hA9V8vrffbM#K5Fm6Vh0B`nBHu
zz&hy%e}ZGpED7(VkJiSmY)a&!Uyv|W`<ytOrh3qrX=CuF<cLp9Dbzhmj60RfO-HlP
zm$-qwW&PuP5gOXWhlhaI!Fw*bwB)-L^sMC2Cw+OV@j7(XtCD6vvf2Fu&Pr4c9-44f
z0m=9)ZC5OJhkXaSF*rOl_enzytey5HN^jqCU3eBkVC88E$1%0<mV+eo<vuoyb;w1o
zPv&3~ws5O<3X2_y#0p;)zdCpJ7+Q*O5e#~Q7jsA(2yx@^ETI>4I*En}&z5rW>+|R(
z;~%|%*`Umz%xuN3h#+R(jjU?I8o~+Y9Ee4!f!Rw<>+gX`gA1f@ZiKXC(w3PoR1x@o
z$P*EYl<rb8|LGrUH<^OCb7@Q7sX1t#@<Z<f&h&UMt+(MU$E&(ozsz%nsUbfGL-f@n
zlU}UO!R-=1GPw<HaoLU^f`yFtAC&nKnUJZFC_5X>anV=Hm3<k3f`0N_XNwHSv`t-w
z#L9l$blGuGcb@NgAlUT2+Hf_pkQbO|2cIREo&&KtQ4hw&tU6>?;DHezEdKdO_-vpV
z+@O{V%tOsTP}86Ij9#(G4KnX(Zjm-Sz)YJ2MQ94e9r|R?t@-9Vo8Aa;8ZOlSk&B1{
z&F}3i0HkNbZQ74f*g5E&^5XA7tO$Jm8P5MZL*6ukZ4(nk!=#>G$QljVuaJK;H-yDS
zry<^64!yh*JKO!HQq%k}JC&H8M4o0=crJtU!S@sXl3ZpMx#mZ9`mta9iNSABk8lg;
zIZ@*K{Of<wOu;&CKAh7<x6F(3|0*!oSI|$R=BJl-FD2wj+wYM@OT3FtC7)q3LRCHW
zdw!JbM@@r-6>Oz9x<I<5QmG$gh-l4&&h$&vtn#Uiq<I2Q$FhneX0b-P&_MHZ;Rb0v
zv@LzvyeK_oXrhH&vc8z6CwFIwn2S?b`6FVS1I|y011UELGiySB6l?Sx6YqYz(C9c~
zANNC{jDo&xIQ=W-NL;igjYq8+-6-pU=$}&%#YJ;gj5O%sGo)7J5xaDF=WCuwIgQ>P
zql?AoD45kSp*IQ(_`Xm6?WfJFEtqa&Bc7f3@(pDtG!{o7+HUC`i%H;S+{LeZT$Cs=
z4#mq~R%W?t$;<~vw7IAYvp|zaFE-a#=k2`m&i^9Qyt*fFq{+s{M!%Nwp^Y8)BP85-
zc;t|TiH*eX-}zsAl868hR6Fc;>suxFA_8{52^y{i%K4#sje|0zjW<E;PXVX&q~P>t
z{yp*_+5%<vRt@2#*6y-BbG>95G!SAixpxwyrtW<tgu5XmJlm0`hcFOM+wEAvEOav7
zAKot;n-jXGN>VRrkWnv5Fmyy!$og-c6V#{rxtC3)1zwSM(&ibpgpcsbhA`--=shP`
zuMgy&%+9GVzFb#5iXuqO78ADGmy4?kp@_bD>ud56s?#u+Mnb6;h-8JKjd9lV=6ZsS
z)ilOE4m+ahyU9|py+6{!iOL}P`rCoEe&RsBXHUcaZw2}&<foV=mni}86scnN)gReN
zz&NM}lWh+@_(84s@0I=kGof<I!WC|E^CHFnQnXzB+PV1dyo%&cIQ;9*r~X##oKpU8
z#ZCp_e=)!RjaYaudnzLS#f8(~iv3%$b2mf2uk-&THT+*qUW_aEKWCDgnqA|2e{Kjm
zaoW+8yB%m28Bg7HoH1&Y%5YQRURTM9zti06KE0{*SreqH9#n}R(}p*>-fb=<-I(5m
z6ab+!t5|!G>ZVrlN3`9XE`_W59Ms{>Cs^N#U`PG+WO%32_Fk)?u$jU-Bw_7W5`zT#
z>COMM17@VK1ed0_>HaebF6d0{weq8|I@5LbrmVvL&+v{ZeCrDs+&8^@yUVL*gB5)H
z&Q}fnnh;sCdEK`m@nil7r--k*iAXArBT9D`?3$VIi>-nf(8*6<GNY>NEsIfv!|5Ad
z&QO?{&aX7BIe5AySov>FZ$iN1zwkFhPJY2$a$g1dp4%yMf8F%YqyJFY=gei-P34GN
zOd0#4UUZ$BHl*BP?^CVBA2qLDo^z<yzIE*dp(ywiU<!|W`mY>&w^<|0Ei`+(z0{2D
zmga~aIb1bb-KbIDmFX!4q_~Cofp_M8*L#QH+gJs^wJ3rc^GKJ0ZREKG79iU$&0Adn
z+dgmU|6rkKG~}GyM!rEMA>N(praEx5m@^8W{?pt&xTpVbzCvZ!ueNw|k9Mi%_SzD!
zBKp<Gc+7bQ@|$q`_VzbY9X_mOvFaip8xl*sa|d_R1H*AA*u1k9RY)(8Wc)!!594*R
zuEMvWUSVYU4YpERCa(=hKeH@OZNAomj7gYM^mDc<zG7@FT*1A?ck5EA+=-uNGrOX{
zWI`i1Lwbj=<~@7LN0;sQd?;Pb+9xCRZP{td&Jf{P0RuWL=)^Nt?&qhz?6xnb|0g!_
z1KtK>S<T<!XD_>$y)OglGxr^n$P0Ku;_<Dfq09~CDKQQf8XKJ+<J%G1D3o@+g<MJW
zn{@<Ii)gwv8`B-h1H|A*6nmbEh&HS;m9^2r8KX^$mZmmjX(Qsc!Q*Y@$T1EY)y~7I
z6%VIZn03D~GV>MKH|M^Q&m6GQl6yP(KYciK*GIR1=^k|Mjq96-j~oKp*u#O@+xrw#
zBSpZl7##+`(C*L18r(n(qkreS_KF<1*96l1JPq6>^l|44Lh1sIrNZ3U1mk;;2HFgs
z6+ov2aKrMR{so6arJK4kUs$qPaqvZpzn9?wssCF~@ov43aH4;5-Ml>?a<9dgYA^>J
zQy`osE|slpP*kwua40#?hVMoRds9|&?jQTMXN9z{NjqoH?x7ZD9m1nZjVd++a*VtY
zy+a{{61&N#fWJgzb1{F*9u4>Q*j3w@Z}6$fE$h~HR&Tu#oE`s^ZcMp%NNQ!N^ZvEs
zATqGYjcI$Nkl$8SC6C`hqM^-8!)dhDQQVOJNL;R4@S)Kj`TC$&jTzkqE`6`|hFF1P
z0qn6p<3!<5YD%#RRIcF5e%{qodd28)=m##B<iSl*$+@rhZQnA(<%9>>OrgYWxay;1
z<klMqMbjplmN9fRjq#$NR)T}%ZzqqxZc{sHx12s0!g6o>EJ%6w#5U#kh%Llz^7VH2
z(lGfP4-7p`J<!ptaXpHV`djc*PhWPY>v4QeO7p^)5142pv^zB|N+8MbU4ZI9tKUOa
zpQ=a6X`7F{In<uF?@BHwWi+_*ZBs8ixvweF@Vf04)B7Ry;Wl&~e`|cn7W<O>Mu&yT
zc^>n4zum$l;U!X&ABuq<)ufP91y0VxZ6mLaBCPS8p5Dqn3W{MaB!1C%a59O{@k1d}
z$8r3QuA%AKgy?&(oZ&~^*g0prrBjow!~xa2(p{=+qF^$lz#Z3FiHj7@ph!<L%KnTj
z-L$o`#2En-rt_av(L8gcl;6A|_TtuY4ga)wsZwX0(8}VErYeRPZr{9UEm5(z;OA_5
zMt3QwrqRSxlZQ~+^dx2_v9@7x|GF1icBfW)+c8XkGh9UlZEI?jlhaBsH9U{`ASwEj
zBS^LG`$Q9Dr)E0$rEzWUmWsp%D-)A)(fx*Y0$7z6wp89w!vk8@$_lcYnEfBgH{8HG
zr<+onbJI%i8wg;n8foyOkMDIe{CgFIoXW`CdI!BXZ0Y@I`QjMeB<v}Ct-b2r?Z<1h
zzz!q2Eqk*iir`E)a+_Q|qG4P%crwTE-AA0|O>w$YCW1sbhg*={UHHNYeY0^pg~__{
zUL?nB1W&?L6*()xO4Nx}rk)2KI;%KxjrR@<^GUjc-$&d)6lGP3p=ZfHYP2IeZLL(0
zn%zh^A8w1I*^NGsq|SMk&o1Q?@+r#=>K)sACon+Jgh5W~fZvwzJNLZ+4Rs|;^R5Pu
zV(aYL7OJ?&mmB;@+c>YpqZr52`A>Qq5e!c3bz`Y)D5Pvo?lqw-z6R^YB$rcuW{WUw
z!MoRW_%|sh7i4+KLmun|((0V+UX!ni)tp9S9FH63=>GQlp502(9{-n(rSQ`;-cjD|
z@vq?LO=*vd88umW3&G(&7j`i|@ZGxJAxTCrq0Xb^tYL$SxSWk&(&DA?yyuOM<GyE-
zl5fB+x6Jjdb1m6uKUK6ZlIYrA29?#z_YQ>cxykf?aqf*v-1OSl#2kIk6b&!f%k)cD
zy9GbO#z+%>yTi2%?YX15XehH~Piy{ArqG_&Mb=+PEx#F@y(W|XI43mOLKq9rx&z<*
zLO*Sk5zb0cuNN}UBr+OIpOd|q=igu3a3S7-a><e}et<VC*)|Gx(I&2oUQe@tl9<Zi
z>XY7c@GB7FR{eka9)vwxe4!54&G$Yqhb}N%8mfHp<~}w|pW#-D!>BJo2?hK;joqLt
zw8*uVOlrrekq~1_b5mQWue4JL0&5~KyS3_(2CF3&k;!~hg2ME%uyz9A@^F9MnTxE>
z?q<l>M}uY9#_EMOqX?Q6CBk{HfcARPlt)@4XH^jBWKJN0`{Id(oel8o7U<H}#5O&;
z1x)iakckLED6*Ef>3JQq<Wv!wnmlYE?~9I{53!>$bl*w%X-I~n20Oc(l_fc;$YL=l
z4$@*y*AQ3(d3UJNTpEb>i0{HhNlZr4k6x29R~5o4go;|IO`QL{1=(T+ubv#B1;4r=
zu?6g7W5^#pBz)*ghJSAL@c;>u@6dIi2<G69XQ&o@LkN9!W`S&}EoG!<@Z-?%(@$xS
zJ>PJK`&F~F%rzW29C}J~En0=eY43cvm@7PQ7JBvj;>eW8$h4O6&VmcI=)-qaN7GP{
z?Zm#af{%{A7?qtXpkWJ0xJ?`h>JCw~%v*IwT$Om-aaCLF+H?guYl^+bz1kh+OL6P|
zD7QTZZYY5zb%9O#jl%Q+0c-|llI~i+4akc!q}f%y#(`H6J4u1?!*KBhUP}8t*c<r>
z!y%s<9hcQPNkhXPf#p^U)jfW4t`Lq;1WTI6G}t*do&(~5*d$qtJPSXNh6Fc@T8cug
zCn}g(*mdEi4D{qg>3wNrQW56q!~ysXEv_*6%JMGa76lbPZTiOAa;qY5DPD6XlN3C9
zL`e#Xl}CX!$6I@{6zxbOn5PP)@!rtj4EVO77BLgOYsIxZCyJ_g;fLwL&1wmHuk=LI
z2qv?M<Rbx$Lt!$Pa?sg%o}jvgGb~%w;%P0{CX56Rs-?S%p{|kMPLL9KvAdSfH|MTU
zu#T5;sbqEOQTQo#X5w=X_tH|YUj|2;_On$5334cK+Eew3=?C4cOT)GLQMeT<(jbLq
zuO;Y8-}s=P)<oWT%>uMZBSBdzIU}og2y@)$NrBZl@>9%7tr}?J)5i}D9*z1)-x6ja
z9+U4d&Y3)k{R|nD0qt$l<{QZ)TE%f5Cp1#J%la^6V}&Ip^wAOK#}Azz^)E`L&7&JB
tI_J7sBelr8AKFJi9QObI+f~?@RTsdrvqx+$z%Q`@`}gYYN#AAZ|6gp<<{AJ1

diff --git a/public/07-basic_statistics_files/figure-html/incidence_visualization-1.png b/public/07-basic_statistics_files/figure-html/incidence_visualization-1.png
deleted file mode 100644
index 573c23b0e3e6d18f1b59f99d3f20f6d3aeab929c..0000000000000000000000000000000000000000
GIT binary patch
literal 0
HcmV?d00001

literal 53684
zcmeFZc|29o*FV0_b<Oh>ks%Qw6d{F6DH)<NM5a<HG9;1=_h=$2Dnn(uWQtHIvwKTQ
zROZZ)$eek0@A+MQKF{=hp5OC&J+IgAkKgz8dX96CyZ2h_eb!!kpS|~4d+mGI{ODm$
zHW4-e;5=e@@HhYy{VM~oFwp<CvDnc7knQFs76!7Kmv_75s%{)Ms;U91Ha4m@^lO4@
z0R1edXVKF(ssS6>HuP)4#w8%YCV>8>+$Mp3cAkx`y$Boue}w~7>9h^*0Got>jiWpu
zAt4}ve(ek>FApfEUzeT&Jmr#zC-)}Us3!bHObAd-_$xqXO-QiWkVq(}|0R^uubm0y
zO9`DzrCjRe0jlKzHsuNQlMY5dmNtl;o#mZN<x5LnwkUu3^5yHV>COb3&V+!@a{8Ij
zS^k&aNk5k8T%Aix3;T^1P4yNR7njNdmdX>BI_YQm5}mw(LBB3xUe~bLVC-oUR`m}1
zR)PKK$1v=arHmTgaI9X2Hdg?|LN`80<j~AH07*D<P|xC8!bBx|r1W9$VH=fiobTQp
z324mfEX=GCUzEIhA|UgWqQ~uvuD<M?<<BzPZ}j$my>Qah%9)JCm4r{nm6liTf4^<F
zLa)1~eau7gB;M0DSaSTz_#dK4yt;c=(bma7%|a^lFBe;socW<8!!%w!%M|_+N$SX7
z%FQl3g-*}lbp0PQ#3GP!<mwKI#Pe~%6y~mUiOIrO#``XIt*9eT#l}?or2kv<KSF;^
z^%U_9ZMLS`uX!|?y7-Cgx<+xN{rUMb)NzkvW@VQUw{FP+N9|>|HK{HBt2;X+h%L0u
zajWI~zc%O62D<wSb@UzYHjuFpg*K-aKkGA3Ptbm^g@#ICGs-;?*h_84mH1axIfkrx
z10(s4>q^x6KC7wRrEL3g+v(-}odKJ3{AdePYGN@%{y~9?AYS!Q`Q0q*AgftqYN+e0
zwqRQ2+U)v3H#2e4aV6lXRO-pHHdRC=$ZzMJr1psES7e6A@yR<tJloCNR|LF1w#Sy=
zBhOpX^j>%iLC?Y>6Ggd->g-(GXzN~*rYuey?Uv{XSso#G)Fl0_w`KoXVn}TnIIaG%
zRn*RFAQP8~$yJa{4V@ASoks`<1P>FbH?o5khx_7I&*jZU=kIh^77t$U&K#c0BnOy_
zw}``fMENugR7&5rdA&)ha-=RxB#PpaPltz{nV%DQ$qyM*dDYFo!ikH@v5p>_pq?7^
znA`>^f7RQxAR1M|{`{XEEGvf;OPPT<{>@&Z&3ZiFcty5|+MT)lOQOG!?7zBXT`#--
zDYG4$P#S3nUYefHce9$Tk-*yfw3q7x3mh>&>|=!Drqu~$y8bidJTh(8Gbw!edTg`q
z>bh0-?tO}u;}vW8kv`3-Dnky13SI?ngPs>X?sj8Svueg>AA`!1s~XKbXw{CxRo>jA
zaYSsMaarR}zKpiY>b)=b>DB5sI(mMxN=V1@2JO)6<R%Ryh9y$Bvb=SL(Wrtng{SRK
zoLMj~9!}e5Ure@klng$iJpX24EZ(Ee@k$mof=C;m7(3^G$nUYZ1Uu?kb@Eq)2w?7|
zb7X36fVo-ntH6@+wQ2uq;z`e6FHVyBpY04d>F5&qRl?8akoDOY!v>0p)_1ug+R8i|
zX8Uz9+CCO*vuoQd#lxtAtLtOx9*zf_pU)6OKJTctb}Tvcb9OfQJDD&~8Bz7RJ6b;e
zX8xKk7Hqnk<U+My)Cga{SH;@t_&Q*Hq!$OZmdo`%b?wR-C~avWJ~U610fIJk_x-E;
z!5=RVTPuH7trDGIz6P3&7I1Q8emv8ahNG>&$jfZkrR@n^Y^xsY*Ih4v<GCKc$9Tay
zs~~gtv`e3|<xk3JO|=B=%u05yW0uU&a=mAAIK3qgQIy-u4_XdXd%saamd<DokIDrr
zEY_AhNb;%7+xklDcIEwUp@%*>Kb5^M|M85=ydAhuv-;ImM3_vgn&0PlNPbt4U*#Q(
zp@?%Fjk;7v@+@EB{wwnv#Uitoe25@vjRf$u7?tLDrCg~BHjq`R@@QqfM^1}d=?Z?R
z>$dLoC?zLuaI^is;6NP2hTQ>*Mt{vU|2~(L@2TPe<mJUsMW*l%wo`)kmAVfis=Oeq
zi7T5=VpEQ<(3D+4LgeG?Pc^0&w2tP_i28{#gc+8#O$&`Yv(r6WwR*;#a}_2-*F&0I
z`uSS?+TA*n+leQ;9}t(><z@%IJ#T7Qjz^6vrXL1f*MR<r(0+%h?6UBi<lxcr`38)u
zcQ#@RbjHo^cI;N3b-6Eb^qg`+!Ijy2`C_^{2)Ko?!GrPo+%i{tf%#j7JZF|+$HLKD
z><;y*ISrnJg}T%wY-mbCzjiL4xFj2u8vCZs=VYFGph1EJ`Lhz^Cuf@>HyN75Z*?Xf
zx^cI%imoRWU#w#1ZZ2kxdYq+N@K<5;j$|D@h{Wj=>B^48N5yzWN|48qe%qlAOMgMx
zK<aw>`s$kQEu~bSUe<r=svlHs8O>nytBw7ys$Q(Xt~;iK_L(P7pIN!(C2AIW0rp!~
zgVSgc3vZ{3NA$QvFoR9Z=qtP2fZ^NRuYw8N3cNkf#^kTtNw5UaP0DgM(wxS=&NXmq
zB;=vXpxO1+Kdzjvr%v5H8aUl2$3$4)epUtt&E+YXtr|v;>Ggb~D){HR@;Yx|uK?&D
z|2?0-lNEZHr^)N`<=2lTwY>Sotb{nR3I)3}P)^*PczbFanosY+h_pE}_Lv7-A0@6#
zadYbutj=jET9>yjej<*GH@lFjR4f5U=KEAKD<ePK>g?eRyhn<=TJZ<C?_InRV;VbJ
zo})IH%+Z#@ElIuK%nM5I4#L*B`}S{CaTl=FnoF(LN^+F;%AGjP5jSHToV)woj;rjt
zUQ+QvsDHd76c>HjIbIG(I^Z+9tRAfcgL#=<&5C5t_5g)XrNQD2!~EXU1D`N~)edZ#
zJj5+fx;=kAM*@rVq!x!%-A4{e_qwhKg#}v5o^Cpj+K|<w8RQppCplkYz2tgr@rkCs
z3$v=LbW5G#-#x_;=JrL>`gIT-4x&my@XXG!Z@%r7x!nDv{GFU=L-oX)h42}A{Z*uM
zOMY{As9bdEYk}pN{GV}TUoP5=XZu4-U4i1Q4{)nPp1nND<f{>Gir?&2uaK`EU_2AE
z{K{_9`!UA1FM-Aw$@sY<B;Rl6<^lcRf4imJSo-i{o#HaajK$Q73;QtzH`AXC*X0$R
z_3GsP+Mi{)g9?`iu{BG2$3#u2Vzs&3aqD2;<Eb;v>C4~K^oIkf18Ca9^@4GSsW-j?
zjmI2Mi9r21#kmyPyx&lp@kW!=*4Yg8LR&?BjXwxuJI}Y%_=bxc-TQg7R{CFDTh57M
zT-z$K6rQaZT3yhVH?@4m3}5Xzc+>mX(DIf)|IpEDL&rA4r3vZTd+SHc`s{O3h6USk
zY`^Bo_1K}u8{K`}bfj)Fb5z+rA|-F&H?n1MAp*QM?+EPu<FMclnSt(`A#l@ooUQD=
zjqas1NE{`9^i^x0qBpdB6A8-hg$apXvHUB(*iUP7+Cs|S3!ToVWXE%d;`+qt!$0k-
zNW5aY1Z_q+T)wdS%$r@sak4S;p8a*lyy|{@Os6TC75e0~IZDpPB!`!N*)!i)x6!$W
z%W4PtrPJ#?*<tLC1GXYUeNH|$F+6Wdk$L~iY-$rw#6LJ@s8$7E+&(>Q9QOD{!}a`C
zll~J`Z#f`I1S2L}F&J3q*I#+Ux<#U|hnwQ@cUGfBMY)TNb-P?n$6akMnsdkf|0{nd
z1Eso%_nshX?ATFs;?gSdQhlHfqLO5a2zO^-pWd>f@7&oa9qLrwx2C}1aRNTR9mQU|
z<D9(WaVl?3u}F7*xY;d$zILaJ#)EKA2HbOR!JNDClzw$ar%UlPiS7vi)Yz`S$oZ=x
zv|t(+{}1vrP$475E<155RARu!jh-Sf$L{s`ydXM?br;cZm&*xrqFz_NOK*s~(8c2g
z=`v7!@euNaMn1N24-sSo<h=U^h}#Cp=D#4%&-2qkPQBRx5!?WA{w}uxa()AZ^Dl_&
z_6-o54UlJlLC)oFfSmfP32bOmc%FAdlfNKh8z3jX|1HS54G_k^AZ|<>Ag4D#)WIp3
z!Q*omqthxDyJ1jOAkAazxSmI&8@Tlwxb6sLovA0vorjJqT0mFMl$kJztuU5sJ+UE{
zv0=;>L}fC=)Dt;cer^MHJ1`aR0O#&`tb_gnQu5!|&sRLEOJj1_PhF<w2hU8V=UwU2
z`?o@TWkVZ+_mM&4-`Vdapvu36`nP}mYaZ8)l5K|RHoDrWHXACbZ>Xe->o3ICKCjSi
za`WE|ONZ+VX4sHs`VZ1of?luL6R+O;ck&GVKbe=4>70vS<muH=ywMcm#Xy%PNTJ^;
z;pxVmwr||2kj}Y8e&&dFs}_O@)|a-?(m3JT^7&xIqhVshkP-i=AeG6hU!|bMqy7J@
z*7`p(^#ANZ_+MyxegFHO;eQSCzXtj5$BzGPA^$hG5EiEOQzwAw6@7&JI)<^L-D*G+
zRblL3{5zVg5pn(MoPRRm-lb_xs&2u%UOc6dKDg0m8u#ea3TM$Cv%e%n<u9prF%4S^
z<nv;q<aR%%=^n)*-ON^rF7p_k@^$n6PCTXL?J^PPWOr&^7g2e&bBw5af>7O+N{duw
zRC`HJYMdba>SBY_0v!Tq_gg{w_)|?!7GkpCL4n9s#;9)W1bBR7!|EroQ7pdjJ?6ck
zVHpSES>fp%DYuy%gd%{t6^PRsY}Z|ZJ_MP5uf}X5964b-<b95&*<KNR!DW6OGQjTf
z4(glV^2fzU^Yqcn@!zNDv=F8CT;FADRp#|A96qHUxz*%nG$I#MnO*VspN?O3&|xRi
zgO1njm#6fPFdV0YMTBUb`Q-4)c^bP1N%#Meu>YHgG?@HxjFE{lEBFMi>1=uva9B_n
za_A*Wy8lnghSi79L`k8OeW)b%5T~^P7^)WzSC_F}s>UX}s6;WQ9k`C4Sos&lT{U=$
zuQ0e)dgc!$73^gjT;+r}KZ@ID4Lj$t1<`*H9?%IRn>(~<vh_bM<=zI=r%nLPdF8uq
z7F*eA%Z|Wk^eFZp)2!&Y3ZaWLzL`*8d<T!(wbKRunURCVGtehN|3d$pWJQf_er}R$
zSrV0399Oa2!`Q#uYK5HA_RZqt_tV*~tJr@?;`;TiKKQ3!)gU6m3&~J&T!Gq`)^#>0
zZPg6yUc}HmkGmJ>9H%DlgvExtRUTI!2hYVVR&ZKw&BXYj{enlcC#^ZDI7NPNo?h7^
zUrkrPI(E&eTii~d>FUDEM9KW5m(_K`)^3;Em_hQf#+?A617WOa&fAi)n@hS6OFcK*
z-<5)YOXWg;TQ>ExM>L%NDz0<om&+WRBg4EP@7S@b!`6!6RlO5^b)Gx9bf(b%D{a_~
zSNZHJCbjAN#7|X?VD<b?EO6(*Z97pQHDWScngb_#$Z>1ItYwb3kad}lmBIciLd6UY
zldE`mZ_iK>xH8MbZ6AX9_bR`KcUX#VLp`}fY}(a&662Q8>B;`j1SZso7Ql=Ihv1i}
zvy;D!16ePDm((}QpKbOm+c+F&6!_t!Wgjb<fv~iiO!FUK#}+5MBUbwGAUj|u=+Jvx
zWx!??t9H%7;*xvEiL1kp=det(WToFken<$rVtLJ1=zW+K<|qQbb7XCnsCu0vLuJ49
z`AnmB1VrxvbSpX>mvFFId9VxLe@?~h#_w+`HJImVDznv!BdgbDtQ(>5P?n@>k4RJX
z^S)vdH~jhL7ctqBScoOf8fW(ry9z4!=}H!Fz9ZzQafEUs&=xy&2AZDcoZJ-t^wCV6
zUuMpcZ1=}Ac$J?YhNU5R<$c`kJ*x-ju<T{eho#oTYeZ#euG4#ex1kY}U>l#nEN67L
zUdjKqggHQ3%*|W;$@~y&wKo&ngd^Bu9WKjZQmJ2(I(aTM5p6$l?s?)dY>Nj6Tso$l
z%URTqMM~(-(ufKjr8LjRzYP18F(MdYx<#v4Z@FIurptOY4-=hF{(kuY=Om511!B*a
zlCbfpM&^%tJaellm${po*D|b@cJ)D6`(|>6DFVJWy&k`{@J^;w{@G+b!XozRP2;CX
z1>^!|ygIejtM+TnxCza(iD>khbI*QN>{FVV`*w_cioG(Rm=9efr(xo_&>p*rZ-dw-
zYG!ngc{LN3%mHEAG!lc8Y46}RM=G~d=!rveB`%)4-3R`(EVY%Ny3j^+m5zMD)Lm(3
z4&IpRfW$t0Qg}rs6{7`3(|Yy`eE(i)fF-kudnf<Ej6c$NZ5NV7K09ase7cg%i*;;$
zm9=k@n7KUVI%j_J)Y2v@QT|$O&~;3C^V+_DLf_$}=?a0vn_p73k7&yHl2A=;`2lS?
zvKohYW29BnM3b~(*ql(aG&b1frGcPBM=FA;*H^GJyAdlk&2*yNI!2><Cp2O_oXhw~
zJxl?77Ra7)#h-Oc)q70A$)8V`I^Qyj)ttq>6!0>_%$NJ#tguqKn^3c9;dwHSV2!O^
z^^aeF>{hMq2_>1Yzs&{R9yI!n?O`g3>`cr`=aqOA-1R25q?t=&BLD4A{W{SwYhLow
z>cw_>_&N2{*JC?WEDcu?C4z}l_ZTUMA5XWe_SIt!E8RX44E?Vc$#m&8EVIW1SUMA<
zNAKPbiiJ%-GZ)BlSmkW-s16gwev(Kn8poq86PD}t=lg^K4+oD(TRdtvEBqcS)Gf24
z$a1BLGwo7F<W>%NW#97|$McLDLnB)~B8bD$$v*3=JWwWm`>nh#6JehGPbS87a#m0}
zrn}>aBsZOj8%KysYqT2r1YxwLUAGW;8?jFea?}M&6UUz5;E>Fzz9xgm6GV6N@Ynl9
z9|onKyGII#MG%X!J{}xT8Br0|@4fC_swkb2KzI(VAL!8hU3v&&{%G8SidqRg=sI6o
z()RRNKMc2cF&^~?{;|ApYtyBai9G^ZIFe~VN=g6G-uGf)J{XncECDgg7g-T?gk*pj
z<9z6Y&PTYI>^DI2Ng8ebwnzrJ5Ao2Lipd~a2C&Z=Eo#_z*<7o^=i)FTNngfrCksQ*
zqvx-cakC0<$Fsbr%Iq|Lbj>lKa<mMd{!6g@=a=}>4+dC$m&5d*^AwoTIGIB|d#KzG
z^&^b3jYi9*98&Va#=_U|A!QE5z0cBxI_P&|MWrxnUgWIz)X~Xb*dG{aWA#eH1Xsx6
zERv4{{9Gk4KW0MyQM3iXng!NVE}vuc`Mi*ls6qa!eh1oR;QAW&L<hA3C#*eGy>Fch
zE^#9Ct}9>x+wvdt*ddjsJn(}ZE<DMSimq|F!(r+BS?m#E?IS{8I<TN>a4~3$fah!M
zZkE%p-l--m9?)#;<7v`ihJOA<U0%UU6>Hk7#BDI0`XReK8?*WTJbJ}jYqNzX56;Fx
ze``EHh?%x+OtYBK4Eo?!%z<ipB{CCE$a=}lU4D5s+l;?%m4O=l)90(Hk-RQg=E=y&
za=ThOw5U+dA-{V!lO99Vx})mpHHHyx$gLZn#WJb?XJ*c3CJ`p$?(A{|ZhdKQbECUl
zx%nj{G_>~P4e|_jcxrY9HifcN#;{^7dXaRQ!SgxxBFky*zz8So!I#Km#AbvvhV6xA
z0jik+W4DC9CuD7<yfMK?JbgCAoIKief?%HE|LRNM75*>FUkfy$bu`^L6gXf|KG)v*
zFgtumv{u4FHy?o!fpBdGt^Ids5S3FQg#`#!vcM%{5X6JrBFD(I@G1i#kM2t41~^+P
ze6fb83R(UiEG8)tvNxqF)SEW#+M^wM)%lwRI90s5$tZc`1qa-uc`^_RX^#y@X0~WC
z5Ll7CPne#;(io-=YU8?hZ;3ags6sT4(_?Infg~JR$N)<w8n|%fT0hN&H03jy&*~!2
zC@{PQ%6g)<6%-t-s}e^Gj}xSkvi;$?9340`XGZr?Q;;^eq@#v7AAf;Un_n?P_d4+)
z{#D(vldC6is0kX7C#uH?j|mqU2yv`GPt6gwz^$<fp+Fz@=>ZtgLmg;S>}X=Vp4PrD
zOo*Aljhmk(I>JN`M{_4DP>hLe(5QZ^lLZdRb_37i)(%YNt#G6aO<-<MA~W2DP1L?J
zVLJ)j{3)R_A&|z|MPje-{iz3cdyYJAWHpz)mmT;J^;L`q26qHl^*avDd9&O0crrt!
zkjXaqZkrw8Mzy*$$>ekZ<>IZk1d0G$!cz{9+(yTKJfo61A&`ag{9T}_H3BE#6)&7N
zenMr*`jgv<bps_7_KSRJ_fdiDL%KqEC*-igyc4yL4UQAy5%c0~D$_hCceyH*^k<9)
z_`ig+UG)u2>Z6zy_>3`2US+=`)zgnvfs_8r@XED+i3LE%XNegp<v27KMq0TE6Ptb?
zEP00oA(UINZ=DFh@^C0!C>wX-qfp^9IUH!~gnj><ag30XH1Q1#gnxh9`dvA2_mwAF
zT<-RpnAr&_Df<9k34*;8`UqaE^bTNEcu9mXA-SXT9ZgxyhZ)em#bXE|j)f#ma1AbA
zCMzR`z_ZWL=&B-&#PnSQf}m8%0S^TMcVRj01EdswLX*q9U4*Zk_&u|V02YEonG_<o
zr*(=IcEk7MqZ%idZuKSM#-3xIS1{+Vd)COxkoD^#rV^jX2D%@0-0@$)X=hCEO<%L+
z$sHt}RcyzS?sq%7FAj%lB`tCncBTMnPCIR$Dd)#+>tNMoX}^hsD%T&p3KEX0D#P6p
zGp+wsuiBm*FdRbqP<eaUX|d@cj$)YaOyGiAjw3|r_Xhhye%)rqgmzvo#P%_eu5Y^}
zaelGsHO=K#kqOhg&>qZibsMiz7wZ<~{mbMFcjKvjo1sng^qNXx<O4=X#{>{_o!i%x
zS>me%4(@k!!&;Khnx9Et&iCyg?rJ@pN@Q9o{nF-jIL}#FQlU~1<}2atBI46Z3<Z6^
z>Z6sLuqA0o!FYmggM6|uf0>>8LfZZt7HOCm*O3;B>l!j_Q>Zz_NvjC?rcpN9Mv%#Q
zMq4Sb3R^dMOLy5$4%OR-!Yi%o4zgZmU}1{crukw^3~<bPzqc68#dp5qXnzu9J)^xb
z9H&h&Lu%f&L4Sn628J+Quh%ZJ<6exS(v2OmtV)(f0rIDK2n+;GZ!w$`6XjSn0r|1C
z4K=Os#rzmhuR*PK&%e2G=M2kvDcgUPVdV%xb2b6c=C#?5El2j=9^$*S3srd`&!Nkw
zBQDgQ9FZ$!mpLi9J+19X91yg{=T$(_b5a_X+3vk}pT=fZiM^2Z>83any3n#XR@Eok
zoYl7Kyw?HC$HB*R-2=bRQuT!5&YA}|Sbs~hoMbf-m=QdAZVmN-3}&><V$Kp@&Ic#Y
zp!cEUFvRs0kCT-u6X(e~Yz@K?E9|rl7I`T{OOvbl#-6g&{K)q)2*GYyHkT`8XhIka
zWmorpGOAgiNK{qO>@Eq$w3EcY1?aqVD8ob63NYjPsY;-EQLqp*UG3w9p`RvLel_+o
z+v6D<{jo{DicpT^JfV6vV;&&K?XpUo1j2ar>6I}~G^(Ogi{`LmzKWlGt@ge4d1gnE
z<Tzg`7vdBxbQpM?Q3mKAelW?3JR2(WlYq#i_4|S6-^VN`yIF4gS?tG9#2_i{d6kD`
zlNYdrOpko-t999KhrnP=pKGTU9?~q-JMS!(O;1lgJowT?)K7r@neq(`H@~2pQ+^VA
zCyu)Wglm5L5cQ&VK}^Fc<Nm&I#;-z`ld!$VYDy&nSY9FUP;(d|2sj2v^D4A_6sx)M
zJEEW3#}7_8Nc!PR+yZa;o$BwdS9@9$XYgN+r5>j2R$5U(c+`Z(vBwsPfKK8&cAq~y
zOLR7vWxdeIy+@}1J#Bc8;OPGgmDG!gAuvmeJeKz8-cH@?k+?d6g3^WDpzTDyxgJrS
zzN@9JEH*7MDvsy_THHawH<-jWgo}|9FhzeAQrmI0)!`e)X?gMnV^;7khtD(rV40Gl
zv!ISQ&s5W*OvA<A#LW>82*x@g*^c+D-!GFzA#Im-e%(XrwdizTaZtWJ+jO4kQbMtT
z&QffHx<E}>Kl83VLCETgqm`uqC`$R_fRFho!1MB*lf(nZ?y<aGPG48fk!OQV548}u
z%ODGAQ*Z1dIYsUe{?z(zU~#|B2-nK5u|oE1Hp4CM2PlhQcozl(aFXQ7aU8n60PVse
zx8g}cw^|ap-OTcNA(y42;=1T0c885484b4=0=0*Xtu!+GR;ZLr_)ITqk(ATin0pZ>
zDz6fVlV9usSfLmhio88{TbvLx<V2D+e{=TC7nyOh)5*q>+}~s~Cp$L(=7Vcel(FQj
z<7!|Pv+Z`}mT`vHPQU5nqdQB->&N?susbbnW0zlx?W?xKff@cJmESU)iIVNDpQBqB
zNFuCjqahVhoA47IpA%<^)uXNpB^?hEPd@+x-&G~Zy7N-<h#NhK#!<j>+9;WYH<)+)
z$Jq~so(Ote{l4e>@wD$X7A|6vP*!Diz$*JPX_uDDh;AM7E+Bu!gH0t)jm?87N*v_^
zqkvODiZ+Pnr6fT=4>n$A%VqQ8W5~x53JL2ZM{&&>N%SNI|10DDI<mJ<0C?d+<>pho
z`Hqu@HPM3CSt>ueW9ovHvcK+piDnzDqh?%gVy8Ybt056DN?oZJB9&vCFYjbz|E`T=
zp%(K%R92jp^1Mhtt^%8UWFO%<iNzMiloblC`#OYRoMmj|;>a!9DHgPwcJ2b{h8(lL
z`_<2RHN}g>`c9+XPIj7B_j(^I7zPVNRAnI{!Gei>VK-^O{7Hr#w*k-GO5U}1Toh)B
zI`^}!?5@}1l!FjNPP(?Wz#)m}DE3_A9$dq!VgooKYmiBBd#kz&bN@~5A@$ux_NG%F
z^fg?-g!s<7+9;c`WMWOChrpZ)0avsque{xT6?B%(J+?h>ZJYnIIQesp0p**J&pfdB
zEu(LmP1{iI#eGP-T4nEv1Z~gjx?VMVQD>`+qN!2R87xZyN9ZjpPPgI%(uF=(a60F3
z9|WkL3@GW32Y*N=?kcX9AM%93cl<|2F)NrCdF}z9lWbjYJ8oRMQC4n>Ph#s}l{ABE
z>L918rB`|pKD@p1R-YROoqHt5^J+?pPMl(@RWoX{OE0-$Uwznd3!G&kFi5^hEYx_(
zOTd7{39(CGERAf$&P%A2&5zRZrE57rYbq6o5?wr@kqPPpe#@u7<SOJAwlAx}n4#aH
z>wR(So^y(_mBZyE?9iKYhsB>V{c3ODu}Kw&Zhkj7<_eUR=Y-mc2dr@K_YUBh@7sc0
z;s&pRI*Tu583~QAyKyM{ax%}$>-%+HxZUIM{7$@rf29qS&+;dBjX(3&|K!0A-y|3h
zN)M#iu0HPh5+zo^AN)vaC+oQ&vDWRj^F0hNeph_+5|r|I22ol(wHof9*7un@qT;m7
zJ;vfp2kULGxom?8R??(4JhUaL{fP%?t`#41zUB4P2Wxp|DX(;!^=P#^&S~j_*{`!N
z&8;r=XdsaGP`mXL%TN8sSR_ITvRzfJ6;1iDYHq>>htktlBgbuzE!;t}E~q-Gqo4o$
zbdZH<o87eOg?Ys5{zbxo*`U8PXLkqVt72wCoGX3iScsU|#Ob`3Nb}BZzg~vz?bQDV
z&k3MZlK)Glt88Jy{dea%7H+EhINwQDgXIkGU@^-($uAcKPuyDviY|xD!hlWm!MMgT
z<v!OHoX@nb!a;|%zTK<a4Ld&Spos`-fX#3pI8v$k(eP%gF||Q<Em=@1pPDQj#4l~a
z1fsYJ4p3Z;Bnlgi)$BSXlIAc*^q9edVbCblTQ``%-Sf$j<9%%LOHqU}R-tZkSN{Am
z{>qUkMFkgH<806Tz@Pxy_`q*<swn)z&J(hCLJL^oDwSx)S}KD*7fLY-r!~|))h*hu
zQK{LBz2w<T^|Li7ihaRfeV`MM-Vv0L+gdzGoR_jV(uCRUoePZ}&Jc3RM7?6kmySJu
zw<kmGYH72LDAcYn#1yd`Tjk&{2uoSuoT_bRo1!AZ^YggDF#6KP35#HMu)PkA*Mba!
z3&&g7R17|M7Zd4)OREoUy&b3xgw(Uf&Y82Pps|?&{Wz{L8*iU%h3+u=QAK6w;E}Y~
zNmClU0{zF=Be0v(=Hpr#JJff1W$;2L`_V2xgkk~##KXt#oiPY}KYpNrJ5ToPuJ5Hd
zc;Cg^<@MBcKGS!%3IqBZoDy$P93!v4)Bo)561x?#->k!8dC#{1yZwg0=;!XX5wr2L
zPIFpbMlk*R^UD_^Cy>QE_x~Lu4y?pxP1ga=bFy6YNmnVpJApU9<M_MlbHRZ|?7>!w
z74%py@!k@f?VTw6?0sx4#3ni#!);*&)A!3qLw3T+Bz=BZS5uSBC;ik>WXy$Yip-yI
z{5oeJ8n*^JZIaP$#4>8GT)KD(e~<GY%vRI}7Ls4P$e$R+3yc)|y_%bzOmB^_OI>6r
zl-n_d?F2as|0eO%vce9UHV;1x912&J&9vq~Gg_ijKlRP#oV9x8<)0F(OgW06+R(4&
zK4;=ICyjD|;ps>QLd!+Nrl%9f1ox*`%dQcbLDRH*KYz!5R!Igp-th|>eMFA?Y!9$t
zG#j06azl>s2l-Qn+e4ff&<ezab4X7{()d~9U<nRRHXJyjlsUANQt7yVE|vV;ZpSwo
zW62gM0pM6|Kq!Y$Ql7E`ZVMxf`-dGoT3_0j(j%rbWu()B#Um6(aB3uSfjSQF8+3xV
zUv2|V+S~TqZLXm|)Be`pH|b1-bE`q#wmfZ2VBy|v^vvz4EQ=Qlyv>_9@5m{&Z^t2I
zA-t24^tS3P5m{s<2#>U6h2FYTqkkv8KkX@HJ1jTkSW8*{IXhnGvDhYA@K|!~=~DKb
z#A22&!~8rZtI?QwjGL7+;x>ozyCbS0Us*|blo5IFYZP~>!g<Y=r}Ib@^-Dn83U_%+
z8FCdto3ZGG-xhnMUq@V3coB?ph>=>OS-91pb~XPfV+Rv@zr&C@M*B+EPmAx$6mcZ%
zL?vo!*@&yDwX!I6%3bv|#t9+>22kf>=ncES-aos4{lT+y#jqz~Yzy{j`<}RL5@Yzo
z+$`^RwhMi+czGPk1edljmGO$Myc_ag7TZ(rfw*eMv|(!qe3{xSg`T|5&!)sv?T9wM
zjh>d&VtKM9Y8NyffR)LK=I(|w8AzjowOkv!V~7q8KAhneWXk%vc-tfWaoA5~Jf2`T
z{Ye}lRBqO5xJ>dt?6J1D<`_%2Tp@R<*7!Bd`n~OGRK&w^#7gU~FioET%N$X>P{l5c
z^qZClSUoLVdwuf9!|vdtmj&Ld*G(MA`&O_*=7ksm%g+}@pvG9*4#8Ed$G8g1L_WG!
zCi-Mj<N_n1o?xEsqQCcc&P4{erDiUKpvCh^wg!C8dp_N<eg2(j7r*7&%C=@K0D;>y
z@~uFNpqxYXG8!`IY_$WeFeoOb<pJHDZ|fEz{n7OS=bJ;h*fpQ&S!*?HWfGkPR3Gaj
z=ww$}J|B7%&qr7}t&DY6)zw`L1%d~5B7fBRMNRVd-LDm9czP56NF3+AY<)Sfo&$nI
zj@!7`Jc<wH@^=<@-9L^4mQ;rWz-{)D;g(TJBa{6EE)fq``5~Jc=4^Z_cARrG;p>6W
z_opeVSeNGec_(a*NjJ{XMkb4kNB*b2sLyM5A3o?XMeVTmcchf`o%IWMe7^loIq*}(
ziHd!uOKgFWgQS}`Iv!Y`7>dfosK)G&MROJd-{b?AwR=PtZpV?IG{{9hj?13CO=X(c
zgr=?0R}C_wxp*a_UtE6KZi0uW>-#4A7(sF#lX-UJl&p=<!we<6O&5N0jA<j#vx9k6
zSN>vdu5NlXSMTDtd9JwAQcyeCSK0Gdg!8`=*^W&ypedCN%9W*RP3<mJBlCjev|~q@
zpoZ{FzkcPN(e3P6g$KJob+Y&6VC_uMGa(yGJ^aFTuim`ykR1?qVA*vFzt9^cad`C1
zd%;K;52O7C0u$q_9i&18ji-Jnz~n4VFL)|l^WS_u%UlVgX;@)zE)(>6jB$irKf@2B
zz6Xg{K=LN8L!j|4bUd2oMJQk0Im3l_PH{6Sfb0D?IP?#?iLrP+D|cwT_$`9UP#ln2
znM6EA>cpG%xbpXdXH1oa203!binFuATN9q-YosY3Zs}%H-Zk6J0z2n!6%fAfWjef~
zYi+>?5hf2;PZ>JoeT|m8;kh8Y5cdhW3qTiIMX#`)uZDP1F^*8bKSeRh_d&>K%oJ44
zqIJ&io8t$1zMEv{oZp`wagZ&HuQS#k!gSj*bF3nb`SMNVuG-V*cWYZflln>I<v1C;
zm70|{lS+3O#EJ4*hf7dB`R#1uOlxi@oG3YY;XZKT2v0kQfikN5-N_!K$__pv`);|g
zb=rn|TC8a-l2**Blv|%Mp#SYN8AEKhq5MFRdu;pu?)917o`Ij9%bA4PDk6lgbLhz4
z+OKcF$SJp3?5ZruqD{z%N^$%aZ4`nbH&z(`19?l!uP<d^S;gKq6ZbYKf8|riE<TF8
z;IKzTs3pQ}3@dSP-3OYuc}BvDEsoOFKHj3zb~k#Wrp5cA5J>WnjvpPDMt@sAzf6bE
zpcy~p76l4#zY&;M9b!#N<v6SSXmHmys(+&3U{Th=<`H!eHgYp4Iz|Yr31vaI;A+9J
zCdYzv*V7$|XFZ4JJdd}ehqn<-MS7Xwz(wPSad+YS(f;Qk8A^9*9iO?rNiR2Iv{L_<
z27*3QvV6(p`VYiY;em$uS66Y43^1`8>AgGyw4I_Yn?>8BecXQerJajN+kfxW#m5r4
zwlSY{2UA^<F<Z_|2`Mn*GGqYRF+qBqS~)MIy|R_PR7zqbbd*)fMG|WbIAd}j)>#7K
zGjb97zvV!bFSj28G7mi|cnAfFGPyHib-yIMj~zJ24*di0%6Hlp2;7{etjXC)CgUNf
z!Pbf!UuK2U&z>o;T-xKT^|nUAncZB-O_M5&$o&S@y^_NwtYBc9Sz9cWd@NdUKDk%v
zQFN^Uyh^OfqCDT>_{%tx_$Ku_YjRH69Rc&b%uhZedtHn`PU~?*V8G1g(vO~__zdQ!
z8FUB1yaD4MlNAw1EozQnn{nWB6pPn8fkuY@m;1TV=n|JVv8|3+wWm5IHq_|LWh_Lg
zaDpQJyhua9b%#PsR(_lJsvgc<lC&%sd9rvMTYDnHHXw6|9S0p6_{8A(7I#ip_sKSQ
zWrdh)cUhdKqIH@vLz_9rnK0jST4t*`PyWQ$<3s!CujfTo{*<a*>*C6n76S}YXyu7j
zx}V&}-$Q`spqM8E#GcW^=AKp#$%(0hInr2gG2(Sp?jdbl7E}H}(~;vp#(0q0?#0gh
zsINBelJM-*@1h(H(DYs6B&yW=Mr3tIrTQVyZ|B5iuI`SAO&fLow32*$c7apP<xL1&
z@Oavi_XGM{do|YIDYoxS^*9jzgK+|xey8oQ9A#kKJin_Ka}R=Z!455#Z7-Tuev$(G
zi=r&WJ)8S~B=u^<jT#7KEip`cTC6J^-LDVdOKmQQnWwenv-9u6d4p4U^eXl}0U7Ay
z`|WF!R%DPb(LLV>pyqt~E==<sI`ex>65E#e)j1@YjV^%FV+w7ODzf%4e2`7N<!`@f
zhkMg_xjL1;tKdM<IladD-3`xpWyfgk2pSucQ)C~{Oi|*=mFQ)G#rtOzi7TBS&foi*
zd@SbT78UtTK%+%65?;TQEGaGJg{Md3Ac`f*4EL=sB-QQReooS97M`tDt{SLmzVp+M
z$n(IEOKn<b1lboq99WMO?J5ob%P+e!=SK?c*7`5lxt|Ua<tEJG)@x<Wg-A6Ud-ht%
z1*WgVCkW{SFYGC=CG&WE72M8T5^3)gfUG@tx(fVT7Ct@9{3D3UmWK8;7jPJ?k@2W<
z9~U~U!;hOE$K}=d{raJP?qLQH`fiad*7@K*{=ytq{vJztF?o1?4yK2?>5~jkb`U8?
z-DY}AicM|Oc0i-XRyjd3p0Ew+f~bRcqOba%m3y%efJkz5xNx<9YX41pyf{1=Y+rPL
z*Nq)dUbPATXs|xI+wzqo3~22i%2Skhm)l6d!Q(UAV0YO`gmN2x#{`vKVr|@QTWkKD
z3H{DP`i$KhyWtqC8#ijQzUPP)L^aj0ff8ONf1>4_F&f*Xe@A2w6y1THP`jJH)?YU`
zzZaZXDQ9bJlq}9!_NsqmIlp3U^RUubkC0IH$_!d3H|tsf<+8q|6#uoC4bpJoq+E{n
z%k!MzI%DbEExhf?kmEUn#JSgpK^n1LSH9q$TM{KgE8Fh!oWARV<X9LPtrW_&Z}~`7
z8)Eq&W+`4PntC|=_IN_1HcpbY5fA%&qGH|L2lAi7@!724tyl4J?|&4O&3S;@7f@+?
z8tLzCMyb%OaX?fqHO3<lwzEPQ2gluQu*pQqpUGrnmZFz`Dnx-(6-<1yfkz7Mg@5HN
zu`2y1U;cl^N5PXAwS2jtWymf4MwDrt?2Sr3#N3lx(U+6w^^MdXc}d$0cp@*8`D#*<
za1)An!QpZGW}GBMc|JDq#qA#@7b?EzsnKdbV^C^IC^A7*EVFT>hu}{0l!WzzvFBOf
zgXduPf{D{!rsXc1O{c@oB)Yx+S6oY^(GcAZk~jhFchhzG&70#ET<DR{CFznZjM8sZ
zJ|GrH!>o_)^v|C`>KqlfE9>(HZ;JfnW4e!#bQccJB{PFVFa3EL&?F^4zpV+&Ti8o+
ziMzL+4D_qkQL#O(jnm`-Q@rFeY(Gq2ybnB|kRY+09}vp$$y&jYXx4WF<)VurO>E=5
zl-FQ*{L#3Nk%8xv1-DKkMaInw?3=*XD0zaPC;Ei^w*-A+a6XSDjufc%ws47!zEV0K
zCMny#Me!_nAvm&df@aU$@RthA#y@S|>d0qf&oeSpf;c;2ct*?jUos1JbId?lK#9;V
zbd#S2Sb!I2x)yMx=IM!o!uyPqZyZ>mZu_-1?F#4bLZ{>-_Rhks?Xaio@E9W5SE>YF
ztDdL0MmQiXB(-Oa4{n8|PJ-M5QIFDagVw^1w-=<pb`ekiXL9?$BYUy2$Pe9j-7+dU
zqMI|>Y&`Hq{_8;;>4;tFPV!s&f~2HR9rAiLGKtV_f~q4toCgS8ysrM-&%Tc8N)cjk
zw%+>$@UB!x9w&3R>eH6l5_96Wj_#GbNz?d-9~mJkR!T`;^N;%-ei=^cK3k>OVnTS~
z)-JD;F=OQw%qb_hYDw6ARYU|KjBr=5i58~$okF5Ai%JWRnO&hp1iX8Z{*yF)rywWI
zT-xzyYCS>nLq|OjTvv!DE$`=rLmt2_!2?^9EOWOkUD?y<!Vk7JnpK~lGt{LXat_!*
zFT5OFvnL7}Jn>xLR+F&}PS==+xmXtRRINXHpeceh%72_O6&Ew#v`3`d_;e$Em79=X
z1AlZi{uJ<n+)JLLS3k>aKiR<!)r8dM^}I87wygT;QSHtu>B(io87gAPG%v@P1h2W`
zG6^U7ZF`;+>YC872}U034Pl4L(rR)0>x4osY=u5EcPVh3N`Y(4Obd}Lq*&r(;Bn!%
z=B32tOyW`T%@#EBoU#6u&(8yS!#3fjsjb^_(+lGC7558t*T&K5!Jh|c7H`Q<#@@L{
zS*0g(n<oqJr36{XZwvORA2N(=kMh(KhC?f|sbJ1exZrR(b{)x|JIED=LoaS7**>tY
z%;yT=Qpr3Zzb)r__0SWbd;(?$iX4U@mcfUOAjQ9C@8SIr#+?C9woF;EzbvP6s*@PL
zj7HVfX8-WoyB(%?QGNo;_g2;|S7aV7mtQ%ebF1-PYHB<mwa3Z)ToX%JT;owFxKP2t
z2|Mv4Z0M%vK*<*f(bz<QlLCqCAP1L>=C9n;yDXu+=f=qE3+oy@s3KdeQoj|>hmjC*
z4En9ZDWdEo`Pd0=AuxxI=#gQjn*%xyuJ|VVre%7kVI!buPszn=GJ(${5%iH)oaTUU
z?(ypb_f0VU=ka#4pOlKj(_@3K?XbvJ{_bdL7JPQufB_^%?08{}gGUs1R+RmN2~Wkx
zU+Z%v^i^*{{Cx6W*=qf-Ve9rw&r`0?Zo9wQz~BE2%w15ro2mPx<oO%@vdXl*pq~^b
zf-gFPJ-xD9vGrbUpRcY+wybV*7PcRGzyu1%ww9ha=YK{#QRuDooECldTa$;mJF6X7
zI2TmIe0*GWq<Y_w@$SPA7`ONuUio0FYP_ZIRdrd498O&i(N}L$2qP0OwqtL1J#&cY
zo%|g-%eNqFSiNs&T&q6(zVd((O<!xzyjz<ny`o22=xSycPyxw6!j{=S8LT?t=b|3E
zZtjpu!(Y6XIrPYug%bEJ1t4s<oYGKX_*{;)W}ycTu&W{wbw-NH;ghS5c2~8&SR45W
zLIE3cCd)e=po+hPJd`m|CCk#tg)T@a{vm|Zl4y<&dDUp<fQsXeCQFp+xD{o$%-akU
zKipdJerXn55rY$znE?!&`dYC1dSBsbi!HwuWXjlHVG4M!l)7}J|5R1<AA#rR@IxQV
z;#gxhAz@Rag;)0>5M+`*+q2K#&+F<QO<!L}vZ;OcZZ<<LVkW4pimQoh%oXk-R4%(5
z5y`T?){Vd?IEK-sdTrBZXQ2JuJ%>17c&L``+WC}Wte;rro2)T6XAr+Nd3%4ZG=&Q^
znZj1-3kf4u@-dOjB}&foWgqx>jy%tfP25XL1kfnpoxSVib3^o%ru7+LiH{LXmJ{?L
zbB=9B`av<E6ss9^>x;bdiVkQ0B^Cf@p4DhQ&#RBluCxqK@u7PPza0h~Z<u(O44>ha
zC<GR0j|4z^MF@w!-D}%<OJl%2uUQIDl6=IAt}F*_r8r>xb6zL#k~|>;23_`t7@>8|
z_&7ujI<i35?+fRoxBd7nzf&J1l@zwY+{~IjS_#u^CtrTFQuBy7sH;7#`?$R1MuIwv
zMWD4<U3KNwB&*h~gDZ2+J(@|df47zSN5P9ganQs=$%4aXK>-0%42O&s7jM0tUyN;~
zhr(8TR%Rd_2J;@7y^EnTlx<uLBXatit<w;v7i;DaILlvPxXmCbcpLMFN1QlH5ORD?
z;t>tQJ24X?fmE{DdxF~--M57a7{T4{ArqSZryB7}-nn@5kkg@`3fq020_iAj9N<rh
z7%U8U>u=5aaX*Di!l2(p-|+^fr+ZAkFgnqGtw<1F&QKXRa0LkUw25xzar4U3v)7sc
ztXiLHWTg(>XI;?iea$X$ca+bheI|AbkEDL%ddDbH=|Ew&nvjT>eRU@qtgCU)hP~*A
z-R_DD019JYL@k<Txo)kJ{&d(Yc~N!0S?;p`bjq86vgpknm?5*m1-(0JoEq{+-=r}-
z??%<?3OH`HGFGrdd4>yXu1^*?m7!YtB;7}LoUNH71ub)3`K-{ks$CUy_AWU1(Y>Pc
zFUP(ui=^P7Sj)9nRnb27Ao@miFYR}|i>xEv{gd`^i7bO#ejy6aGF&YEDD5nQ@T6XW
znfo?NNI8?t4EKzNqs~5mS^5tEi1+J%8}}8tre|h*j`#XrZ3`UQqtGNtPPGw=uRS#|
zcDPBVvp#&rV5U{yl;>D~{ZFTxUKb-E49^3UL_LXIUN1?wT11a?Dlw28D}F+|Qjqp)
zH{*`=BMZG#*Qjhhe>^aHq*2Rd9KwuqI=q(5fS$sq21kshZZ~FAI1%+e*`km7pgo^3
z>`J4zbFmQpcY3v>2Op~LWZa1d9f1&&`S<&t(f-&ag}Ap)CEOw;I&NzCWRuQad#GLi
zt$EWqpzjNB5YuIX<5eHeSjaM;C^(9}S~dHwmniWg`%Pc*TJ@#ExY1u*9kWJu!-e2q
zl3=(Z5^*eXi^*p#YW0{d>-MqrX{%gnRj<VP_#i_G?iGCld!RhflkIzKb@k?T!ySiV
zYjoJ=9p29bR6lILFn^TlIj-xGWvzLy{4W16k2lE#pZ>Br20^zG1R18G)&-{ql)HmR
zslz}>`t~Q15<Q&#qAaNT*@4k-vodn#Pw8&ErKA4^tG#{qU{R`&=DB;b>bedAxR_3M
zP+}NF2%ng4c&YAx@t`S(vUkRqylb<J(Xq-^*_Oe0cFFm<)>QYzmQFqSmYAbT+s`-B
zbW^xVn_()*kDvetsSU>o4%El)0@I1>JmXGxkTx6QpTX;!TY70i^W<&tBc}eg2qHN~
z+||WYclTr&I)z7v%4WHxBftNH@kATuf|LC6L(o#Ja<Gi4QKnzVHSk=z&-WYo{1nMg
zqTk}iUkyII7D(7U8?~AA3z59kA%~OHBSozT8b)a|-fBH&TO4|#b<@n-B;|I!-w($^
zbib6E-`RhbY2+HPsD3&K(kudxlDS#C8kx=6tB%6?8--Uzw8(;BqN}ex9lBSjE-Lg3
zyg7=0Zuz5l;{}b(-I}C4f1!DTvC$?=U;guARmR{f$)p$m-q5$T`oR~xr2O;sK22W3
zF0_*FL$tbWd<4)l;^@V#ECrSMJNCAR<RoMy=C|pYs;Tm!SuaC3dU5H62BZJTrt!#f
zFK41>xJhe0P8A8O^TBe0fSV6m)wO2scyUS349jQ7K8ebxy|aIri8_4cpw)_C-Q6Z;
z)s$=1g7bh1GrW4f<wZf+@-~)=^N9KR6$7|s=U+}c;D#gTg|rc`@77x#9IItSBtOC>
z{XRCvO*q}xP`e%H1}vqsSE<7n&&4?Ytm8QK;M`#)P6!q-cL8Cp?>Wu%H~Rs47}@Ix
z%J=(<?R`FDg$xuAsxl9}q(y9&B-?J;*_9eTJDdO6FZ)J5;ih3s?sX67$i*0OXdCee
zt#_5=A-^f*eyUg9zAf=Z?R?KvGGp_V>3cg`xalGNs)T(Ynfqw_mxnQeRi-2jf#cKL
zgx<QO7=}7X;<A=}qO};lo7M3218D?nSQv9N9ANCUh%NcS4W;3(TAfxfKSK;<A^m7M
zHpUS~Yu{jN{}(oI%QZxjpY-e~eN)ONY#f}t2^8)XT|u}M%*MV0fpVI<Q2!0C0KwVS
z1H(9iB)SJD8D>5?mo$zY5D4+*M%}?FZaPqa0emBkcjCRCW@=kTCzjH^xCC&+6L?a(
zhPB&?6WCWE3H8l%$&KdAVb@vucbnCvkM1E^3o$`@!8)4s0Q!p=j_NBTXxx|k+C?e1
zwrp!$V~rDX;^qxcU3|)sh({$_of!$Hw~9UY;-iHUhi;0T57Dk{&?sR<z8CL3^;VCk
za9Ki+T`F3{n_$V0sQrwTy*f*e0czzdOZYlpz(>nONK6oT^AwMhwhg1><4U#{OxHc1
z-GD_k^F6!-e%iIvcNi1wC*;oS)yEGbMTu9ofJvQ#KuF+w_mwKWv>_?VdR|f(`)=AL
z`qC)hwy&ueeIvx91_8*fKQv160G`%v0NMVDu)v_?qDWhwD1@TUOUnC&$4<>B1Io<e
zuQiE%gMI`0^XnIUStC{oy~&LrsaJpXx$`4qT8gw{1QpM0__8{bfxAh}XB1(hZ|uEm
zogaSadbOd^9DbJ*1M-~UW+R!w?Cb}PN|5jWe3P-HS|SrYmU*>6j9~(5`_Fa<H*o;D
za&!AV4Ud?Y=R%ra=2anta*Q}|-&Qe%zBmVJxRaO$BI$Os`>mrI1K1_nsX7P|pBeef
zyqNul(AT{N-$(o&c$E5e`+VnVf_E!LjQ9Kt%iQ1k2E{MDEyE5HLPJttUlnpEy{KGU
zz?@*j8Lh1h*#j^84yeMIWx|!t!S>!=M>I~+-8S>z&T@zN&Lp3uha}TE_4HnAyyB#9
z6Z#5rr~1<^=EnbwtWN1e*^f;ihd1OoDTEz)YmI5(B+sv3)(IOGi$X}US3meoALm)h
zsN`dPbFNTha$BJ7s?ZtM@@R&$DTnHhXY}F;Krn#we8QO+9ydb&DW!-Dc(g1`l$@k5
z3UZs<$1gne_WGQmmiaXs8wQdTl<TVG(peAEV?qfPCjhlKOW}m*d*h?Yn|3hAT{61T
z^>Ve37mhi%=P2EJJ0|92HS;cXT%0ik6qVi^5n7Mj`hN)f?yx4luG=$7fY5srks#80
zFDgW^ASfLH=|xeB6a|!G21G$XL8XdFRFqy6DWX6W5JaR&?<yco>78Wm{NC@r_j{jP
zp8NN#Ig^|zXP>>-TKhg<sbIxRUfVbkjWazJ@mp-})Ot~d5pK})6RE_z)bcQcmaJB$
zppj<?9Vl3Pc(cx~F~rss*~Ed0Es~S%T0I>|rllFkhRl#4Sf(~-wtj4F(e)&fiKd%V
zBW%q|8|jmMe%lg4d9GuUj=|piho6-LN+l0RK63n?o9^ZLg9f$5+2Ab)EI7ETLx2Yn
zW|Y`6fCs}C#FJFT_t(Ep=<89HdYk*Zz9SbgN@8Jds@a2xY&^$tbn%CMr3o)+^|C`-
z7yO^iA*u{S9#X$bJHH<Y6wQ`dw_KOP1M>BN#5+UWaHn|Ml{xO_?%b92XN(M~jqTDq
zC?{>h3HFJ`GXbZ1z7WtJ1$60_l41a=klC%^k15(gBOWth8!oVhgKPN-t9m;7)Se1k
z#2Mhc@h%LY+&L_ur2tWfKyQFJL<s;=F+WC5b!`%t1Sn4kCTf4g5{$64DP5syJI`lK
z(r?##x?3IBv|e;ieWBPqk62R<<^w7i5BVEBK&~l$&r}%Ka+Y|B9%T5I8eq!zEOD{(
zOZFzZ$7mf`;z>YI7yfDNY9T12uv;$(u9^C74=JFm(Vsed1$%l|LC?Fa6RX`a>o;^H
z=T-B9bi!;75uJ`4B1QFB+vPbhW`vWR?i}dM=#@R^wb)mCji15?<>4oUZp`~-R4)VD
zdvugI;9PhJuzv#+8|OQm)V`3;!W_E;?X^WTzZKHUo%X(Ql?#(l**<2N7m`4#Fz~SV
z(Xg&V=>PAmF|fg)uS2Fz<m}j}LkN5ZQT=_f_Yy9a@2cLc<?6gL>vo%^P7N&$S0?j%
z?@NrG4J4%xVh?wpd!F_((2V|)wlN1O5za;AkyuO;-h~dlND5o4pTS=_vOWlr@etv!
zA@j>XeTkW4a--hI_Nao!8M!2$e}05{%h4U@Yq+Yxax9Svnpw_zx5Pmg{YZ7Ra#m0M
z7}LvGquc65^DJ%m7Z{+41Sgl-#7psjSSdkzoNSdl9Ka>j#3%ux4T+rK5=x1mimQrO
zP8?l?VAasb-CdD+6xMilg_^vN`fRWiOL+2f8x693(qzXJK5NkGxk393oyKmxCK!+g
zakTp9ngS9FkxxbAH;vR}g7AlAE-Gn$X9bdtAd7ASVt_9B?vrAuoxHWPETij&##y8j
z;J`kJ67P{r+MO&$38A9&S`_qytV`4mlrUYHIC`LI&D4bT8{&(8a8+9C12DFV;0XtI
zKNeiM7n7%BO>1TYuIK%pArC<1><0`0RAasg$Yt0v{STkk6O?8OO3#47vQv5e;f6q|
z5=rApQpOFi0wPjrw50&{o5ENKwvm8+7Chuvh<mRf%6`lOJs^|p*Gc@~z9i8Z9PwAZ
zu6iM-$}_?9JfQqhf+tDuR9V4b`>g)B+|a37K|s%1($T8BZ8on6<RA>DB`6{l$MJRs
z8De#rrz?8}ZyhrG7w-KUvURAFlje!%;2^3m_y4~^Xhd?P#dm9<Cna@FIR}2C=Cx7^
z5f<4wn8w6J|FVIL^iYjq@tva*G`e*h<*U-(1LyJaMBX=Z_4d-|>$n8LI$qdG@)s8~
zy4X9i?GUMpOfb9amYCkB@lvW!FUjWr3erQvXD7}OEPzKn<yw)3TRmQir*O-3tK~g4
z$*$y2`TQ-IEC#sj=-syg=^B9Nt6p?=cM6OH&)tW}>EAGQk3jRq$aXAo;OX%ptusR4
ze7F8Qeo32fGJ1X?;h49n2{foM7YCLI5&?bGNao%`Ku*NO{c(FP`$KfsXbI#^<3@y5
z*V|mreNNH2aV<yoC>s>W?DYa1$GpW%L>M#p?^%D~;sh18n+%k{921=a69mK$N3{I+
z0d>wDtV;;q{}M~*1W6VgNT-eF_*07722oz`{jX<>x)+0^TNI~tW$(Q#E$AC_^mb;7
z+V<a2Nf($<qTi3E3eVo;0)cp!ZwP@amcN?=N}m*om1bqY5*M<njX<>e_G!=}3ZF$R
zO(Um~J9x?=gm~t%mH=>DY~;nj4%{UG{_s2#1LR^%mT%e5y>~tJH;K7f5T_b0XYaml
z!hmXnd@2nf;-cAmF`VsKd-w62@8!(1EHD~!VO)x*37Gv;hzuwLL}sY(soN8Y?tggl
zqNP`5KwshESa1<#pHphJ(rg&O757_xu@?Zbgk`9k_Y6IB&4<8@Ql}X%MBP6PX@#A}
z5)Z*;OiA3dy+1*gCzdVtSr8wXeQ<cC{dHq~Vh2o+&vZVZA;f=RN-QmmB$|el@u#D)
zz(wuc91~l?SlIyw5wJg*vBn6r$li3zTFVHVJwL*5uI7}J{fv!L8)IcvOBggki&cKc
zFa;a`S%koxR<&cuOXDAac>4Ojyv8r$HEre4(lUxTwT)n14?{#@=L@zQdJKRN>iL~0
zZlds@B%2j3O%&h`J;P-97gv{d%KtG~k`WsFjy~ieN>wlUs>TeQ%&RdCN~ZaS++gPv
zv?5hgj9DUJUAhL&0i|KAmSb{BG#!vHGoi@?{MCKedjH12f6Xc8G=9imQX+JwD*X@i
zq|wOc69(q9l|=Xepou~*h!){mWEN-V1R5?bi4v0(eZ8HZg8b5;Ud7zF?w5@Za-$YL
z%NX#Tq9@MaQ@=hh&uKK_1~m*&Galq4imHDC6O;bZlOO7xv6`?lU(;g*CzC&FBB;Yi
z{grjLR5P*|6v_ZGY-e{P>>0twQd@0up3>bJ*CGBV^mpo^ifD{5W9MOfH4m6{C1aq@
zz!&Ch6<5$Gw`lQQ+^wnK&mM`!>w9FRjCpq>V>m4-Ix^~-MZth)&bFpdF)j}fP6xJP
zd%uv~pu^q@d163^8+|M0!4ePp6yf>Tcsh-M+lO4j>$|4bDpKRG2bzHl2)!7I!qRy<
zrNQ+S`oG?*AMYM@R0BEBrwYA3<ceaF#(ley-FAHSaS@^fQ5_q1#p#A8Y|Wigm=6dV
zUzorAhFt!#%;X~?hs7qiB0vV<{1Z{Q*F4&g{ND((y(6cPFtG`;iHonY7OL5(RBSrA
z`kJ-Gq5S}`ns2fWE%x+Hu9|vDXi*Igcd$#@X6___^CBQOUmPsKrWUkyU6_FjJg?*H
zZ^nQGFjIu=gB~yWCnLpx92#AI`&f$di^WQa*wg=W#}-73K9iiUKM6}5*{{Kle)rDX
zvXszLbRT~9&^=<P*-Z}@_|T$S1}?=FazDR$B=AOMd{mqLvSYKc`6~Ye0rcQN{8s6S
zD1r>l4@0cL=3Fo4!#rUCI)3Xd!NMZHNr!<KrcwRCTRT_uKWw4vU@u$Jeo$aGv4U!6
z&V~5&2RuUl0GH-v*a-HyalkD;M8E9O((8W9=>V9`e8eOr#gNZ)u7%)nPO(d^E=DS=
z7c?E-uR1}w>k@4TafG_@QWL>e-WIBA%sUG9gLEfv>(VeW_<H&vR^k0{*ZJV7+N@dh
zyB6*mbk5((sR?mT<*s{s0I-3zBoSV4^l)T@Fvnru7s9_~w{t~w_dmqAH7^tUTC72t
zTIH(a<lXMuxIliZ1^nl;CthLU@EP=FSj%pjuhCQarK|XXZsv*At%ukl1;ENlJPjXm
zzX+~dPb$!3UCe*I0$_l-0z)RTfW+#|nme*}(`9k$I?ZWI9$JkEikDvdJc|(kPM+`L
zKLXpHYH2`Z5O}Fq%RS*;-7wmt?y#&LV_npxT^B8Rs~5S4K1H`lFC`*BJtNx~3zC~i
zLg2Z@5R`<}ae~@Yi}uVeD#uNV^u*K@*kOI!u4|EhL8s6!3;IikL1+l}s_B~#UT5yK
z++FvK{yYVlNgY*c4g*BL1azoBU}luH?dX@40%gI2l6~2n`$i#{-ivGKsic+B@exIN
zq=(#FNh-A*og6*X+Z=f5JL&C$6dLK}JTTNa_SgN6Y4kv2zwy3$APIpgC-G&JLqUhw
zPi40N@h*>xrFK2Fih!j7CTJ|LKRmUCJ{7RGQyk*<vh5A6s#Wg+Wc2(?+x8ndrY?SP
z$Cb#DxfOc)1*%Ht;MUAzbygc<R{r)#@G-5vAalM=`~>jN7GBRbJA+qcEMWkZDxa$j
zw&;EMK^%C+lVpdSzA#zxS!w4{$~nAh0}7}q(tC3Q6_zh7A$|Wko;6h>f&a~S`L>ek
zLMR}A-4V{*^g}byfahn2+K@rM(TEkOZjGPI+dX#K->NdtDCwNxjn%V2>nIuy(G1ML
z^OH}277nr)5IA;$>eoXuIUh0h<O|3eWpLpNww!ksqp%?&Xu3?WVS79edGa>ut?&m3
z<T8NIedw!p0FZ|UGhBHY%wJr7GeQ11Re9I@`S;!4px2KxWb$GnF-Z-91?6FbcV$2Q
z;Q&!U2Qc+=T?FObEnCjQ)W!DS>MHe}8er`YMl0Y%^-<b52G*~L7Nk7k8&{?|-@aN%
z`?~wl{v1}v5y@<uMpETPZ-}K$d#0SVQ!V)v_vq)8Ow_Li>ru-&w#x~eSE0t+soWpI
zqu6-DWN79>?1^W)%zzhj3FM{R%VMO+PpxjXY>mG{;@)0igGxfA@g#SKt$JZl@rH4j
z;k!{-Nb~=86jhZ$Kz;bGjq}YqB~?i|7N4Rz(00@LW`cRJXp~7!0z0kKEAV^}6Fxrv
zN|`%qS5^mkqOAJ-vHh4M-L&xsz=;0^8}^_^2JXVh<rl)`(iDj1M+a0bYPE6IFR1lm
zP_n{FVR|cG|A^-P_W};p%D0e2EZpgu-@&gizy8AcN&okIgY=C9Ol0V6<D^<F_Kv<`
zXVU#dk%p{*&b}lDJn<~J%){}*dqIX=l(W;N7>%(0EMR(x0fu}|MTgxrFkmbF2f0`@
zaf$R@ig2=jz?wLCvPy)izco%MDKL`(L>jwdUzV~E1j4HW(IJ0B@L+aU@8Lq)DNMBg
zC(T;XN;)}}yxQzLk3uhdDjqUssK^i2$FH9>KFgYY0|sgUb{;0ngV=+AMSh5_)StMn
zo{<bqOpXaoDn6dnI~X16{^FB&NHC0`WU*4;PCjrQ<OrI!AbdZ1JuK+qM`4~x^_L!!
z{MLkoc%9y>q7#4vif4o%v(u<$S@Mg7*6m7%aQ!n9O5rt%jE$xDQq+boSQ5MW5{e<>
z(Fd|yh!%*hALuVqUl7Ug4RQF;OP=u!9^^@SOXuzlmP#JC@b00at0;uz_RR#eR326s
z^D<l0n9smioPwSyF@B16c1myC>0p^ORd%scT@Sdy=$33ATv<1x?pW^9Bqg;T7iQ-N
zaZIBzgWl&0i~_D+?4UKM^Cxf0lm-AnHty8lxAizFMaY8hfjoqYMv(`=2IA<D3Uj{N
z0AvRSc_(w}w?cr!k|@ZC`(cVxnkNNkO3sq{QE3NJ+RNhni>KGcXX;H`)2z+3$y2Hk
zrC?Gd#>p&>jZ+0;KZ&vZ?Xg_??#hC0A4)5vhRklC3F&-@OO{jKDZL0UNpgr1myqTo
z{Z}%a=O@QsUhla>x{5dRz5Qqwc_2#kLo9a|yH_**lEoRN?A+Fzzkwg71buh{DP47V
zf8l2FBU0K=b0OL{QDOzJ$t&d49YBwWsIwF2pcxFj#R|_EJ}79;<+XnC!05+j>ag0J
z9*<q_LE%Fm1G9zM;m+w?tBMK+;w)A{#*}6{x0qO@=m9)zYB3avZTo|8sG?f597%o{
z=T!a+;uzXXE~wl9QW2CBQ(utNRO*BE+br+`D%thm`!dc2^@KeW_1N|vlvsL<ro+xN
z(g8E?4Sa#|#*<gZSc>9TYE+kBLe8(-DZ{{p>#xkbRjKRpnUhco7^u8`diA)He!~Ss
zkq%8KtYpcc=7XQ{<QnJL(XX>iXQIZuPGMb!`6Rw^f0Uutzkfun=P?6iEg=P{!Jv>B
zaC2Q4*h{o=;aWR4&j=oXHW$;&G^?YX4~w5Xy(r<!8_5V;r4~h~XVNT<odm3^OMrh{
z<N+hUc{y-_AJ+I7XCL_t3mTi+RWM52oJT-7b8seY_+%89yHmtd8T*GlIWzbAMv>2d
zo$Y!<0nuSWP7J7We#BCCN&muGymzlTVqJMC|8$qoA30Fw{RbaYcw+caulPZ*o%vYT
z!9jY>da$|ZY)BrStW2J>j4e!h+9lYwm*V3GRnF+idbM6$s>BoP+R^w_A2Em{WjRjY
z4v*g}wU%PB)s6dLF7<b=EyHD)I{q9f%9GCgIE)Ugvv?5TsqE6Upx_Mt75SC=bI+7q
zwxw21KEt1Ff5KSF3XVY0vuD@V0Mft$E-roW&tG;|qbeRkcfDq8%W`2a2W48{>-=j=
zt-I<hBY#6JmaL9(Iqp#1UV-bU#pI18W~S)f0f_=oQjo6yoQPnObBcAZ{Q?0jWgr%p
zzq~kxE9L}ZKR*SPh*xju9bc~-F4|MZRX5<_qSZ)Cqy^q9C@L6pbA%{d#D@wpH?A)3
z9?ic;cL^l%%7W_VjI6L<GwrDKB6njiV&Tk5Y1*rNRt5sO3RST`T8V!{Z$c%r(d|<q
znzDw|fkGv2d%2TcF&vBw2Z>ubhMA4v!m9hv?i%|Lgrp>0FXcVa!#-z57R6p;=zhBF
zT8x}W`pq?!N!T!G$#U;MP8gO3Nkb(b!@@5;HLz&ev^7zW18fGwspv2@>S7Oqq5f2}
z;t-~ZXXZ3%b9)cvzdjd?AmzgCf7}jer<Wc~E~X*_4;-S8D>RfYgn#z6_}+DYnG_Gq
zeK&I=c%d0Iis{``2WBG3p)JFekguc#Lk0bVX+La&b$@B(&t8hKB*yPbZ}VdT2IP_Y
z)YJNF4>p;&Ja>D?pRV%@m6C57CI;!JbOzib`JCj*W6qj$h9#g&;%H6R3CR$E8Bsfg
zJkzhe?}b1?;rGV~4>;gX@woYUPCqwhtNujfoWTd0sxsgP0>CUgwJ<~zB#XSzK%~J)
z6Z~Z_q4%~)5Q0_}QC2{YIvp4>yE72Xmx>oJ^u@u9N(HoGM#4<}+uurCqWL#f4AgD&
z<ia(;$gc`97(?`uDt$+g$DukC*V2g?)qiemFNq7dp4wDOD|zZ+!=oz%#t@AgH7_iP
zNxtmPZy)7zprV!N+9;8B954pf$Y~HQJlfz;6Z+86e9H&$9D|=$or5?o6rq1kV7u^;
zLgVw<Q9z&vYa^A{B<AWAER0+B;`-yT_c>vDOdjx8k(h?_)VfbS04KqIe$0~nftDR4
z-Rfwtl)p^<2jsQ>6afF#Bj8zEqZS^p;>@54k27tM`Q@CDgHQs{Qov1A9Z6b86!JqC
z%qFaE-uQLz=Up0DDt!HUc{MKJr*H*Zz7sRpJG~&zWfRDP*8O#C0nzF>ThvO&NeFDm
z1~XG`sdFCRK#h=%>tFAfLX;T#h2Gcw--W=RtHNp^nfGWnHkxAEY6kqt$cd@D2gQYr
zQm)f0MSvh-T{V}|`?XKUz@_YYGDI$#xqpE0HV<)Q0@n~tEMaT>kV}(cbJV`=Gg2C^
z?GP-?(9=WLNe{2MMXx113G$j-lFzOz6TW)m)ehajA<#!43(VTS^<2#`E380E#SDig
z&(vUHMCt@Gywg2@!2OrUhhKYsDWzxLssv7|K0D_Pfx~QuEg9Ds0Ae0Tt6G2AfAq88
zm;fNgfL*9e_rfFpDaEf<@o5P<+&ql+1vY#S-0goATS}IN<px~IyriwUTGQxseVw^%
z5Rv%N>YVD=KNSQBCjK-<<6Ny5UiBjMK%V~6{v}IMLi-oX)L&Zd|6d%MbU=5~zyM=-
z!?Et0p*Y`++o1V&>nBA8`}VlyLfe@mz(-&?qsC+*MK~F|VQObBKcy~uHJOH0NGg3P
z=PXFR{c~i#5Te}S%%<yqv%WQOm2JJg;C!pM{<IX8!GR$AaYs)vt9#A{3$u#pGMChz
z#&K9U)u0nj;lQe4VEZE0v-_n?$*5z7j#>G`53dYnqLTWeUO|M7DUEgS89tpDd;dTO
z=1vriop=xr;G3D7h&vR&ZYI9j9E2%E-*!54_w*q8-sfk0aWhj0-<Ri3+@4CDpwn*^
zP4m0FK2R`8t2S}r1#>S5UM%J9WqY#blt@mvM%ZRO*z3NH?2l;GyxUhTnxPWqg<Yqc
z3?s66dSh?7BQ!xY>zyzRoNX`BC_2aQl8CT|-ex}{0loN*S6!v(bEh3RWVBPSkT4BG
zdPscW-go%y^i!etlI%BHpV2gDcy;~La0ySv+S;(pXB|S5q-K#CrN`J2bHom)nP4?C
z!mjvvasTA#MGgaUG{`x3Qra|QuZUQC?P5~*0*?5?r7xsAEs&ZuaPfp8GzbyLts>@M
zAGoqweil^!J}CH1_B<7{uv{-^(*xlfBJvvPYI%;2#AewA-&@mz;wwgOfSD|4rI#u5
z&4VWP_5Z+?tGf@Grrpe5`A=BtJ(3_ebq^C~YTqOC6L{2Si(~b}^zgI@g_qa(_D6NT
zL$E@w{x1@uZE9$$z)WW3^)%K_RNHRn=^yb$3DmwyEMVd^4f^WRRsR)B*!yfdMSAmQ
zKj3BWw0{qkIUPsE8a5*UZlEf9@%{&rB41)qx7b*_q-STx2FEeX6psR1#phSSgzObS
zTzpB0^@9o4L7$#pO2sZ8^vR}!=#S01k1ITTb!>|hQ^4H4?kozdrGtK-zkL`Gokgzp
z*J|SOsfwqqU!Dwd$`QaDsSPe`)OUaSdTi_0BaZm(KO$oEDttvTW*=G6&%{+Eh#ob;
zQ2f=DYH*uvv;L5E%D&zk58Mb+T^^*E%?&q*qsrejj61$*ZzGWtE6ChukT*e(wh?%T
z=%AYpMDq)B!u1vs0ucq6j$b}nTeKQ+^cY34+`;HF0P<gFrHSh15L3Dj7L58myR6n*
zQJaM>BcI++HO)H1wY1;S1%0GI=+coNyz|#CZFrtSNdms?G*9N86k=ANVrJwsVb?zX
zdF9PJcfiGZL0domYAKi9H-2g$-E4vdxvFnHulEk9Jza_m+8KRc_H?x$r33%>0PnfS
zf2iv_UU+>{5RAmJO{_R%SrS?PId=&UCqk{0Y?3$HHkJ?I*DlI@*n3t=q?fESu5|S_
zTK$|R1JW}!?6|@G{q+0x{JKf!nBu8nSCvcI<8fQI+u3x)<i*XdPh(1p%-`L>KHxMx
zh=(OTO~HO`7PYPM9HfZn(_xE(EbjR~*2gg)3imoNgjP-6cSjxy`!Pe5uSbNSrO5?G
z_*P70jUtd-*a`_asycm*4Y)~O+M#pYKQ3;(nfH(@GlJ<l#IASZUWsNsOReyT!Gnc4
zK$#@I8Q;E!mc`6ix2pj7CdiCd_menX)ak*6#ba$EjNrQLE4Wg0;y<xh?vl>|vbOt2
zWFJ_0@SG<BBk<-NiHVSoCya??V}|a)-dLc@gP(ssFeIMaNdKb*BD3CVQy+2`{(DNv
zN53IqEU{rJ!cVQS&`Rww4qPp`!US3=#t3F%Lr>arJ5KLYo$VRVKcNSg?+BvCfL4E4
zfYEHnN4OF3+}i$~-S3>5{nkVl_-hV`fD02rQON0xR+~M}jV3o8?|$yPtbE@9o|fz7
z2`IgS>$<T>+R{{-b4k6N-sP-wVB$)d-al8{L_|TXSn%;>cJTs(*<y?7bh_YAQUW9K
zOW=wvaWD~FPUg&ine2gXu}V^VFTMGC@W_Gf9~=^i7@c?A*Vpy(5x?(b(z(5N9E9Q#
zv-m1=B(1V^vtA#ZT)&Dd(q}h8ND2vm=z>F<qdHPh?~vz9f;7o>#B$$SN1Pr%CMQMc
z@m1msR}{jFY2n@BKKG0v7jfqMyn%WD-u>fmqjh?s`M?B11!S9f+=vlh5gX($Ti2-_
z{F+|M#Id47{E|#;wE4-OMy%_cdaUs^w^m>r93|Fj#T2C(h_gBl?kEx&kbaq|;p!S1
zw<x&MWYawgK&7MrM9D$efL^IN@g<@H*-{ge9`!y=mpzt%ZThPJgdJS`p4RzJc3zJY
zGjT559hU^be;7{!rP+EcCC!`1Y_|RkIERQ$dQ?bG8*%(1F2CXUjV0fQ2qleVP5)<n
z$BKTYFl9pii_I7gfcO6inH2<U+<j+tK^!Ob#$-yn)o^I8!7Yg6R)){f?;qa&VD9{g
zRGfVGsy4uUGH^|@B>yy0e&N>#<cpg!2`&Fe&BYWY(t*FyEf6d#0Zm-E3kNa77D!j*
zDrD9SOxF3A-^j-~+^03F`?i7N-?~cRdfLinB_QP8Y(W#V6HlX1J+K=W7)!?6R-tTl
z5#ee)P(lNRxo^lWk6dS*?JM*vU}d1^9Xk?p?A6MXQbOsCQ-0#r6*GKke^AF6-$K9i
z#e<29xr}Uefk(<1<5Vrap_9vwc)sBmqK2*_#p9e3HoqNCWCAmJTr1BimgsvjzfK(G
zG(uC)O>UcUg2K96^M)a*6<hIu3@Ddr9Uh7rJL}VkWWCrKg{pUPsK?xSe6sX313Z*q
z5n+s{uwhzHWHCKE2+l<?^gsA3=e^7i5h3sh2?GR9^3i<9N$UbWKZTdRFI=kely!4~
zKI$_5^t$+wWEID7e{-ca-xnfWdKm}DPHLRS#PB95%06%w_*F87S%Tka)J*of*(waB
z#tWRgLI)aKyY@qED<UdHR27c94>$5KG6KaHOSuxHzL|~}Q25Sen(4zA#y92fOg;B~
z7wfx^jz>LR47Q^g(C6`j5DI5f`aw}tmCHlxne5m{y`cu1qMlMh;L}L)xrW@{dp{hE
zP)dT$jnM}SiJ56PONNk{T7QOh$El{)(^q;OyV>t+KQ8uVy>KM*W<@v@3Q>G74x`?m
zc%u3pdq6DGYrco8z!I6!)Q!tG{<Um&Ov{0B3g7~Y<v(n4x5o=@-_w4Jf?k0u5O_`7
zugTTJ2IRp61gkrDl63Keuy8Ea5PbM@$JuUg`~^E<TFS82LXI`g^%agFO&7qEaQ)`X
zxdNJ`t(p3lI46zaU(A=fLp4-fN^+_nKf+O_q<jQLxPa4ChUofJ799}1diTu+OVV>h
z@9JC@1iEFeUz^ncIc=m-u_P0{Z-{<aKL8?FC4)J~6$UxW$S<oI|AluB{6F#NJT*uW
zzF!h)|CuM?YJQiHy>eX1#O`#(2mp@{RUcpe*tD2*B|3slpLa_sOq|yD$q$v(-$V}E
z4IiYvKKh|#+knaadWSD|yaX*vz?UupDN6`5rC&SZsDYu-L1yesMj`<Zk*p$L)aLSl
zQ@<PGcEDMTJoSqgTIneA1%@<DEHQ(LLyCWH>K_e)0v--EGuw%^1RO$@Z_mx1T#x69
z<5N9z1XS<bZ9AK_?;ymHf7O}fuL^kP>EY<dsyKp%k0yqqba3p102u>oXUgq9hKQ}3
zIDDQUK^E|M(-Q~zlSK47kUCdX`gn(PS>Y4l1#N>KgV_UPkv%00^)hCXK&p=gexpdx
zyRv~Yu4cOX6vD4*>lG#2Gsosh6+O(5u6bnmoqp*C{}LY{I>lTkeR_Q)uoG~6wW|YR
z)OzbJp|@Sk+S=Z>^hEW~QuIIsEde~+n2+->pcw=I*AJ!+oB(AOirAklh#xPF-uIf@
zmioWZb4Rq7`I#!5ZK5sLoiT9yJ-JOO44e`w$ias!{v%NH{qyNmYJ6?eh!^=pg~|4)
z)@gld`37Qn@>x~jHsZ#d7^^>Xa0v1@V)n114MUW>+N>bk?tFsumD$DHT#Tsu!d3Un
zr+%{H3~9NWQ0LEE+<WylXtidd@d-WLA@{?<#N5FLd7<Q@3i?KDhaOzVLJyJI2=I1`
z@)Nmr4qK5~L7$cwP|s`O*n>T`_uc=r2!8Tbz;SBgP>nWSw1l=F9sIt%Af^Ea`lwm_
z*kM*62Epm7shV@<r<V%mZGtN?aO<Xz2_#SbsqgOw!7=b|R}u1ii=+t>aKNqIR$(mf
z(DmMR)$SrdUOAd+Ni?q4`XX@{9KnqwUZhrSqs*(xdzW6tI-GE-wxFolsy-yVj7WF+
zq01HZ0102ZOns&Sh&38ti=`78spp;Km(%GGXMQl$_xU&fcH(Hu{0rNrJ>}RV@5bKV
zXz7>^AV(hgj3?Uh>38mg7Qi`3KOJ0IvAlhP)?eaQntoFz@chGjQtfMy*-jm*M&4p^
z$C2fjMK47hwI+5Ws=J^iqde+u{<(yo3EzJ8IL3#?4Hjd!w40`Gz`Ds@Bwfs<_XfL`
z1$|XlGhN+3oYtL}0>XjBv%~JM-9w+ZKmT!<f`Nr`Msd`0ASbbWboeAVgv<|S(`e(Y
z@T)(s2b7P_6GU@g+?A690}fo$8>mLetKxsbhLBSjI753_BK$%MjlUkXM>@8jrO^-E
z(n+`hl8sCcMXG4`0hf-zFQ(kor?aFfmM&_C5b#J-=(F>R{2gkoeG<vwAa;>h!G>H~
zwGziYxDEL+aF?bh2t4L=+qmtG$#L9Ft*Qc4PknF#Q3nI%4nIE;)i5eZj5}&Xt3ua^
zf0g4?V7_{3S+P3PHbaHN2@l<-kb-qyIY)Sd3GZLbo+6J+a#rqqLcEP3^=UX-{kcJ3
zJ=c1F@0ErlfTb4L^(*O-o+$$}K_c6>;-23n#Mz!HPnqF(&egh;fLxOMcvJS8gncOV
zro{CoP2U}mRp9+A&RgRs7uk;|NzGYZ@e+T_n`^1NY>GdlGIDBiEd?<6h$6dj|Ix!=
z9X!8N86zZ)qp6d_Je$sgQsk;)`y77b=4ZNNNmNMynxxUXT`d;Q?3?<CYQ#&J8%~0s
z?7}R65LqF*wfvy?HMdzU!$P{-3wjV7_`CED%07iCXXjU3W|%?$ZC5ccMKah$)PU`&
z!bOOfpJMm*shvjbpFVW}HY@cbMQAFSr;GwBreCC!Y4ln&)DY~cI%vHP&kjc1(+8SQ
zlIe&i;2Nq($uDI#4GV?x8^io1eQu|<J_#%FfmUH`davg4CuGRKyXKwq0epV|KZB5T
z+Te#j%r@Sy51~YfM-ahe;wT<;yY27+vP?SH&)aE=&#nt5gbw;AvOxZfpGD7u0ZS0-
z0iQ?R2l^^U>g=h4g#mNIW{-$ZXs6C9yd1XYeD!wppynaG2NkuCE<rj_X2p4%!=K9l
z>|=P*sDm3PC2>o6M@0Qy@)bY3d*AFyvxN--H2!9UgGRc^Nqn%@F&^O9pab+*(Oq`Z
z=YE|;m6P|XT8fooNS?Gq)`;FJ9&DEI?I6n92h-MqumaAMS=slD;eyy?PVkz_`er36
z7za%r3wrW<kcO6ilfwHm=^4Jx#Z*%j8!KX}&rW<5ASZy>KYmHC15W&sSMkQ?gG-yp
zRUFZW^2o2Q8{(+Q9&>qpJ>&A>u;Syt)h1*##>B$TY?l9FUSfeb@RTpU6`i-n+c(|!
zC1DpEJ}2=)u}|vB$dvl)w4U(99_1%c4IAQ&0g+(+=|>2ALJ9<6x5$MYns<s~V*9j7
z$B?hyKSAfse?jLa5m`gXH~lP&)`Nx!1qS%cx;3Uz>tntaJFK(+i|(~y`8Ulh<f;fL
zc&9#wrWyb1MUBoiPK=yB63Ykz+$Ut{2^$fb5K)x4D{s+!hP$?Xjl@p%<2#kz_#2d|
zka6(%KEgLX=3$JD!EtX)Iv{h9seJkFukJdXrHwO!(;wMzVBd;#xPmHEo))-_G)ryo
zC*-6aiEiWyLTd3G<HLVxC78}*XnvBSUfq-u8F-eVf0Nn#ZrA4}Y2Qf~!X5BQ>RaN?
zscbRE&SSLqJN2k#D+GJ{GlQ*~7ASIl_jX?6CHJl5`ela)`oJ}L`f#?b&O;zPi9YJ-
zF_BlgklnCz7QDcU!JL`2{a};Ts!9C*g)h%TYwv6vKBU`#jQm0hvBW|(`r4GM3W88y
zis*r^t$l_#yg{^nHY|WKY*=f$53{<mtqZ<i)r+8x(}Ch{fwgm;hzib7h#iMIsz%G1
zwfu}1h1JeDFW?6_rp>ZnA4V%V2oa=9MyVUW;BWBdg#8Jpwe(UF#=FGTJIq=0yaE#R
z?8KKv=YK@d>e1AFpph{|X@(4~PlIq=6)UX7V`T_I_cddgxtg~gS#yc31Ul~g_Sz$9
z10JEzU(r%D_8;sA?7y+k?#buRdJ*m~OBNo|o%~j_W_k*BJcnt<#{}BL#5u`co&B=$
zHPTK=xwqfwuhmYM&eg_>7JJrg(_>HS+=QOWgXB?YuIs2M6FxT$*tQ3HnSP^M1GD>w
z5B6t!v*233-C|XZFkM6FP^Qi)Fe!P#{#6=S8qC&eLX}ZcphY}e0;thrCZ|8%$*4O^
z(?i|(_Io^P7hHd^FN&1Sa3GFm`SrHNI?92e&*_$|hz4y8f7Ve}GG&AzDTu!DyCAT_
zl2X(B3_K{syOt4LLK$i!gdiV32BI_K%mb!%!Ex}`OAQNqO?0fRSjMsx?cQH5{HFdt
zL9=Lf&c%)`R29UX5PcZ+i!Y+&lMKfa8zzDF2xrUwgKlm>cc~Vo%dx`t5PDzBu0~t{
zWMNTN>ZVQWEC1MN?hsej%~Qhf6%c1G;D)C-Ww3y^Vjiy$b-g&_{FJ9+#0IK)Giv`_
z?Ml9wF%Q8$ZAT@Sy>|7+8DTnb4Df45GutM1=BkaztMdDl?w0xr%)B~AG-2TdN#!46
zO~3~)Y{o{{<rC{#ox7a_i>VpR!H%>=G7<y9H97<xXsLkJW9U?F%8lm8JMS+{M+I#l
zO(D4913)P(hlg64#J<u6i1l`pYx&|*Z#D}}V0l4;1ZDtT0qj|?mDA8?;$k=H!{hzE
zoAwa-;l-a<Tb@o-GP<gPk~Y+Us8epwoTbTRqW8>BVxMojh29TqI@sv(T~>yF!*q6$
zpP8S~gp&4jo!Pqe{d~@&KO>V_qPQ?q8p-001$D7!HH|SY^+>6Y9_$V{c(eMD=1>l^
zG1{qLde1%#r8637iE^K{GWGwCPE^S^#D)ouh0Y_3bH|8_d4k|2jT9&w`FYku4vY+k
zaiQrTbTU5ym{m2W`^$2g#gcb%6$@j*bZo$x>%74P<4oOD_0e(5TjXE{P=zYn!h$k)
z^v<JF*F_fMAHRK|XRAZ5CE%8}qw|uELo7XU!eA3j^r0Hg(kqt8VP+854ti*>AmTkF
z`pun}tAha(^KakaUaqPGbijTFxEQyD^<{}@v=IK0W)UG@9Dz#4J|5A{=Gh6O&T-%z
z{&GX)nu*HchGw0u`a<9%4vK2#_UZ)zA7(=M(_^U2gt<jwm-CYbnE0Gf6ZA})S_<_B
z7fxDD%&#KnrZ$Bt%c%wQx8HJrHyu7WO4@~ejGxx9a5bwqYC&DrS$&X0o45Ks>L}|X
z1nn8_%GbntGwR7M7vB!!2I-H?>Z8hQ24vMT!T5UWuyJn4GRYYlI0^iPGGcDCR&tR;
zaAtF)2Z-HWYi<k^X#Dbd7nt1!HgkyYPW=^6UOtThBY2FHn2(&Gd0sF~@i-rxExAsT
z1O*(Z>tqO^XkaE=D_=6bRnZ^aDdBrQfB_OIR%@Hxs`N@fS~4|89N7|e#}w;<@Lv60
zuswE82y!6+mu=J2yZyspDRo4-XyI~fsN-Lo@7F`@S^{fn<HzA}zruS!33Y)RJ=mjs
z8TqaO!VB~QPUDq<6lZ51Vt4IYGD?bcvBaC5{W)Y7gX*U_n!jGsL#@MW+a7bL+^PD@
z`i>TKVt$G?hAETA<ppaVIRLJU<B9Q+MuG%p)IFI8MBVYjQC64HZU>4X|NCKf*K2hG
z%suIlP7{&_f%4X~SLM0DUus*CjRLQM7iu&&x8H50?1LNbN|WZOqh2C^@C{%!oav_z
zYy*k&`?6olvo5!VvY{I;D?ny6lf!*9FJJ``S@#!KKwhQhcr+-RgeM+lH_w|gdiGrf
zd4P-oXJI$dSp61F47v3CgCGWC_HBjC_Dx2<H{7s;=qC-O*enAH;oejhj2b@Ab)T(s
zuKT<^_=C%Xmflp5dZxx$Q9}!9MyweGGoi$}t#`JJdDXUt{eg5l<Ku`hSbFuJsP&sl
z=;MPU9>DYrAOEbm?^Wdbx^|^3>eaQ6F^RT%N{h;`38zU$37Wc|J~lFp1MG0BIv0WF
z35Yk{1RM<jY!!U1>&l3QC7V>ZT#zz1ur~l{-<%OuK+sc8C=mt386<6x@ElG20Bd6r
z&IvxK^D(yI@TttE*E{zdud78frcQ@zkek!hRUm@JjLcen6?i)hcQ0iZ<A|q&9g)}j
z-@ESp)eI2C??clJgk&rRLgSVGX9$%#o<{>Xa2^joT&SVBYX>)Mjr#pm;ZOqw%0#X9
zB%LtodlZLqPSej04Y*y5$e}-{!kqZ27Tt8^6Jiy0FcY*&h@&kJiQcIa1)FcYK+BZY
z%UhSg_1iI08%YY8+z1RHkch5|E+?syJ@u?mb(%GnsL(7ed>l*3jU4&ofp)Fddw8;C
zeOwDX+%IHX_D8<bwvOG{`W8JLx~xgUqN=kzGsi#!e#!&dq9U+$vgRw>@%zir5_dUl
znJ>_xgf4j<D!LjbdK?T!;ENF*W-I2STkO^J)Wt=TT&WDREmd<9>(Qj<s4!XWz$`V7
zwXMRy9FWJR=v&%%N#!i`2eLYX-`hwY4@Xt<%Qkv<7FTWQBEVxmt_F3_v86K^=Po+|
zE1NS8QjA5ry2f?O!2&?V@!~_haNxoQ4VY`tgT_ZPAg4+1MPE#&?fnl5RrtKz=w%#u
zMKw+OB(gZS^ob2ieD(FrN(?(_6D1Bd4`JZz7Ig62Ey+gf34-Hh%$~a!0hNro3?Vq_
zz2y=%#Ued0W9?mV*$kW)8}B(;d8QO|#HL@^6-+#$_G%pr<42b{v+-g5j2I>R0q1gr
zYKw>@VF(v$JSYX!sJ&905&^cdvDo`~55v2rH_V>iI$zC9qFQ|baN+G_M2B&*Dqhjg
zeVO!l5oP(jrHM?CEM6JY7Y!-4AVvU-kqMeAS3yNQyu4%qdZyFs<q9tT{4_{68B~AO
ze3|n*>SagaFk&pSaZ99~XG3<QK6@590472sA54CcC++O_hP({TC6;<cA4Bg#H6hrE
zS?c}F@#k9&9c%d0R!A!nN?u1rEVvd<Le-u<hZ#S?#?i@F5HY<txvbA&viq*<sI<TI
zxwv3n&TWx>z<gTdd*bl2UT%*a{fXq8s+c(p4(zQ4$FEqj`l+!GT-MX3?+JmnhE~{H
z^d390vN>N%+J3+GOJ;AJ0R+~UaO;K9-v4nt*qKMaIr0_c<-()mS69O>1GB=&>HcK(
zC2Gf0C*Lv}h7uQie&y`t-OMmdHK)eAt=|nRvK}8kONej&a&l?H!JUuJRH4Ou57uy`
zJl9fa0U)b^!Z@pcoe;~Z5xwQ<<{<V<(kEfV^A=1_2OOafXE*fd;G)Py(#AEfTk8z4
z8kbsZmNo6&7?uqL>F1sMg&KP=Q7{ypAWA9gdD8Q1iL_ICxs|pdkc&Iqx#hU|reaPn
ztNb@Go7H>GX)BI0dRHoS$v8ebxYLdt?iO?y#b;LzaMFI$4acJ+&)$avWzxvVV(f{5
zR!bZzCI`w)Jca-WgG*O$Hq27PhunT+;4a_%OFlCEr&{9TIx$i|Or$pqBiC-x11yuo
zsB?IM`pCOGij*#Zf9Oe1`PyUEPI#y|oiw(Ke@Ej!cWB(%7y{M75!LvM9A^8@yk!JG
z7H;bLzP5xo4t21=n)%9)LRkLI1;~GL?2vPtXziwg&9p_Fw|4tfJqzHoZHgohUZLOs
z209OMwEzA6o$q}xsAdhGpLJR@YqjvnsK|)_b!_}s$MbMYNlGZ=^?R3g;l7*beUfFM
zJd``X8~^>w?6^#}B?dl7ylKJ+%T$SQsnb?J89!$y9E#LH+f(7H1A*L^=N0u@Sx;!i
zE85~f3N!gT8MF)|A+D&OovQuGeV6UJj)H0qsN?`JZ(V&PdN_4V6(SpUB`fBcxU8;l
zz8?QbC&*eAM&}I6;)n@2FJLCN@Wb66PXGk_oA0*ve>l6>!Ld{(Pp1aC#QoRd_#fI{
z|33btA_NLjtJX)AX}=(sTQtwBANJV2D5l5g494XvzS$gQS*tUVfO>D6No0|yZYr*@
zq7I-MGpJ$Ael3H0GuIl9@`4G=+Xujt-~wIzH=g^iF@LoO0Q{9>0(BlEBe5W0f<^uL
z)yorwfRf8}6lndiibxuU<l-SEj%d1Lr3oMgQ2OQvFGc<JyzqvGDHt@7+cv9nR6w^5
z;Ef2LNnC;+2lvgtqXUX`qs^cNPs9)m--uNwK|djm-*+xt_|^6ERt)yPAbz<2hOE~A
z3o^8GdbRw8sfdyqD#&vY0_jEU=Bjgwoq%#ExOHl>Ad=Wvz*(9;3QACA5gz8l_+Tl<
zI`fv$gqRUl8u+i)Jl`1>13d$!20*jJ`<~h!A;(*SB1%JrHGVTirgU(K6l)G}`O|rJ
z&My&|x!1EnBS#cB6Pf8sGC&8KCa6iiSYG%SWpJoZn%{=6>TaLs{2}?>+{K|6bN}h;
zv7uFnq7RCvwPtPTDKcNKn6YCh+?;S9X<Wzw3sCQ)p#WFf$L96=&7MHwWYhS4g#BM9
zT+IH}1<H)x2=&|oWj=fc^Yx3YB@m3~(4hn2k1wZ?kk&&;+9ul9N(whH#K00rlk9y`
z!^{KlU!!#1nGQWUP3rR7zZ+)v)b`5jG~?j~JY<G1%V*zuDa7Rk5m}%Xb0Q;1f?T>t
zYM;snbbv#>pYrcb&kwfOj6m;dl04ex=!I`^0uqLG$<lcuzDNf?xaWFI0hHD=uhcOm
zR-oXLCLegvc?PLr_8(hxxI$&#x$xd7?8e(~_aXQUxcM4?P9|b?c%asY4%8p&+%css
zpYHgQ;pVOUs`3XQaJz7WGy3N-@OM%+wiPO?3yf%-l7z0z$bv1~VSkXsSjGq>MCBpM
zY<&kb1@Mo;@0wypI&A<kVh9GEHC}gL+<ts6SHS8m4o0m>=qa*CmSS7BC$K9R?*23I
zEgW&7U=+Zo)T!UmK4z-{0UheV);WnW^Mf}iNSooP6&U5^o{&O9=qXu`X_qmucY2JS
zqXOEZW^=os;2V#~KOpJ@8+0f@xD6)l7ZjX6Y5OS05(emC!xzsFxK(Ir+TAN|$Cb)%
zVXm!_Y^a)kY#eLnP@;VC-w#S)R__?>Hq_q{jkXCXTL2_?+F}7R{SAs5D?q&rd$aiI
z2~<hE*_qv)$4XOTXXhVp1YCL{Ophv>v{qb7a$jBDa#MEip#wpW>ghqnf|(fD(R$l^
zAEjNLt!{vp9?%iD+~o2PywzB@$1@U`z|;q4v~ftOckG*CPFv8~oLwCJ1W{ywLyGpD
zLP`gpR=-V5qqRg^JPrcktY3wEa&OUrh`m9tQxGv0GK?(6_4;!;%b+f^?`mpjo;bqL
z#vzdI=<aZXx}w+vv`{UTfXncaGSr<{fP6kxbvTy}ODJBkoF&!vGqVECIZst^r2{z%
zxf}wAp5>xhvHY9V!bLpaWHtjZlkFIU{CR1MOdu8XusG?PGvDw5#8i`l>A5#LCaDLp
zj5>6OtkLL{!Sl-N1{^F-d4(r)0uidqnMbtxCON6JI4KL7UjJyF6Qcd63PZl7STzty
zTf~F;4Hv`t`V!5Hu50x!$Lg$(KUhI({%)-AbX>0I1;XL)n(pJkc=j+8SUpqlrcy>3
zivvpn*-Sv&e9oxb!IcvX3A{4iMhqdc^&*9ZV~mY{j`1CQ7e0~A0FSdAxb}}t@O{^s
z)5zv`(xW~1f08Y9wy%&y4ybGf^~uZpc#93#A-&3H`hTE3YVe{k_rNMJQ~3M2WDib@
zR3N}B$IVuum09#IR{s`VPjEiLOfE+h8R2S9fo`+~kOXJ}N&Apq3CP+7Epr}a&-dIz
zd#RlUxUQxhWG#^kcmP|I%}1Cx4^xdLbPe7-lJj)Aa0!6`1@m4Q$Y)W4YUsNiMptT?
z@N0gJ)g5c^1p)hC(avWS>u{)q7Zhhv1nHA#-@*0xkkDn}rV^c;ZEH>9eTW$xaA>+F
z<sVO5M7{S+CRnhB$Ys<pz*QwZd+D~uo%|Xoki`}(O~|}5h%8(pkpM^5`^<yz9R;A`
zyqLM{Cc{um|Cd<vVW4Bb5Y9r<|N6oBu76+kn<EH1G_jU_AB^x!sIjRLfg+3fCS45s
zS(IP3O+p)oA@=XVoFVF=Dh$DkG-~pnZA{2@*Vr0Gt?)}Ktl$fB3&7|1t+w!Ru!9xe
zia>h^6!`2Hdi;Ffio#L^cj7BD#X12~eIBH*Wz$nmz14B(MgmzlJ~&9?a-zGKA`1o+
zow!6g*f9kM&L*gIf7un;;tN9)DYJU4aL6TJ6UyW4*I*2Ux4y@dM-HekfaT>q0(q{h
zQA#Z90}|=?8kPMSK0Csi-i5dWqT+}_zyvQF->1~S%a#$>&3~|EwH?Xc`?;yNBp<8+
z+P{I6NFpzgd$WkzO}4(gW%Q*Z43b&@Z2;Pl8+89%`>+uBeGzUYlF=R-gCXELHfid1
z>gEbnbkzwqqHc4*t0bq7G={n+G+kP*vhT&{Lz=xMaVI?j?ZQbt#W0%G@s?&<SLM$Q
zR<?dHUBo!agCg9-IX75;ba|t0Vhx$KJWe&WBa3TWedE0<id|i9Ta~7N@>%mHT$;Bs
z9!`r`HfBI4po|N)zY8%1byyrVL9%sE^dQM}=N}sMIw%vVti8>u9k~MjHOO7RvO)-c
z!xNnaP}N@Gy-=n+aT2*YH9^WDWq})`c}uJ3{q6(5GEWH3!sTgRW}()3H;{f1S%KRp
ze%PKTdCP%h5>GpffftWca4vwuR|_m0B0gJ~N3Bl3TC6``R|iJa&CG@u3wksM<e2;p
z`Zm{b|FFPmv4JQ1-VDjtjVp0jwXI?|>194b6fp^VaW%zbs;1XZ25`eEAWUSN@30^^
zyn!j>q+r1K!YSaN^o7}aM}$C(@F^0ED0l(_O{KO)#3Qc={2K=Ipt)MDmdV>PRCW#y
zT|TVTfk#ixRuK6=_{#J$CAQ(v($JHd(1erMG^%~zUB3G1jqJ2n6^39gGQo5n#9)B}
z1bf-TLCcz+ilY|aUjc&9-mkwBR6di2%aX$2Ey54>wrmvZAlnq$VYKD??nDqtdyAw{
ze?<5;KfBetrPMF&bO7x<a^VW{y=E)3T=Po)WlKQx;ZC|KYlS$@aa})2Lel79nT1z@
zNx6^a5=-Ceg!9j7N`b}>(ML3^`Vf9S;fuLwy}z)+94&_u@TeDB-&D4H@6tm&K*>Zx
zdl{*$`VBEjbMN1I{$X#2CT6qsXw&hM+9Zqh#hc5;Sc;};eR$OjHE?aSKJ-`$vtP!7
z8mRWI(3nG&H8^OFrL$)5YSF$i4hV2V9=G(qt8`qd6SRoX-1I?i9qCrU0;S?aG-k77
zA-?ixJutRaGq)oSCL{x)_cT4_%hmDOY~>Bm#8n9xTFQBMPpS+9KVdmJgLvm4HvpI?
zox!2lmkJli5PXs5Lr)nRL-uy9N06;d{`vTE#OpL$alIS{$=M8gx0O0u&c*<DWB_`~
zqiK!j6ebX;BJd2+6Qy=wLA{xjFtl~oA^$!9C9trHWCZhooc+5;A0O=%2G^5s)(sg*
z%=cQAS|x}Q3kGh%5a3bV-I`T8Yz7XDe2!O)D4}zs$Nyw=zQ~dexx}I##zpoYOZhW)
z82T!Y4%1D%g319b_ow^|%KR}6eX53htlhfuZ8>~%dsDBd{z$D&TD)I|?z|aN`U!E3
zcrKz#Yy;Z{$3ov@DCkBX*j7a`Tz|B|V4Lt26jLel?0g{UWyI6|aZ(5MAEW6)eKq|1
z4BqXy&SSmGxW4h&`%c%bG4Nv=Z|U!+gI8FVJU0Tm9|Y$BIh;Rsq4rLUhjDj=EJQiN
z*3wC51`*_W=I&g_jMMEWeZj+Nf^@DUiQmvo*Pk6p5dNDk84$z2uGuy3AgA}~h1*Vz
zLxi{Q^l;@|pzRmT;)o`<y7ix3iIrS(q%5Z;fI*pSpQ^Lx%Tbam*TPMlzx<j7B|i12
zde1mFsQ8gDPWrjuWrweS<};L=7{gY{4LH>IIQyc*BzCBbW`A3qHb4&QbP29gk*W}d
z4-fXAdMa}J^Hbqg?_*Au2E$9Pk&f-L8wdQgD4NEzAp50xgRI>B$N!_bH;;$%d;iC;
zduA~9u@qS{v``WyAu(eqS`kVmv=W7iY%#Y~L`AF0HkHa66;WBHMS8WNY}ttt#!~h%
zbN`N4ecqq%=llIVet-P_`u<nuy3c*?bFOo3=en+^ca`-u<2yV-YUir9i#IOj_Gb2G
zKbWwbw=yd$b^A22T;rE|#n4Vmk$j0HrLnUp32l4XHr*Iezy3B>07XyYb@14O#X11r
zMn(2s6%7pZoJ~6Q{87{_*hT^&T$6bP_rR}3$T9r%+I^lKVRXbkxZUPaFc<RKBn!>B
z{v=d?iWk;+=<&tv!qmz5!NvnJsL|F}tphDd_K^Nn&RGtYA^gTNad6zzdtMBoC~!u4
zB!QDHI^S^m<r2T}!LqlnA^vID<W3i|QBc^4l#;C8g4rZ|`qGDI#&^K(v1Z;vyiizc
zJ1PA0E7l5-N<QvDt}>lM(5z?>|8@i@;g<_@{kKk!m(jq&Blp<oyRYs`O;TNZD_YY4
zR|t5Vv3`a4l6{sFvLyL0`5!fI)&pmMn4>Z7H}($NQDw)<-Nez8z8bu5KsTSSA<J*l
z_GO?@vU3`KUd&}xbdb-w)O8qLWYoqa;ST;<m+ecfy#MJ-pwq$cWAy+|rlTf=4#h4m
z_Yv#H+jaX;+131LE34ZqUf};2M$3>IR?t{R+>POEqQDQn0p;x^%duUD3{J7J$0Ta1
z12vml_MbXnfWIJdCbYV_3;IO#<%-V0@!Y`6g0p+TVa%yghfhQ%D!LnYR!%;O;E3o7
zM?X=~K0lp%NgDT@%lS<l_>L8;r2qb~%jxD*z9gKBdxHYT%+W8Sa*inH^4F#*%^1x8
z>$YR-ricWeJ$QFC<Hvhpl3U0!W`6he9ol;?4f@RaD1@WV?%Q|Pd*`YvUI{v~0*21S
zw?5fTlNeq{f;u_jPu>vuWCyoRG*;K2pR8*+2W!{)J#Y2b{t<CSpz6Mvj=Ue?`Dq&k
zs9T8kUz?i+>l?iaSaM@-8u(@vW90{Dq2Dhh^#kKICJNiG=RJOT^1tbEh1kUJyu@9m
zK(BsWe@$6+i7cH<bPN%SfCG4nM_7HNhlGfVj;>sIF!ig!F=@N47+o6QHliAypfdV8
zOVr&klv2`FcF9n3qa#KS&!AG(Pzr$sC$4%GvsqyA*|5!WE)4#xX8)xhl2d9rC>)fz
znGvpSKbRV#YJB^u;;d6Z8&J^uN5Sa%Ghpty3{w}5O2iMNkf;@<eWM!cxA`LSr(4TQ
zcAq+@*_2sx<I}k*O$W<2L5#IqlQcPj!9TOhq;IM@rQv$a;zxEmP-lTZZBh%kcNy4`
zp!bHi<Wc8pEV`IsPi9Wo?|x}(CLFzOcBT+#2USlQe#O36lN|c8=W^ef(hb6-uVQ*D
z57#<qMn!nF86G(`erP)cJ^t95b5~Zc5QCLf8}CI?VT<XB+mQn;+sKe4w1wtpLTSi&
zU$bW|LN@v>eQ#3OqpqJDC%HltRikD+D7|UFu`O#L3xiLjMbw7pIuG9NXE;D~VT{{u
zp6)}H{Ju2a3uaf(-8J8+6s9SB(DBkxY-|>qW}*}Bx!X<{mtUH8kDqEoUJyF<EOm2(
z{tAq<S?J4hf$!E64z(iFw`Bmw>}3BBBIwuFo<kUFmuB>m!>g&lfwx)?^VY1qv3xq_
z=-_kuCB4vqtKc3&2-vLOZ|jfqsoQBBgASt~mamwM7RpEcvhOQ#EGhWAsGS1Pp9kvY
z@mXD6>GBc}iKeHVU*S(zoi0_DBvvdteNW6v9XFg#bzr7(Zg`|X00xgjMaWHr_2vuf
zU(k4EO#CrRMpzNp9jOcNRXIjzQHIVC$HcVc4QOhk1b0xBB#*flyAk>GP9GJ-t$+Tk
zt8a8vXI}QJA6R^hWLI(pD^lF^I9c(-&G&cjGA$7`ZN7KEjk-ohoWp8G1av}$_A~e%
zu(CAomebS#AC^v)@wF2anjD*o)3@)n7LyTWC3U`lydzB1u9G59rYngpPBoIjvLEs_
zg*i+gvD9WF@HJ&w{=Ilf$}bGWFyMcGMnvS2(|D6XE%v>q7fuNOsJ8$c$x&kxs2#ag
zCr*hzQJF{s_S1c2sU-52?>;FFz<dqWHgwdhTk_dIr7w&NXmG0jJ0IP?Rr>vX!hs4^
zE*8P`g#UWtft<{F@<}V<Xa}ansjpFXHgm#jC3c@g)%JFE1Azl)9hP9SfpdoR;8$i+
zpR&LegVl}|k=T0dhQN#h96sx*qCbG6Se|2q=S4dkQhWM$R?%YJ?&E~`)ArwUN3wN8
z_p+t?l;aFrH)9*}SuZBn5xF}Fx%5P%ALM(l;_hQseB#xn=brJ(J&_)%8Bvz`Hd^yB
zy}nf9Rc*)V?w5GTAT^_L6GDU+=C~jG6)qhn3=Nh6P!(w=E+AH=o!VArcRA9H%wOH-
zEa@XkPS@Z(gdr)1IcjR6?NRgH>yB{d#!+c+M0y3%#}D=##Aw%7WJGCu!_gLzP|L+;
zhkPgewx{tE01v$WZeqd)81u2`nbN<4tZ+RuyK&aRgfp(QA@t|yo`0nC17GK5xj@~Q
zW>9>cNdr%QlownPg&O0oD>|QBF27NoUVmZCKUC>@hR3knrm<O{(uE}4(;Ec~5C8_m
z8(T~E1tMOxY}m*b1GaB?G?jhYi=x(Fhsxn=7T0`hV!5@B1m=d|UJIztwUV}zmYSU#
zXzTEBOXIg~qtpKkA~N!+40cn%$NDY6)b|7#EZ^>Y`-bNRxCUVOoLKO3@O&R23H&>o
z#KB!}Eke3#3}DHkt25?`<N6prv~21NSYZ4u-gJ(JDTi~|8|(@OY(=H6fzhIoccsd_
zFJz8(?q%Q9O*-nQFuV^&4vfqz(|bzPzp5>B`I+9@KOD-FHVi3Hd)RfqS(&NB51uG1
z**zd7b%)peMOmj_a2V2ejNhk-Y=9*BEe_{uy?Yi!tVY=2t0u?3*2r2YLXi}+2EL1v
z^1h5qgWXQG1PuQ@xv$Oa=+s?kubiFtm34|Tb@$$s*pHfiVfUso3N))#j&d(nB-k#S
zXZ|YUmKcd<Q&yDPRiC?`BpMjCP4s#d;l$u~^bXzEk!%_m4(;0?YyegbtUUiv%T@)o
zH{)#@cbp&aHvsetoCIz%^R8cHcW~^4BJ%j7%EOnZrwTUGI|hapW8zZ;yDrkePzUBd
z2%*6BMfP`51;XzgJcbf<p-x`$UlR?vKQ1YP=(<!V!%R`TgM@D{w2OyZB{Dkeg%+dK
zYc>s9*Evj;E%&@y$tWsr`ZiwI^kW;zUHV<UTch%?(h0p%R@9i7Gn?PmH<r7Qd6&<q
z#W)Ft%=mBvek2wAl(Z;#;OE<dT(PN4ndiA!(f%WEY4}a#yAc0Kk{+$WJxjOF0+;V?
z#eFdW=5xTpEC2k{tD5*Ip~OpAbYmI95)EAFYG#G6!!oMx*b~U#pP;a(Lbnz)TI#ir
zO_Yp=1bxHutT!(U<!$gbEX=&b3>edOSiTpvyTlkj_nFIUaMJLap6YbMmh3)28B(|K
zU*kTDb8d*(4@0N{l9$Hy#DAQ=5p$PQ!BJx9Aco&iI)vGsP?{?=|L&#!v8_U|_&M?U
zLL7oj4OlB<L!%Tw+<TVUGH3aocfhRmHh}g<?(hb1cNC-gDx&ReHN@DDc)HvPMR@Jx
zp%8oOcS%aWvxZ&ZnRCtvTqC5|*acfjQoIT~<_pP_LHh1Fuqzx)7>}IKRE4*TiWhjt
zRmA;TjbEubp&gusE^K(=C3DEI{q-g?w2g83=gIiMbfq|GkZ2khTeYP%e!M(tm>;_q
zs;Kz0u(Fglz?^;L3vhhP3&%A@pt^uz02{RjyT|+%3i-3_pNrD!`ay9I#K*oU=%4Do
zwC3z{hkF}UH7;3XWR&F|rqeziIRI&nlAyo*ek*~R4Fvrj-v~4rup``VvXU0uTrQM$
zl%M(7#~V81l7Vx5H#@ct&UnG~i^ijZHYyk_OjkiB2h<P>b%Onh8cUK$%g>goUVvvg
zm=UmNt-cy3D{wQwBr*{T%C`oN^rVfvDO;-Mc%s)yg0u_O=k*_@9d}9*Bh=89qyCf3
zX*XS21&rx&s#EmE<=GLVTJ*1F&#gicc!lCJnL}UgnJ57nJ+g3~TPk=_a3yhylOR{&
zY%I91ov@ZWnV>_;vS<G499oM7M^buMn1J6bBg1F+_w{yVWE?yEptNQ~oX1p1cuM{x
z6?WUZ>j=v1DCns65VL^!-ed*P8%pb!kPjaq$M5`n$^b&BRW*y~`qJ&O;=AhgL#MZZ
zr>mI8b+OefURj}&``g2!dpB?-XBuSCmG>Q2abOV1jSpJSU;{!qPZKabVhe5g1xw)E
zvCJxvfd0mbgYP$gqRtJ-TmVH^wQLC1`Qxl3jL4h15%G$!oBjgqjykog>(7>Va?j$I
z9Z=MoKkfFmPN)lA*-yCF%LnZ5Fvj%yrCSF!)!%e{|A}(^5A}I0XN<VHn;k#Ig0O@O
z;yv8n5)~S|T41n<ol(jOE&!++aQ=q|s=9-dJC9@*p7dy(PQL10W>_k1?@7BEu6Ikq
z+#1`xfcIjFJFFB*TPP$yT}Fk~^Y2p;4oBP|QQc1OP5#+oxQa6Lp7fZ+%obXq46|Lu
z-*)3QY4}M(0cB2i$zyokkZ2ahIBmsly}Fr_@%42|i9UFp*1-LxsI?R^c-yc3Ej23X
zX75M2%@-<yW#iU;W7@8>jCgG#jLXEpXJh*13ya7w6rZ#lB(Re}S5jSkEjqgGs`BK|
zkC;OMJ_n<33|R_GN|dzz-^fQ;N6rOp^Xa-j{qt(j2Duk?6XOhBpz8;U6AWAY!|dhi
zi?VY<8DGG!?B{N?U<iubUc0lp!7kN5Q`gT`2L-XSe#Z-Pi+4Px`}X+W1ojrwaH32G
zKJ(g6sdJ(vFlM&I3vTW{47>v7ekQJNtCt|J5x6N}6MI=}ff+)eOy3h%)$tFravt)3
zP;hR$gLqI#7-~?Ti5?ZTUuM9`Qj|yiN*_<{{GzyNRP|H(U4Y~Es+k13d7`5Z#{M4s
zXw)xYiz0SvJDoF7$&E|H{s+N1RW%{}z7~o4n2EQr3b>5E)p(bd+9~1R<#$b6p69Oc
zpnvL=*E|^!xWh+YCdjvLKx(hlg9TJ)3OwSUUm*8WEmHV5w|muyBFu7f@2e7m_%-el
zut)bg4JJOm_w&dc^joWgpic#FE}b2TTN}A6NvHl+1*E5wcDgM^p%T(wu<9$B+(|YX
zG#nfm@|~goD2<yN?+)o-n4--5x;nr|6>eYs@lHSDMdhshol%}!$(|>-uhxS!CJDF=
zHs4u84=x;}xbt$AgkzRGGe%$=L+V!&HRC~{u#9Gda`lw|nU-#?U3MN05l*j|7u^g+
z0E5mYWy%ZJM|uZv8K`H<9Pzsq19nSY=PtQotj#6L%ki2edF!F!a{)Pm^`>_zZrs%N
zbq@k}4p=z78sSF~B|0ZMY`~5JSKS_!>4V0NvA`$S0ryB2Wgu<-i|}x58MA@-&{AAw
z{yvrm`qL9K)n#?{S6i&znb52|PF<atq_{Ro?0b$0(28yhY)IPhdmPE^c?z1p7+1k_
zl*MY_jQXgA2F+80YS|-;2O~2vRG){FaXQ7uf6U>3BcW}LFi#-4q@2a#X}C39>A&^c
z=&Vy~dvf3L`VWd)WcWym{}z6`nrJ;oswB8OXALe~R+CTA-7&JFBX8bLVLu_aOORh^
zh^kBXHYwu5_?$C0H)9v~yD`gg8nhG&E^*@y%{kXH_rfI#yQE|pP*t1Wpw2KK!u5X2
z$1`dwrl(~uf%8sYr3fA*hW{SE@<nsHP0{Zu$*%BQuF1WR4Apr-^B4u)W#oKqy%%_E
zZp3~GjwXJWxxCgkO6dG7Jl#v#3R?a3j9s*Z;BxN^8_clxhb0M+k#>@+_Uzcg|3TMo
zXWXKV#C!`&m+BX+=D#GQ;!Aj}zULy4X!T-mPh}-6!h(2u*A7THp5qyog!7V+1w~or
zH;+-R-Znb##72SX=B(2a?i?q)xRRB<1WTK|IK(n#leWX(z5pVi7ZwhB42CDE{V-;i
zjeTEd0n?^rd=}09#aQmhq{r0-_zH%sU=ZM5r8Ip1k#G}&cA{DwJopj~-1b8riIgM@
zH>y)+rAVDtp<TTws=7*rYkN*$O#|-<!6WI(TlcEQ*Z5h$zO|wEE`+Kx%|xy&X`Bl~
z)u+{5Q?vjs7*s{8wGqVTe)YlD$eJ#<1$BJg(yM*NKP9`Oc;ZjjH*{FnzH`^4Fc0K=
z^cE?Qx{fjbxy^ksmHKpuTwD?s2JO!C`iClR!42}wGXCS23UB77i|;i@YWD5<aa$Fs
zBm;4HB&<TFpQFlpuT9e_TTwHTpTJ!Aeh$+LZw^AGr}78Rtr7U@sFdMu3&*xCut*v%
z#0lImVqBa2`u_C-K39noI_i);@;FqG<7~5M+hg;$m$+)%{k5?jN0~KZ9~)l|iw8wc
zV!SdTpcol9kA;t>Bu&U`3V8JjZ}=X*<sXM$8Z7{7qM>TPm5kBxIu*<Hz?L<uc6Gbb
zeSh(*k&C4sr;?E$_p$FCvt>2zG7I_ToHSDp5&C*yCjH2nrhQ&8b>epcAyqnY+8|tA
zhPHb8dyc?9{G=QS&kNo)Cp}RlK1*XCAh$;fPIb!St+QHV=NJDF|0x?*>LB2MD<Go9
zzvV;pUXrPgQOD0)k4Y(Jbz(5Y`befvhHkob1Ea6m_x29?8UONwxm~#9LKL4lAyILB
zA+$${v1~DPFCQ0rQ}DiKs$;+v<75v{2OTr*cWcfegJbmy@4nqqHv50YVVuW)yf%~!
zv`9$sJGjiK-uhe0Jz{y*X$7LST;a_npo%iVJmqSCt=ukezR}T$TiM3<$4+D%8L5|9
zs|W^S`d!OtUE7~trMFs9?7Cfgo0q{v`=%{6R$vVAUrshPs=c%D&<1MTwvb}%>6(dv
zme~=pPgw5Ne;-THAf+E&8Zdw+|MTx-MFsef_r__{l`iywmx=?rU3EtVr>o@vH_MU0
zdom#R9nEBQX{@u@?U#g%jTclc!&Z@?>VAiQYdjdy=_^>#9vH&E9ZZu4rpLt#JLGTY
z2R~|Zv$jE<_c1TSWe>MC@P($Q4(vjX+KLlz<V3-~PV$3V=XS6r(f3Z?;#E9OywB%J
z7d}4M?ON%oXu+F!X`~M6({ZbGjHz0ppdi*`aDNs_>)4q?qJ^_ymgOclvcRw8r$5+8
z-K^XwZG*Kxr{@yMYazXZH;P)v!x7;gOFJ@C`E<$pLta&%1$)80FGTD0ppKBdQRvaC
z69+<==-yi>n4h|W#FT8y6@k|ft<QX+-+BJ!$cmG}6_HPXqb$mFQRD-Jt=S7u_jLg!
z?dQEZ(z_bJAHXp&jR-#DI}#K?hGxMcI3<V!n7AQNtLafad(s}Np2PKy+c#+N()w~Y
zw>S47a#VGzbEl-6`=;;Kpdx<WeV|RDgpqcSElk|jY|`opp=lmhA`2l3pzpFGVe|+D
zA*bW>Ev60>l{XPIg|&tV6(P%UyJ64svft2dl2<BcV#@x+ih&WUymSB5LwkXg?TANW
zN35wu39{f>jmXH$qtGgUCzJ6oPci77OUK-&-K=F7LHiB&182p1xqX#e1veWpd;=^O
znlGsFHBlD6DTKEP@(B-wk48`VfqVcR8>zZ&cW|7753^L)q4=`LNpmq+D7m7%jfFn`
zwE7oDYTIdrH$Q=v(|`6kF!g|BSz&82(l`rVx-c3wKlmsN&M~w%NfCns=Uz#)^#>(O
zK*wjATI5*nFky&`vb(leym&t+bu4wqBtr<9{&AV2OkSCedX>}9cVlV@BBnsD#ne>h
zkaWo=ia5}gN)9jaB$NmiX(KF1khK82TllhrgWIoi<$%d2(r>oMO}{Q{Ft`vs&ZwQ4
zWYy`1WSTzd<c!dhuRA(crdW9Tx-=9k#f4ql_oz){p3A_C<jywhPeNw1!RM=IPp(Q{
z5@vNlZR$?oqZW%L;<#bWGoRVe^~-YY7`yPbtvqNEaqp-<&6$o=wwqmv*F%02_@!Mt
zL~w>JStFaD?2O)z4O!*%9l&5N$!xf(Z4Go9-WHZf2bHTbpMTO9Q>t{+T}LO%h->n8
z>%>WHNAl97+)&<egSmlAmIaO%=!ozZsXdHW{#oztTm^WhJ@bXDk+KjoL)gWr429kx
ze)k#1TnEjO>a563zieb6I*V!yJqx<4{DG4AT2s<&JowM3ZZXIlimo`(Y0o5%8pVA4
z`rs=%9yY1=(omA7a#IR-zdVta<JQ%SG4BT59+&Wc^Va|VyoGiUPoXCGL??(Y&#^U`
zsD`(1R%zC)14I-(ru!9fSD9r>qMPrkpjrKoe5iJgi#OYn<Coz(98Ly>houjhCYwUK
zymYmoTfllpuq;x<!&TVp+EeO7ulh;Ehox*3rEiqZ7@dD;*l3zv5d|KASMk?DP|A&)
z1BqiS`Gu#VMjatZL5zNJ7gt0rOBkl867cTQm-{S<G15{Gyma0(z9>vYIl$WwWNIW?
zZe7o>2upkJJDM^u_r=J=>dLffMlv?_56e#q1c^2na=YjfQXA*rdM_fi=5mh2k!wKL
zVES(j@o|1bsA7A-xhbwVRd2YT|8)Dy-hVa~oW$Z$({n+O>t}(u0lwPz<PO~II)!<3
z5jEu5oZ{u8ER)qgO@x^Uu$p%#bR7?6yfoj*pwZKXJTGr1(VxmwOj{&c6Hk??ri{oT
z%mtLDq_+=a_hmc<HU+QWZQI5W@7KGvntmzrOcg#)nA3hAUpzxXw>)`NOv@5_OM_-Z
zNacLEUEalMzVd3*=*s01_zPRi3Ebb3m}e;6@^)uH{v48|J*JoMsV$KeIZ)vFa9{e%
zGY5c7_wK1N`IM4-b(EDDc2?>h*W?WIppWyOyLP^uOE+%30UM*`Uj=jE`WRy_2>c`H
zz}YD^AHj~gm3oi9kCGOKU-fZ#Yt46zxrFR!#291U{f6Of8;a#sN-qn;6V~Jd?ruNn
zlOBj>D;6(~klxxeITa+j0;TBrV+V4N>Wkt<;vqDx5ko0YbMo8M2>3wndFXy?tXmY>
z?TOi9%VNOqG5)bhSQ5;^WSpbB=||Z;eIe#jiYE%Hj&DKUc`zv+g4C=4h2Rr~4z;el
zuFt_>`t!)ewr>b_#lxH};MoInwB`<G_m+I|{=~IGqbsNc>%rDrpUvf1Ppv%{k>k08
z(*$ZB_}t`zFw;)Bs(Yt3<X-E4HZ{E3oqBKC9B?M32k!rDKAGFAg3+7WCW#}UCrDk$
zTmUDR<4fCCk%9{LE$-VJ9@|J{(J6L=@6sYKOfTIg1~rG{maiJwi&Ds?b1`Q7_!MLk
z3qMb17(||UUw_rrCS`6s#=alH7FU8DIqFCEPAyvjN&M%Mt%(?Ze`4V~P=`ZqZ9Azw
zgT167v&_U}65&+#xbE9R0+k!&)X^GPFJ&(3e;L!I>LJB&?!rxecXG^SrojDn5iz)&
zXtfSFcHxCIHX;zR7VvXXVxVgG?7{nL@=M0P_7k~n<rF=0bG-|U^wBqW-40E5&T%#Q
zmM~~wWO739SxapQQ+y77h`7Sn#M&*+Tp{X7^tGR?#Su6PJ|A3GiI8}4tt%IcHza;P
zFIhh7{z(RY?Y-a6K-zeD+H~1$kikY0A1X&Y?YOxJiu|Q0V`?Rb{qL6?Y;EwH4q<9j
z@EyXD@4oMwR{L=dMQljS)w7tDs=w=4oCm%kBVCs>LOBP1AL&cjdgBeH$L75v?nPL6
ztWK7_1?@c60_ePJeYHDL-Nf@Wy<l0f%G*@HTjL{-vqldxtX`tdg4=(Hpp*G-?OvYk
zJu5Ak5V(ordKA5Dx$}TV(7<sa@*i3R`MfM!p3{5@{7%`&QOw=1@A*ZCXR^KxW)!<A
zPkESLF#qV+o3}rduCf2-aZie};MCc&roH)g(p5QwYi&PlGJUJGQi-omf{O&tU`LV&
zX@4FCHWs@xY#*uaC9&o0CbL#CK*A@?@MuQmK3>z@)qkn`K1jFH6v^#FpO--jws>rI
zBjXn<fpoL|xr;u$m9Sey@oPC!&-DRlT>inVRh+t(M(1~Tx}U__-vj;uW?8_n^NI;#
zg33t~@Xe>yxUoMsyHa7YDDzD$6<@hji%~QeLMP31KOTN4k?ty)zjXuo|9DQdBlWAo
z7p@wKDa(Gum%})}fEi1?Pkb@@P!WWatISP<U!UA3O<&=rD1!UR+kZ;gAV~E#4<0TK
z-=!sbNCqO0A3OB8yIf}EP-EP3(X?fHYbdk>J@!=gs^h&})K4~mH*M&Xf-I==y{OIL
z!z!NncxuTk!|s&a%CftuH>xgibxq~J9tu7}F-;u1v5|C8VxtV^`F?z5<dMNcdR#S(
zUCNI<`H;+!ciSfpJ}u>RpELCpTL2t{^o$k5R*1t<&&@>_H@4;+Mt2!4F}=?>LHb1c
zZSjl25t1a>IEyp#bF`WS!g@SjqgJ~OXx%<FIp@@!{wEa4rjQ%=rH(Q$lbO?NnwrXj
zV~<m^K0o660t(KdySfj8(v@OHvf!@IEczYicctYT`xbwgZhwWmLkW1PU#ZMiiQKrm
zz|Mu|c$rD|H>_7CAKMFQv%SzgSCneC<qptue8S$g9|5I|6}}p5*<Ihad9{T9c-z*9
zFsP!?JxER8rGM*x_j&p4#ZFs)3N(ts{#%a&JwxMO9eyZOQ|hIycz1u38=2lbt=%Sg
z#`DeMm?3nAc>M@&{rG;ApfGT%LR+AME;FcAei5q$!<E9&dmt!mi8L&en5#B^=5xEr
z`UiqfM!~`)csr^p`G(AHBuXNzB|rprr%y~&Sn(2{Gr}d-MhKjx!LK?}<LrAPsD+4&
zhU!rBxWi*C;{#f6Nmni3dUo9LRF?>R)b!i8sEqbcOGV<d98Ugh5nRvl#Ps%3{?)-w
zdv;qrf}a^-+h|C?X(2qK;p~{&58~*Ds;+PN(5d}9#te=pJP~I53fEWc0lPt$!K#ze
z)!fv<`idsxEZi}-Y-N5PhV;Xx`I`gs_w2G2l=W<Z&s@gVg0fI64E&{R0>5|XXKBr+
zI}q34?4h*AmG=afcNAZ58r|Q%5Q0p~-YaqT=NdrwSY=~l83k5}q?!Ca+UO)N8=t}2
zfbZiO>U6~^MB^FnIinCX!B2k59Qimj<*W#_k0;lkP%W<sUu_#}CjCR8ioGGR5o&q=
z3QTUIJusxJ&?w`Y0p2@S7#Jl`i$W2NG&jwo7V98-pZ(G~)xXx|5Z)wqOYDZY!x%?u
zaJto3l6laI_rK9f)H-r~`EGK+b#)<DoYl+~=5PzR>OF~?Sy+CCQE{q~y4lE5A^c`f
zhZdnWa_!BNI_`o~AsU?9!c`AY|HT_*5^-TY?0Y98d7dE=VoLoYXdq(MnQ}9(!@N)t
z=JP$k+%H9)Hd&0tFS1@ySf;AK*oPGET@k*h0D_7x?W*$je@upbjM9PS2}##itFON9
z!hGqrCS*3DwsD}Ur7riH%5Q%q9bY)?rXhpXoPx7yw2S1J^%RGK%~gVl68X6efYM-S
zcgzPFWue7CjfCdc)(McKDMy-r$-+uXYq89S8bqhU`!H&N(l3~Z8KrQ45yf*G8kMa{
z99y1<IuyviP7|n|Fe+9VxrS9KtwWK%cbLpDa}h=F#|K&VWVKC4voQ30N{S{QM|}vM
ze>v;EHixT5W-k`8dQHAd<0R?Z@<Io{H)whb<1uo!rZOALLZ`$(RVL>Q6GM5a@aulu
zE!o34e6?=kKyg<1<lYp|Jvy!AL(AYZ@nwH|vp}yV(@Y&c&})Ou#+HE5j^si{2k~>c
zpASos<%G&}4#fAaR^wTLmS-?j1*8_KrR=<0)_K9bx+-wc0<I6=dOtznYX^Olq5PTJ
zDtqN)?cp+z^cm%tQ}CsvN_06PXcA^_;Cb(rnr4u22PLSCfvPp_Hvn&B{RX<@)z1f?
z&P&og^!=QSP{iqJwXlZsWcCi`BugGBTInQsC|uPKern#|Abqx-09{mIVwtG@4u)<Q
zn$h8*w3%lrr>u4*L64}rt0c3{Jln=`FJXFP?8>V1SWQ?m8c7ASiag0Aq_+T?h^3K)
z|2++6<VwKbjoqJST!7o==4?V_5ug}sZTK<>A$GbML+1(`?`@30(!@#cYZs+-TI=@e
zsK-#Q=keMSuNlH*d414zrT1;$iQ5`*kDVpA^y2&HUtg$Me%vPfp#BD#89r?5#BCe+
zpFdYxpr2FhyhWJK)Q=OsJH2eA>Ax;Bjwq=0XMX<Pb%N$s+Cp^97q;u$orZ$?L-S6#
z<{qHjnblEqNm?zVAY*63iR+d>q@erTEX^$fHwtH*7E*Fk=G>Fp_8ZJr&l_JD{saZk
z=D^JgUKcQ(PRQL4uI*Ss`qU_RE`;yAgf8_NYxyB|-|#~TY8J2J!aX2K5q#DO4!{Yu
z(LVF@<VU;0sgjJTl0n8~0U2fsfvVN(SCLjLXg642*ac3#6oh{%{rKmcMp0`Lxai<m
zyMN4>E^zL7P<fRK5y#Mh5O)WoWB{LJmC>D_h;@aP_fVe+bU!=0Oli<J>G7j2=tRZ9
zKe`G-o$u3l1>N`xurp{#mHz<FrTo;I)(dAt?K96%m^-CxQ0h}8f87fS+yOXx?#-Ff
zPc{6yukEfm{`<*3wn3X=)y2(Zcm=(#m2r#omt2dO2NSO%ZXZdl&UGPQp95#GnvxVX
z2ddWp`b#pw%~gd+<urX$aJ6jFVkJzEWA2>%S;-vOc)W}Rcc@Is0dt@V3mjfCgXOEH
zxo$$ZJ%ueiP6rB^$k@$JCiuB?!Q$OP4-8s^OHsatYtP}FCtm}^$h0l$5Mb?Dbp^Y2
ziP>>12-s88iX!)Yh{qy$ycm{lVi7slUN}1C6&Y%OR2Ufr@Du_Tf*m_q1)kAdlse-w
z!E-&da~B)l`hwy8o)L{_TXHIYACQ2PTAZCR#s-?4s`e2sx)VujBt&oIPaNK;+7L%7
zzI)x_7)e5MbDLmIvIz8gaW)|}6Z8IE%dzYsImYo|_6<g$@2VSERa<_BbmXV<`4V{&
zupG1cBvx1I>#q0v#{)ZM=s#LEu5h$_yh7R2S@PNQvHH>7RZkU<s@S2rSqjZq+nHAy
z@!~^jsF(q2!zeGp?Jf*Cd%*?;8hfq(A(W|Xsdtr=&*V`G{F<hXRf})3b|im-o;$v+
z4Pr-%#gdFy7=T%L{~octt;*n2(86%pCC#&KlPc6LXVv!R@KaL`oi=h6`lNCbNr;r3
zy@>ABwfL#qRhM?239;T>s@VJ*AWz<t!kHaPSlnL@Ti&$EJ<)VH<NJ1$`FJK%L9>K)
zYa#Tr?#;vbu_g~q&o$6FO`1jQPmOMqp|{&~n^G5(<eWOJ#I!{5f)T;#UW~0P#!p<q
z8hm>YvvVRpaFZfU-&vm92Dr{~BI>ddbK-Q<Qr0`HTSyMwP4A_V;e%jl0Q98s80>(^
zFOPnhAv5DGSDMwK-6(s>lemvk`!G84bPQ$xk~(h~XL&wnUg2tUrM?fU883n^o{Bi`
zdDrgZSVX(c@q$Vt(sjPvc>0$)%$n{@GP7$8a$U=*H0%E3ab_qsr`dRsknYy`)V#B0
zSLcABL-&L!LKi@6da>!%ElZVoOqI!Z`DM~Te{=T1KSWf`cx34!|0fT_>W2%h&wL@Z
z@0x{e(WGoRA?sn`Q?Hv#E#5^i?qWqpnBUK=Wy-=-Qr=@?z1FIjglTEXd=J7G<GdOi
zq`_;~Ty0cFRVzTg^0AknO5cT?vMzfRvr?4Z%i-s<>^GtEcu3SPZ(2U}8WfGidJ3G!
zCJTNx_oeO@h&<v6)?%Fg)I!_j*)VKwV7_D*Suy=Y**WaxUbW8@HUd)nk+T({Rpr{h
zWNCVZ_K}z;>^9Lh2t(&Nqc+{W_)x>PgCsk+&i}pn{%q)Xc@a3ieD(6A)k0U^Rmx*S
zpPWL^`k0-vjsa%}5%(?0Rq%4(U9+30=6va!pL4~5K20!j<N|sTA+XxzpFz7dW0`vk
zQ#AZC`ACp()$WEa0epxcW9y+OgCFaKKzq4a$sK_LdWRgz-AEW{lEZ;z7G1>a$EV;r
z@og;Q%N!0<i4&j4Vz@-hutg#FkZQIh{AM+K71V%>JBzr{+mN$Qu_yi@v5{y?kuQf{
zT5%z_O&FhK4ESe?;7_$qIf{as%#KBHX5u2Pd420gL0oMzCJ~Zh^a$Eb73)LYN<M!g
z*3Y7}?z6;$o)%3q4wtNj_Nu4PYhQ5G7dyYQ%2RI<*pB>?u8urXGR_a>PKPLVIjp2a
zC&VTaUpA+Q!1Y)Qe}U7UDwSoc7C@%($%WG_s+!^y3so1w@>RF6`3K08#&nbA(KfSH
z6oK*XA|>;i?u9u}EDAtdBG%$fLT&S`GhdC3A7vijNBb&hdo`ZPZ%Z6Agdj0!KQ9z>
z9P7zM3#Ke|rT!;YRjU4>qlacH^-_5gICs7p%aD?U{&RVT4>Xdl8}+`4yFPCPYUZF=
zGoYs`0*NBfFlV>z0}YoJ!GHbPTM9m*)WnZKPq>JH)?l0{*z5(TKG;dilOUdaMi!M*
z>E4emr}*_25@id3wwxPh0dSOK*E#%|==Ohj9X4wZ5UHxL!|=2k9^y`h{u8oyy3M>;
zy&n;n&TS3mUgfXUcF9xwVKDzf6YC39apQ_n2Hhsg5M}oqj!Dk9G2Px~h+hcCk>YPF
zYRT>aT+^&)`ndUFk%4SAS!I#5xd{I9D)v3}{TDA}nsW#Lx4(+_O+)++uDY4ogo>t$
znFbdAz~EQ7Yk&us*Kd5x?iluB##5qGi5pxU+w8++x(~6?Qh5ZYi_#c`e$!6Z9Ucfw
zM>u|0#0wLPY_+Sxc*5v1xhMs`qqkk4uwD@(obRm-%nRb8TbSBYzuQ(q=a{b$a{uW<
z`M1&B(VaL2yQkz|Wzx-`|N5I00(Cv*tl;yt^0CsW2fS)O9sChFh-=)z(Nl<vGDh^A
zD8kIsA*h)xh3(C@%fJ#_&V~wtV)NFRy`HMMiv@Y<kQ%Im)j2VZsaShP0o7ft`!r~K
z5w}0d!Mh%}zU`&7=8Iuzp9UJ{(|RYfsGUi&xLg*CtX0VRWv{&iBqVUVZ%u@XIK28w
zV#XZme>WDp2cGLsZ#N+FcSK+{PgwrX)H(0a@HEd8JY^#F+pgrzKO|sB!JUA}2ZTEb
z|Jv3bQXouD_hE&u3|Gls#Gm&Xr~xj#RHrFx&qM?RRE+}HW-G?kR^F>s<P?cWX&)kH
zL$h1M)e<Sg^3ArL)W+eA`98#GhA13AJXE2KzweoH7J=y_*!GN1jJX5B$GMD*t-C>z
zYrES2Ft_c|yz33$cOD)Z_6t~4INe~FEoAD)%eB`*Zo+c!SFNQ*a^B`5^%XmyD($iN
z@SFl!vghY_O=TGHEZsKyj(R;IIW&bk#x}9SyuQ+eORHq?uM3wJnSGLl?2zO;ShmY~
z1CSAtm<@5P^fsw2(KCd=kv?AO$=5G7Qv_uNWoF>XM?*hNu2#=dX?QXE%2yy`cGw*X
ziK!a@2u0|3J27uuT<n3gFy~FVa8+{Wu0hM)&|vC1sM}s|Sg-MsH`L^t<#rAYEVi;}
zK5`J3u6e5UpP{`-9I3z`{weioq28~#Wo9U`Nn4?#FA~c;@(}Z%5wXR5)~K2ZxxLsx
z3_3N@g>8%^+XSh3%E*qRl&bf;S@f6uA08{E@$Q52@OmiqRk@6-ngo76_FuC0ty`xb
zbT^ci+-!eL4svxPwU4>oYDA4!rI*R{uX^@hU+ASxQd{(ATZERu%B3suf!E-^zZ~2*
zE&RXa-!&v0-4VaOQ}yk<^Y<gV^&&ZKiYaJSl?qkzpP7A-Mq%fFH$VyKD@m<=rZ0Tl
zVu({?l6~gKc)7O!GK@lGsaf-WjdExxYJg`BWH=cnaP+mcyS1ZP(1-qeeCYHA7#ZzY
zD!1V8VC*F)o{fbLZ_62*YAQ)@qoHj)?N!7KFM74pV(tU!z#CeBSBt{Z{fCT?h4K<|
z=AB%B1if)6Y~5MYh&hmLcL-WCB;ml$AYQ_G^7Nx3e!ZqJcrTyXUt|;ci#A~H<CnsB
z%uGU#j2qmTnVUEqKhBBE8EC1C!&K1|>GsgBp%*KQxDoLu-{XPq{fhB|t5C$>HuKYN
z_LB88uR#b<N8eTy^p7%J{+VNDRGLeh;ZrF%G53qg7=U#DIxBO>FqdH~y=!taL#YV)
zC!x{NJmg>hSrs&ctF!*j;{S$!J19d{=fJP;{L{{J^Z)MCT;Kl2)Tl&yVa(8zb9>>C
z%gm>Xg7h|@BW+EuHa%Q3E%-7u>(*2BVZy+!C4AkQ|KZLXn)M1Aif0!0%LVtL)7(lf
z>v+*q){**rO$oG0j?$=pE#a#s$!!^#?EZTXxo5N8HPi7Z6XhxfvLz3UmuU-gjI#tJ
za}!AHqwHE{@%NCuh`RJvi8JuIxmoo#zT@AmcUnh*G2PPYa&=*Ne-<6Y^JHYaZL0T)
zI##@3hT<DQ!ZV}S;2bsgfz&M*OE;e+G_fy6(Cpfm`1}ki4<M8b5Ht%KfU`JXZts)1
zzBdIot)pj#LTP?WqZP|Ch)QnR+FCNqiYQ0IC&ZtnUeRyn@==AHhZyUk0R%W)81bIj
zfAnR(iap(V3CUz(j*>sGS)N<2yJ}88WBN)(AbVjz1NqL3<U%G*-KU|awGqsm8I}+R
z71FC8Q&Tj#7e&<K*}<m7&Ksqn!O=+6F{I0)SL9M<`Xh#Cmgz7UZTWM6V)npDMpRb9
z*ps|q<0pG_O?Zn<Pf4k$|3`!vv37&R;uE0)F8_2)$B5^HSnp%)RCE&1iO@#tJNbS?
zf3w)Q!W|Qe$ZMvwY0F@vijf7{-m@6zT@03o-Ow14dN9t`H|rda>~;%{4LeJ=E|x;9
zya)0g?SVtg5XJOpN?IGEwSmMbcvk7oyh?pDBQckO^Y&%%gl;I)FX+5GF*;fJ`ByoW
z-SmoKzaUTK&5X4CL$Xr+;p3<sVixDdSi|*^m9brA`JqR?-4z5kyX^kYcl`eoi%5i3
zC_h(ZE3Tj`oZr$%*&6e&x`AhAV@HeMx^7kvP@t0Czs;<v4obS@57bsRDFo_lu$Ylx
zcdkXwRygfyBB87P=05_g>Wo^*I?ocqp<rgq?3G_$cPn4D*Yms9-(e(yxl>>&=*Tht
ztbxS)!J2FF7AD3yo>BF29)He_=)2|jZ!?CX+NSS(7%rW-cQBYaqXz_}Ven(A|2UT!
zrhfjv)L`5Kd!QM&Mzw`&Z<T5`+$i;9%q_M3{Uuo$e4~K3OyloMQ8AW((bEKSM9_w}
z$Lc)cZK8?qeVPA=XPUy~YhMZc_f~YTsxg#fXmkCqvO{NeceqAz88N+iI;^l?{vFbX
zwWwK`*~wOn>~47}EW-UZZANM#Pv~k=&%BTTlX$~5yrVJ`*|mUAOi|y6>cf*eQQE;e
z6LP2jNYM+kX9OVNw-v$LsoYtQ^|oEAbZCRcmjCb+Cv%(?sx$4UxrNzb_1~P@@Pv9S
z_p%=0_wOtJa@V$(qi!Yz=BQ7{b*<Ov$S6W~Hd>skz5*)gYTPy%oFRMezZq%KXTBsk
zGv!4M0;Sm%`-g$e_xG16VUIv%qx{S^OTgBx5;%8}FCmL{Yd)MgYR!-TjJng|7O(A!
zh}i$~9*6V%ZNk_^^ksh}v-{4>QNo_${-1$1Wwa6%H2gnPc#?)9rsjay_FvZ1vwSwP
z$v<uFpTk;Ji#FJr)uXmn0{>L|o#6gE(6=$No?-Pxr5P!8XN(+F^lbJ9=usPcst93O
zwS+#!h)tC5^1p)KalT1rW1GYnzIcX>l?vuvcO}uE%L18gSioalLgF~##c}q`LTBtg
zy{&jr@v~stC6mc=GZKjvaVnJLw(E}C776^pRgBqpv`W-t<~xRn_2?Au7+SaPEMqEp
zJ=SlB>S(JT-y33~O4%8c#9%g<I7zp5n3E*%3s--!`nWpl=rZHn&Xzr2|Ex=`4fH#5
z1IHJYu2KY5?S~WkRb}!(kKvS+?uL<EVepd)ip>;(Ql)eOgUt4jY27?wdK#~>p>M`=
z%q3@(=}t#eK+8jX-8u3q2CK@YKEAJSRtxlJXJ)=e2z}bo+m+nAB^j)mKSvmUZsxQ9
z^TZA!ud*C^wqDG=e@rl(G5qChE2G+A-@oVC=&$lZGSWY*s`l71((Pkse>9P8DLYU9
z+4019-`;Z77csz|5yyYIz^=V#J1_2&VrK5lHvTcn8cx!G4j53}A$!{&2GWVf@|^xl
z!r26e&cYO-4{33v$=%6b<E+8rUJdwPgyb>QT0rB!*<>Z19#)b9H4FSUY?RsmA8wMQ
zYHjnS!x7Pb)*Bg)(%*OEG2q!E?H)A!Ep-lf)Be8XWHwRnEAkEUo_8s67XKINXUIbh
z?w?~tQKxMuhIl4Onf;N0WA{tXUa0wFZR3FkJ!Py)RMC~ZSP1v4P8}MUj{*=VzPIW%
z0_S<8RG@}CEA4pLey#A7ON1<Fab?`YW6wmGxd@3zc+cpLR+)2GYu~EAXcrHDuO|Ky
zdK{UPCMDSX0#8aM**RCKcU7_G&}=7GM0-|;$W@Zmo0EF5YL*b*bw*DDKPEe!ipoC{
zXRp>i+br+O=Zow$SA-I=3kZu_DBpEvRaMEj-x4aBy{#N<Dygxyd;Ttb1<+MyUgsnO
zy-!X#76w^fpM^^ETqv!#d$D#m$<ANY3iPTFv<q1%lp#%S`SbVH((X>Awnp(#63;Nm
zwtZHX5Jb&QR;&#RJ?Pu3R?vy0suJKcF2y@!m8I_hzx+QM8AUI8wpt@dE;5n|sed@6
zDc%-e1^dX5B9bTemj~3P;qESM=-^pYXe-n?V}ShCZ5nSec9^ke$?Ry||K_IXOOU>j
zC4s928TSN4|B+L()Jb;lO<ymf+i2p#53p?1m3c-|eWX&MsFpFjian6+|4kpZA_Hee
zZy&HiO=5bP1{jdtRsRZ0Yh+6cW3A^;qV%o0zjS9P7|8Bq-gJ26z)^&(zudE7IYo=i
z?jj`c|9btRNeUaY>n76vNO5HFefFJNxN6J18Qp|IIdYJy%Gk4E-gK%Yn=yQ}Dm(j)
zj>slA<oL{@%Hb4F5aB`Yu`O1Y(9S|yasJF&DpBYa(<lYEbE%@c<ALjFQHHO@XJ@ZH
zEPA5|`9Xd0`GgTg597QYAUMKRx0J4pyTc*-QKXXF56zDR>K<4_QEcI>H9(yX`f5#K
z&YX30=Kj!ZLVK>tZsHL1%|?eoj@+J|cH4y26PF;Ph}4NeY%C``sfc>Q=UrE1#aT)B
z+RokV?4%&Yo;hC2e=F=EI~UA-(3PLkv?0`iNS{?mY|jb`)BD#2JB-}cCL|4!dE124
z*pqTF(lu=bmrfzZT;B(erQOL!+DCZ4J1YtpWcSf$VMhXyz;gV#o7`}vh+mlV4f*kT
z$A8L{dS)vqbFLxp^04YxfdpQ#p>WkruKH5k)WxiI`nOPVF=JYM?h9eR&7EUyPc9sq
zk+cP@VM$JaAJ)$Z3!ND59OzhI9+lDnpVl=Cn(8icQ-wLMj<d4`V{K6tjC~%7jA<#?
z=ATV*#BWl2>cG+aj~8C@yl)vAs=#5yu2fLPepfmqW5{o}{QEeC^X((+#jRJ|?xCTk
z{(YC5-dC{n6Fv--yPYX(S+Q~RzVmg0A&)@My@RBn;g9e4O5#nd1%GBo%!jc`V*06N
zQP3q`<uMyZaZ%WUfIItxW$Qf8=1vZs=B=R*HyuG&mSwUti(~zSB?fVZ36~~#37x5m
zULhq!RBp$Qs2_Z#_HBVtk!}oP%<uOP-;d;QeiUnY+-y_4W0=wM^w-%gOF;;hD(D-U
z_;^}Erdlp<ZEuxv6N6Z(D15v}L1jP6m&}qu+k(O$_rWh{{UoR5?zCpZBi@K@=XY*w
z+3LBj2giRl?IwP|ve)Oex7mFfsv0VrcIzzpd93zwbX0!|vA>Au&nf!${c|X(&gP%8
z&Bg6eUZV-tb5L}_>)-vV7l=Z1-NpB!Ew1lbCp&(9zbm0Hb;90TlK;zg3L8)5zaR9g
z?jgd%hC4r{WTjYj$>ct${p!0v6-+VjWloA{pgA*Kl!>Z*m#&`Na&4B?C{cC1v!Ww4
z-B?9wl$8}z#hM=Y5wogOV{(KmwTm3({Wb{=bn42g4F&bKaVdDg^~Dl+6LGE_@sATQ
zBc`gtZx0=t@bF?rt&|VLs%4C(7dDM=)!219b|@p$B5Qb0VM0&yE5<l2paM_D3zFWU
zy<mNs**ydle|cWWnqy@}yrw}%YvziZo^LEi#_Da`-nA_i1WY8x{Cs^<KF%#Mf>U@~
zc%;6v_2$1Tg;JnxU%92Sv<D{Q+`?m1@!IT|^SA#wyl-acGU1tRzMPK|dXh6t;-`m&
z!$&`=Pd~TsNS+w47oV7P>&h{A8o4`{(B|X{eoGUU{9mI&99?41r&?PLwMPloBdQak
z&N*I(S)oGmGn^(lGuL|uS*~JxN|e3|isd;skfv(7nZ}<3O>)YdCo@a&$M63?kLXNj
z;fan9aX9v0tM<@N#PYNMHH;gcpi`;yuNj<ocxKKAA<ucqY;O}JFP)dvtwq6>htApO
zV=&I1htA4KdzbHdxN@;D#Fp<l?1&oo#g;dwE5ef5u?6->nxhBr{C_=|Nl1SS*mrH*
T?I8-w0<2rJ+3JCX`^o<YL2S8$

diff --git a/public/07-basic_statistics_files/figure-html/kd_test-1.png b/public/07-basic_statistics_files/figure-html/kd_test-1.png
index 925564b06a5c677095386aa29f9448c647115a68..11dd8605be7d963b3b0989f9c5d36f518d36efdd 100644
GIT binary patch
literal 15735
zcmeHu2T)Vrx^F@dP^5`~QX?Qm1VpOTs30IxlqMjcAfXeHCVi{eKqLavOB4hIB1n}k
zDxFZIhWeKhS^(*U0C_v&|J-}$%)FU5@6DNW=e{I+C41Fxee3s?^{t&3Mh4nUN4Sqb
zAP^>99nBjM2rU4Cz`iiRz?^^=tKkp`l+oy#i57SZfha>DNQkmBL>Wxc5F`?U1k*Aw
z7tEq&Q(s7BWwbI9sf+~EGG#Pc89j`oHUqODU>R6|R7O+FsW0$H84`^~qQP_+SyqND
z15*lG8G;6TK|;{KtAfSUZhn8E(Pe1#FuJS^T?VEU^zblxm{Nv>lp&SN(BKCN7K3Hf
zo_>Fol?{XMvSBc#lu;->Jw3x{<zX~(xD5QDsU=_;*vId$;b96`3rvP76bb|a_Dd;4
zQ-;A$+3!5C18Pa3i*f<TjKlYIEW98PzGu`68a2J*0D-_Ex|$bF9;7Ue2HLY*BqgjI
zONf+Dkjv-OX-vJtIrvt#DhA0Z(~*U{R4^psx)pZaO(>XR7_IE1X1WoV=_Oo~?Y+CZ
z?<}O38)0fVVBJCkq0zk*1p&wr5Gcdb|IruLSJvQuLEf|4RB!(KUMqpw+2i{?uTKtr
z%U&L#i;0|>-3u^GI~~{Ey_L>4p6!^FKVX1U5%{R6fK~KKI_9`m+(cMR-|Z~ue{97+
zrOdA3nSL?w6$EQ`C};n!Nn5ThAeAoK<Y8Fw?N_S<Vjp^*IhPi@qF&Qeq6^F`jyeOm
zb-#pYGGBr%f>i}}Z>h`Sg%Rbb9<Gl97}7H&XIilJUeXUF^lEgGuf(`xiyVo*Ii$y$
zF2^$6{S^=N1_Ch4qcNGz+W)>oD@KmR@?l8Hz8w5mTZ}%;#9+L2%i_HLKD21uJ06-V
zS}k*kRtE~T#4>kz&b%I_7qi84*X;Uy`mDm^#})H_1ZI*yZSAO{)gQVT&{J{|@O8E{
zn5$kncQA~X@yEbx!>$YlDRFrg_Fu|H&4l~^;=^cNc<n01L>9m-1)Tm}u?^;J8OmLZ
zeJAt=670$$DiB}F)v8Yu8#R+8ErM8JdIBkB#q_N{+4q}taXy#cP9N%aXm%cpclyK<
z+ZjGRGw;6hqr0bb<1wx;o4D2T8s9vhP%5kVi7T$E`0V2hQR%k#j!7(Q@!q%ivslXF
z-!AEtJ##qJ9B#c9EESsUp3e6M)svL9?<p2v-^Mi;nr<R=haNsYy-~TAm6xrVGHSiZ
zHT2C{YG)5R-?62;-|N2_Vb@ypLDgm7xsu&hZS7}X0S@Bx?AR%q63be6ZGf@lX@V?y
zRytB{q*uF@g<D{8a(G^`sqe8b;IWX}{&fYbD{&+OKU<{{d?sy6uhc!^Wq6On>J!Rk
z(mu{Xhg(-q1>w(Fq+2$gJtn9>PN+Gjzc-1Ne%!}<;Q=bL#2DyL8%?cqn0dkvJw^!R
z$Jpk7BlSIhN&G-G*nJm5sCQIBd^Hl(1kBpvKM%yXtjKBb8MbMC%kev6A+Sfx*c<&!
zdZ2>XoERBB+Fbr6pugq)LuAyn)idN>o;I{nbeu1czhkj1Tdb`VdhG~Wi5ZV#Hb^Si
zWa!!{4%|5F#e$YwKa0@b$cWm{;D2oww|T94@9+t=k4<)cwi3r^ok|4}#dg=5H4+LI
zA*C$01tOx5>6*?J^Hwx*%d5_rdAkY20>hJp^TJV?@7Xc)v*-<VEL%tAsY5!v&j^?L
zc%7d?F0^~xIbtR4&5TwW7i~G#PvNO7Af_Qb2UTJj*f4$J5C_VIv-^90Il3-it2KJn
zp0%U3Ir6&3!Om<$x@n`BhitaSS2Nci>REZmHQU#b3w=89!v%{AwojJNP7t83C+APL
zY<}TR4(#h%*lI~%m!329+dMJc)2qSUfNIyVRV#?smqA2~tpU7_epnRe=fyD2nLsv-
zW1SQsR6J|%FXIadyV!XBAcg+v#_c=H2h47j4M>;dMv_vH>Ed}zn?K*}UQP?1A_~p=
z>gG?k?!VO2){UcW4sgESJg+}rquU=7aHUAC&=i_vc|AdOcfZN5vw{_Vhc~OAw?!|8
zsY3?ws<^6OkuilvxN}R_I(EWw0lWC7XY;#N@!O#3KZ8op#D=Qc%m^e-ZvL=v?{3dE
ztf)CY*!d|gFOegaD2_E<bZ|wiNo(-(S)x1+<ya;RB^!*sc4KkFLL!x`3ag;U8taF$
zTwgx60&Y3_z4zn%jD@~f8&$vAg;y%4=}p|eVzU~`yUBd|61cAC5e=SW#PkAeXP{R-
zE*|5u{3v+dND;9q7^n7r!{3$@V=0O#;HmqhkXk8(=O4_4ydjJ5hfun0?5G31t;ig(
zU*v=j;74VH`;CJ-VJ`GJ4;Wps**nB_gCP6NRZnFi-_<aNE|=+NVq{e9;+qh=`S-;e
zBrNm$p>)X$h*3T?mSu<=nq<4zGr40CNx}K{-wLBn#}pu5FEc2cqt)SlMleIF>5b4#
zDOX9<6n~LG;7A^whJl(x(D`dYUW2I`dR}5|f{45~0`KfN9HK+*ETOp?@_iaSj3u9k
zglK0!tIY1(7nVCp&p$rx1I#}!;k3FVEa}R3$SNq%Bg(_S>6HPH>FLB&8W5=s@FM-j
z<pwC;%tn5-el#Z4*0w+{n;Uc0O3Ko2P~@p=;+rOy4Ob02lAvcatU{pkY4qM}Q`RKs
z8Ylh_SeS{lo)v=;SryZ;+s^N?a$6MfLrIKQCt)<WhsXzau0?4ee*E2&EP2vsS?yM(
ze&H1$!2F(Nlg@eMZBm?}XYNY(mH=gFh`yHxUanu5Ci|9)Ao#GUFJH;ca1309y4Q;J
zL^Xc?<l7Rk5|T)Q()a+Ak>do9y?afh(r<|>VtH+GE-&U+yT&|3S4A<eDW1-0V>%AY
zS84WoHTWa`XU?X9lk?AI9^JN~fkzG>DFYFiArCJDt*4q*-kQ@l`}l5MOP4>ust*jr
zO<HQ#>H*y}ChjtchUR>j_f1dY>2qc>Y+Y@c(&^_4Nm2{6&6DS<OJ(sxhl71KClr^l
zCu20~Paz`hJ5n>(Q_htx-Pv}44t3ml;9pz7gX#FLxOzk2Y5akv<-pAIj!$ZBoh_M&
zaak<25JGGk5J06GpRTNTaV;|`d7joLZ~?dDv?aZ(CgkjVXjbq;x=D@U<eQC`o=4EZ
zhadSI`MI!jeSn=UzGKO9{OrBMMx8;nDu~4w<%&fSFEsvOapS((5^ZjQV6e5?+nFJt
z7NWLO{duQUb!!7Z(6Af-X>Z+f|0NL@5g|~-60pxEU!GG(Hj3(vep2TsEEzdDXpV~6
zoJiVBiRut4<~mbn9-@9OFv;wYSl!Z>O76EOO8xrekN5)Niq>kU^I*M-j3XfXmR;#{
zWLJteGkgH$%P&}|2H5BmyBHaP&n_%0kS*zW#1Z#=9^aJe%KW6$VqER5%76mDc~m%K
zXs3>)vbk5k;e6eRQZ;&IdfzykmoBymg}eIZhAs1u4csFK=={q9)$swAu6b~ddka^d
zgRTU9&UWG5^pwU6>&A26ew1sPbjwiO#zrsgB$U>1WPB=D@H4RytvZWX)v*kN@cE5r
zziGF3<>#Q-uwi<38m2eX<fpn(3wW2hxp{GLCDe+)h$B{mY!wk-zYmL=1)JBtRsD^#
zd~3c9^}qUSFD~R&<*Mj!NU=FwFWUOBjOin%+OBRrGTrLuuE~`avf_k$3QML!TE-cD
z$!6R<u1RLJvpzmg_4f8RE-z>IyOoZ4Z^Y)a!~Hpx4(X&VFVN{EZTrh#j>=P!YW~eJ
z+!3Q0e%=k=_C*#FR$aq1YF(O*B&k#<AvM>II;Nc4d5&1QbE*p8cYV?(ca3okQ?c+N
z$YA_k6;Fmrbler-iXqYJyTW+(Zd!liiGiMyGYA|{JYh*)RSNl#557QUrzP~5<3lUp
zJE_(e$b4aY%ONJQ<CijGf{J?x?dAW`7ZA9N3T2ePOG7&nNXvjY_y6o_wt6SB9!pbo
z2~eGzeg-*ZL)&Z|y<2sRChP$l+>n-GkQchD2>`f%x^b##E02m1_TOH&-e|@tUGNTy
zAtg`McP?lICo$cQ6K;C-?StgW7L;g9M#0y~Ih|TxzV>NGSudLq>rEZxkSc#b^?J)(
zvr3e%6Kyj))RJI#OHww&yun_Dr3<GNSmX<|{`@GNnr}B&y`;KYOEM8hjK-S_=>YxZ
z&m!JLLN<~^ozBWP*i|h+-na_RL$6A7uQ6J1pfitN*?PT$Re{b2uV${zt04eYHcSXo
z_k>!NL1?84kNKe?AE5Q<EWOxXWE*Qw&dYW}PpGQ2V`NKvPiI7f`%v82VS{vUu{u@7
z1%fLJE69YLc#D*@H+omf6k;XQRG5uQVVW9<x#KEsVei>Z-JISpC+yuVOAWuCw*G22
zzgd54x^I>Z&P6V}3HsUU{S&c?oPi3yycpfYXAtOp%R@zUGPnqtJadO1e$m;VbHVy2
zW%KrR0A3>AuI~!4b1m754zJEw+<aHBW08^k3%5HVrjoMe+G*7XO>(3UNvqBq+g2cN
z&Ey`LtKwop(|G$K>Er^U1!CH4<mw)z2-6cDR^SbS5|$;nuH5$|_q$yW!NPij%7c=U
z@d@&Nqa}Wl@gn{*S^Xyr1Jcf7x%Kn^N;si^82wnyDu0N<h@~f)V2759M6SrSZQ=%P
z;HX@C2ekzjQ@|sg%TRSYg_1RLfxIQ!=Mj6qo`c3@xfPe@c4IYkJod8GIJxk|`+l7`
z>5%mScGoC<`>o2<Iv3u42BV5fS@$QJ59ZI#eGI|7>fsq!K^B$X^kK#D&%Ns!dM;MR
z|HF27^hJ$kh{^}9>;CoPu)Auqp{PJ;LDG%0m{AD+S@f$2QOaB1n9vW*XKHL1ge>Z|
zm%}fXjJtoD^+?0AW84}Rd}N-x>`bR3HeLz*oF*;z{A52EMUxd%N3z`cI7%_+TF}IY
zKe2c$BYHToFVfrp!gfh>)LwI-c`HPJ6{dkd?`Y%v$fVYI|As3^COdqM=!le9&Q<b=
z-Dp3$qu?6ppWWtJnmWka(t%N4j+-04KQG_%bv>7N@_xBNAid?Cq!M3!ymSGbA#jTo
z^98!P)Y%Ft^_wJ6%oW>wOY0iXO0zG>o$&8;U5S_=ZAfJItC;4Uo-P_VY@~LjVJOj}
zHShA~h9TiuhmJ2@pMUwwwW4&6sh@d7EN;6xcTAhXXzhVHdAd&+oEfdyJ-|0}O~X|J
zF?}Oe<96I)r`~uT19~HlB(YFa;2@AMk3OwkA6_G}A^vS6+IlxvExNzVFmNWoUf|`z
z+j5cye@%|z>+=_6TuqUF<?B~ca};g&7c-52*06a3gaO-*&Q1-Rs+7!1b(&s#JU6;D
znNT=*{rt|7;a(_45YgYAMihHfI>m)@DY(2*`qxq$%iMV@+MEZzGufLuzVsmZ0oAt>
zN5`Kve9_DPI>;CZa7(8jpS%d%BKm%+3~*h91?@PKVQ_?6*ra^SeF3A2mz){~t-&S1
zO+VK@4z}5vL0#ifE0f_6oV0B${Rn7SWuiwf`i$Yy1YJe)M-JB%ntf>%^2{*5p`JXq
zP+dLG488xUtsz(0#Y*|!@a4~RRJyO9bH#TQd6rEm1%X};U-6Nfj8mYO%Ce<Gr^9VB
zGfEUcgFT7aIf^0XXI`&7DWY|ENHMg?wm0J%NawvzNe%+9GkQiQi9&^obw{D|pVn0|
z6R&rg+V1O{-uhZrOc#s#OEqY9FDg_GAH<Zi=7AMI({u+5@v#@@HCVvYNZ5{5+W0)~
z`EvQW41yqZKEP4!o-+!IIt-mJp1L+mP{({7H59oNTt4Ky2%E>t6w4uc=64%V3$#uR
z>X?qIH+A0Q^ukR=Yr2cWG(rd-{HUG$;#AfQF<c+iFG%DtV}_69O_F0vxSdwU@{ydh
zjNAQJ`?<C2^EsZ|S-bfILqd37ldaM352d=Rf4v)25y`T6@bK4tnkh%e2va{EgnCS{
zENzZCrSDh6S9!hGH6Z+ngBGyU3Cr!6wYbl3lzP-_?B_g0Ub{#wXQ}E<PxaE3TA$3i
zZCi)E7d3B|#QR6iEYwziRflt_SmkFLdM#@;jxiY35knBtPsq^IEj_jiYl*m5(eo*G
zp0F#*?3E)d#%XocJJ)7)_oss5%Pk(5(}L@Y$EaI8p0Bo&d0E;SrciM*(U_sQIHc%$
zD#1~{Q@Zi%OQ+N<@#<<#s$4n2N@lBs?0gbU_nQ)WJH@3*E>exP1CLHeDtf3EDkHG3
z^KGneZ4LRCYkB?38?_wx!WSovGDugG7+M|;_J0AX7@QWlIYYVP_Gqp$zw@!v2z#Yc
zm^HBhi;_x87wP7K59Iw!hUNw+1tg*t@|BK&yU5l3{=U9ni+&PM=L#3ztLtTs+*ky?
zbO~iLrb^n@MD_^;>+ToPr&-PWV+P&;?%XRRNLDiKU+qU-X6CULm2Jbj>-0I50!ABo
z6CsGc?(D`r0EA(kmf(0()%>|2S7B7o>yl;q-T+1WiO-Kx>l%7?F2$1Yla1^0u-<*5
zuT7c|Ldv)Nrb9f_P$;igMd@Tis{|Y7VorQVOWA-YpVHWI?$Q&m*n;#ZgHTn)kk(Gk
zkxlwA$RU&T6D9(>jHLHB4YtCbO147qwt9U-Y@g(5#W1>_S#zV$zN;VOcj0)>0T1=0
zYp!h-Yhn56!2><gT+5qhx!!Y>*7DGi_}V=#XW+(K-dZsjZjGNw_g(!7N1U?OG5@3-
zdU-Bx<Yjry;}!lFiU^e}z@y5xSKOtwhW3?<ms4F=NFEPj8PK9Mv~E(H5L{hKD3RR%
zA(9n-+e?OScB%53f#;>A*^?@7AD#+7hv>s&*LI>avExxMAy6w;FQ6!*s7^&qeg=yQ
z);I;FQQ-0fkbQjtgd0bfo--UZ{0>d(<-#OIT(1xkJg2lmm*Z)#>Cpr|dc7LzGV<7s
z#MBb~@y+E^h%W?&u1iO|T0aSaKPQ-sCKYN%QEgVQAcwju_f`}Vs$QJV=%}fhvi0Fl
zOy_%1zW=pMlN)Z#PgY3$NCp^;Sch4R{QKr-w_JB~*K~q$3&q%19A`j&?b<H*rSIP!
z9~fQ~I{`gnw*W2j=sXi-Y`kEes!dF;diuG2L;bk|qJlW7N@*Y^Uq1}?#cV{{P$L9}
zhArp1?SuW1B31E1BcAq(f=AI699{SbPd*GWFKJX=gI4UhJAKZMS^d(B+oK?HAC@oF
zJ(iY7NVP&7ijKU2D&HH4&;cF|-Usrfom@i8^|#DNwet%ymni|hZX#olJ_2Pvi1jhV
zzpZYN@T7wNB3WImXX#jQJRg#qV_e&qR_AEb?pM{~UApwEYkCioTr2y{cS`HdekA9e
zHuT+{xTy4*1-gm=sx5362ga64Yk%fCb(fscE(?-AY~;f;+uuqog5dI*vUR-_y|>Ku
z(yjr%&mb=t(B&n^DRYsrj~lm+5;XL&-n`Orhng#yg1v;?wSZhcjUEHQvd(gK3Yl7{
zPphK|R6Be)mnTjTPU^p5B{@i{L|;%wyJshUyVekL;sOE>{osdG$tP#+W#RImQStjO
zEiqNL_;B|Za)`BJF75HX4>ry=A>voKpsR7g((V;~y_Rly?uDCXhMrjgC}5sl*V?iW
z3&DxzLl&>5KzH5`(q9i2I03z3@8I~u^7T1~7Udr#uU@}%XxLqAvmP523p+jN`MsaX
zhJM1J3HNoEVn7QnJooYIY>{Kp^@7%sS1)^JIoSfl;4l4YMAI^MxYsdOp4(N&?1A<x
zU+SwC7FY;%{=N)oZV6U=RNsp^<S7FI89m?9OR{xA*O#nq*x<>*2p7D;ES7dQt_R~M
z-Uu<xE=lU_xagmx2K~`}v@4?^5;8q}yYEQk9!Fan&0USoQ;1=uBfi%uwntT1?*RE$
zr;-GwQ<)`L;V8WUVAZ|wzJ;_DPYBf-S=X{SwY+FnQD<p(!!7@%mudtGm#<rE!~+I&
z(t9${j<Pkky4^Eh@|8p7tu-a+39d72AMLh>oN#)sikOa60tsIjL#48Z7dwy(Z}nou
zGCvg2+~r$uRm|qu+Oipc3WhE&J8pG)H1K04a=<9HmvQPDv9YK3lT^3Iwe;t;_BS*6
zFcXsP($^S&98=xCRa?KaAe?N?l<x34@YIr77}RBN`8@eJ8(bdGJei$NHn8jnvEG#w
zA&Cs`y4_mN=m;?-`nQa|Q)UlXKeP99>2cdtU4QNLS~4_veuQP#cr65xPa#@{LC*_}
ze<NrJ?D9Z=L~|0}20PU>>@L6EU27kzifV)OJsYLG9lTYXK3`~@<rVWy`ApvOb0^ym
zjb($czMp`vY2dT_v2c-K#>*NsQ#jt8Gn@`9zcxy2CW?cr@n84O+qz;unx%3aR{7}5
z)R`-^VxaOQ)OnPEx6E^<<nA?BS7*jS7L8s)Th%9hQR=L4HT<WoWN%r*&%E04fzWU;
z2yRRG*;dd1E#A3LQt{%Pi}CCK^kIVWj7=Hpe95JS2q_{imt#D<TbcYCvZxsgJ?|JL
zAK>*fz}N|-=jV;X@D7M1A%0x3gFiX+1UsCMmVsH2sVj>Ctw=*l|66j{;7V|WAk9=H
zq#g=A#s)`$RT$9EAyDpr@6_og^hSn^E0mE+Gy(=a#w3Aof&EA*1)hK!gcbAfUy`1h
zfZz)1Qqt2ytM}(uENN(+p35W5QP@DN#@^J<ed@g|qP)|}cI)1+u|+13u2ZcLT%(Ax
zc6LP*K_FwmU>N~Gm_S=LtjnF^*AI(#M)U6yS2<}Jx>)UjEHDHpqT3{ex(HTcqjTC9
z(H-KsRV?g3bzcrNaomDOjVdd9@MF>ZR^VCSpB1BK9#(J>@Nr~!!$K=?PPgsBrZRKA
zjYLjmZ+}KAQ8Ea{$r405mfoXh-`gxaP7nb+JpsG>>RWchg}s%LZE+3u?m014D2<8c
zNlZh-XCLv#**C*HtZ>BT6sTo;Cy_SNrqYJZ5G3n0otS)`vWAM9TCo3q%VY>Im2?!K
za0x7<A`B#){<(^vGE1|)0W=w8&j?$$BO+vt`xmDp@LA~HI1n_W_?LJq#8X?d6YAgT
z`Ni-hbmG<XTG;)xzAs3-qpW_K>wM_Rmvjmocc=}vfDxoz;U@;zRLJEb%|aKk-?0Wu
zR*VZGxg+4q^)PDdG1&d&?k|mkzgzPkw6>?VUItPe<qH!}z`pab1=CNdH9<A5(}DB_
zFgN>!z|tmuH{e0fjL-#XabpgFW1mEK2GJ?}*C`!L>@}TJ$mRrieAK5B8fP2ctp!fj
zlWsQNb77VXYUzpy@#6W#=>TN)LAO_<kJ6O%1FGOuB^n`#dNRyo*0!PND7fOwKtDHn
znU`L*;RMFHf?&U-pUwqF0_EYICz-cFz1z>nhKsU@VCb@httS5j${ApHo3g4|=&1wP
ztnvKf@&{UnyV)_NbW`$m(9lox&BWLIHKO2gU9+PvjOY0|1QykhaJuDjC#@3}>fi2u
zo1KlWnfH*2+x}X89UI1nZc4r2VI-)|y!g97hdb1;$m`hQu6eMk+ii9kIx!XYp(PwW
zP01LbN{}ynAqKna(K0lPd$JJ!jr|WEr0Y;4^q%{7t^sB&&Hn1JWYDrEgP5YD5&mzN
zK0S5FX<z1xQ!^;6cXXgTzR{|r<F~KTg0MbU2zj5z{PrUCXC_2aDm|IzbVhdihIaM~
zQ2OXNFb#Ggn@XszHrvvs?1$7WPK?$l=9zTjMTj*7!b?Ye7N9Qol_3mDBX?99@u8~N
zvmf)=?=3e~OdcQYdgsz5*5$%VEtNyWqhh|!*7P%g0T0Zb=g`Wa>u!K`4U;Jx6yOuL
zfN-C5yJ1&QBQVQ1<x-W%w<BGqpQcUI8N6i;_;>S_%nng2-T+o*-}dMi5bSAn+!5Tx
zoP|dv5sTk!=Io<rco~F1xxaHr=QG`;rTs1CgBf$Pg6*g_;rB2EN)vIFv}sE@{_E;F
z8rs<tHvtdZDf*h)RN;(qi70d=IL)UV7`)O4npokcp$rphmlqGsiY#`{T9hsNY~7iR
zIQMrzfb7-=D(i0;8adtkm=F;j>o8AKYuvm~y!ipC1QhX2nzv6g`S|zY8Qq?TldZ?8
zybwp=+N2adGuX$C>dnr|#gE?hTpx0u0?CCpLLB0~2f1Rc<H%(L0vBj##lRW2*C@_&
zys?<5I;@~SR3W2#Upeav$e_zd(Bj&q?9IGvYbwm+#G4(ZNa{-FKpY$?s=<E2!Fvt7
z-&b!zqsvBbmCsO_VFYb83p`Vs4P}EbA81mL$rEMj!80G0Wwr_3yS&M_U74EQufTYC
zZUR4of=EBt*VoDVwQO!bK18lz-ya4$xd$DhDL%E;Tw97?<QZU62B%8h&O2FJrt}DO
zMy9XIvW>pV0r_${7HWBGP^Gw-yXJl%jLH#9phykze!0ev7T3w$)RR*8SK<M?lL<*}
zS8SVQLB*>lw7I$)quqEwugivLv*M%agPZdzQR%x6tVyP!`9}^gyEqZ?*Nkn4Mu0cf
zd^|l4_Y&Q~EqzU@$}>xqTH}e~DEIfFVhP6BrLehUf|8{e3DA3037iBi0k{lvB7<fy
zIhkqF()#)nT~IOKvPYzO@&1y}ge0bRy>dMheI8LPr$Q==uQ>i#Mew5xyz>I{Hn#~-
zR?K8p8?jN!joeZITdBd*@l0;FjiBd6X(DZGP}_}K0Jq|mDPLZYo30_S{inw<#HY`b
z)1Tj@&H1EU8Z>%_EuS|S+y%abNHQ47|J^*mvv>V&3`A0--$HAyjIaEz^`D+~phL&l
z;l^o+rIU%l2(Z)Ns!$g3;aMGd{TaAlT|Q)mLWIcj{^E28@@sU~Y`2lU8+21@oluQ$
zj9sH7Qd2<$NyPkXXF-R}%LRyoZ6DG1HOK`yP<ptc*4%<rE^MDwzvFK4q!m(8`@7&Q
zLZEdc&fWSXs-4nT;Xq}0J|s~kns2w*0wpse6Br`DrT|({5dNSB-8o}Tn!Ba@_7zo4
zaA0;<yHyc{-c<K-e$U{8wc@ayx1klY<~vf(bbwwXA2xG;VmPXyxeB8IkF;RCdElaf
z%cxKvQ28ehyenqk`Fy0S*H6@Y<|9A<)+YS7NIJz$&A^k)+EY-%wt|Q;*lN-^P<QcA
za|&5Dz>!9dqBjvLII-wOGo=WxBQZVTF#(b!r1#_Pl*S*|K0bimS-vOwQddT|<y@%f
z1QEZOT}}wt?(Q+<sUc-G{rUs<XgreV4mb%`S3qGm$&m_pc|=5VPmcz<F6lS!FeH|2
z{c$gm^*VO=cQ<ggesHmSP_-f}ob5p3BdQjD7@}gj^A_}LPuj~;S&{?6do;F4q_VxH
za`85-B*A0ZRc3^$QSQNFKhk&_&Q>!X_<#<dsZM|?S1(;A=p(jKi=k|o|5TdvbQgJv
zIteE*T1j|ymk4Y9o2el7HeWpFJtXlrN9lMmY%@>}Ya<?XWB#GDkB@XkWDLc`|Lk}y
zf&gBD<^lnV+duo8pz%lwy$~OC^q#Wd!JLM-4W`{Ad7(7NS>gUv^>teZdR4K$qfvKt
zG-_ss61%@8o_t&DZ>rHWB{$m}TZ#o0dxZV7l+~FIm>|D&Q33yJVN{XoVS&Vauicl!
zvXxK%0~O!|2x_bqLUw(JN}<l}mR~Lbng@`=jSp4@BS+Xi5g!c!a!ASBCqZTTy1?cA
z%%-sJD^u-eD$u|#aZ0*ZmfH>2B0QTpKy#CG!USkX#(T!5L-#C#Q_fI3%LnaWQy<5P
zD4I?1aN-PT>Etff$uk9P%iRqDXJ&s7gf+<DKX$|hSSnf=pE*^>4kAhUDJLePiNpug
zrt%iDSN?;Rn}B+3Ih^c!Y&GIKh$Oq4(4?%53)?fE+;A@oI#EH+|5yR^1@;}&%2oT1
zO-?o^vZyu)lp$R^51lyr<`j<L!Qk*?)Wy94{CLA(Jf6+KswkZI_i}>lnP5g}0iOko
z{)s`K4)^!`VcPlMI<3hR$RdVG{f!N96pQHe$4;OGGkw3a{SQEanrvqO<yayFM~S{C
z_z%XP&w<F-@ulg>v`XbL>Dc$v#N9b0W<`JIo{Y=iL!U2%NOG2=a2vlsPr|z?>j`x(
zT$notGCTXNUS)5El?rh*jY-OLrQdEyCd8dI5kcCBUt3#?8c?TSqsko!r2(Lf6O&io
z4-MW@8#-8V_vQJB15=vCM+M;-L_~z={a=$CjVQIYTHB3Txh*A?yza#!<^z5aG*b4<
zK8;OOTts$c^W&R(+PT!LYPb&Y8_6i6z|d8)c6F_z$v{XOfE@ZQ3t6Hz&}a`w4X^5w
zHwV%!`T7;1ivOqR-yYyo2AFWF5l&>#@^7~sT~X|sr+_R+_nf>!rSv7leM|7@+M&EC
zV%6c%TF;uA-#S$a;Wtp{vD@E6?EUt)u}ppS74$nBx@byLecncRF1&o#Ez$HEbUPj?
zfhr*#f0(<*yGAe#q(qR($R)%l#5W*d2Q-mQdrBZMPmMv`!@#lw)hWmf8ZmEvbW;kA
z0-Gy!f6xi+66F7q?4WK(>Y$_!)EDDesxC=`t)@)^>3{DVRP!F<j*1{MCceJ#B*ow#
z5{oGbDuO#K&7N0a$=uff;gE$(;6^79;UUXCcry%ozwT6`9Pv$tApk@&34u=n%^a)K
zKSwk5$6lR)4xL$gKC1>VKgr~F_A7PpW$1+tr`yId)Xm8bbF;r0=vB*5H&1?uG0^0)
zJ5Z^eIoLe?q1L~{{fl`f)bgITW;&GA?syxvLgyp|vKR4N0sQY%FeX&y>2>P2%&s<r
zh`SgDoevRbfm(VYc-p<cXoF!256YzPMj#J}2F;W3mD+U!DnmOU?z<ay;3%xlK)XIh
z5&zq(ya|i-2y-twLiKDv(K&f~1?)Id%&8lO66nxTu!jRp|Nql}B?mNlF@I|fTQwWK
z-%B$)?|vh2r)6WBx`K}2Nv)_p{qpD-0LsX_qg`%p@4UQ|0^Rmy0v6Yqsa5PjwVhe-
z4<1D&(#_R(9>gYO=$w*DyzHaB|Aa2?00dNYW=*}kUbME9_BSd_zCzyTsiZDS&V6zK
zZx75RH8c5k#^!ZDg?exoJPhvfIqv|RF$V7K9&azlms6GC2^hGaVO+-t{H3sH==k1A
z97HJ9e^v_m5C8c<C1_Fo=a*LTb}wxzYM>y*zJsxg-FAbn+4l<^D+d7mPp1&7OHI_U
z$_iccMZueU-0#n_!ZrW6mywA~H|<!ucH2lzwxhOGqj+%I(BTkbU(_w@d#OMkzU9y4
zCj1p*IuMN0=xwSWS<(jUamdg+*|n~X&do8#z?YtXZUlGyN`Fa!QKBEjsbQPn2M_;|
zsXxzXglotdVe{Mof{==Z4<EpKKg$S~Pu~2qwMPNmTky%JcmH_B2Rdtlsmso86gG>z
z2K1jmcM`$agfno>AKCxPaT5y04XCa)825Y6zrWNYkZTIB<#MZml5qFFSd~Cq9fqy{
zv#$$A0!EI^5*t1<8*Q5649demk0x9U7Ta>hgl_h)wbmI$YRIP=nv0|K$!LHq^c0|(
zqV8<}y@P}Q{^84iJ%zJrbUIOu0&IZ*H8Ki)1jc46v!OS*S$P7**g&s)Xay~||9lWe
z4Q=_V3P)-PZX&<~GTYD#8XA-bdwr9ov`$TzSGSYlS3c2!Pkom*t<8xJ#Is}gSX!0~
z!e>EY8=k>FmO4-#iw|^aLoGB#{yEwS_PtyuIRPGZ{F5F5i)J*=OdS6&fln~ANkjbW
z;NHm(p=7HZSz|wiW>T`SGwL2Ldg^ss_c@x9$x{`3x@_N<)<C29qc62%Gj2UW{>&rO
z%iY_P5b)3r40(nfy94~tFT769sag;@0m}1ISemzsy)Pr*lG_6aHTIV5X^H9Vhm|{r
zDobcV9!31Kih&uiIRKnoll>n*cIWXiGXdHEa5(PL%bnBwFOkp}I}jKL3V<BthtjZu
z_U`}iTFqKXg(5}-cg>FS-J!T4cp1>y40R*2Uv<MhlLS*T;XNfY#WG)`E{4S%pOn*5
z(xq*-4ik9HAS&MI9DXmF0bRwQLC0or<7LnBpTcZ#KemvgV5<|^;$L+I5le!*Cp49G
zWekkNVl;sft!<g-_oD4mvKU0c<L!uF_N+gJ8<h0f430tXbNy_B{~1%5W=iVcXh2qg
z4EoCdlK;RU(_!9Z-xOicL%$r=<Qt^o|I2HypeDVHgufmw%(5sxNOrCax+5|-J+Sk-
zCOvZmr{r(FciAs#QwhN}7j*tg9gCXC@VU^Ko6sS$vxF#IH?34)Xu$a@<x&H!3FAVo
z;f<fey3t`tS$j-fXFpWi>=EB48y=HD1ZueV(+WRJeYSZ&DR;k@y>L0kB<UtQMomAE
z2X4Ih*js*OzM^JoDUaA=t=~9iXr%y6=Oi6}IcCnXxF)CHBQ9fQOL=YZCBsd^ZCUig
zxnh?Lb+9SMnIv<rZOL=?6TZu#Y{+V_ek)`M*%uI%_=wmPoSx-fvKF1>AV+Z?7yWQM
z$@q{?aMGqcVq>PBcrkF@hgAG*QDLu6e|6oT1GAT2rdzXbbFF^N&{(-&%NTdbCCg)3
zRNT>5egD&L;GAJkEu9$7_d;NPVp)27>z;(GsQ0xVGlOf_dQ7I|qjk?;NR5O3NY4sp
zGOCFl-=-|uB)v)tE{%HBAm=`<t^CgUYPJ|zuR%t4F1%yq-4XP@+@dFtE7?0Yw!h)!
zN1$B5L9}G4HItl^(jz0fqwJ!8L|N}p=v5G{JtYOuqL~i2bU$cZK7`sK|FBM$b9Cyd
zwKL=k;krq8L(^Pttb@T@Ce0M+`E12E^!0WLS!WR}whmRgb_tnw)rZl=C-!%kuG8hH
z*PMUloJ5)IX7p;*EXz=Mq<d!T0z2H1ZFeKt?kM^~e5O+LF`V4AqkckZC4-3bkNt5N
z)Y6<bbT5km=53Wq$JZ%$vLOV!m!9e2$Iw;zPKowT#IjgIMeYhlwL&G@xmCaT1)i*%
z+lieLODI+{_*$sx$KTa^>#%L=Rh}j}4x|IH85o_VYm9at8h~is=XQ}SlYOfp94Wso
zmh~Z)-f3A>mx0ysQh`J?qo<1*V3$zl{9|`}X-`fcn?_imleu<71#ye9tV~Br>*JuJ
z@G!+$Z-9+o4)vjYxhGaCs-Jm-XjlpYEYEN2p8RfQt5pY)jJtW&7uXCL%2hFw;~!dZ
zZZ!};=LjFGl~k143XXR10eZ8YQLy8<#n~f~Rz*wX5_$8bHO@t{+-O=aJ8O$RzeGP&
z8uWw8Y$raSLcR4joZU-PATPZ)1vZ0{!iN<cavukh)pbvkpI5C?SJsYn_0cU^1X;~}
z+#nOOxFvUzRBorap(Rk!D6SDCK?ejr`WMOk|J{G<E_UyJTUdHbS;m|1$<&`?h0j)O
z<5WmL&4=tCJ%l5=&QtFFve?Jrwr~2GoI6g-aFu}K-yPYiN?tjYd}r$z^ieq}IkQfj
zFD7$@BFiJ%X<3(Y`k57vB$17V7G(fUGJ8>RQdIZH5aH^0IJS`d98#aG2Y57QY&As1
zINHt#3`wV)?pyYZVue5OVldk2)o!p!BT=?p_V+5c4u95WV6DDD>tu%V4kj<-VT-})
zJ;H1qY?r{0R5exrvz~~R%tukMrL{34;iee!Gf2G^`0upo2w`3D3DP6?llRDL<uTP~
z6eoRi36#O1=@|7lHHa-1km@twVQ0)O|E!-S+gsyY&?H}Tl*ni*XuYaJ!M@)>ubSIj
z^+zLh7rO^krJgMgl=;!<57JdVJ1Fdt2_X5%Xz<LW%3M6ZaEWVD5J7m@KZMISPIjKS
zZz(i^0RF-<bm2aa1RC#}xZg`OX2uy3>Y5hg%eJ;N3+zO@YA*k-Q8HGWboXtdiFR+q
zah!6tda|~q%EPSDXRK-<`?P@hu>{l9%f<Dk9(wO7Qn2;Py;cohg;s{HJ+QeX3%W-B
z&7o}7&Dv(){pVm{=k(a_48Z_S<1N4je*pexZ&9`5k#YW}31zA5bYM$4<;TeMHDF1I
zx-zbaO*(VmJ6Fi}&mB}>Sb`;;o>0g1UoX5r<KrdDs$KuPrkZwryYn+##%+Qse4+Z=
zL~C#VMotR-?;))G`O$|Bx3103)6TnzcIo?jX?BFwMu9xib-WZWp-Q+m+qMcm{#Sb2
zIqTJ0yyL>froLoP$w4ah?u)MVN#@@SThp^M{33>9>|7)BelDK|X<M*m8dtXXbhD@B
ztLev+7WB)Wp&&XI##nN8Og%L)#C9ip<Z{kOv!_4qnc8wR^09%f!uWD&?mB9JS9`lG
zN)v|7D=!!6do?YmrDuLGABFp(b_po-A><_BxvR*xQ-^wLphgSwyfjrHsbx}RLj9%G
zH!N+(zA0vm8PhTh`^hYAib@($uJo6)`$9&+N5oa``E4p;JHN%(De$Lma?Ea$WOuwY
z*g#=X4LGg7%d>K41V+mcPH+reQdhFynAsOZKpvg?Z+?*|E&k&p$0dz9A>d0_%Ruwv
IrQ47G7Y=F4k^lez

literal 15750
zcmeIY2UJsE+b4QXLPwe?AV^g~Dbhiy0jVNY5a|lir70+#AQl9XC{214lrBmM2trgu
zdT#<EigW~oPz(@qcf|kues^ZptUGtjtTk)C3FIW%_1RDPJ>{JHCPunU4BQM51TpFB
zX_-L~6&iw&@92=ACHVeo3<SZ9Cg;qx!A}TMf*==2NeNN{R}AFh0=a-I4zz+MN;Bo<
zqNIdTa&b{|0au(72BU--b)ifHO%Uh<9WF{3N<ZZVzTjLi7#9q<j=JD*E;w){W0W8a
zSj7dx{22<mDa-u%z+i9~%qRwj!{ES`j2RupjFNFK5Y9yjhXMaCpd0j2R{HaS!;OMJ
z+$gw`ab$8|U*9N3X%yo!iUa=`N)PA*Yy9~b9VLTN;4(@klOYJKOU7Zyqu?L+rwuGX
z>3QX$R0^0u@2h8Z9fEl8QQmO;)QU3%2|)T<8s>o+i(@3G(dNu2e%;BXj^aZ%a;?28
z;;ubr_en5V%qYm8YZY1cJGOZ=k6El`l1xrH5H$o#2}mPXmA}mrcghrwO>}%L4|J`7
zAY-9%cIexR5DI!L_@DY+G!~cB@4nKz8THBF#>;Tm^@Yudk@HR=Tk}z4Zja{<hyC1W
zE7y}9+5TQW<!e2yAF^!D6jU|Z-%sNqFEThi(>3tTVW-PyB-WG9IVCmwvm{nR7kxnt
zVID3M6EGlw8uED-R_h?y;Oi(Wv<aP1*1n~*FE1c#iz@%{tPawAhf)0q>H}T3M`IJA
zrHg2gpa$1OaN=Kwpr>62#NY1Xwp8DQ!!gg^-VnQ2ekJP*GMB|a0T#u%7WL_%saUZC
zG0?#`C)8h`gwLuuXCmbyY)U_rFHz6)U_*B=FuS&>yrI?OpA|-$cLq8$(_tV)h4mpU
z>62JGi%HFEd8OT&iz*rM=|wGO8*nRb)jJ_dXl#7cD=V1FE#U<*qf<<hT>z$XtCUeB
z;+iVz?_6s1s7tfZ35~#NKSRzy604~{s}-(BpwmW^sPrJ%T7s$Dl<0nLBW6Pju~v5>
z!{1t|G%*a3Xyn?Y$d2`P5=6;^)%>567ppJw^otN$_&wp8pu8K_YwT0yS4nSzIPn2%
z^Vf-v0fZC8po+X3W!x_7?S^YfQ{PouzRfoJ)o+~Z^V{8T+}8KIaZ9N`qj{^k0&;&{
z#5}X5*s?opul8g_rPBCJJ+nRkCvuqSx!Zi`HO!E^6SipPV|8`<yib4AdAs#dWWViF
z!kXnw3rpE)gXwFfTgH7E#0kahtk5Ew{L{%08+M@g;L4=e>*V~dpXK-qy}p)NC&mjx
zD>j#7vww0*&cij5EHXTuK87Bq7u$6t$)TyFuab@Rm*rYdrs!MlmWTcx2xyjjlopKc
z<v3bi%#!!zNE|JpN6L7y5A!mrasMze->||0tt7eh3Ge(Pjv1B_-;_h)-SP;r^oQoI
z4`&dyiRsGO>(HT3`vri|YCdHe#SEM$xksdxa-R({(c7LC;a^PoF~6`5%@tk0t|%~u
z^c)sejFStJ7*jT9x3RkSfW4rAR<9^qAtP1o{ha3u=un;@v87XEeT*5NudlY0l-Y(-
zKV?z5m4>blM<lX8mgr4R9a4vLW~R)Gw}u#~fH)bu#cdAuvP>87VYldihW#jN5$UP0
zuPlMvScvAmNfGVq@r&UByfVhQFW9gXKQRg!BUB<|Qq;|-m<Eyxm3lbfvWs8to-VHI
zQ9^y1QoEnry*u6=>PnD_9UFX26%CanQy(XGd2eirsC(+V_9k7+y)jVwc${}GMA+jz
zIoNjh#?)tzV65WT?XHuG#k~FAhY`I;eJnV|^3s3BS=iQLOU_8JTk%^t-z?<{Ii0bV
zvMaya7p2y?MNxtccKIGfpVojrF0A%K04h1QwjW3LlUb7|C4>Vz<iJV5yAbNHr^XBO
zu9c-4zfc-KH15S~fCk2>AEd*dU~#4-yKhqVd8LNBU1E51LVQLzjh*Cuoc&z3U!T?E
zV{q@+w1Z__dO>pf+s~8l7sp?<K)<j)AZ#2Fn9X}yk*ZmW>Actd+~@i_u7?EL8tpu6
zs4l=VlAHQgi9fqWu<LPsTkW2)f)O*`3l|Yu=nHL##Bdd(zWDa=uto6=H<!jdTL;Fq
z@t(n=RF2F^OON!CHXM4|A^gke0L@G4{EMmcwMHFa+v4+RowzffJD@`^G)D7^&PCaw
zuX5ge8o>713qF)m8(xNeeI1OKCM3PhjTruW!XR`R;cbh9ab;IXK%?Ohc4GEc_?(F>
zYD+YE=j<Y(UL5sY2W=##-g6@}4KR4P5SnTd&f5K@@8FaU%bYtCU?`b4auS7$t##h5
zaPX^R&ga8kWgWR-yfW;bNo>`6-d8cI^v8}?Sxi^Q{l~?2KPGy*E)r}q&JL*COhfW4
zs6jP1UW6Q;*hg5c5+$d5U46qPT&7lL0r!en)qZ}#CeSBmzA4kD?Z_!G+GyuyM`Z*T
zp1c_rG|z6vV&XJi^uv3n+`Q?JdF%?dDwqn-iM-&zuAV=?Q(30TqZqOe9`SitLpuDE
zM7$hSmb=g7(4!F#&nJ3@dF7X4mwnb+I<i0a&|%!UJ)9)I{$Le|Z5&hRnsO+ifI}SQ
z9OcPqA{{y4XBnQihX^s?BrCtyHMUyjxUf6rQykdo0Mt!MwaM(kqWRPj8Prrw#a(Ei
z6lvYwwZ7saserhWMiU7g;<!1gqD<Rd@nwi#pzn{U#niN9Nk2^ZRBdaFy9H4tJf|wJ
zAElQs^Y0R=?GIeOXB<(=i}YZ^jGesLmekD{knoP+X!>)|)yD$8n*HSF`?Vu{%(a)q
zko^&y?bTmuX(+-i7^HDJ{6~9R?&+00Y19s!mvly-qg9L@N}+LEUreq<)>uF4b$Zz{
zm%pXq*4H|&@F=Zw^VTtM^3Y}T`u9R8B3C=@Q%l<B8-7*o**Lml#1;D`J7oV8VscdX
z^dD=zK$ZX5$t?S&49cL3QIf@^O&4#D=TT$o^$s|0hnV!`wpV^q%zL~3wEE6~uGjlq
z{3SMQ>**OCGwYL2=7YJzt<Zzlxxc>sOYz&pyzd=O^sKOT37v^w-16?Tpo7*M`U4L~
z{OK^^m>`AVpwQuqjD?&7Uk-Bqnh)_A(X9=e@=4V*lt5XU5)B%CMVG}nA6TH*Y*;G{
z=#1Mey(G14YpM;rV&4g)B--k(qvvHym#?_W;{WPm>$<o)o%vVoVCx;twmR4g4&Dgz
zBgo@7*4L{VcT!&OE<9gTd>rYjsD6}xZS6=QpDEe*f>HnDB)qebd=lZa;_|bt`LvzW
znHjG0$IZ8jcl@txsgy971dm7FP}Ed#=Z^_Fum(9J?NmjIkQA^%_Fr7eq_EJ6G$4bD
z+hZclab>#1Q0$t)#f8m79+vO92csvdHhDG=bE~;}b=~&<GFt8M*29))BW%`JonF54
zd?Vd-!2s*$=sMStzZFN{Mq3kXbb&VCi%p!-#3{I=tu6$8p=-x`0q;!#FK2Wai@|D3
zf$bS}`LK&4gV91t^Q8lMHc!-C)_ofD50@A&PHncFWW)ps$=`(*74Mxln6Ae?D8rZ1
z0p~p(8ez;sm{pu|9H4BYM3wK%c9FW7BC}>G!qy!NNdlbq$LP{-<maf+*eWaJhXq)!
z<Q5Fd3rU`p$ylYgE*U2}@7lkb7`DzySXC%<hGmR^e-I#S-WtQp8pbIYiy{22ZNHl_
z<3s0unA;SOpe(!eQ=nANNDFj(Tb(ERoUFPe$87k@M{2?!d+9^;2h!-i;lECH+RE>0
zn@HM_7Yd`AY5SSnxhD8DXO*GhMLK`NJ-bDVtmjI2Gs(idthCZO8#xvyIT5q-^xd;}
zcB4Pf`>rm#mz?uEZCr#f5A$`O|Nb)wN4EyKQ^b{txME9n1C}|t*$K;Z>`Vx!b_7PI
zz%mbyp{VH4ivPLafor=fEDlb>sCPNKXejW^|Fn08wqt15iB~76njhJQ)3JWgMjzJh
z!7~b?=s4kPT4?kx9p(svYE2h?m`wnyj+l&wU=o{vE|uGxg_~VD$Ah=#&#bhLof@e;
z+`QwpHaW9|S2NU+ihUN=wvw29ZgMkfc381tVMQxz<l*#|iA2T^pEi5_b44>}HdA)5
zsjLj1pWvbFll+F8bD@3qXo%MjxQ0grFV2e%eLL1zo+Odp_eqSu2=BpQLRf61+K*kr
z`BwI_VQ&!1TdfmHaOun@^~Z$xu+{q|)TP7_`={Q!)tfQbuwe%svgE$jQB%n8H!7je
z8LC>z=Id<Ij#S{qsvuY4m<UJNPp3qWRBo^F`>bl`$PnfUj(+@A&jarMa2S!ttIB&$
zdor?uqvj`BXWGwr>XgYR7H9D=oA^OmYN(aNHa~AS$|fzkHJ&-Qo4b)&rk_<|v?JbT
z2*{jd6W|%eSr4#c6-MS0pSb8MC>+M>XVJ32Wg}F*I?{%*(qf9v6N0HT)%jpNeP#Zx
z9$NhBu!n^%dgNSD2u+JLV`b}6&rZ_Q@GY0{%9M;w;)qPX42m%Mu`8CP5xty%k2qP#
z%A)FtK7nGH@zBcQoICwy(vVOzV_K18|D=fYF>mhmwFa$|OXCHqtv=4^!ZQXlZ_?td
z*1HW!-PgPyb2t?muH;Uo7^ds6OPmtbIghw<x$Q!c5~5#o{Y4G;N6#E<)q$EY#X-yF
z+6h~$wv97v*lopO$)!-Eh{yaHq;(BHu44{<Ot2`+lrX;7Y&Bwh+NtwiUAm!}mk>cw
zeS16d#>W@e0`0mSq?vdTi9So`JO!n9=EXg{!{=-aTBuk7iz=<<S+N`|g(jo-n>Y9-
z_;>mu>vh7_k6W4&ViIWewmbYkZ!y@*9kbC$hkK2WExO`&?uDM+tvprWUn6zy3UNB3
zRmYTn#Ifg#>cW2Pm4*d59&KszbQEeTlD}cJFT3f72ucCxS?NJ1fFk==`sa6$EnP>o
zTJGK%xn;^pU(gX37&iRIHg_hxUDt9IGVEnnZ&AwoT5v0o<wRH!j=q-;v$Z(nA-OE9
z?31{5E^bTBJ&wC~z526pvC$PL^SGzSMm9364IfKoPM*);A1vTUwVlfud3u7h*f>j%
zVM0uvMs<>`4q>-0e_12XdyJiYIF!Hc{LGHVNo_TaB(P0d%{=d=*XW{Oza)<^H!{Tq
zyck@aNDL#2tl#^jrJyswW&I&|%$Q+y?dYM3w5$ZjQ+FYYuA2kn_U$ronFd;g*6j>8
zxqJ|jSgJk8=rOkY*8idvx<cc{vUq&`bXYeIm7GD{_Ao6mWnYTtjg6cwEst%r^{9m;
zCn;Rs*J=E?vbf|Uv(u(F7W2MU?x?tY%kf<j*7SRc1~7Ll2MBg68sut+BOmv)saH8@
zXHe@Yk0xY1?;YH^irrE$w_)U~-{C4Pw?dbVd+!veJ?b!(zk9(bMIzvLh$2tWQnS?h
z-6N=^D&w*_fjv10pd|LqcnTAxv7x*jyQf;>dvKZejBB5jM(9&loT(q?x1@3l4||gB
zYr~6e)l$$M;7U`|9nriP#2Wn63q9pJp(FAl^g`cIU`P)y;)+x4g(4b6zvHl#l-HP1
znP2^cN+=uFF&eCOu<Sg#wU3kx%fuB*%Y{9>#)~w!hZAj+<YI0%oMTJHNn}sbP90_c
zml7J3B3tcGkON8HR*{3{)QL;qRKivow(<OH;|Py^B?`JkIe!Kd+2p%@?h+xFh@+mH
zMH|)ozR*$-vC`_=G5>Wglj-kyH%;4ueosqdlaaCpNI8j@4m)3up~N1-@^_QT-Md_v
z)5&q{x4c3wQRSyd*p$rEnebHJ$Cf@Ask=n1Njjh%t24@LBH{YJBCePjT$!S;+FT7n
z&$C<cT3mPg^ys8%-HMR1lFPaB?@V{A*aZ}A0LZXmFD%|{a1|R8Zv|(#kbDsKz%%Dp
zKXYvfKsn3w2iz+{nrAj|<)@u#n|ZVFopbRVS&moJ>P<+WY-3@Fb4L~DDVi%zqZf*}
z5&b8F__|+z4?>x)&3gu^mMfW<*`B}pB~sdsK9m1mOR0l>*s-;vq^UJbm35FMRldxl
zmi&{IK<LSFIfSHcQN<$x^p~#<7|Rs&trboa2R^?N@JMmz{+e|Jh~K-iPzYsEq008U
zx<k}1M|f&^vMSWV(rGB<{j*lIm}D`tiI-69P1nsjg}b=?hvAhWi+t5%JBtIvK2Ghh
z&mC1WbeOnBn-WpFZkZvFQ<_Hz``=(tR*tbzv-KCT8n#AW2~iA{M`^R@HqF&{#*|+g
zxZj@bWA}y0f!|ueDE5qG<Cg;=g>l3_4(%UY{)EL?$EU2=&OLWB<=s9W^YjAWqN%dt
za{oxC`gEQus*!+>;dkyrigv15WYL;4nh+)S&q;r^$ouZe9>i~)yQ_j7=}y#lmUOT5
zXDw~zF$J|KF@hzNNmy0!%Eke>>~&I+#eIlL^UVz-@f)`WJ64}|AE!9a=A6|J*wu4s
zU6PGu!NPL>RLyMgs$S;7^C4m^u8+cnzYGbp@}QO|zH9PPxblV9^G%0-RnSjLhK<HU
zr-e{zcBxB_mAiL)<=^nws4=k}qiA8!IwnKDFf991|6F)+y=^@Y-|2t5Yr5G#6HyVA
ztq@yBP!H)?yZQgS9{%qX9+Qxr6{Y;V``S65%4^%zJ>JTwkISlUF)nCQK!WLF1bVgh
zf-ZjHSI#G~Db>=_Atj6BREM#|#gy3CSmUbnATtC!g07_13sLbT-R+r<=PsRPxw-C_
zzTm{_f%g9D&YxwOvcM06K>@VK$y<Eub?P0G#igYDm9x8XDlK9veonF<_L&gtU}6eW
zG3mz{w8Et^ShU{4B#f-{V>`_g&}61|U5$Lhz1R)|ryZ+Z3ehc?Y4Il2@DFQ(!5wgK
zz0RB6F@+9(d550*$MvLz;U42?*ety>hh>Cu-bP|5?8Y6aQV;)mT54A$kW{&m<9<CZ
zT+c{0u53A{1#x9x(~gJnHchtXx<O!J$k`FgE%&Ia#Gc0vxSa`&i*(Yc_0o2ugo^2=
zyX;tw5zFm?_;j~%-=s=6>%=2g_!O%Az<p~*>xsY1ppFXOJpFYke}b+-cq-&&goe}b
z@>#1F3A6x5q77EEzouO?A!fZ_Gd?fDyB+Hc_wt=_AZ53KA|rV;RRLkX4R(DwNWXC4
z61vr=)^^ugoho1ZF+*kQvy;yXN-7&;GQAlKnEI}$8)mw+K5Te`Ow7P+VK*AmkY0H=
zb2p}1I`}1sQ`43>N4r0<ktTKiXV1bCT%+2>uu_p-jSGC&(XA2}(>aR8Py~7&RQmo)
z=(KyR!_@4#&aP(as~qIMqvU;YWd19X6*O*Uy9t9;M#&e?qs=3JPxmp=OQGhkI}~-$
zy!-*MzCw1e<A_L~+|hx9JKx*lhuvFo&|DL`^2l&eu?T9up@I4Hi`!h-D<UX$%WL?^
zcvjfsDYXzWM=A9DVg82>rk*!mYsli&4tq8wr%>tTk(Zr^HD)WRX0zI`iYGoo&qXYC
zbeAO)vwOwZhDcLmfD!Vju6heZ;!@N>9=R<`aY;tZZU_f#-DD*d&>wP-R2oMwgBr1G
zC(f*18Os3_CVRurw*mHM?at1{@_!|V0oQblQ^@DHlE6B-Y{(X_IDMJMO<H}3T~5iK
ztP5mxF?gRIX|3WjGMyvk;LB5Vi-G&g$w}R=JfCmeJ=qO4PAhWG=<4b=ai;JP`MF?^
zN13LU+?)qQ7B;-=3q4Jv&p!uVbS~+uphpd^A}R}H|4uW%x?Jw?V404fB$i?fs4EX7
zz353GXAb1rPA#*{!>u$=!?D)brI*AE7VNfyKEC#Qg7~WV#||N2#U`<n=#`=_FHQ*&
z_0AeO{hRN5NmD<$0#<W=HXF!9Pn@0Y(ciguPc}X7@y>lUuP$WGRTY-mvMm(>T!eze
z8q|Te4J{l`tm6R8vwf1cRj|%o8T9C8!8OQ=#UyBilwCe1PqLI?Zk6M^c2UQ9ot<r6
zdEhhWD25fe=9?}uqZB4J?1r3?rZZs-m>082ipwj_o8rzs{KK$oe=coMOs$2h)rXDP
zGY#bv#kU4DzB_ot2Myvp=G6=FGF?6e$51>#kz>va6UtZn%9myyv0)Wj-fY%Z?-+Na
zsF^?9X9tSNr;OwA&LZutqf`8ypXR@-kGv`P$te0zqRQ3N!T;&<g_7SF9*hjcQ@I_{
zWbW1qyK2wJ%j=Oo?0E)leesJZOm$eGk{`1aQeYz;DD;dKLB$9IFuJQr5Wng}l}`=d
zy5oy9e-jwj<QFZ7dd2FE7EM`}#3!qJSfA!V^xuNsBVcPTWW_b$tr@}O?=*T5F<Hcy
z=wo!O0)pMp0DrA($Ucx4?f<Y3Q{%W;l@f7WA+i|H`2aNCVlojOUQQ!Bk~;FK=rF98
z(ET~+&T?HQ&MF0Kdp%<`M6W?}{E_)_7L&#8P)i{c`ZgdYjoh(SU<Stj;zCTK!7_9h
zfZ9h{1wbmMM<<6O5E|-IB2G%GR*>vDDNVAd;d1%5W#kdmJ67sL*j4ulB8iiVj_VmK
zGPj=SJkzkaXhp32y4PYJ+VF*x{uX4_T+bk6t}25mN!lH(fA{!1XzsNs^@ts-z@;Y$
z7L#28W(3tf(^=R|H&>URo>fW@rpaFo;A&}L%?<^rC@VFWKmf<ps;warvJM&zGf1Q6
zm9Um0meIzot_cC!;BbO8$KUL?UhX&qBWO-ELlQ4N#y?zl-ZpXDqdJzj&XVNwJvBQH
ztbQtzCSMY?3!rqs(NX9JfWM%2$0mS6z%qa{RER5DU`eWG3a|eoNB$E`fN9;rx2Gm1
zCi+0NXmh^+N;4nawc$*%w;QR?{G)o^r1X4`nVd0*qLs~1$0t!GiWi)h%sF2q$O<Mz
z!&~93v@=l~9|8{Nil~q7y9MTH?(432#FLa8maah=L-9s&&$gI{#AC9CGXNl=Z$rof
zK1*^NRp&}2WQ(EuuWh<fK6@fS>@#`Gs8E<4Fur6b^_p#1!VOymAuFE9dE_uNE{^=O
z{@AIL-L8vwwyV|S;+{RHQ1=lkApG+4d-&DixcYNTA?wULA}DmU0J5T*d+6cIhekhX
zP(aTA!d+b5kt{$eg307+_;tT<e}Df_zqwy3KsWX16j616?mhjujYb~mWM^yCnS7Ot
zR?}oMF)`LU!1HLdj3(pGA?&-X=;I1PLsLwr7-UdSRoP6hYIPbM_GNcO-wF|W_Bpzk
zQ@$I-1Pn{}qaBZw*><BGV4CA^MTBDFn!PoUbwJg(X&=8)NspxzK(N%Xs80XQ9%M3N
zAFHvJKi{LVTQtFpQYaO+o*=DcM($a$kI;&i))1SOqz5*e75R~!%}#gn?MGNqgC<%;
zNa<m7KoIibhd+~f9{uR0v8Cq5QiGKaJ!-o~6a4==*I&Jlq;U%muijkkntGo-RplrL
z>_YPiyya}GyseE^ifi_AM|R!<;yeXsk3ZI+wD<)fUuptOI_N|JfYdFYG+so%yVgr^
z>;sPI7sTZFV1+Pi0ZQ9L#>2h`FQF?$gbLM#C4^9!I+M6}uq#ZX7jL+Gn3*!fsEx;$
zGZ4Mn)WeQ7I&#hWE4sEDnfp*LUTr_t`^Yt`FDMoO4;v+1<;R0pQ=tIvM-9C+TXY~G
z5dZAGUTVA>2L&8@L@J{Rrr*N}hc>+NW6%Bc-Scdx#jj%HS&@mh^d+0q51;^^M-63Q
zt_*7aQE}2&+u`ujDggg(AHp{7Y~5?U&N}1jgs2GC8f-f>E7A?EQ;_EWJ1pE5q;}hF
zX}IzPaPR{Lu|^UI_M5wWb{|m9%a`DoI&RG<%2z$u+7_>mH~ux?N^B{hAhQOw-nUqj
zbqG3qkn$`**z;AwPh~@VTDbUKpr14xSnXkKUemaB_!$ULyH67J`W|7ecI>9wZx2>V
zgA6M6nZ^<0bPWJ+Qr(apK2|0t-i$q$VrGIgvs+T5aBa{`5ddb4R5j#0sy1A2xjWF>
zOQGf>T+_1gwv{n*>C+A41P6AY{9I<}Ua_Y?>`Lc7sr0UD?T_W?-Y0=t@3UX=>{7{~
zqpW(Fy4jcIQ_05)IbbE=ta1YXLe|T^a2lCEpm}CHf>hq5{2pxLbP29eKW7{qrXH<>
zXU`Jgr4TKKD)%#|Iv%s}T%>>kzfla`c3-l47Osphd~YA}x<pT*#2hXB=tfW1$1X#z
z6MK|R`>e-h1zvA%Iu`x6rLf8_u!jD~zh!mzfWZ3CxV{OW@@TtP#f*+e9$&0Ly8yPI
ztCV$^fA9oP_(kDFK6K2I{C3MXBxGA#m8*H22JljApD3!u#dvblz5CDV7tkD=jSaIo
zmTEpUlygT?yS;uAL0p-gou%~|r%R?t?>)5}7dYg9^eDHVQXfB!NZgKOWFu!nf>#<C
zOs3>QKbCM=aemY}`q~Zdz#_~SSm4$g0R^G^+Kg^A2eIylGdY)i7#*haL_rmn{tQER
z8lEovFF2R9MIPNde}BU4P{4L$hq9OD(!le@QTjj1W!-0*y{$M9rQh?=`SYHV#oT;9
z$d0wTCKV#7oJv-CQ@-xMKDu@voB}OKt;c&Cw{SZ(xUgxKg4?@Z>X{U!#Ud(RguSYE
zs(hb+)Jk=X5@^sI6bKOPp8buRK^Ga{FdSAJPXeuX4`3%Fqe+rla$dT_-Zp!#)c7zA
z+`1_0UWkQc2Ev>a-f*DyQl`$8Ds1FeFd-mS&ci7zPM%_Lz`q+Wly{9VZu)rf`%$75
zLEz8}<hgn4@FwABOSLMtA4*dWY>(zUc~ULRrafegKEfj8rLLUP>x@$f5Mo%PUuNaG
z;_LZ;hAQl8DiR2-iVt{4zp_ylLo#+-g>Ti7Ggk=dv4otQoFB0U_h$Sky7~%{%l!4{
zPTMJFjFL~IrL3zRE6<~k&#2|17%)m<0sDP+@;zw`70sIkfoL_T-5%SPB+%&DDOcZZ
zI?@SZ+H0q>4F8D7<Ocn94lK|_KmMOj1D~t~Y+Wkr@nqJ#$^8e54w<3LcyMLVY4!A+
zz#lusDl9H<6hVodUXa%9Su0_6cGlz=0PGuFkJ=_^f`Q2mRxl>hx^cLQjBT1#IsVf6
z$h?PrXBaReSB51KasjGznY3<Z%&1JWANQk+bSKNIBl&>h1g0N*Lu0z`<We`9*oH7a
z9pCli6aZ=WAmkDd-oS$%+Jji4!;u+Aw%9ZJBi=)+$g_{$x3-9&P(D!%ChMuuFRL6`
z1!maZNcg@ReuYT9igeEK(UFLUljv)C2zrBm=>R-+^dlRMv8b1k6{c=6U_`slDgSDh
zreHP&qoWv2BId%s^o`r^KK)EJ5%RtUxQ<BRI+!pUb=(Ap-!A<C&F!br=^!@bqxKI!
zbrP8vYEeGM=JnUI)%h$)-7}FW{X47BFkg=_5CA|_Lx*#prO4^)^zvX>;6C^o#fJmy
znE0-+*;ni4e{FOjT{?JAT6#AXAByA8x@J;L;1w|V?QjVleu}Ywfg00Mo`J#@lt`D$
z8=a9IUCq4LG5l4%=EB}rLpy%D{!{78zDC&;)#t_%OM-<`2}i8xF{9BL$%@~+_29yk
zhIR4JBp$@1f>0Ik`aHg9oz5ZHN<FInv>z26E5H@rr6l{qo7K!Uo1AUzfAFzFC#>r`
z_^OG83svF=V2TZJV*^EsyM!qS4!$>z_4GJ=8Q;^b?wz(fEqQ8P+Wwh;bRB4iANBVd
z;fDbK=`cYP;CPqxU|`{$O{QzBq{hbV339z7r})CH&(TLYB(OmFIAVuS1!qpVaBG)p
z=jBmCGN3B0vdzM(k}gYk_I}<EC%fAoscP~oMp6*@1ZrSgBv8n)hx#>}zPL5&%%4aZ
z_^ZON4QkiJgeH{sz&^J#^dOJwCT&>uTpulEqA2R-kK^27CJ|{4abeyNK!cB1MDC5+
z#JV+x*{+E`a{(aA%hYauswbD;1x~+K2W*ml1vS!d#d&o1S*j5L;2nx$?3Vg>$n~9i
zR`3lu?CTF@=|M`Oa+d=<<}=5R2IlU|s<iyiIWM9+S9LLA>b|><{Q-Y>;U03Garoqi
z?)N%m8~r3e<F5x3Ma`d`O$hv<I~L!w-DVi_*S_}`&^~?+n^|fvD@171?Xh7+CthhO
zfjXM@@xg!4;S7Vx1{GEurNWXw`*(A}Kk0;2F7%plu=g*^WOJc{sBRE9y*PZkv-aQM
zZk1>sm5<2fWBTa+yW$^@WCEKF?LJV;hdRjIeuDpEyKFvWf#=P#kzPF+9jE8mgGjqf
zeSDav)mPTzAIZqRf+RRLm-|V-ax7EI&Y!0^jKBN?819cFXoM?KvK%10){|O?5qk#q
z_G_pq#Y=*-yrtGcpZoXOFypn7qLlF_AU281$=s}(Na&?FWngDJO*!LQN_<U^Zv4Z^
z6R0E}ke3htb7qRdThxI&Ax3D{GGMVNu+o3@hJWMC2D)w??+;JL!{1a_|Mp*4wbiDO
zWsBzX#=mr$Ra~y<BW|#8QatKYYB$wU%}pN<%L9uSzdG+Fvu+9(dWMzHsv7f2d2KTB
z0E1<9ME4&YI6~@i8S=yYyn7bVD@fzUJ#g>o;|d>niY-#oVnxsXo7FDK<1#v+AEs%R
zqZ@q>@*EJ_|M6E;TmpUNi^J3lazeG#OlusM&>RUmUj3H^i|*A?(xGT@+pvkc7yp^K
zTe7IwK{4k`2)W>hr#o_;<lLnn*WSc=KFYWkAA3EKNxE)-&%8K@D7E$pql7z0H7$RP
zV01*1*#Yju|4uu`5-EqgOy#ya_2FXxr#SC)M<cPPr)Q<{d4mZ>3S2PvVZfWc^pn*W
z4XO+4(T9@{bnE8B6ZfM}9=T>Sh%T3+1pi|?lQnN)-G74rp!-N~%|F3E@1yl+G+Q7d
z2AM;^Ugq$Qk~z%$lTTeCqh$KL1d2XsQf|g}-+~SvnXjFN4d6d{MEpO=Nmlf%iclNi
z%t1#A9Si^DGk}hl0L~}S=>ilwcy<5KahWn10KcC*@+E?)`xf}|pxOB}QuQ_u*8ab(
z7XNj84MO{c-&wAII57PuV1bbRJ7#={em^Z$4yA8GAE9IM<kz*^bpQ|d-`a;+d9!u_
zEH2m%l?2kPc~Dft4c&hRyZ!Svz#@>*#@zg{brrGq-TDhJFR76<Mj3S#y#-+4KXd;7
zUvvL|TG0cf&2o6sH9x<VxsCLO5D=&e_CsTDW6zeJ^cpt;#(0@#cGu9nlF;J~QG{^?
z?c#JWvo5Fq`g%%F!2l~oq8}lUGei+ILcS|8_a<a}(P;c*<kxe6k;~EnB?0O}s4_Jl
z|DLAZBb#1+nX=X;^h8JIr`_baO6PxR9VkKokEyd>zV!1JNFx6x*0K6I3iGeJUv>!W
z?Kc+p0}(c8Umd^Q_xZSW3{WtT=_;}CbI#0??yQ~<KK5+DDiA>x4RXlXBEQ884|?wJ
zl}6ejiRqc(TRKg+n;-W)eN2bX$<FwP4<AaN<jrcLQ2w2!S@X)PEmch`0Tdk<Y|V;w
z)Y{L;(|wx{OH7G1c32#zfD}mCzAG4a{ucoysDL+yIe>De%9AldGay!I5;8OoqSPb{
zsaF1ki?$Q!BEa<6@`S%dNymF^r%(F5vv>!mB`RVI(@lefCg$1Rh<ju2fofoolu-PS
zSvjG+DW+;hMO2b2W(8FSqB)R(EAN%WzJn5VPZsR2D2(FO`4ev<nEuPS?=sEtjkUen
z<Zt^|AjGrzhAzK^Ogy_$JB|O<kq;2+Z9A+8)99%(%<lNw(i|rix)kYZ0v>5$;Il^$
zwjwJCK~u|?!1-%d!=fEzmsEZPRr5cg-v2@k{lA9)zp~m1|947@q(?M*4@dE$x7c0K
zOXK}&%gX$Vpg2dzdX(xAcKBl0r_G0ET>}m}c^A$E=ED2A*_1<??{Hz4Y5jcF+$3$A
zG=f*lfyH*;ZMs5=kC6gh?&e)_XM5}aHWG~))D`fOyYUgfM?}UyAD{8b$**sakA3E<
z;0odpFm2PAK~f<*Ti{<+NcRNCS03W~$)`}W6mJOEQ*mJfIj@?lFL>87(ttpK_NhqR
zNPdH6Ee{VrqzjDH`!MHh`NoH^FWH}T*r4VA22Maipl~+fVXNFPuQdGaGjxhU78Of;
zlZEY(ro~1IGRUD`6aVr3$JSvQ(Jv6prGlV($MZk@o;)|9j6}bp{$0W)v$I<cUlu?;
zMC@Gaf?Q903}Wz2e%s!cEcppir-3`oq6r7SiL(iWz~TE48P8c~PQ0@cLTw;+xTsDU
z2zH)FmusPaQva5w^G(*w$b($(L&J=}oLIk!-#KLrckYMFIKMRsyt88P%R*!vLtK%3
z7q5XXKQN&}eae8U*&fXw_0OJkn7aR+HiY=VJ&pe#to<LKlkUabO{(=f5N98@p~}0k
zLi*OyH8qY4|2jPrVtPPzVCK@o%-ohqNAF72YEnt|^Zv0@N)o$5%EmT_u|<KWPvndf
zvmOUL!N*lVUZl5EvaH&r3zA+7Dve~#;e7|h7I0l=)7u&ch-rC?Ox@z5883GipQalN
zNuX@heMa_a)yAdZu4TpSCd$5AEKf{#lNC@kw&4-5Sj-HRU73!npY|@A?6YhCG}vV$
zgG`C_XV&45O~D0ay;#Y}uPY@-yMD7O<HW6(C#JervSsI$Fm=n3x$*;Uj&Js_`Db3;
z;2?hk8<jiO>UL<XHhE>|1(x+aE)0+(^#Q_k<n!n-zg4_E(XCxkO1CzCj;@aL;kJL1
z6?%#kwb8hUufkIsAquoM>c%VPu7(z31!=W_1&K<(e>d%n8-!=!<WYV&LSv3Z#bU0)
zl5s^;w_t~jnyg^Q`Q#y#i~f{<8m-=+QBykMQ{*ZeccoyGp*kZ+@7pQ<IrQ|2tei;)
z(FayBivAm%+UUs{_gJL)&!<LJ8xHF0*xl^&OeRu<<cQp;)I1{bRQis9%Zc63jpT@K
z<WUvlQEq{-xpo|p^^y^zi5?-D|25N<Ea8@eG9oS6QBR)huXdepkJ(XS!$yKzWAm#o
zc8*@8BP3GI&gox!a`d)U>x*>Ait)PxUZ@#LO0m2vZA=(n<}DNxevGVy+s(q;Q$hDP
z2fQe_Q{ky!CVS$2`}yF3+araHmy(6o$*Qc_mx$j(r3_N2%|_?$@9hbXd51=Jtvqhr
zg8~kIJV9p{==#3jE>4-)I2PG{-XpEOeXz?c$m^Kv`{Fx(Y<GpL7tk-}jebv<jYv(O
zkZnU&jFrp96#~=8(HzILnHW5^qYvY-z<rB)l4r|}Ey+H123@_srU>Qz@q|0faQW*C
z)Ab*<>jb%h;52WZ+foMWke}p5*T^q1w%z=CI1+)w=ZH#ynwih&%n5t`O5}Wt`T&r4
zfy$SLv0rvm@fpJ#_g+t~QFQj8adH0JiUC5Rtr_+u>TN{IvaR>Fcv35LzpHPM=J=DQ
z9%s?`D`Oi$Mc!ZXBt|xZYSfRr3SjQ3a8$6{tFXN;clZz};PYbZ-0WhOB5Ce9P@K@L
zvL=ONF$p1~Y6hoC4{Cp@c=@3<iDz$_%cDkBea2bN!6QpSX1zX*bn~%lW=RI&zc1{A
z;;CT7H>UsX-?y;DVRu3!d2=g$C-D-fCr{dv=A(#H>~kmHqgVy>QnMFB708p`ZzYva
za4{gL1PN8f;ojTBV}U7SuXOK2?}vB1`oAXL)lcLnr^e+BRq}T}8>=+rz|q0CWQ!of
z*pFZ0a*h`+UT=(Yl>8|zgz|M^$JVaQI&CzyEcg)0w|HDlSFWoFQPFjZBMy+~%YPp4
z+KC7~AEE9=qW;?~Cw8-@p1e7EXG=QU{lKA@Y?|NbSTh1xOm@;MRg0I&CAd0vkr+d4
z(>>@tcsP-`e))j5q}l=MH^#fW#BB}hq*^~!3&QviGw~z7)pTzd<>60LQGBm&8i_Py
zg?`b|k*-e=U={hm2Vy|iAoN6BiY<4pm3i=nL|mIUsct<A#lG>LPjIi(|G`5%h`N7N
z$cpND*vxu>2MOy;Mr%^#J!Ipqp7hiLe9UkL3H*$%Pnr5bW!w43XVyj5$4Of@3%a2b
zH~m;=djwIw$<%JvOAdyQyU)eQ&RfN}#2I7{h*d_R`lb!&_~2XR;wWdI{uiAuN4~di
zKA*tPz)B@}LVR4N3}Wp!tH3D(WbU%zvG*-qb&`*x)IUK53;UOMudfTR!oi>hlW`Ch
zW#$uk-=Yu_gI64V{B~+PqJZz3Fe;vnA{hyRuzO-}q;tZRx%P(3$HN^$KculER<Cxx
z1%Opt-}8Z*r7L)NuiyFJK>4M4C4t47hM%4NBcyy=+BGgVfm1d?ych;!!r9pg#QdZ{
zx81I<*2~-Bl+9CL-tJTk>`&?*A|`bYguI_Px0vT+jEmZcjr5cJ44!!UR!pe7G*J6p
zgqWR|!xFn4b=4=X_B;PEu;bYB-BP>aCth<$zqeLBs7TlhQ~@i>XVaSR91r0$x#nCU
z)5l`Y$#cf9I;NBXl%(VL!yjl4!oB5AA7!8Niy&@SifvX2H%3mK(l$`^t?=o1cSIBY
z>c)KWlM$YfQ++2F-PNG{4L+ktRd8S4GbNO8=|y|%aM?$YG{hf(KWy2>rIYS6_SYw@
zlh8<1JUdujB||-afw1=5b85idCUR-~?F)6#ek)_4j{Qd)UZ(y5sI+Kw@9ao+aJpXI
hRk8m+;o*KV|Do6eipS123qs(fuWh9DQuETS{|6{}i?#p&

diff --git a/public/search.json b/public/search.json
index 40f3788..25f898f 100644
--- a/public/search.json
+++ b/public/search.json
@@ -18,7 +18,7 @@
     "href": "07-basic_statistics.html#cluster-analysis",
     "title": "7  Basic statistics for spatial analysis",
     "section": "7.2 Cluster analysis",
-    "text": "7.2 Cluster analysis\n\n7.2.1 General introduction\nWhy studying clusters in epidemiology? Cluster analysis help identifying unusual patterns that occurs during a given period of time. The underlying ultimate goal of such analysis is to explain the observation of such patterns. In epidemiology, we can distinguish two types of process that would explain heterogeneity in case distribution:\n\nThe 1st order effects are the spatial variations of cases distribution caused by underlying properties of environment or the population structure itself. In such process individual get infected independently from the rest of the population. Such process includes the infection through an environment at risk as, for example, air pollution, contaminated waters or soils and UV exposition. This effect assume that the observed pattern is caused by a difference in risk intensity.\nThe 2nd order effects describes process of spread, contagion and diffusion of diseases caused by interactions between individuals. This includes transmission of infectious disease by proximity, but also the transmission of non-infectious disease, for example, with the diffusion of social norms within networks. This effect assume that the observed pattern is caused by correlations or co-variations.\n\nNo statistical methods could distinguish between these competing processes since their outcome results in similar pattern of points. The cluster analysis help describing the magnitude and the location of pattern but in no way could answer the question of why such patterns occurs. It is therefore a step that help detecting cluster for description and surveillance purpose and rising hypothesis on the underlying process that will lead further investigations.\nKnowledge about the disease and its transmission process could orientate the choice of the methods of study. We presented in this brief tutorial two methods of cluster detection, the Moran’s I test that test for spatial independence (likely related to 2nd order effects) and the scan statistics that test for homogeneous distribution (likely related 1st order effects). It relies on epidemiologist to select the tools that best serve the studied question.\n\n\n\n\n\n\nStatistic tests and distributions\n\n\n\nIn statistics, problems are usually expressed by defining two hypotheses: the null hypothesis (H0), i.e., an a priori hypothesis of the studied phenomenon (e.g., the situation is a random) and the alternative hypothesis (HA), e.g., the situation is not random. The main principle is to measure how likely the observed situation belong to the ensemble of situation that are possible under the H0 hypothesis.\nIn mathematics, a probability distribution is a mathematical expression that represents what we would expect due to random chance. The choice of the probability distribution relies on the type of data you use (continuous, count, binary). In general, three distribution a used while studying disease rates, the Binomial, the Poisson and the Poisson-gamma mixture (also known as negative binomial) distributions.\nMany the statistical tests assume by default that data are normally distributed. It implies that your variable is continuous and that all data could easily be represented by two parameters, the mean and the variance, i.e., each value have the same level of certainty. If many measure can be assessed under the normality assumption, this is usually not the case in epidemiology with strictly positives rates and count values that 1) does not fit the normal distribution and 2) does not provide with the same degree of certainty since variances likely differ between district due to different population size, i.e., some district have very sparse data (with high variance) while other have adequate data (with lower variance).\n\n# dataset statistics\nm_cases <- mean(district$incidence)\nsd_cases <- sd(district$incidence)\n\nhist(district$incidence, probability = TRUE, ylim = c(0, 0.4), xlim = c(-5, 16), xlab = \"Number of cases\", ylab = \"Probability\", main = \"Histogram of observed incidence compared\\nto Normal and Poisson distributions\")\ncurve(dnorm(x, m_cases, sd_cases),col = \"blue\",  lwd = 1, add = TRUE)\npoints(0:max(district$incidence), dpois(0:max(district$incidence), m_cases),type = 'b', pch = 20, col = \"red\", ylim = c(0, 0.6), lty = 2)\n\nlegend(\"topright\", legend = c(\"Normal distribution\", \"Poisson distribution\", \"Observed distribution\"), col = c(\"blue\", \"red\", \"black\"),pch = c(NA, 20, NA), lty = c(1, 2, 1))\n\n\n\n\nIn this tutorial, we used the Poisson distribution in our statistical tests.\n\n\n\n\n7.2.2 Test for spatial autocorrelation (Moran’s I test)\n\n7.2.2.1 The global Moran’s I test\nA popular test for spatial autocorrelation is the Moran’s test. This test tells us whether nearby units tend to exhibit similar incidences. It ranges from -1 to +1. A value of -1 denote that units with low rates are located near other units with high rates, while a Moran’s I value of +1 indicates a concentration of spatial units exhibiting similar rates.\n\n\n\n\n\n\nMoran’s I test\n\n\n\nThe Moran’s statistics is:\n\\[I = \\frac{N}{\\sum_{i=1}^N\\sum_{j=1}^Nw_{ij}}\\frac{\\sum_{i=1}^N\\sum_{j=1}^Nw_{ij}(Y_i-\\bar{Y})(Y_j - \\bar{Y})}{\\sum_{i=1}^N(Y_i-\\bar{Y})^2}\\] with:\n\n\\(N\\): the number of polygons,\n\\(w_{ij}\\): is a matrix of spatial weight with zeroes on the diagonal (i.e., \\(w_{ii}=0\\)). For example, if polygons are neighbors, the weight takes the value \\(1\\) otherwise it takes the value \\(0\\).\n\\(Y_i\\): the variable of interest,\n\\(\\bar{Y}\\): the mean value of \\(Y\\).\n\nUnder the Moran’s test, the statistics hypotheses are:\n\nH0: the distribution of cases is spatially independent, i.e., \\(I=0\\).\nH1: the distribution of cases is spatially autocorrelated, i.e., \\(I\\ne0\\).\n\n\n\nWe will compute the Moran’s statistics using spdep(R. Bivand et al. 2015) and Dcluster(Gómez-Rubio et al. 2015) packages. spdep package provides a collection of functions to analyze spatial correlations of polygons and works with sp objects. In this example, we use poly2nb() and nb2listw(). These functions respectively detect the neighboring polygons and assign weight corresponding to \\(1/\\#\\ of\\ neighbors\\). Dcluster package provides a set of functions for the detection of spatial clusters of disease using count data.\n\nlibrary(spdep) # Functions for creating spatial weight, spatial analysis\nlibrary(DCluster)  # Package with functions for spatial cluster analysis\n\nqueen_nb <- poly2nb(district) # Neighbors according to queen case\nq_listw <- nb2listw(queen_nb, style = 'W') # row-standardized weights\n\n# Moran's I test\nm_test <- moranI.test(cases ~ offset(log(expected)), \n                  data = district,\n                  model = 'poisson',\n                  R = 499,\n                  listw = q_listw,\n                  n = length(district$cases), # number of regions\n                  S0 = Szero(q_listw)) # Global sum of weights\nprint(m_test)\n\nMoran's I test of spatial autocorrelation \n\n    Type of boots.: parametric \n    Model used when sampling: Poisson \n    Number of simulations: 499 \n    Statistic:  0.1566449 \n    p-value :  0.012 \n\nplot(m_test)\n\n\n\n\nThe Moran’s statistics is here \\(I =\\) 0.16. When comparing its value to the H0 distribution (built under 499 simulations), the probability of observing such a I value under the null hypothesis, i.e. the distribution of cases is spatially independent, is \\(p_{value} =\\) 0.012. We therefore reject H0 with error risk of \\(\\alpha = 5\\%\\). The distribution of cases is therefore autocorrelated across districts in Cambodia.\n\n\n7.2.2.2 Moran’s I local test\nThe global Moran’s test provides us a global statistical value informing whether autocorrelation occurs over the territory but does not inform on where does these correlations occurs, i.e., what is the locations of the clusters. To identify such cluster, we can decompose the Moran’s I statistic to extract local information of the level of correlation of each district and its neighbors. This is called the Local Moran’s I LISA statistic. Because the Local Moran’s I LISA statistic test each district for autocorrelation independently, concern is raised about multiple testing limitations that increase the Type I error (\\(\\alpha\\)) of the statistical tests. The use of local test should therefore be study in light of explore and describes clusters once the global test detected autocorrelation.\n\n\n\n\n\n\nStatistical test\n\n\n\nFor each district \\(i\\), the Local Moran’s I statistics is:\n\\[I_i = \\frac{(Y_i-\\bar{Y})}{\\sum_{i=1}^N(Y_i-\\bar{Y})^2}\\sum_{j=1}^Nw_{ij}(Y_j - \\bar{Y}) \\text{ with }  I = \\sum_{i=1}^NI_i/N\\]\n\n\nThe localmoran()function from the package spdep treats the variable of interest as if it was normally distributed. In some cases, this assumption could be reasonable for incidence rate, especially when the areal units of analysis have sufficiently large population count suggesting that the values have similar level of variances. Unfortunately, the local Moran’s test has not been implemented for Poisson distribution (population not large enough in some districts) in spdep package. However, Bivand et al. (R. S. Bivand et al. 2008) provided some code to manual perform the analysis using Poisson distribution and was further implemented in the course “Spatial Epidemiology”.\n\n# Step 1 - Create the standardized deviation of observed from expected\nsd_lm <- (district$cases - district$expected) / sqrt(district$expected)\n\n# Step 2 - Create a spatially lagged version of standardized deviation of neighbors\nwsd_lm <- lag.listw(q_listw, sd_lm)\n\n# Step 3 - the local Moran's I is the product of step 1 and step 2\ndistrict$I_lm <- sd_lm * wsd_lm\n\n# Step 4 - setup parameters for simulation of the null distribution\n\n# Specify number of simulations to run\nnsim <- 499\n\n# Specify dimensions of result based on number of regions\nN <- length(district$expected)\n\n# Create a matrix of zeros to hold results, with a row for each county, and a column for each simulation\nsims <- matrix(0, ncol = nsim, nrow = N)\n\n# Step 5 - Start a for-loop to iterate over simulation columns\nfor(i in 1:nsim){\n  y <- rpois(N, lambda = district$expected) # generate a random event count, given expected\n  sd_lmi <- (y - district$expected) / sqrt(district$expected) # standardized local measure\n  wsd_lmi <- lag.listw(q_listw, sd_lmi) # standardized spatially lagged measure\n  sims[, i] <- sd_lmi * wsd_lmi # this is the I(i) statistic under this iteration of null\n}\n\nhist(sims[1,])\n\n\n\n# Step 6 - For each county, test where the observed value ranks with respect to the null simulations\nxrank <- apply(cbind(district$I_lm, sims), 1, function(x) rank(x)[1])\n\n# Step 7 - Calculate the difference between observed rank and total possible (nsim)\ndiff <- nsim - xrank\ndiff <- ifelse(diff > 0, diff, 0)\n\n# Step 8 - Assuming a uniform distribution of ranks, calculate p-value for observed\n# given the null distribution generate from simulations\ndistrict$pval_lm <- punif((diff + 1) / (nsim + 1))\n\nFor each district, we obtain a p-value based on permutations process\nA conventional way of plotting these results is to classify the districts into 5 classes based on local Moran’s I output. The classification of cluster that are significantly autocorrelated to their neighbors is performed based on a comparison of the scaled incidence in the district compared to the scaled weighted averaged incidence of it neighboring districts (computed with lag.listw()):\n\nDistricts that have higher-than-average rates in both index regions and their neighbors and showing statistically significant positive values for the local \\(I_i\\) statistic are defined as High-High (hotspot of the disease)\nDistricts that have lower-than-average rates in both index regions and their neighbors and showing statistically significant positive values for the local \\(I_i\\) statistic are defined as Low-Low (cold spot of the disease).\nDistricts that have higher-than-average rates in the index regions and lower-than-average rates in their neighbors, and showing statistically significant negative values for the local \\(I_i\\) statistic are defined as High-Low(outlier with high incidence in an area with low incidence).\nDistricts that have lower-than-average rates in the index regions and higher-than-average rates in their neighbors, and showing statistically significant negative values for the local \\(I_i\\) statistic are defined as Low-High (outlier of low incidence in area with high incidence).\nDistricts with non-significant values for the \\(I_i\\) statistic are defined as Non-significant.\n\n\n# create lagged local raw_rate - in other words the average of the queen neighbors value\n# values are scaled (centered and reduced) to be compared to average\ndistrict$lag_std   <- scale(lag.listw(q_listw, var = district$incidence))\ndistrict$incidence_std <- scale(district$incidence)\n\n# extract pvalues\n# district$lm_pv <- lm_test[,5]\n\n# Classify local moran's outputs\ndistrict$lm_class <- NA\ndistrict$lm_class[district$incidence_std >=0 & district$lag_std >=0] <- 'High-High'\ndistrict$lm_class[district$incidence_std <=0 & district$lag_std <=0] <- 'Low-Low'\ndistrict$lm_class[district$incidence_std <=0 & district$lag_std >=0] <- 'Low-High'\ndistrict$lm_class[district$incidence_std >=0 & district$lag_std <=0] <- 'High-Low'\ndistrict$lm_class[district$pval_lm >= 0.05] <- 'Non-significant'\n\ndistrict$lm_class <- factor(district$lm_class, levels=c(\"High-High\", \"Low-Low\", \"High-Low\",  \"Low-High\", \"Non-significant\") )\n\n# create map\nmf_map(x = district,\n       var = \"lm_class\",\n       type = \"typo\",\n       cex = 2,\n       col_na = \"white\",\n       #val_order = c(\"High-High\", \"Low-Low\", \"High-Low\",  \"Low-High\", \"Non-significant\") ,\n       pal = c(\"#6D0026\" , \"blue\",  \"white\") , # \"#FF755F\",\"#7FABD3\" ,\n       leg_title = \"Clusters\")\n\nmf_layout(title = \"Cluster using Local Moran's I statistic\")\n\n\n\n\n\n\n\n7.2.3 Spatial scan statistics\nWhile Moran’s indices focus on testing for autocorrelation between neighboring polygons (under the null assumption of spatial independence), the spatial scan statistic aims at identifying an abnormal higher risk in a given region compared to the risk outside of this region (under the null assumption of homogeneous distribution). The conception of a cluster is therefore different between the two methods.\nThe function kulldorff from the package SpatialEpi (Kim and Wakefield 2010) is a simple tool to implement spatial-only scan statistics. Briefly, the kulldorff scan statistics scan the area for clusters using several steps:\n\nIt create a circular window of observation by defining a single location and an associated radius of the windows varying from 0 to a large number that depends on population distribution (largest radius could include 50% of the population).\nIt aggregates the count of events and the population at risk (or an expected count of events) inside and outside the window of observation.\nFinally, it computes the likelihood ratio to test whether the risk is equal inside versus outside the windows (H0) or greater inside the observed window\nThese 3 steps are repeated for each location and each possible windows-radii.\n\n\nlibrary(\"SpatialEpi\")\n\nThe use of R spatial object is not implements in kulldorff() function. It uses instead matrix of xy coordinates that represents the centroids of the districts. A given district is included into the observed circular window if its centroids fall into the circle.\n\ndistrict_xy <- st_centroid(district) %>% \n  st_coordinates()\n\nhead(district_xy)\n\n         X       Y\n1 330823.3 1464560\n2 749758.3 1541787\n3 468384.0 1277007\n4 494548.2 1215261\n5 459644.2 1194615\n6 360528.3 1516339\n\n\nWe can then call kulldorff function (you are strongly encouraged to call ?kulldorff to properly call the function). The alpha.level threshold filter for the secondary clusters that will be retained. The most-likely cluster will be saved whatever its significance.\n\nkd_Wfever <- kulldorff(district_xy, \n                cases = district$cases,\n                population = district$T_POP,\n                expected.cases = district$expected,\n                pop.upper.bound = 0.5, # include maximum 50% of the population in a windows\n                n.simulations = 499,\n                alpha.level = 0.2)\n\n\n\n\nAll outputs are saved into an R object, here called kd_Wfever. Unfortunately, the package did not develop any summary and visualization of the results but we can explore the output object.\n\nnames(kd_Wfever)\n\n[1] \"most.likely.cluster\" \"secondary.clusters\"  \"type\"               \n[4] \"log.lkhd\"            \"simulated.log.lkhd\" \n\n\nFirst, we can focus on the most likely cluster and explore its characteristics.\n\n# We can see which districts (r number) belong to this cluster\nkd_Wfever$most.likely.cluster$location.IDs.included\n\n [1]  48  93  66 180 133  29 194 118  50 144  31 141   3 117  22  43 142\n\n# standardized incidence ratio\nkd_Wfever$most.likely.cluster$SMR\n\n[1] 2.303106\n\n# number of observed and expected cases in this cluster\nkd_Wfever$most.likely.cluster$number.of.cases\n\n[1] 122\n\nkd_Wfever$most.likely.cluster$expected.cases\n\n[1] 52.97195\n\n\n17 districts belong to the cluster and its number of cases is 2.3 times higher than the expected number of cases.\nSimilarly, we could study the secondary clusters. Results are saved in a list.\n\n# We can see which districts (r number) belong to this cluster\nlength(kd_Wfever$secondary.clusters)\n\n[1] 1\n\n# retrieve data for all secondary clusters into a table\ndf_secondary_clusters <- data.frame(SMR = sapply(kd_Wfever$secondary.clusters, '[[', 5),  \n                          number.of.cases = sapply(kd_Wfever$secondary.clusters, '[[', 3),\n                          expected.cases = sapply(kd_Wfever$secondary.clusters, '[[', 4),\n                          p.value = sapply(kd_Wfever$secondary.clusters, '[[', 8))\n\nprint(df_secondary_clusters)\n\n       SMR number.of.cases expected.cases p.value\n1 3.767698              16       4.246625   0.008\n\n\nWe only have one secondary cluster composed of one district.\n\n# create empty column to store cluster informations\ndistrict$k_cluster <- NA\n\n# save cluster information from kulldorff outputs\ndistrict$k_cluster[kd_Wfever$most.likely.cluster$location.IDs.included] <- 'Most likely cluster'\n\nfor(i in 1:length(kd_Wfever$secondary.clusters)){\ndistrict$k_cluster[kd_Wfever$secondary.clusters[[i]]$location.IDs.included] <- paste(\n  'Secondary cluster', i, sep = '')\n}\n\n#district$k_cluster[is.na(district$k_cluster)] <- \"No cluster\"\n\n\n# create map\nmf_map(x = district,\n       var = \"k_cluster\",\n       type = \"typo\",\n       cex = 2,\n       col_na = \"white\",\n       pal = mf_get_pal(palette = \"Reds\", n = 3)[1:2],\n       leg_title = \"Clusters\")\n\nmf_layout(title = \"Cluster using kulldorf scan statistic\")\n\n\n\n\n\n\n\n\n\n\nTo go further …\n\n\n\nIn this example, the expected number of cases was defined using the population count but note that standardization over other variables as age could also be implemented with the strata parameter in the kulldorff() function.\nIn addition, this cluster analysis was performed solely using the spatial scan but you should keep in mind that this method of cluster detection can be implemented for spatio-temporal data as well where the cluster definition is an abnormal number of cases in a delimited spatial area and during a given period of time. The windows of observation are therefore defined for a different center, radius and period of time. You should look at the function scan_ep_poisson() function in the package scanstatistic (Allévius 2018) for this analysis.\n\n\n\n\n\n\nAllévius, Benjamin. 2018. “Scanstatistics: Space-Time Anomaly Detection Using Scan Statistics.” Journal of Open Source Software 3 (25): 515.\n\n\nBivand, Roger S, Edzer J Pebesma, Virgilio Gómez-Rubio, and Edzer Jan Pebesma. 2008. Applied Spatial Data Analysis with r. Vol. 747248717. Springer.\n\n\nBivand, Roger, Micah Altman, Luc Anselin, Renato Assunção, Olaf Berke, Andrew Bernat, and Guillaume Blanchet. 2015. “Package ‘Spdep’.” The Comprehensive R Archive Network.\n\n\nGómez-Rubio, Virgilio, Juan Ferrándiz-Ferragud, Antonio López-Quı́lez, et al. 2015. “Package ‘DCluster’.”\n\n\nKim, Albert Y, and Jon Wakefield. 2010. “R Data and Methods for Spatial Epidemiology: The SpatialEpi Package.” Dept of Statistics, University of Washington."
+    "text": "7.2 Cluster analysis\n\n7.2.1 General introduction\nWhy studying clusters in epidemiology? Cluster analysis help identifying unusual patterns that occurs during a given period of time. The underlying ultimate goal of such analysis is to explain the observation of such patterns. In epidemiology, we can distinguish two types of process that would explain heterogeneity in case distribution:\n\nThe 1st order effects are the spatial variations of cases distribution caused by underlying properties of environment or the population structure itself. In such process individual get infected independently from the rest of the population. Such process includes the infection through an environment at risk as, for example, air pollution, contaminated waters or soils and UV exposition. This effect assume that the observed pattern is caused by a difference in risk intensity.\nThe 2nd order effects describes process of spread, contagion and diffusion of diseases caused by interactions between individuals. This includes transmission of infectious disease by proximity, but also the transmission of non-infectious disease, for example, with the diffusion of social norms within networks. This effect assume that the observed pattern is caused by correlations or co-variations.\n\nNo statistical methods could distinguish between these competing processes since their outcome results in similar pattern of points. The cluster analysis help describing the magnitude and the location of pattern but in no way could answer the question of why such patterns occurs. It is therefore a step that help detecting cluster for description and surveillance purpose and rising hypothesis on the underlying process that will lead further investigations.\nKnowledge about the disease and its transmission process could orientate the choice of the methods of study. We presented in this brief tutorial two methods of cluster detection, the Moran’s I test that test for spatial independence (likely related to 2nd order effects) and the scan statistics that test for homogeneous distribution (likely related 1st order effects). It relies on epidemiologist to select the tools that best serve the studied question.\n\n\n\n\n\n\nStatistic tests and distributions\n\n\n\nIn statistics, problems are usually expressed by defining two hypotheses: the null hypothesis (H0), i.e., an a priori hypothesis of the studied phenomenon (e.g., the situation is a random) and the alternative hypothesis (HA), e.g., the situation is not random. The main principle is to measure how likely the observed situation belong to the ensemble of situation that are possible under the H0 hypothesis.\nIn mathematics, a probability distribution is a mathematical expression that represents what we would expect due to random chance. The choice of the probability distribution relies on the type of data you use (continuous, count, binary). In general, three distribution a used while studying disease rates, the Binomial, the Poisson and the Poisson-gamma mixture (also known as negative binomial) distributions.\nMany the statistical tests assume by default that data are normally distributed. It implies that your variable is continuous and that all data could easily be represented by two parameters, the mean and the variance, i.e., each value have the same level of certainty. If many measure can be assessed under the normality assumption, this is usually not the case in epidemiology with strictly positives rates and count values that 1) does not fit the normal distribution and 2) does not provide with the same degree of certainty since variances likely differ between district due to different population size, i.e., some district have very sparse data (with high variance) while other have adequate data (with lower variance).\n\n# dataset statistics\nm_cases <- mean(district$incidence)\nsd_cases <- sd(district$incidence)\n\nhist(district$incidence, probability = TRUE, ylim = c(0, 0.4), xlim = c(-5, 16), xlab = \"Number of cases\", ylab = \"Probability\", main = \"Histogram of observed incidence compared\\nto Normal and Poisson distributions\")\ncurve(dnorm(x, m_cases, sd_cases),col = \"blue\",  lwd = 1, add = TRUE)\npoints(0:max(district$incidence), dpois(0:max(district$incidence), m_cases),type = 'b', pch = 20, col = \"red\", ylim = c(0, 0.6), lty = 2)\n\nlegend(\"topright\", legend = c(\"Normal distribution\", \"Poisson distribution\", \"Observed distribution\"), col = c(\"blue\", \"red\", \"black\"),pch = c(NA, 20, NA), lty = c(1, 2, 1))\n\n\n\n\nIn this tutorial, we used the Poisson distribution in our statistical tests.\n\n\n\n\n7.2.2 Test for spatial autocorrelation (Moran’s I test)\n\n7.2.2.1 The global Moran’s I test\nA popular test for spatial autocorrelation is the Moran’s test. This test tells us whether nearby units tend to exhibit similar incidences. It ranges from -1 to +1. A value of -1 denote that units with low rates are located near other units with high rates, while a Moran’s I value of +1 indicates a concentration of spatial units exhibiting similar rates.\n\n\n\n\n\n\nMoran’s I test\n\n\n\nThe Moran’s statistics is:\n\\[I = \\frac{N}{\\sum_{i=1}^N\\sum_{j=1}^Nw_{ij}}\\frac{\\sum_{i=1}^N\\sum_{j=1}^Nw_{ij}(Y_i-\\bar{Y})(Y_j - \\bar{Y})}{\\sum_{i=1}^N(Y_i-\\bar{Y})^2}\\] with:\n\n\\(N\\): the number of polygons,\n\\(w_{ij}\\): is a matrix of spatial weight with zeroes on the diagonal (i.e., \\(w_{ii}=0\\)). For example, if polygons are neighbors, the weight takes the value \\(1\\) otherwise it takes the value \\(0\\).\n\\(Y_i\\): the variable of interest,\n\\(\\bar{Y}\\): the mean value of \\(Y\\).\n\nUnder the Moran’s test, the statistics hypotheses are:\n\nH0: the distribution of cases is spatially independent, i.e., \\(I=0\\).\nH1: the distribution of cases is spatially autocorrelated, i.e., \\(I\\ne0\\).\n\n\n\nWe will compute the Moran’s statistics using spdep(R. Bivand et al. 2015) and Dcluster(Gómez-Rubio et al. 2015) packages. spdep package provides a collection of functions to analyze spatial correlations of polygons and works with sp objects. In this example, we use poly2nb() and nb2listw(). These functions respectively detect the neighboring polygons and assign weight corresponding to \\(1/\\#\\ of\\ neighbors\\). Dcluster package provides a set of functions for the detection of spatial clusters of disease using count data.\n\nlibrary(spdep) # Functions for creating spatial weight, spatial analysis\nlibrary(DCluster)  # Package with functions for spatial cluster analysis\n\nqueen_nb <- poly2nb(district) # Neighbors according to queen case\nq_listw <- nb2listw(queen_nb, style = 'W') # row-standardized weights\n\n# Moran's I test\nm_test <- moranI.test(cases ~ offset(log(expected)), \n                  data = district,\n                  model = 'poisson',\n                  R = 499,\n                  listw = q_listw,\n                  n = length(district$cases), # number of regions\n                  S0 = Szero(q_listw)) # Global sum of weights\nprint(m_test)\n\nMoran's I test of spatial autocorrelation \n\n    Type of boots.: parametric \n    Model used when sampling: Poisson \n    Number of simulations: 499 \n    Statistic:  0.1566449 \n    p-value :  0.01 \n\nplot(m_test)\n\n\n\n\nThe Moran’s statistics is here \\(I =\\) 0.16. When comparing its value to the H0 distribution (built under 499 simulations), the probability of observing such a I value under the null hypothesis, i.e. the distribution of cases is spatially independent, is \\(p_{value} =\\) 0.01. We therefore reject H0 with error risk of \\(\\alpha = 5\\%\\). The distribution of cases is therefore autocorrelated across districts in Cambodia.\n\n\n7.2.2.2 The Local Moran’s I LISA test\nThe global Moran’s test provides us a global statistical value informing whether autocorrelation occurs over the territory but does not inform on where does these correlations occurs, i.e., what is the locations of the clusters. To identify such cluster, we can decompose the Moran’s I statistic to extract local information of the level of correlation of each district and its neighbors. This is called the Local Moran’s I LISA statistic. Because the Local Moran’s I LISA statistic test each district for autocorrelation independently, concern is raised about multiple testing limitations that increase the Type I error (\\(\\alpha\\)) of the statistical tests. The use of local test should therefore be study in light of explore and describes clusters once the global test detected autocorrelation.\n\n\n\n\n\n\nStatistical test\n\n\n\nFor each district \\(i\\), the Local Moran’s I statistics is:\n\\[I_i = \\frac{(Y_i-\\bar{Y})}{\\sum_{i=1}^N(Y_i-\\bar{Y})^2}\\sum_{j=1}^Nw_{ij}(Y_j - \\bar{Y}) \\text{ with }  I = \\sum_{i=1}^NI_i/N\\]\n\n\nThe localmoran()function from the package spdep treats the variable of interest as if it was normally distributed. In some cases, this assumption could be reasonable for incidence rate, especially when the areal units of analysis have sufficiently large population count suggesting that the values have similar level of variances. Unfortunately, the local Moran’s test has not been implemented for Poisson distribution (population not large enough in some districts) in spdep package. However, Bivand et al. (R. S. Bivand et al. 2008) provided some code to manual perform the analysis using Poisson distribution and was further implemented in the course “Spatial Epidemiology”.\n\n# Step 1 - Create the standardized deviation of observed from expected\nsd_lm <- (district$cases - district$expected) / sqrt(district$expected)\n\n# Step 2 - Create a spatially lagged version of standardized deviation of neighbors\nwsd_lm <- lag.listw(q_listw, sd_lm)\n\n# Step 3 - the local Moran's I is the product of step 1 and step 2\ndistrict$I_lm <- sd_lm * wsd_lm\n\n# Step 4 - setup parameters for simulation of the null distribution\n\n# Specify number of simulations to run\nnsim <- 499\n\n# Specify dimensions of result based on number of regions\nN <- length(district$expected)\n\n# Create a matrix of zeros to hold results, with a row for each county, and a column for each simulation\nsims <- matrix(0, ncol = nsim, nrow = N)\n\n# Step 5 - Start a for-loop to iterate over simulation columns\nfor(i in 1:nsim){\n  y <- rpois(N, lambda = district$expected) # generate a random event count, given expected\n  sd_lmi <- (y - district$expected) / sqrt(district$expected) # standardized local measure\n  wsd_lmi <- lag.listw(q_listw, sd_lmi) # standardized spatially lagged measure\n  sims[, i] <- sd_lmi * wsd_lmi # this is the I(i) statistic under this iteration of null\n}\n\n# Step 6 - For each county, test where the observed value ranks with respect to the null simulations\nxrank <- apply(cbind(district$I_lm, sims), 1, function(x) rank(x)[1])\n\n# Step 7 - Calculate the difference between observed rank and total possible (nsim)\ndiff <- nsim - xrank\ndiff <- ifelse(diff > 0, diff, 0)\n\n# Step 8 - Assuming a uniform distribution of ranks, calculate p-value for observed\n# given the null distribution generate from simulations\ndistrict$pval_lm <- punif((diff + 1) / (nsim + 1))\n\nFor each district, we obtain a p-value based on permutations process\nA conventional way of plotting these results is to classify the districts into 5 classes based on local Moran’s I output. The classification of cluster that are significantly autocorrelated to their neighbors is performed based on a comparison of the scaled incidence in the district compared to the scaled weighted averaged incidence of it neighboring districts (computed with lag.listw()):\n\nDistricts that have higher-than-average rates in both index regions and their neighbors and showing statistically significant positive values for the local \\(I_i\\) statistic are defined as High-High (hotspot of the disease)\nDistricts that have lower-than-average rates in both index regions and their neighbors and showing statistically significant positive values for the local \\(I_i\\) statistic are defined as Low-Low (cold spot of the disease).\nDistricts that have higher-than-average rates in the index regions and lower-than-average rates in their neighbors, and showing statistically significant negative values for the local \\(I_i\\) statistic are defined as High-Low(outlier with high incidence in an area with low incidence).\nDistricts that have lower-than-average rates in the index regions and higher-than-average rates in their neighbors, and showing statistically significant negative values for the local \\(I_i\\) statistic are defined as Low-High (outlier of low incidence in area with high incidence).\nDistricts with non-significant values for the \\(I_i\\) statistic are defined as Non-significant.\n\n\n# create lagged local raw_rate - in other words the average of the queen neighbors value\n# values are scaled (centered and reduced) to be compared to average\ndistrict$lag_std   <- scale(lag.listw(q_listw, var = district$incidence))\ndistrict$incidence_std <- scale(district$incidence)\n\n# extract pvalues\n# district$lm_pv <- lm_test[,5]\n\n# Classify local moran's outputs\ndistrict$lm_class <- NA\ndistrict$lm_class[district$incidence_std >=0 & district$lag_std >=0] <- 'High-High'\ndistrict$lm_class[district$incidence_std <=0 & district$lag_std <=0] <- 'Low-Low'\ndistrict$lm_class[district$incidence_std <=0 & district$lag_std >=0] <- 'Low-High'\ndistrict$lm_class[district$incidence_std >=0 & district$lag_std <=0] <- 'High-Low'\ndistrict$lm_class[district$pval_lm >= 0.05] <- 'Non-significant'\n\ndistrict$lm_class <- factor(district$lm_class, levels=c(\"High-High\", \"Low-Low\", \"High-Low\",  \"Low-High\", \"Non-significant\") )\n\n# create map\nmf_map(x = district,\n       var = \"lm_class\",\n       type = \"typo\",\n       cex = 2,\n       col_na = \"white\",\n       #val_order = c(\"High-High\", \"Low-Low\", \"High-Low\",  \"Low-High\", \"Non-significant\") ,\n       pal = c(\"#6D0026\" , \"blue\",  \"white\") , # \"#FF755F\",\"#7FABD3\" ,\n       leg_title = \"Clusters\")\n\nmf_layout(title = \"Cluster using Local Moran's I statistic\")\n\n\n\n\n\n\n\n7.2.3 Spatial scan statistics\nWhile Moran’s indices focus on testing for autocorrelation between neighboring polygons (under the null assumption of spatial independence), the spatial scan statistic aims at identifying an abnormal higher risk in a given region compared to the risk outside of this region (under the null assumption of homogeneous distribution). The conception of a cluster is therefore different between the two methods.\nThe function kulldorff from the package SpatialEpi (Kim and Wakefield 2010) is a simple tool to implement spatial-only scan statistics.\n\n\n\n\n\n\nKulldorf test\n\n\n\nUnder the kulldorff test, the statistics hypotheses are:\n\nH0: the risk is constant over the area, i.e., there is a spatial homogeneity of the incidence.\nH1: a particular window have higher incidence than the rest of the area , i.e., there is a spatial heterogeneity of incidence.\n\n\n\nBriefly, the kulldorff scan statistics scan the area for clusters using several steps:\n\nIt create a circular window of observation by defining a single location and an associated radius of the windows varying from 0 to a large number that depends on population distribution (largest radius could include 50% of the population).\nIt aggregates the count of events and the population at risk (or an expected count of events) inside and outside the window of observation.\nFinally, it computes the likelihood ratio and test whether the risk is equal inside versus outside the windows (H0) or greater inside the observed window (H1). The H0 distribution is estimated by simulating the distribution of counts under the null hypothesis (homogeneous risk).\nThese 3 steps are repeated for each location and each possible windows-radii.\n\nWhile we test the significance of a large number of observation windows, one can raise concern about multiple testing and Type I error. This approach however suggest that we are not interest in a set of signifiant cluster but only in a most-likely cluster. This a priori restriction eliminate concern for multpile comparison since the test is simplified to a statistically significance of one single most-likely cluster.\nBecause we tested all-possible locations and window-radius, we can also choose to look at secondary clusters. In this case, you should keep in mind that increasing the number of secondary cluster you select, increases the risk for Type I error.\n\nlibrary(\"SpatialEpi\")\n\nThe use of R spatial object is not implements in kulldorff() function. It uses instead matrix of xy coordinates that represents the centroids of the districts. A given district is included into the observed circular window if its centroids fall into the circle.\n\ndistrict_xy <- st_centroid(district) %>% \n  st_coordinates()\n\nhead(district_xy)\n\n         X       Y\n1 330823.3 1464560\n2 749758.3 1541787\n3 468384.0 1277007\n4 494548.2 1215261\n5 459644.2 1194615\n6 360528.3 1516339\n\n\nWe can then call kulldorff function (you are strongly encouraged to call ?kulldorff to properly call the function). The alpha.level threshold filter for the secondary clusters that will be retained. The most-likely cluster will be saved whatever its significance.\n\nkd_Wfever <- kulldorff(district_xy, \n                cases = district$cases,\n                population = district$T_POP,\n                expected.cases = district$expected,\n                pop.upper.bound = 0.5, # include maximum 50% of the population in a windows\n                n.simulations = 499,\n                alpha.level = 0.2)\n\n\n\n\nThe function plot the histogram of the distribution of log-likelihood ratio simulated under the null hypothesis that is estimated based on Monte Carlo simulations. The observed value of the most significant cluster identified from all possible scans is compared to the distribution to determine significance. All outputs are saved into an R object, here called kd_Wfever. Unfortunately, the package did not develop any summary and visualization of the results but we can explore the output object.\n\nnames(kd_Wfever)\n\n[1] \"most.likely.cluster\" \"secondary.clusters\"  \"type\"               \n[4] \"log.lkhd\"            \"simulated.log.lkhd\" \n\n\nFirst, we can focus on the most likely cluster and explore its characteristics.\n\n# We can see which districts (r number) belong to this cluster\nkd_Wfever$most.likely.cluster$location.IDs.included\n\n [1]  48  93  66 180 133  29 194 118  50 144  31 141   3 117  22  43 142\n\n# standardized incidence ratio\nkd_Wfever$most.likely.cluster$SMR\n\n[1] 2.303106\n\n# number of observed and expected cases in this cluster\nkd_Wfever$most.likely.cluster$number.of.cases\n\n[1] 122\n\nkd_Wfever$most.likely.cluster$expected.cases\n\n[1] 52.97195\n\n\n17 districts belong to the cluster and its number of cases is 2.3 times higher than the expected number of cases.\nSimilarly, we could study the secondary clusters. Results are saved in a list.\n\n# We can see which districts (r number) belong to this cluster\nlength(kd_Wfever$secondary.clusters)\n\n[1] 1\n\n# retrieve data for all secondary clusters into a table\ndf_secondary_clusters <- data.frame(SMR = sapply(kd_Wfever$secondary.clusters, '[[', 5),  \n                          number.of.cases = sapply(kd_Wfever$secondary.clusters, '[[', 3),\n                          expected.cases = sapply(kd_Wfever$secondary.clusters, '[[', 4),\n                          p.value = sapply(kd_Wfever$secondary.clusters, '[[', 8))\n\nprint(df_secondary_clusters)\n\n       SMR number.of.cases expected.cases p.value\n1 3.767698              16       4.246625   0.016\n\n\nWe only have one secondary cluster composed of one district.\n\n# create empty column to store cluster informations\ndistrict$k_cluster <- NA\n\n# save cluster information from kulldorff outputs\ndistrict$k_cluster[kd_Wfever$most.likely.cluster$location.IDs.included] <- 'Most likely cluster'\n\nfor(i in 1:length(kd_Wfever$secondary.clusters)){\ndistrict$k_cluster[kd_Wfever$secondary.clusters[[i]]$location.IDs.included] <- paste(\n  'Secondary cluster', i, sep = '')\n}\n\n#district$k_cluster[is.na(district$k_cluster)] <- \"No cluster\"\n\n\n# create map\nmf_map(x = district,\n       var = \"k_cluster\",\n       type = \"typo\",\n       cex = 2,\n       col_na = \"white\",\n       pal = mf_get_pal(palette = \"Reds\", n = 3)[1:2],\n       leg_title = \"Clusters\")\n\nmf_layout(title = \"Cluster using kulldorf scan statistic\")\n\n\n\n\n\n\n\n\n\n\nTo go further …\n\n\n\nIn this example, the expected number of cases was defined using the population count but note that standardization over other variables as age could also be implemented with the strata parameter in the kulldorff() function.\nIn addition, this cluster analysis was performed solely using the spatial scan but you should keep in mind that this method of cluster detection can be implemented for spatio-temporal data as well where the cluster definition is an abnormal number of cases in a delimited spatial area and during a given period of time. The windows of observation are therefore defined for a different center, radius and time-period. You should look at the function scan_ep_poisson() function in the package scanstatistic (Allévius 2018) for this analysis.\n\n\n\n\n\n\nAllévius, Benjamin. 2018. “Scanstatistics: Space-Time Anomaly Detection Using Scan Statistics.” Journal of Open Source Software 3 (25): 515.\n\n\nBivand, Roger S, Edzer J Pebesma, Virgilio Gómez-Rubio, and Edzer Jan Pebesma. 2008. Applied Spatial Data Analysis with r. Vol. 747248717. Springer.\n\n\nBivand, Roger, Micah Altman, Luc Anselin, Renato Assunção, Olaf Berke, Andrew Bernat, and Guillaume Blanchet. 2015. “Package ‘Spdep’.” The Comprehensive R Archive Network.\n\n\nGómez-Rubio, Virgilio, Juan Ferrándiz-Ferragud, Antonio López-Quı́lez, et al. 2015. “Package ‘DCluster’.”\n\n\nKim, Albert Y, and Jon Wakefield. 2010. “R Data and Methods for Spatial Epidemiology: The SpatialEpi Package.” Dept of Statistics, University of Washington."
   },
   {
     "objectID": "01-introduction.html",
-- 
GitLab