From e849094c8fea30bbf12fe0cfe95f2a52445473d7 Mon Sep 17 00:00:00 2001 From: "lea.douchet_ird.fr" <ldouchet@hotmail.fr> Date: Sun, 27 Nov 2022 17:27:32 +0700 Subject: [PATCH] tes hypothesis of kulldorff --- 07-basic_statistics.qmd | 36 ++- public/07-basic_statistics.html | 228 ++++++++++-------- .../figure-html/LocalMoransI-1.png | Bin 14830 -> 0 bytes .../figure-html/LocalMoransI_plt-1.png | Bin 44331 -> 44382 bytes .../figure-html/MoransI-1.png | Bin 18402 -> 17140 bytes .../figure-html/incidence_visualization-1.png | Bin 53684 -> 0 bytes .../figure-html/kd_test-1.png | Bin 15750 -> 15735 bytes public/search.json | 2 +- 8 files changed, 149 insertions(+), 117 deletions(-) delete mode 100644 public/07-basic_statistics_files/figure-html/LocalMoransI-1.png delete mode 100644 public/07-basic_statistics_files/figure-html/incidence_visualization-1.png diff --git a/07-basic_statistics.qmd b/07-basic_statistics.qmd index 3e8443b..758bef2 100644 --- a/07-basic_statistics.qmd +++ b/07-basic_statistics.qmd @@ -43,7 +43,7 @@ mf_map(x = cases, lwd = .5, col = "#990000", pch = 20, add = TRUE) ``` -In epidemiology, the true meaning of point is very questionable. If it usually gives the location of an observation, we cannot precisely tell if this observation represents an event of interest (e.g., illness, death, ...) or a person at risk (e.g., a participant that may or may not experience the disease). Considering a ratio of event compared to a population at risk is often more informative than just considering cases. Administrative divisions of countries appear as great areal units for cases aggregation since they make available data on population count and structures. In this study, we will use the district as the areal unit of the study. +In epidemiology, the true meaning of point is very questionable. If it usually gives the location of an observation, we cannot precisely tell if this observation represents an event of interest (e.g., illness, death, ...) or a person at risk (e.g., a participant that may or may not experience the disease). If you can consider that the population at risk is uniformly distributed in small area (a city for example), this is likely not the case at a country scale. Considering a ratio of event compared to a population at risk is often more informative than just considering cases. Administrative divisions of countries appear as great areal units for cases aggregation since they make available data on population count and structures. In this study, we will use the district as the areal unit of the study. ```{r district_aggregate, eval = TRUE, echo = TRUE, nm = TRUE, fig.width=8, class.output="code-out", warning=FALSE, message=FALSE} # Aggregate cases over districts @@ -213,7 +213,7 @@ plot(m_test) The Moran's statistics is here $I =$ `r signif(m_test$t0, 2)`. When comparing its value to the H0 distribution (built under `r m_test$R` simulations), the probability of observing such a I value under the null hypothesis, i.e. the distribution of cases is spatially independent, is $p_{value} =$ `r signif(( 1+ (sum((-abs(as.numeric(m_test$t0-mean(m_test$t))))>as.numeric(m_test$t-mean(m_test$t)))) + (sum(abs(as.numeric(m_test$t0-mean(m_test$t)))<as.numeric(m_test$t-mean(m_test$t)))) )/(m_test$R+1), 2)`. We therefore reject H0 with error risk of $\alpha = 5\%$. The distribution of cases is therefore autocorrelated across districts in Cambodia. -#### Moran's I local test +#### The Local Moran's I LISA test The global Moran's test provides us a global statistical value informing whether autocorrelation occurs over the territory but does not inform on where does these correlations occurs, i.e., what is the locations of the clusters. To identify such cluster, we can decompose the Moran's I statistic to extract local information of the level of correlation of each district and its neighbors. This is called the Local Moran's I LISA statistic. Because the Local Moran's I LISA statistic test each district for autocorrelation independently, concern is raised about multiple testing limitations that increase the Type I error ($\alpha$) of the statistical tests. The use of local test should therefore be study in light of explore and describes clusters once the global test detected autocorrelation. @@ -228,7 +228,6 @@ $$I_i = \frac{(Y_i-\bar{Y})}{\sum_{i=1}^N(Y_i-\bar{Y})^2}\sum_{j=1}^Nw_{ij}(Y_j The `localmoran()`function from the package `spdep` treats the variable of interest as if it was normally distributed. In some cases, this assumption could be reasonable for incidence rate, especially when the areal units of analysis have sufficiently large population count suggesting that the values have similar level of variances. Unfortunately, the local Moran’s test has not been implemented for Poisson distribution (population not large enough in some districts) in `spdep` package. However, Bivand **et al.** [@bivand2008applied] provided some code to manual perform the analysis using Poisson distribution and was further implemented in the course "[Spatial Epidemiology](https://mkram01.github.io/EPI563-SpatialEPI/index.html)â€. - ```{r LocalMoransI, eval = TRUE, echo = TRUE, nm = TRUE, fig.width=8, class.output="code-out", warning=FALSE, message=FALSE} # Step 1 - Create the standardized deviation of observed from expected @@ -259,7 +258,6 @@ for(i in 1:nsim){ sims[, i] <- sd_lmi * wsd_lmi # this is the I(i) statistic under this iteration of null } -hist(sims[1,]) # Step 6 - For each county, test where the observed value ranks with respect to the null simulations xrank <- apply(cbind(district$I_lm, sims), 1, function(x) rank(x)[1]) @@ -319,8 +317,6 @@ mf_map(x = district, mf_layout(title = "Cluster using Local Moran's I statistic") - - ``` @@ -329,16 +325,35 @@ mf_layout(title = "Cluster using Local Moran's I statistic") While Moran's indices focus on testing for autocorrelation between neighboring polygons (under the null assumption of spatial independence), the spatial scan statistic aims at identifying an abnormal higher risk in a given region compared to the risk outside of this region (under the null assumption of homogeneous distribution). The conception of a cluster is therefore different between the two methods. -The function `kulldorff` from the package `SpatialEpi` [@SpatialEpi] is a simple tool to implement spatial-only scan statistics. Briefly, the kulldorff scan statistics scan the area for clusters using several steps: +The function `kulldorff` from the package `SpatialEpi` [@SpatialEpi] is a simple tool to implement spatial-only scan statistics. + +::: callout-note +##### Kulldorf test + +Under the kulldorff test, the statistics hypotheses are: + +- **H0**: the risk is constant over the area, i.e., there is a spatial homogeneity of the incidence. + +- **H1**: a particular window have higher incidence than the rest of the area , i.e., there is a spatial heterogeneity of incidence. + +::: + + +Briefly, the kulldorff scan statistics scan the area for clusters using several steps: 1. It create a circular window of observation by defining a single location and an associated radius of the windows varying from 0 to a large number that depends on population distribution (largest radius could include 50% of the population). 2. It aggregates the count of events and the population at risk (or an expected count of events) inside and outside the window of observation. -3. Finally, it computes the likelihood ratio to test whether the risk is equal inside versus outside the windows (H0) or greater inside the observed window +3. Finally, it computes the likelihood ratio and test whether the risk is equal inside versus outside the windows (H0) or greater inside the observed window (H1). The H0 distribution is estimated by simulating the distribution of counts under the null hypothesis (homogeneous risk). 4. These 3 steps are repeated for each location and each possible windows-radii. + +While we test the significance of a large number of observation windows, one can raise concern about multiple testing and Type I error. This approach however suggest that we are not interest in a set of signifiant cluster but only in a most-likely cluster. This **a priori** restriction eliminate concern for multpile comparison since the test is simplified to a statistically significance of one single most-likely cluster. + +Because we tested all-possible locations and window-radius, we can also choose to look at secondary clusters. In this case, you should keep in mind that increasing the number of secondary cluster you select, increases the risk for Type I error. + ```{r spatialEpi, eval = TRUE, echo = TRUE, nm = TRUE, class.output="code-out", warning=FALSE, message=FALSE} library("SpatialEpi") @@ -370,7 +385,8 @@ kd_Wfever <- kulldorff(district_xy, ``` -All outputs are saved into an R object, here called `kd_Wfever`. Unfortunately, the package did not develop any summary and visualization of the results but we can explore the output object. +The function plot the histogram of the distribution of log-likelihood ratio simulated under the null hypothesis that is estimated based on Monte Carlo simulations. The observed value of the most significant cluster identified from all possible scans is compared to the distribution to determine significance. All outputs are saved into an R object, here called `kd_Wfever`. Unfortunately, the package did not develop any summary and visualization of the results but we can explore the output object. + ```{r kd_outputs, eval = TRUE, echo = TRUE, nm = TRUE, fig.width=6, class.output="code-out", warning=FALSE, message=FALSE} names(kd_Wfever) @@ -447,7 +463,7 @@ mf_layout(title = "Cluster using kulldorf scan statistic") In this example, the expected number of cases was defined using the population count but note that standardization over other variables as age could also be implemented with the `strata` parameter in the `kulldorff()` function. -In addition, this cluster analysis was performed solely using the spatial scan but you should keep in mind that this method of cluster detection can be implemented for spatio-temporal data as well where the cluster definition is an abnormal number of cases in a delimited spatial area and during a given period of time. The windows of observation are therefore defined for a different center, radius and period of time. You should look at the function `scan_ep_poisson()` function in the package `scanstatistic` [@scanstatistics] for this analysis. +In addition, this cluster analysis was performed solely using the spatial scan but you should keep in mind that this method of cluster detection can be implemented for spatio-temporal data as well where the cluster definition is an abnormal number of cases in a delimited spatial area and during a given period of time. The windows of observation are therefore defined for a different center, radius and time-period. You should look at the function `scan_ep_poisson()` function in the package `scanstatistic` [@scanstatistics] for this analysis. ::: diff --git a/public/07-basic_statistics.html b/public/07-basic_statistics.html index 6c97dbb..872ac41 100644 --- a/public/07-basic_statistics.html +++ b/public/07-basic_statistics.html @@ -242,7 +242,7 @@ div.csl-indent { <li><a href="#test-for-spatial-autocorrelation-morans-i-test" id="toc-test-for-spatial-autocorrelation-morans-i-test" class="nav-link" data-scroll-target="#test-for-spatial-autocorrelation-morans-i-test"><span class="toc-section-number">7.2.2</span> Test for spatial autocorrelation (Moran’s I test)</a> <ul class="collapse"> <li><a href="#the-global-morans-i-test" id="toc-the-global-morans-i-test" class="nav-link" data-scroll-target="#the-global-morans-i-test"><span class="toc-section-number">7.2.2.1</span> The global Moran’s I test</a></li> - <li><a href="#morans-i-local-test" id="toc-morans-i-local-test" class="nav-link" data-scroll-target="#morans-i-local-test"><span class="toc-section-number">7.2.2.2</span> Moran’s I local test</a></li> + <li><a href="#the-local-morans-i-lisa-test" id="toc-the-local-morans-i-lisa-test" class="nav-link" data-scroll-target="#the-local-morans-i-lisa-test"><span class="toc-section-number">7.2.2.2</span> The Local Moran’s I LISA test</a></li> </ul></li> <li><a href="#spatial-scan-statistics" id="toc-spatial-scan-statistics" class="nav-link" data-scroll-target="#spatial-scan-statistics"><span class="toc-section-number">7.2.3</span> Spatial scan statistics</a></li> </ul></li> @@ -490,17 +490,17 @@ Moran’s I test Model used when sampling: Poisson Number of simulations: 499 Statistic: 0.1566449 - p-value : 0.012 </code></pre> + p-value : 0.01 </code></pre> </div> <div class="sourceCode cell-code" id="cb11"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(m_test)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> <div class="cell-output-display"> <p><img src="07-basic_statistics_files/figure-html/MoransI-1.png" class="img-fluid" width="768"></p> </div> </div> -<p>The Moran’s statistics is here <span class="math inline">\(I =\)</span> 0.16. When comparing its value to the H0 distribution (built under 499 simulations), the probability of observing such a I value under the null hypothesis, i.e. the distribution of cases is spatially independent, is <span class="math inline">\(p_{value} =\)</span> 0.012. We therefore reject H0 with error risk of <span class="math inline">\(\alpha = 5\%\)</span>. The distribution of cases is therefore autocorrelated across districts in Cambodia.</p> +<p>The Moran’s statistics is here <span class="math inline">\(I =\)</span> 0.16. When comparing its value to the H0 distribution (built under 499 simulations), the probability of observing such a I value under the null hypothesis, i.e. the distribution of cases is spatially independent, is <span class="math inline">\(p_{value} =\)</span> 0.01. We therefore reject H0 with error risk of <span class="math inline">\(\alpha = 5\%\)</span>. The distribution of cases is therefore autocorrelated across districts in Cambodia.</p> </section> -<section id="morans-i-local-test" class="level4" data-number="7.2.2.2"> -<h4 data-number="7.2.2.2" class="anchored" data-anchor-id="morans-i-local-test"><span class="header-section-number">7.2.2.2</span> Moran’s I local test</h4> +<section id="the-local-morans-i-lisa-test" class="level4" data-number="7.2.2.2"> +<h4 data-number="7.2.2.2" class="anchored" data-anchor-id="the-local-morans-i-lisa-test"><span class="header-section-number">7.2.2.2</span> The Local Moran’s I LISA test</h4> <p>The global Moran’s test provides us a global statistical value informing whether autocorrelation occurs over the territory but does not inform on where does these correlations occurs, i.e., what is the locations of the clusters. To identify such cluster, we can decompose the Moran’s I statistic to extract local information of the level of correlation of each district and its neighbors. This is called the Local Moran’s I LISA statistic. Because the Local Moran’s I LISA statistic test each district for autocorrelation independently, concern is raised about multiple testing limitations that increase the Type I error (<span class="math inline">\(\alpha\)</span>) of the statistical tests. The use of local test should therefore be study in light of explore and describes clusters once the global test detected autocorrelation.</p> <div class="callout-note callout callout-style-default callout-captioned"> <div class="callout-header d-flex align-content-center"> @@ -546,20 +546,16 @@ Statistical test <span id="cb12-26"><a href="#cb12-26" aria-hidden="true" tabindex="-1"></a> sims[, i] <span class="ot"><-</span> sd_lmi <span class="sc">*</span> wsd_lmi <span class="co"># this is the I(i) statistic under this iteration of null</span></span> <span id="cb12-27"><a href="#cb12-27" aria-hidden="true" tabindex="-1"></a>}</span> <span id="cb12-28"><a href="#cb12-28" aria-hidden="true" tabindex="-1"></a></span> -<span id="cb12-29"><a href="#cb12-29" aria-hidden="true" tabindex="-1"></a><span class="fu">hist</span>(sims[<span class="dv">1</span>,])</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> -<div class="cell-output-display"> -<p><img src="07-basic_statistics_files/figure-html/LocalMoransI-1.png" class="img-fluid" width="768"></p> -</div> -<div class="sourceCode cell-code" id="cb13"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Step 6 - For each county, test where the observed value ranks with respect to the null simulations</span></span> -<span id="cb13-2"><a href="#cb13-2" aria-hidden="true" tabindex="-1"></a>xrank <span class="ot"><-</span> <span class="fu">apply</span>(<span class="fu">cbind</span>(district<span class="sc">$</span>I_lm, sims), <span class="dv">1</span>, <span class="cf">function</span>(x) <span class="fu">rank</span>(x)[<span class="dv">1</span>])</span> -<span id="cb13-3"><a href="#cb13-3" aria-hidden="true" tabindex="-1"></a></span> -<span id="cb13-4"><a href="#cb13-4" aria-hidden="true" tabindex="-1"></a><span class="co"># Step 7 - Calculate the difference between observed rank and total possible (nsim)</span></span> -<span id="cb13-5"><a href="#cb13-5" aria-hidden="true" tabindex="-1"></a>diff <span class="ot"><-</span> nsim <span class="sc">-</span> xrank</span> -<span id="cb13-6"><a href="#cb13-6" aria-hidden="true" tabindex="-1"></a>diff <span class="ot"><-</span> <span class="fu">ifelse</span>(diff <span class="sc">></span> <span class="dv">0</span>, diff, <span class="dv">0</span>)</span> -<span id="cb13-7"><a href="#cb13-7" aria-hidden="true" tabindex="-1"></a></span> -<span id="cb13-8"><a href="#cb13-8" aria-hidden="true" tabindex="-1"></a><span class="co"># Step 8 - Assuming a uniform distribution of ranks, calculate p-value for observed</span></span> -<span id="cb13-9"><a href="#cb13-9" aria-hidden="true" tabindex="-1"></a><span class="co"># given the null distribution generate from simulations</span></span> -<span id="cb13-10"><a href="#cb13-10" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>pval_lm <span class="ot"><-</span> <span class="fu">punif</span>((diff <span class="sc">+</span> <span class="dv">1</span>) <span class="sc">/</span> (nsim <span class="sc">+</span> <span class="dv">1</span>))</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> +<span id="cb12-29"><a href="#cb12-29" aria-hidden="true" tabindex="-1"></a><span class="co"># Step 6 - For each county, test where the observed value ranks with respect to the null simulations</span></span> +<span id="cb12-30"><a href="#cb12-30" aria-hidden="true" tabindex="-1"></a>xrank <span class="ot"><-</span> <span class="fu">apply</span>(<span class="fu">cbind</span>(district<span class="sc">$</span>I_lm, sims), <span class="dv">1</span>, <span class="cf">function</span>(x) <span class="fu">rank</span>(x)[<span class="dv">1</span>])</span> +<span id="cb12-31"><a href="#cb12-31" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb12-32"><a href="#cb12-32" aria-hidden="true" tabindex="-1"></a><span class="co"># Step 7 - Calculate the difference between observed rank and total possible (nsim)</span></span> +<span id="cb12-33"><a href="#cb12-33" aria-hidden="true" tabindex="-1"></a>diff <span class="ot"><-</span> nsim <span class="sc">-</span> xrank</span> +<span id="cb12-34"><a href="#cb12-34" aria-hidden="true" tabindex="-1"></a>diff <span class="ot"><-</span> <span class="fu">ifelse</span>(diff <span class="sc">></span> <span class="dv">0</span>, diff, <span class="dv">0</span>)</span> +<span id="cb12-35"><a href="#cb12-35" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb12-36"><a href="#cb12-36" aria-hidden="true" tabindex="-1"></a><span class="co"># Step 8 - Assuming a uniform distribution of ranks, calculate p-value for observed</span></span> +<span id="cb12-37"><a href="#cb12-37" aria-hidden="true" tabindex="-1"></a><span class="co"># given the null distribution generate from simulations</span></span> +<span id="cb12-38"><a href="#cb12-38" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>pval_lm <span class="ot"><-</span> <span class="fu">punif</span>((diff <span class="sc">+</span> <span class="dv">1</span>) <span class="sc">/</span> (nsim <span class="sc">+</span> <span class="dv">1</span>))</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> </div> <p>For each district, we obtain a p-value based on permutations process</p> <p>A conventional way of plotting these results is to classify the districts into 5 classes based on local Moran’s I output. The classification of cluster that are significantly autocorrelated to their neighbors is performed based on a comparison of the scaled incidence in the district compared to the scaled weighted averaged incidence of it neighboring districts (computed with <code>lag.listw()</code>):</p> @@ -571,35 +567,35 @@ Statistical test <li><p>Districts with non-significant values for the <span class="math inline">\(I_i\)</span> statistic are defined as <strong>Non-significant</strong>.</p></li> </ul> <div class="cell" data-nm="true"> -<div class="sourceCode cell-code" id="cb14"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1" aria-hidden="true" tabindex="-1"></a><span class="co"># create lagged local raw_rate - in other words the average of the queen neighbors value</span></span> -<span id="cb14-2"><a href="#cb14-2" aria-hidden="true" tabindex="-1"></a><span class="co"># values are scaled (centered and reduced) to be compared to average</span></span> -<span id="cb14-3"><a href="#cb14-3" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>lag_std <span class="ot"><-</span> <span class="fu">scale</span>(<span class="fu">lag.listw</span>(q_listw, <span class="at">var =</span> district<span class="sc">$</span>incidence))</span> -<span id="cb14-4"><a href="#cb14-4" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>incidence_std <span class="ot"><-</span> <span class="fu">scale</span>(district<span class="sc">$</span>incidence)</span> -<span id="cb14-5"><a href="#cb14-5" aria-hidden="true" tabindex="-1"></a></span> -<span id="cb14-6"><a href="#cb14-6" aria-hidden="true" tabindex="-1"></a><span class="co"># extract pvalues</span></span> -<span id="cb14-7"><a href="#cb14-7" aria-hidden="true" tabindex="-1"></a><span class="co"># district$lm_pv <- lm_test[,5]</span></span> -<span id="cb14-8"><a href="#cb14-8" aria-hidden="true" tabindex="-1"></a></span> -<span id="cb14-9"><a href="#cb14-9" aria-hidden="true" tabindex="-1"></a><span class="co"># Classify local moran's outputs</span></span> -<span id="cb14-10"><a href="#cb14-10" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>lm_class <span class="ot"><-</span> <span class="cn">NA</span></span> -<span id="cb14-11"><a href="#cb14-11" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>lm_class[district<span class="sc">$</span>incidence_std <span class="sc">>=</span><span class="dv">0</span> <span class="sc">&</span> district<span class="sc">$</span>lag_std <span class="sc">>=</span><span class="dv">0</span>] <span class="ot"><-</span> <span class="st">'High-High'</span></span> -<span id="cb14-12"><a href="#cb14-12" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>lm_class[district<span class="sc">$</span>incidence_std <span class="sc"><=</span><span class="dv">0</span> <span class="sc">&</span> district<span class="sc">$</span>lag_std <span class="sc"><=</span><span class="dv">0</span>] <span class="ot"><-</span> <span class="st">'Low-Low'</span></span> -<span id="cb14-13"><a href="#cb14-13" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>lm_class[district<span class="sc">$</span>incidence_std <span class="sc"><=</span><span class="dv">0</span> <span class="sc">&</span> district<span class="sc">$</span>lag_std <span class="sc">>=</span><span class="dv">0</span>] <span class="ot"><-</span> <span class="st">'Low-High'</span></span> -<span id="cb14-14"><a href="#cb14-14" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>lm_class[district<span class="sc">$</span>incidence_std <span class="sc">>=</span><span class="dv">0</span> <span class="sc">&</span> district<span class="sc">$</span>lag_std <span class="sc"><=</span><span class="dv">0</span>] <span class="ot"><-</span> <span class="st">'High-Low'</span></span> -<span id="cb14-15"><a href="#cb14-15" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>lm_class[district<span class="sc">$</span>pval_lm <span class="sc">>=</span> <span class="fl">0.05</span>] <span class="ot"><-</span> <span class="st">'Non-significant'</span></span> -<span id="cb14-16"><a href="#cb14-16" aria-hidden="true" tabindex="-1"></a></span> -<span id="cb14-17"><a href="#cb14-17" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>lm_class <span class="ot"><-</span> <span class="fu">factor</span>(district<span class="sc">$</span>lm_class, <span class="at">levels=</span><span class="fu">c</span>(<span class="st">"High-High"</span>, <span class="st">"Low-Low"</span>, <span class="st">"High-Low"</span>, <span class="st">"Low-High"</span>, <span class="st">"Non-significant"</span>) )</span> -<span id="cb14-18"><a href="#cb14-18" aria-hidden="true" tabindex="-1"></a></span> -<span id="cb14-19"><a href="#cb14-19" aria-hidden="true" tabindex="-1"></a><span class="co"># create map</span></span> -<span id="cb14-20"><a href="#cb14-20" aria-hidden="true" tabindex="-1"></a><span class="fu">mf_map</span>(<span class="at">x =</span> district,</span> -<span id="cb14-21"><a href="#cb14-21" aria-hidden="true" tabindex="-1"></a> <span class="at">var =</span> <span class="st">"lm_class"</span>,</span> -<span id="cb14-22"><a href="#cb14-22" aria-hidden="true" tabindex="-1"></a> <span class="at">type =</span> <span class="st">"typo"</span>,</span> -<span id="cb14-23"><a href="#cb14-23" aria-hidden="true" tabindex="-1"></a> <span class="at">cex =</span> <span class="dv">2</span>,</span> -<span id="cb14-24"><a href="#cb14-24" aria-hidden="true" tabindex="-1"></a> <span class="at">col_na =</span> <span class="st">"white"</span>,</span> -<span id="cb14-25"><a href="#cb14-25" aria-hidden="true" tabindex="-1"></a> <span class="co">#val_order = c("High-High", "Low-Low", "High-Low", "Low-High", "Non-significant") ,</span></span> -<span id="cb14-26"><a href="#cb14-26" aria-hidden="true" tabindex="-1"></a> <span class="at">pal =</span> <span class="fu">c</span>(<span class="st">"#6D0026"</span> , <span class="st">"blue"</span>, <span class="st">"white"</span>) , <span class="co"># "#FF755F","#7FABD3" ,</span></span> -<span id="cb14-27"><a href="#cb14-27" aria-hidden="true" tabindex="-1"></a> <span class="at">leg_title =</span> <span class="st">"Clusters"</span>)</span> -<span id="cb14-28"><a href="#cb14-28" aria-hidden="true" tabindex="-1"></a></span> -<span id="cb14-29"><a href="#cb14-29" aria-hidden="true" tabindex="-1"></a><span class="fu">mf_layout</span>(<span class="at">title =</span> <span class="st">"Cluster using Local Moran's I statistic"</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> +<div class="sourceCode cell-code" id="cb13"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1" aria-hidden="true" tabindex="-1"></a><span class="co"># create lagged local raw_rate - in other words the average of the queen neighbors value</span></span> +<span id="cb13-2"><a href="#cb13-2" aria-hidden="true" tabindex="-1"></a><span class="co"># values are scaled (centered and reduced) to be compared to average</span></span> +<span id="cb13-3"><a href="#cb13-3" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>lag_std <span class="ot"><-</span> <span class="fu">scale</span>(<span class="fu">lag.listw</span>(q_listw, <span class="at">var =</span> district<span class="sc">$</span>incidence))</span> +<span id="cb13-4"><a href="#cb13-4" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>incidence_std <span class="ot"><-</span> <span class="fu">scale</span>(district<span class="sc">$</span>incidence)</span> +<span id="cb13-5"><a href="#cb13-5" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb13-6"><a href="#cb13-6" aria-hidden="true" tabindex="-1"></a><span class="co"># extract pvalues</span></span> +<span id="cb13-7"><a href="#cb13-7" aria-hidden="true" tabindex="-1"></a><span class="co"># district$lm_pv <- lm_test[,5]</span></span> +<span id="cb13-8"><a href="#cb13-8" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb13-9"><a href="#cb13-9" aria-hidden="true" tabindex="-1"></a><span class="co"># Classify local moran's outputs</span></span> +<span id="cb13-10"><a href="#cb13-10" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>lm_class <span class="ot"><-</span> <span class="cn">NA</span></span> +<span id="cb13-11"><a href="#cb13-11" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>lm_class[district<span class="sc">$</span>incidence_std <span class="sc">>=</span><span class="dv">0</span> <span class="sc">&</span> district<span class="sc">$</span>lag_std <span class="sc">>=</span><span class="dv">0</span>] <span class="ot"><-</span> <span class="st">'High-High'</span></span> +<span id="cb13-12"><a href="#cb13-12" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>lm_class[district<span class="sc">$</span>incidence_std <span class="sc"><=</span><span class="dv">0</span> <span class="sc">&</span> district<span class="sc">$</span>lag_std <span class="sc"><=</span><span class="dv">0</span>] <span class="ot"><-</span> <span class="st">'Low-Low'</span></span> +<span id="cb13-13"><a href="#cb13-13" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>lm_class[district<span class="sc">$</span>incidence_std <span class="sc"><=</span><span class="dv">0</span> <span class="sc">&</span> district<span class="sc">$</span>lag_std <span class="sc">>=</span><span class="dv">0</span>] <span class="ot"><-</span> <span class="st">'Low-High'</span></span> +<span id="cb13-14"><a href="#cb13-14" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>lm_class[district<span class="sc">$</span>incidence_std <span class="sc">>=</span><span class="dv">0</span> <span class="sc">&</span> district<span class="sc">$</span>lag_std <span class="sc"><=</span><span class="dv">0</span>] <span class="ot"><-</span> <span class="st">'High-Low'</span></span> +<span id="cb13-15"><a href="#cb13-15" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>lm_class[district<span class="sc">$</span>pval_lm <span class="sc">>=</span> <span class="fl">0.05</span>] <span class="ot"><-</span> <span class="st">'Non-significant'</span></span> +<span id="cb13-16"><a href="#cb13-16" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb13-17"><a href="#cb13-17" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>lm_class <span class="ot"><-</span> <span class="fu">factor</span>(district<span class="sc">$</span>lm_class, <span class="at">levels=</span><span class="fu">c</span>(<span class="st">"High-High"</span>, <span class="st">"Low-Low"</span>, <span class="st">"High-Low"</span>, <span class="st">"Low-High"</span>, <span class="st">"Non-significant"</span>) )</span> +<span id="cb13-18"><a href="#cb13-18" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb13-19"><a href="#cb13-19" aria-hidden="true" tabindex="-1"></a><span class="co"># create map</span></span> +<span id="cb13-20"><a href="#cb13-20" aria-hidden="true" tabindex="-1"></a><span class="fu">mf_map</span>(<span class="at">x =</span> district,</span> +<span id="cb13-21"><a href="#cb13-21" aria-hidden="true" tabindex="-1"></a> <span class="at">var =</span> <span class="st">"lm_class"</span>,</span> +<span id="cb13-22"><a href="#cb13-22" aria-hidden="true" tabindex="-1"></a> <span class="at">type =</span> <span class="st">"typo"</span>,</span> +<span id="cb13-23"><a href="#cb13-23" aria-hidden="true" tabindex="-1"></a> <span class="at">cex =</span> <span class="dv">2</span>,</span> +<span id="cb13-24"><a href="#cb13-24" aria-hidden="true" tabindex="-1"></a> <span class="at">col_na =</span> <span class="st">"white"</span>,</span> +<span id="cb13-25"><a href="#cb13-25" aria-hidden="true" tabindex="-1"></a> <span class="co">#val_order = c("High-High", "Low-Low", "High-Low", "Low-High", "Non-significant") ,</span></span> +<span id="cb13-26"><a href="#cb13-26" aria-hidden="true" tabindex="-1"></a> <span class="at">pal =</span> <span class="fu">c</span>(<span class="st">"#6D0026"</span> , <span class="st">"blue"</span>, <span class="st">"white"</span>) , <span class="co"># "#FF755F","#7FABD3" ,</span></span> +<span id="cb13-27"><a href="#cb13-27" aria-hidden="true" tabindex="-1"></a> <span class="at">leg_title =</span> <span class="st">"Clusters"</span>)</span> +<span id="cb13-28"><a href="#cb13-28" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb13-29"><a href="#cb13-29" aria-hidden="true" tabindex="-1"></a><span class="fu">mf_layout</span>(<span class="at">title =</span> <span class="st">"Cluster using Local Moran's I statistic"</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> <div class="cell-output-display"> <p><img src="07-basic_statistics_files/figure-html/LocalMoransI_plt-1.png" class="img-fluid" width="768"></p> </div> @@ -609,22 +605,42 @@ Statistical test <section id="spatial-scan-statistics" class="level3" data-number="7.2.3"> <h3 data-number="7.2.3" class="anchored" data-anchor-id="spatial-scan-statistics"><span class="header-section-number">7.2.3</span> Spatial scan statistics</h3> <p>While Moran’s indices focus on testing for autocorrelation between neighboring polygons (under the null assumption of spatial independence), the spatial scan statistic aims at identifying an abnormal higher risk in a given region compared to the risk outside of this region (under the null assumption of homogeneous distribution). The conception of a cluster is therefore different between the two methods.</p> -<p>The function <code>kulldorff</code> from the package <code>SpatialEpi</code> <span class="citation" data-cites="SpatialEpi">(<a href="references.html#ref-SpatialEpi" role="doc-biblioref">Kim and Wakefield 2010</a>)</span> is a simple tool to implement spatial-only scan statistics. Briefly, the kulldorff scan statistics scan the area for clusters using several steps:</p> +<p>The function <code>kulldorff</code> from the package <code>SpatialEpi</code> <span class="citation" data-cites="SpatialEpi">(<a href="references.html#ref-SpatialEpi" role="doc-biblioref">Kim and Wakefield 2010</a>)</span> is a simple tool to implement spatial-only scan statistics.</p> +<div class="callout-note callout callout-style-default callout-captioned"> +<div class="callout-header d-flex align-content-center"> +<div class="callout-icon-container"> +<i class="callout-icon"></i> +</div> +<div class="callout-caption-container flex-fill"> +Kulldorf test +</div> +</div> +<div class="callout-body-container callout-body"> +<p>Under the kulldorff test, the statistics hypotheses are:</p> +<ul> +<li><p><strong>H0</strong>: the risk is constant over the area, i.e., there is a spatial homogeneity of the incidence.</p></li> +<li><p><strong>H1</strong>: a particular window have higher incidence than the rest of the area , i.e., there is a spatial heterogeneity of incidence.</p></li> +</ul> +</div> +</div> +<p>Briefly, the kulldorff scan statistics scan the area for clusters using several steps:</p> <ol type="1"> <li><p>It create a circular window of observation by defining a single location and an associated radius of the windows varying from 0 to a large number that depends on population distribution (largest radius could include 50% of the population).</p></li> <li><p>It aggregates the count of events and the population at risk (or an expected count of events) inside and outside the window of observation.</p></li> -<li><p>Finally, it computes the likelihood ratio to test whether the risk is equal inside versus outside the windows (H0) or greater inside the observed window</p></li> +<li><p>Finally, it computes the likelihood ratio and test whether the risk is equal inside versus outside the windows (H0) or greater inside the observed window (H1). The H0 distribution is estimated by simulating the distribution of counts under the null hypothesis (homogeneous risk).</p></li> <li><p>These 3 steps are repeated for each location and each possible windows-radii.</p></li> </ol> +<p>While we test the significance of a large number of observation windows, one can raise concern about multiple testing and Type I error. This approach however suggest that we are not interest in a set of signifiant cluster but only in a most-likely cluster. This <strong>a priori</strong> restriction eliminate concern for multpile comparison since the test is simplified to a statistically significance of one single most-likely cluster.</p> +<p>Because we tested all-possible locations and window-radius, we can also choose to look at secondary clusters. In this case, you should keep in mind that increasing the number of secondary cluster you select, increases the risk for Type I error.</p> <div class="cell" data-nm="true"> -<div class="sourceCode cell-code" id="cb15"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb15-1"><a href="#cb15-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(<span class="st">"SpatialEpi"</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> +<div class="sourceCode cell-code" id="cb14"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(<span class="st">"SpatialEpi"</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> </div> <p>The use of R spatial object is not implements in <code>kulldorff()</code> function. It uses instead matrix of xy coordinates that represents the centroids of the districts. A given district is included into the observed circular window if its centroids fall into the circle.</p> <div class="cell" data-nm="true"> -<div class="sourceCode cell-code" id="cb16"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb16-1"><a href="#cb16-1" aria-hidden="true" tabindex="-1"></a>district_xy <span class="ot"><-</span> <span class="fu">st_centroid</span>(district) <span class="sc">%>%</span> </span> -<span id="cb16-2"><a href="#cb16-2" aria-hidden="true" tabindex="-1"></a> <span class="fu">st_coordinates</span>()</span> -<span id="cb16-3"><a href="#cb16-3" aria-hidden="true" tabindex="-1"></a></span> -<span id="cb16-4"><a href="#cb16-4" aria-hidden="true" tabindex="-1"></a><span class="fu">head</span>(district_xy)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> +<div class="sourceCode cell-code" id="cb15"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb15-1"><a href="#cb15-1" aria-hidden="true" tabindex="-1"></a>district_xy <span class="ot"><-</span> <span class="fu">st_centroid</span>(district) <span class="sc">%>%</span> </span> +<span id="cb15-2"><a href="#cb15-2" aria-hidden="true" tabindex="-1"></a> <span class="fu">st_coordinates</span>()</span> +<span id="cb15-3"><a href="#cb15-3" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb15-4"><a href="#cb15-4" aria-hidden="true" tabindex="-1"></a><span class="fu">head</span>(district_xy)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> <div class="cell-output cell-output-stdout"> <pre class="code-out"><code> X Y 1 330823.3 1464560 @@ -637,20 +653,20 @@ Statistical test </div> <p>We can then call kulldorff function (you are strongly encouraged to call <code>?kulldorff</code> to properly call the function). The <code>alpha.level</code> threshold filter for the secondary clusters that will be retained. The most-likely cluster will be saved whatever its significance.</p> <div class="cell" data-nm="true"> -<div class="sourceCode cell-code" id="cb18"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb18-1"><a href="#cb18-1" aria-hidden="true" tabindex="-1"></a>kd_Wfever <span class="ot"><-</span> <span class="fu">kulldorff</span>(district_xy, </span> -<span id="cb18-2"><a href="#cb18-2" aria-hidden="true" tabindex="-1"></a> <span class="at">cases =</span> district<span class="sc">$</span>cases,</span> -<span id="cb18-3"><a href="#cb18-3" aria-hidden="true" tabindex="-1"></a> <span class="at">population =</span> district<span class="sc">$</span>T_POP,</span> -<span id="cb18-4"><a href="#cb18-4" aria-hidden="true" tabindex="-1"></a> <span class="at">expected.cases =</span> district<span class="sc">$</span>expected,</span> -<span id="cb18-5"><a href="#cb18-5" aria-hidden="true" tabindex="-1"></a> <span class="at">pop.upper.bound =</span> <span class="fl">0.5</span>, <span class="co"># include maximum 50% of the population in a windows</span></span> -<span id="cb18-6"><a href="#cb18-6" aria-hidden="true" tabindex="-1"></a> <span class="at">n.simulations =</span> <span class="dv">499</span>,</span> -<span id="cb18-7"><a href="#cb18-7" aria-hidden="true" tabindex="-1"></a> <span class="at">alpha.level =</span> <span class="fl">0.2</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> +<div class="sourceCode cell-code" id="cb17"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb17-1"><a href="#cb17-1" aria-hidden="true" tabindex="-1"></a>kd_Wfever <span class="ot"><-</span> <span class="fu">kulldorff</span>(district_xy, </span> +<span id="cb17-2"><a href="#cb17-2" aria-hidden="true" tabindex="-1"></a> <span class="at">cases =</span> district<span class="sc">$</span>cases,</span> +<span id="cb17-3"><a href="#cb17-3" aria-hidden="true" tabindex="-1"></a> <span class="at">population =</span> district<span class="sc">$</span>T_POP,</span> +<span id="cb17-4"><a href="#cb17-4" aria-hidden="true" tabindex="-1"></a> <span class="at">expected.cases =</span> district<span class="sc">$</span>expected,</span> +<span id="cb17-5"><a href="#cb17-5" aria-hidden="true" tabindex="-1"></a> <span class="at">pop.upper.bound =</span> <span class="fl">0.5</span>, <span class="co"># include maximum 50% of the population in a windows</span></span> +<span id="cb17-6"><a href="#cb17-6" aria-hidden="true" tabindex="-1"></a> <span class="at">n.simulations =</span> <span class="dv">499</span>,</span> +<span id="cb17-7"><a href="#cb17-7" aria-hidden="true" tabindex="-1"></a> <span class="at">alpha.level =</span> <span class="fl">0.2</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> <div class="cell-output-display"> <p><img src="07-basic_statistics_files/figure-html/kd_test-1.png" class="img-fluid" width="576"></p> </div> </div> -<p>All outputs are saved into an R object, here called <code>kd_Wfever</code>. Unfortunately, the package did not develop any summary and visualization of the results but we can explore the output object.</p> +<p>The function plot the histogram of the distribution of log-likelihood ratio simulated under the null hypothesis that is estimated based on Monte Carlo simulations. The observed value of the most significant cluster identified from all possible scans is compared to the distribution to determine significance. All outputs are saved into an R object, here called <code>kd_Wfever</code>. Unfortunately, the package did not develop any summary and visualization of the results but we can explore the output object.</p> <div class="cell" data-nm="true"> -<div class="sourceCode cell-code" id="cb19"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb19-1"><a href="#cb19-1" aria-hidden="true" tabindex="-1"></a><span class="fu">names</span>(kd_Wfever)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> +<div class="sourceCode cell-code" id="cb18"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb18-1"><a href="#cb18-1" aria-hidden="true" tabindex="-1"></a><span class="fu">names</span>(kd_Wfever)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> <div class="cell-output cell-output-stdout"> <pre class="code-out"><code>[1] "most.likely.cluster" "secondary.clusters" "type" [4] "log.lkhd" "simulated.log.lkhd" </code></pre> @@ -658,22 +674,22 @@ Statistical test </div> <p>First, we can focus on the most likely cluster and explore its characteristics.</p> <div class="cell" data-nm="true"> -<div class="sourceCode cell-code" id="cb21"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb21-1"><a href="#cb21-1" aria-hidden="true" tabindex="-1"></a><span class="co"># We can see which districts (r number) belong to this cluster</span></span> -<span id="cb21-2"><a href="#cb21-2" aria-hidden="true" tabindex="-1"></a>kd_Wfever<span class="sc">$</span>most.likely.cluster<span class="sc">$</span>location.IDs.included</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> +<div class="sourceCode cell-code" id="cb20"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb20-1"><a href="#cb20-1" aria-hidden="true" tabindex="-1"></a><span class="co"># We can see which districts (r number) belong to this cluster</span></span> +<span id="cb20-2"><a href="#cb20-2" aria-hidden="true" tabindex="-1"></a>kd_Wfever<span class="sc">$</span>most.likely.cluster<span class="sc">$</span>location.IDs.included</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> <div class="cell-output cell-output-stdout"> <pre class="code-out"><code> [1] 48 93 66 180 133 29 194 118 50 144 31 141 3 117 22 43 142</code></pre> </div> -<div class="sourceCode cell-code" id="cb23"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb23-1"><a href="#cb23-1" aria-hidden="true" tabindex="-1"></a><span class="co"># standardized incidence ratio</span></span> -<span id="cb23-2"><a href="#cb23-2" aria-hidden="true" tabindex="-1"></a>kd_Wfever<span class="sc">$</span>most.likely.cluster<span class="sc">$</span>SMR</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> +<div class="sourceCode cell-code" id="cb22"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb22-1"><a href="#cb22-1" aria-hidden="true" tabindex="-1"></a><span class="co"># standardized incidence ratio</span></span> +<span id="cb22-2"><a href="#cb22-2" aria-hidden="true" tabindex="-1"></a>kd_Wfever<span class="sc">$</span>most.likely.cluster<span class="sc">$</span>SMR</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> <div class="cell-output cell-output-stdout"> <pre class="code-out"><code>[1] 2.303106</code></pre> </div> -<div class="sourceCode cell-code" id="cb25"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb25-1"><a href="#cb25-1" aria-hidden="true" tabindex="-1"></a><span class="co"># number of observed and expected cases in this cluster</span></span> -<span id="cb25-2"><a href="#cb25-2" aria-hidden="true" tabindex="-1"></a>kd_Wfever<span class="sc">$</span>most.likely.cluster<span class="sc">$</span>number.of.cases</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> +<div class="sourceCode cell-code" id="cb24"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb24-1"><a href="#cb24-1" aria-hidden="true" tabindex="-1"></a><span class="co"># number of observed and expected cases in this cluster</span></span> +<span id="cb24-2"><a href="#cb24-2" aria-hidden="true" tabindex="-1"></a>kd_Wfever<span class="sc">$</span>most.likely.cluster<span class="sc">$</span>number.of.cases</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> <div class="cell-output cell-output-stdout"> <pre class="code-out"><code>[1] 122</code></pre> </div> -<div class="sourceCode cell-code" id="cb27"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb27-1"><a href="#cb27-1" aria-hidden="true" tabindex="-1"></a>kd_Wfever<span class="sc">$</span>most.likely.cluster<span class="sc">$</span>expected.cases</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> +<div class="sourceCode cell-code" id="cb26"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb26-1"><a href="#cb26-1" aria-hidden="true" tabindex="-1"></a>kd_Wfever<span class="sc">$</span>most.likely.cluster<span class="sc">$</span>expected.cases</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> <div class="cell-output cell-output-stdout"> <pre class="code-out"><code>[1] 52.97195</code></pre> </div> @@ -681,49 +697,49 @@ Statistical test <p>17 districts belong to the cluster and its number of cases is 2.3 times higher than the expected number of cases.</p> <p>Similarly, we could study the secondary clusters. Results are saved in a list.</p> <div class="cell" data-nm="true"> -<div class="sourceCode cell-code" id="cb29"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb29-1"><a href="#cb29-1" aria-hidden="true" tabindex="-1"></a><span class="co"># We can see which districts (r number) belong to this cluster</span></span> -<span id="cb29-2"><a href="#cb29-2" aria-hidden="true" tabindex="-1"></a><span class="fu">length</span>(kd_Wfever<span class="sc">$</span>secondary.clusters)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> +<div class="sourceCode cell-code" id="cb28"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb28-1"><a href="#cb28-1" aria-hidden="true" tabindex="-1"></a><span class="co"># We can see which districts (r number) belong to this cluster</span></span> +<span id="cb28-2"><a href="#cb28-2" aria-hidden="true" tabindex="-1"></a><span class="fu">length</span>(kd_Wfever<span class="sc">$</span>secondary.clusters)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> <div class="cell-output cell-output-stdout"> <pre class="code-out"><code>[1] 1</code></pre> </div> -<div class="sourceCode cell-code" id="cb31"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb31-1"><a href="#cb31-1" aria-hidden="true" tabindex="-1"></a><span class="co"># retrieve data for all secondary clusters into a table</span></span> -<span id="cb31-2"><a href="#cb31-2" aria-hidden="true" tabindex="-1"></a>df_secondary_clusters <span class="ot"><-</span> <span class="fu">data.frame</span>(<span class="at">SMR =</span> <span class="fu">sapply</span>(kd_Wfever<span class="sc">$</span>secondary.clusters, <span class="st">'[['</span>, <span class="dv">5</span>), </span> -<span id="cb31-3"><a href="#cb31-3" aria-hidden="true" tabindex="-1"></a> <span class="at">number.of.cases =</span> <span class="fu">sapply</span>(kd_Wfever<span class="sc">$</span>secondary.clusters, <span class="st">'[['</span>, <span class="dv">3</span>),</span> -<span id="cb31-4"><a href="#cb31-4" aria-hidden="true" tabindex="-1"></a> <span class="at">expected.cases =</span> <span class="fu">sapply</span>(kd_Wfever<span class="sc">$</span>secondary.clusters, <span class="st">'[['</span>, <span class="dv">4</span>),</span> -<span id="cb31-5"><a href="#cb31-5" aria-hidden="true" tabindex="-1"></a> <span class="at">p.value =</span> <span class="fu">sapply</span>(kd_Wfever<span class="sc">$</span>secondary.clusters, <span class="st">'[['</span>, <span class="dv">8</span>))</span> -<span id="cb31-6"><a href="#cb31-6" aria-hidden="true" tabindex="-1"></a></span> -<span id="cb31-7"><a href="#cb31-7" aria-hidden="true" tabindex="-1"></a><span class="fu">print</span>(df_secondary_clusters)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> +<div class="sourceCode cell-code" id="cb30"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb30-1"><a href="#cb30-1" aria-hidden="true" tabindex="-1"></a><span class="co"># retrieve data for all secondary clusters into a table</span></span> +<span id="cb30-2"><a href="#cb30-2" aria-hidden="true" tabindex="-1"></a>df_secondary_clusters <span class="ot"><-</span> <span class="fu">data.frame</span>(<span class="at">SMR =</span> <span class="fu">sapply</span>(kd_Wfever<span class="sc">$</span>secondary.clusters, <span class="st">'[['</span>, <span class="dv">5</span>), </span> +<span id="cb30-3"><a href="#cb30-3" aria-hidden="true" tabindex="-1"></a> <span class="at">number.of.cases =</span> <span class="fu">sapply</span>(kd_Wfever<span class="sc">$</span>secondary.clusters, <span class="st">'[['</span>, <span class="dv">3</span>),</span> +<span id="cb30-4"><a href="#cb30-4" aria-hidden="true" tabindex="-1"></a> <span class="at">expected.cases =</span> <span class="fu">sapply</span>(kd_Wfever<span class="sc">$</span>secondary.clusters, <span class="st">'[['</span>, <span class="dv">4</span>),</span> +<span id="cb30-5"><a href="#cb30-5" aria-hidden="true" tabindex="-1"></a> <span class="at">p.value =</span> <span class="fu">sapply</span>(kd_Wfever<span class="sc">$</span>secondary.clusters, <span class="st">'[['</span>, <span class="dv">8</span>))</span> +<span id="cb30-6"><a href="#cb30-6" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb30-7"><a href="#cb30-7" aria-hidden="true" tabindex="-1"></a><span class="fu">print</span>(df_secondary_clusters)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> <div class="cell-output cell-output-stdout"> <pre class="code-out"><code> SMR number.of.cases expected.cases p.value -1 3.767698 16 4.246625 0.008</code></pre> +1 3.767698 16 4.246625 0.016</code></pre> </div> </div> <p>We only have one secondary cluster composed of one district.</p> <div class="cell" data-nm="true"> -<div class="sourceCode cell-code" id="cb33"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb33-1"><a href="#cb33-1" aria-hidden="true" tabindex="-1"></a><span class="co"># create empty column to store cluster informations</span></span> -<span id="cb33-2"><a href="#cb33-2" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>k_cluster <span class="ot"><-</span> <span class="cn">NA</span></span> -<span id="cb33-3"><a href="#cb33-3" aria-hidden="true" tabindex="-1"></a></span> -<span id="cb33-4"><a href="#cb33-4" aria-hidden="true" tabindex="-1"></a><span class="co"># save cluster information from kulldorff outputs</span></span> -<span id="cb33-5"><a href="#cb33-5" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>k_cluster[kd_Wfever<span class="sc">$</span>most.likely.cluster<span class="sc">$</span>location.IDs.included] <span class="ot"><-</span> <span class="st">'Most likely cluster'</span></span> -<span id="cb33-6"><a href="#cb33-6" aria-hidden="true" tabindex="-1"></a></span> -<span id="cb33-7"><a href="#cb33-7" aria-hidden="true" tabindex="-1"></a><span class="cf">for</span>(i <span class="cf">in</span> <span class="dv">1</span><span class="sc">:</span><span class="fu">length</span>(kd_Wfever<span class="sc">$</span>secondary.clusters)){</span> -<span id="cb33-8"><a href="#cb33-8" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>k_cluster[kd_Wfever<span class="sc">$</span>secondary.clusters[[i]]<span class="sc">$</span>location.IDs.included] <span class="ot"><-</span> <span class="fu">paste</span>(</span> -<span id="cb33-9"><a href="#cb33-9" aria-hidden="true" tabindex="-1"></a> <span class="st">'Secondary cluster'</span>, i, <span class="at">sep =</span> <span class="st">''</span>)</span> -<span id="cb33-10"><a href="#cb33-10" aria-hidden="true" tabindex="-1"></a>}</span> -<span id="cb33-11"><a href="#cb33-11" aria-hidden="true" tabindex="-1"></a></span> -<span id="cb33-12"><a href="#cb33-12" aria-hidden="true" tabindex="-1"></a><span class="co">#district$k_cluster[is.na(district$k_cluster)] <- "No cluster"</span></span> -<span id="cb33-13"><a href="#cb33-13" aria-hidden="true" tabindex="-1"></a></span> -<span id="cb33-14"><a href="#cb33-14" aria-hidden="true" tabindex="-1"></a></span> -<span id="cb33-15"><a href="#cb33-15" aria-hidden="true" tabindex="-1"></a><span class="co"># create map</span></span> -<span id="cb33-16"><a href="#cb33-16" aria-hidden="true" tabindex="-1"></a><span class="fu">mf_map</span>(<span class="at">x =</span> district,</span> -<span id="cb33-17"><a href="#cb33-17" aria-hidden="true" tabindex="-1"></a> <span class="at">var =</span> <span class="st">"k_cluster"</span>,</span> -<span id="cb33-18"><a href="#cb33-18" aria-hidden="true" tabindex="-1"></a> <span class="at">type =</span> <span class="st">"typo"</span>,</span> -<span id="cb33-19"><a href="#cb33-19" aria-hidden="true" tabindex="-1"></a> <span class="at">cex =</span> <span class="dv">2</span>,</span> -<span id="cb33-20"><a href="#cb33-20" aria-hidden="true" tabindex="-1"></a> <span class="at">col_na =</span> <span class="st">"white"</span>,</span> -<span id="cb33-21"><a href="#cb33-21" aria-hidden="true" tabindex="-1"></a> <span class="at">pal =</span> <span class="fu">mf_get_pal</span>(<span class="at">palette =</span> <span class="st">"Reds"</span>, <span class="at">n =</span> <span class="dv">3</span>)[<span class="dv">1</span><span class="sc">:</span><span class="dv">2</span>],</span> -<span id="cb33-22"><a href="#cb33-22" aria-hidden="true" tabindex="-1"></a> <span class="at">leg_title =</span> <span class="st">"Clusters"</span>)</span> -<span id="cb33-23"><a href="#cb33-23" aria-hidden="true" tabindex="-1"></a></span> -<span id="cb33-24"><a href="#cb33-24" aria-hidden="true" tabindex="-1"></a><span class="fu">mf_layout</span>(<span class="at">title =</span> <span class="st">"Cluster using kulldorf scan statistic"</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> +<div class="sourceCode cell-code" id="cb32"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb32-1"><a href="#cb32-1" aria-hidden="true" tabindex="-1"></a><span class="co"># create empty column to store cluster informations</span></span> +<span id="cb32-2"><a href="#cb32-2" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>k_cluster <span class="ot"><-</span> <span class="cn">NA</span></span> +<span id="cb32-3"><a href="#cb32-3" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb32-4"><a href="#cb32-4" aria-hidden="true" tabindex="-1"></a><span class="co"># save cluster information from kulldorff outputs</span></span> +<span id="cb32-5"><a href="#cb32-5" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>k_cluster[kd_Wfever<span class="sc">$</span>most.likely.cluster<span class="sc">$</span>location.IDs.included] <span class="ot"><-</span> <span class="st">'Most likely cluster'</span></span> +<span id="cb32-6"><a href="#cb32-6" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb32-7"><a href="#cb32-7" aria-hidden="true" tabindex="-1"></a><span class="cf">for</span>(i <span class="cf">in</span> <span class="dv">1</span><span class="sc">:</span><span class="fu">length</span>(kd_Wfever<span class="sc">$</span>secondary.clusters)){</span> +<span id="cb32-8"><a href="#cb32-8" aria-hidden="true" tabindex="-1"></a>district<span class="sc">$</span>k_cluster[kd_Wfever<span class="sc">$</span>secondary.clusters[[i]]<span class="sc">$</span>location.IDs.included] <span class="ot"><-</span> <span class="fu">paste</span>(</span> +<span id="cb32-9"><a href="#cb32-9" aria-hidden="true" tabindex="-1"></a> <span class="st">'Secondary cluster'</span>, i, <span class="at">sep =</span> <span class="st">''</span>)</span> +<span id="cb32-10"><a href="#cb32-10" aria-hidden="true" tabindex="-1"></a>}</span> +<span id="cb32-11"><a href="#cb32-11" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb32-12"><a href="#cb32-12" aria-hidden="true" tabindex="-1"></a><span class="co">#district$k_cluster[is.na(district$k_cluster)] <- "No cluster"</span></span> +<span id="cb32-13"><a href="#cb32-13" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb32-14"><a href="#cb32-14" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb32-15"><a href="#cb32-15" aria-hidden="true" tabindex="-1"></a><span class="co"># create map</span></span> +<span id="cb32-16"><a href="#cb32-16" aria-hidden="true" tabindex="-1"></a><span class="fu">mf_map</span>(<span class="at">x =</span> district,</span> +<span id="cb32-17"><a href="#cb32-17" aria-hidden="true" tabindex="-1"></a> <span class="at">var =</span> <span class="st">"k_cluster"</span>,</span> +<span id="cb32-18"><a href="#cb32-18" aria-hidden="true" tabindex="-1"></a> <span class="at">type =</span> <span class="st">"typo"</span>,</span> +<span id="cb32-19"><a href="#cb32-19" aria-hidden="true" tabindex="-1"></a> <span class="at">cex =</span> <span class="dv">2</span>,</span> +<span id="cb32-20"><a href="#cb32-20" aria-hidden="true" tabindex="-1"></a> <span class="at">col_na =</span> <span class="st">"white"</span>,</span> +<span id="cb32-21"><a href="#cb32-21" aria-hidden="true" tabindex="-1"></a> <span class="at">pal =</span> <span class="fu">mf_get_pal</span>(<span class="at">palette =</span> <span class="st">"Reds"</span>, <span class="at">n =</span> <span class="dv">3</span>)[<span class="dv">1</span><span class="sc">:</span><span class="dv">2</span>],</span> +<span id="cb32-22"><a href="#cb32-22" aria-hidden="true" tabindex="-1"></a> <span class="at">leg_title =</span> <span class="st">"Clusters"</span>)</span> +<span id="cb32-23"><a href="#cb32-23" aria-hidden="true" tabindex="-1"></a></span> +<span id="cb32-24"><a href="#cb32-24" aria-hidden="true" tabindex="-1"></a><span class="fu">mf_layout</span>(<span class="at">title =</span> <span class="st">"Cluster using kulldorf scan statistic"</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div> <div class="cell-output-display"> <p><img src="07-basic_statistics_files/figure-html/plt_clusters-1.png" class="img-fluid" width="768"></p> </div> @@ -739,7 +755,7 @@ To go further … </div> <div class="callout-body-container callout-body"> <p>In this example, the expected number of cases was defined using the population count but note that standardization over other variables as age could also be implemented with the <code>strata</code> parameter in the <code>kulldorff()</code> function.</p> -<p>In addition, this cluster analysis was performed solely using the spatial scan but you should keep in mind that this method of cluster detection can be implemented for spatio-temporal data as well where the cluster definition is an abnormal number of cases in a delimited spatial area and during a given period of time. The windows of observation are therefore defined for a different center, radius and period of time. You should look at the function <code>scan_ep_poisson()</code> function in the package <code>scanstatistic</code> <span class="citation" data-cites="scanstatistics">(<a href="references.html#ref-scanstatistics" role="doc-biblioref">Allévius 2018</a>)</span> for this analysis.</p> +<p>In addition, this cluster analysis was performed solely using the spatial scan but you should keep in mind that this method of cluster detection can be implemented for spatio-temporal data as well where the cluster definition is an abnormal number of cases in a delimited spatial area and during a given period of time. The windows of observation are therefore defined for a different center, radius and time-period. You should look at the function <code>scan_ep_poisson()</code> function in the package <code>scanstatistic</code> <span class="citation" data-cites="scanstatistics">(<a href="references.html#ref-scanstatistics" role="doc-biblioref">Allévius 2018</a>)</span> for this analysis.</p> </div> </div> diff --git a/public/07-basic_statistics_files/figure-html/LocalMoransI-1.png b/public/07-basic_statistics_files/figure-html/LocalMoransI-1.png deleted file mode 100644 index fe0f3cdb57e1064e4264569d8af69d3c66451bab..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 14830 zcmeHu2UJs8*XT*;Afhs&f)qzbtbiim&;nRc8H7<0qy<Gmihy*bBqM`3qX;7^DkV64 z3Q|N2O(_YYAR+`sngJ5JKp+7^LP*Gc7eb=n`e&_w&G*)O>;3CZNN#dZ*=L{K_db{3 zY>!&X%PPwP0OSuJ+J6iHN%*H2QCbZCdQG)B0)LI${&eC1{0)F103N{55E#POMBq^Z z-@`Wx4GS+1Ll5|!Xb86_l06oOdKdx^L5Bxe=v;UudL+W{5)XJx3H*i<4MC!zVWI~} z^nkC6or&<PBr%b^a49KCEP;POiDYsj87lDrB_4()iSXNFp%d<2{FIcC;lC0xe1%FN zsHLTaoM=c+^dOhO@5F^3xDN)f_(di|@F@5~h9DRsL{5arC5w0P)P=T>Y2S^(+m#78 zbSek{)wqQZB4Kdy8~_^N@P6|X;i==@7<Z?0w=^%WL%Lc>l|3U*Gy<cM&Q7aP>7;J` z6y{5r2*rtb#eg2D;l-^%^;;pEa(&g?k6$*$VKi>;v_E=h)W^!wFi8Ofd);yY;74&_ zmi7PlXXE8k)cv1W(d*}?)zLel)(kY?>(kT(v3{E50o^3Q{24P1%Ed4|vf}&$2R&{+ z#_+$;KNMV9hag__TLTKJ(j$Ki{G~Lc&>2-Pi)~3+4Z3asxBaCuShme$Tyr=`<!?M1 z^|E`oCkhy+NCUs0fX<&}apH)Fk1@DOVna%?Hx+@UB7)c`0}d8#08i~UfSXP1(fZ2B z@|K#?S+|yYo1`%@DpQfL1}s|vZe(8vW&B>KJWvnxU`$qmuB-5RNb1p@QpAy@O-L*m z9&>(d7`V<~3e_JR=*`TUMxjm1Oz%gAv3@MTy*C~1pSJlCdguSRlr!01I!!i>(qf%g zQ-x-I`D>07P?+#Jx5nWFQt2?B6NdV6{yGVl-u)@>*Sawlr<G1{=zkYPw1>>CAnJG( zXViL!1aVNY8Hr6<1uxqG%EBK6j#iJvofM;Xw<qHQ*CDd5U*MbZTEXndR4#P!5;wxL zV8=Z=6|*Dt&85lkcZ_uBdA<tLZAN|13XnqJG+XCM5_|g5;=n)?to;y*2&i~A)?`|; z3Rqsp1x~(geq~b~0kH#taVjRfL^-aC6)c6S;C<1ANat4W8w;lDw@DF+sPlS2A2VH@ z;vj>y)E>5j34ahKd_K}`vhYTI=hbp$P}hJ9EP10H%}2Ywwrs%7`gtX%?`-h2Cj`#4 zt&xv{iV-?Y1xFcdBPDWn^Ib72WEfR(2n5I>u`69VD}(IC+^SyjFU(;GB=wT}s3H99 zCPt+CM5BI>HaEF+7rI)3KRy+CFBhT1t!PoX%$VXO-3?`|Aw=!vu<@iQMjx-uKE2Il zdcNIQ#+awzD36t2Sm@+Yv3U(pwi*_%5?O3!tTjaIC-4~LPDm>{{Paju@}#eP69#cl zn}A14Dv43Am#W_-d^q(Z#igt7RgL-Z^_lYlxaAlq1fc^1mBCss02K#e3t~4e=0+cB zEpU;>a+*vqZbP%YgGww8M_ma?J@a!qZ>~KKr`6ST4y2AZW;Wmo<Jcn)=!9M1B;Op~ zY`=kel?;NYstB_=7wm=pl>kjm_xU+VV+VgQfKEdV+tt%C!5cso_gSAe4C3P(+?*8p z$+IDDfgH9M)7%O=W*g)DEkHn>IN11k^f2{JRv=rg(irNB1!d1YacTK;g9<oIaId`b z-P8(xGD$0`cM6{z_Qeh4ark3Mw^{XIn5ogzy(ud|*RBNu8Obvf8jjO6r?Y%KpGp!3 zf72hvIJ**(aYb```P^ZOGhb`>df-`#Hw7mN&}Vz30zXDyf;eiRULo8{!<s8;#^}iG zFSMA_W!P8~PQ#Sg&;3$FDr$=oh%wjz%G_awUw}fJ2`GqmhTLf1zf&FglE=g+i=%iA zB#3@z7+4^l&F?d-fim2{vhH62^(L&!-<7KoQ=rMlfxtAE=}n9<n9Y%en!}po#+9?_ z2GUqP3iR0^#%WIKjhNe@h(qb((eu0%h|&K}(;1`u<&`PgL_U~f5c7uoo0J)2PjfHE zb_=*FqT*&SM4oAhwQ=CcyHR5u@FdEt#j|OX7XcrK`Zy0C0tZ;U#EB0uwwpj(*Aiky zt^UBXAT}-S%hc#tL&z+RmRW!?f+nMDoXjg+FKxdz2s*f|KI_$ftAI}x^ne1cLgo+Q ztAF1da0siGKoB(+j33h@z*Aw=xgwL4d>!L3ciY-uvNSTZ`Og-L<Qc>Q+ht(3{~NXw zhpF2O*6;&+gS7dP<79IT6W1nA?9+-0pS=5_dJ$Pz7iJZHH<2+8S43isHp2$st|wxr za~FeI{on=O(zi)}FgI52xpNQoP3#G^3g?Kxp*N45Syd+UkF&_Tl|c;!(|yWpACy6b zuOjY6DSzQ&eylWoSBFEnRBY~}Eqj{)1@rHor$dH>P5sv&`CptnjBnWX6lDYrBzMN+ zTvey~?hgilWzo<~)-O-_F|XijkAQ%o`(v-arF^snd3%)&H4g!uL%_DJo~@t|9lk4| z3VQl^GkBaE{iSlNIM^o+&ZVXGz6iL?zgbXr0Z9!Xl%3H<V$G4*mp7Zzq4@y51=a_> z!j3$H(20<H@i0aMtlb2%eFiV<md{H!4-&%0x1n6Q+w>7cfG|64?}`iQp3ZD_A-uEU zH>?>$-+@iV5n$W-(P_S5qDnOgZ>I$utbi>!7lljTNnmsODbKCer7cP%_NWZ_=kxby z5ZdssM4I~n_Ir);O%adk&Z_Tx=_%RyLsC7YwGSjVEqiVy4#e-7hyDhzK=-ZIO0dEW z?nVM6JYhdD!>&7<EDfY}VrZ)n0O677@;%TX{*Rb+!!$<IKib6Dn8#@(7ZO&&yI2<{ ziALRbzRW!Hi7tTz7PYC>Y_!c?li7=}>5}mM!PM&h`Oc4+a2<9hO(B93&mK1eW^coF zXY1@+Vxiz(v4Y3HFg{Q$xzQRx<7~w`W5-i${Gr*vBDz#7G9!^zyZhz`<%p^Ivw<@R zTz~z5qNmud?-4q;1RX~67cqmA=?@dCRdZH@&eguwfVK@m)Y@8fLIQAVBc;#NM^E9@ zkY~=u-pv6Tl<@edlIP=|Hgb`MpV?vvomGfuxwSsD@_8?0h4U<tJHkhE9)XEt4<Bs< zZw=14CwOQo&{TN=d#6h|+pAM0-et?~v_qIx?NZ@3@b4V2XH}_Amj43Q{subiGWA&l zoHODy6PCEn#_a+G{Al%KHN#R;QV9y^4*rdT=3}eDK#N1@;l%~A3Td}2tn5G{X?1nS z4~rP$wqGf<T3o}_UfezTJI5R(Hu9--?b42%SKe?rcK(Shn0oR3+VX!bf(tsJvjnfb zS>m*F+)XFJ;-8lTcgvp^7iwp&uD+pazPJLq#a>)DRDAU!WNY-w_Z=%wEJD<aI-uij zY5O-ObUTQ~2fN3M;K%C;!EZ##@EU7S^J9ZCPzpu%%$>rG*^4-<;0vJ+LLe&vxGiy} zLtES^gnxGh68nb$wf?HruVb?Odw6@e^vH2JaPZ_JmhqPlJmc8#@jf*qMKhrDe35>1 z)2Gt<TuRFhILggiT%bHz?o}#5p-2RO-gzaB7RV5RX9pjC8^*<3A*6+nyX%60Ze3En zrM3iE;@?3Nxi2k)sAwiZ9Q1D!urx}Qm`Txscr>QoX(V=+0NIU%RpA#Y&?d0fNgz5? zKWs>5&C^!>AsW(OrSc`0u){@)HjovCAl?%Q(qk1LnzR7&1HU{Wd3;_L*51rm+*-j% zt+LUTe+K_UjV0CjM>aSI{b}_nXaxlYO!PEM5-rl8+6%NX%_OS?*ZqVpp;e3T><~Dl zU7=z^o$`NOt41f?<=4c#AbDUqxLUz-qOOWs{$y)#FUn<>nCqnx$z;E^UMtkUN#%&5 z=M$cPFwPBZ7MfGa`FImf^zIjPSkmO#slx-l8bX_B;OL%(nkX>t(Pb7|3y0%?+mcat zHx(}mo5{0LK<pA2G5?BMQ>RWAK1;$hzUx<^DNrdWq_eVQ7=gWF^eirBF!@Tn5EkWH zyoq7dNPD$HoGvDXuxdxJQZ~@Y5gJ$m4GqWbmHzGqZbB1t@B*!V`i*o)#QG>pTM?e2 z?l!LKrl`Gp!y{+=B<WHYgv0;ZBGIE^e>~PpBD^7pd`EnH2ZfSaz_Xv0tD!~p9(EI2 zYsl416XlXF1t&f?M7W_qdZRvsTfV&N{sHXvE4y+QEuB9T>`i|<&v8fLORoeR&^c%) zF!*YKq(uRKERO)#4=$O_LNT|IS8hGaA1pZwcPZjWJvV*y3Xk1xd7~Xa3w)`F)@;Ul z;vifZ886?oDN|r=56WXZhfuEJeeFR)pP`})9-Hz>+I&u*J+?D0RpRy1YJZ5iO)xLw zk}$LgRgr7(g<bnFg@%?S?pS#ySzHP1U-DZp5)Y8W2nKbq7)N+5l*4YcyA9tnU|tTq z`afaJ>8?GpX95RZHk4>Jb*wzTNI4m>6c-q{x>GPaL7BfG2)gGlxu#N*Co2?y($5`9 zIQnQwvX(SPQKSgPg_uY^4)0BO*X)oFK$C<Uk(VTX$~3CS_LEJd&k7|)Qkm<`r;Yby zGROu6dpZ1*1f)o7s%z7YA>VXF0;YVhkzllUmTmxfi`ITxIJ}MlSDe_6q*bEEhlK<b z4*h{$-IBLVM;J_`s6^aFL>wkaiXg|wN6ifIBq}0MJ@)3;MQSluTQxUCLu9nuJYPi= zqMh$W>m>0#6XxH$e&misoeZfJ_Q>n8W;!>blC{OdOEKli%$`J{?m4lKQ0rr|8q^iR zceaZpm6sy6wnRTx=WgoV|5eey17dW<<dCWNsnbG&{I%-%Tf;&?qHTas{C>jbD#b*g zAqZDgd}&<&A<cQ-Wb0WvZsJA80TCav3+uQ^aCL9|T$KMC5zc#9-N6t&>f&4niH<r~ zDc`(RNIZk)4$q|6BtCAiLgsa<Xe+Shv#+C=HW<~n;W8bfc9qB<7_Z2tn<~E<s|c3D zQh&yVjQX%O7{l~%>1&1pvHhi1ZD%S+*J$Gwy75;N(%jL4hty4?riU5}@N!}U^GFSF zO`vF3mAQVHz^!n>8i~yoDEe%^hL)Bj>e6kFhnZ-f-6_@cbL}xPF$81lDDAxnvlD_y z^sggJYlAisEeu%9b=V-xq=in-mc<zDDO?`u%h$-xTr`DFK_+mTd{`j+3@7uSOrhS! zSjq$;M_07?Y$J8*DFQFjR{1K`;2|<<$8MqUwYw;2e2rcsrQ!5mfS&;mF5~2?H;QcR z)dH#Jw*^21x>2s0rABzcK6Y}Q(2rDW{!+Q(#-ED>H5Fwml1OSwT!ZNvaN_4hS=0M( z!|O3+F1NRr<c~@ns8sxNL&$3tKbkhKk;Lcp=SpeQzm=tDg{U+f|30rNLxf&-A%6QS z<Jkgk3%KW^LQN{NLdpRFYE^p4zw$!oY9N|~8(#cvgy-IGWh~2HJVlBa*Z;mD=Ih4B z5bxF4C^_s%f!L)4gs8pPUff6y`-y#3Ur0|Rb}5g!Bz<k^mpq&-3?2aMFRi*~A(Ay* zrKGPCXo13%w}c3iA+h+hG%kT1tOPV6Q<&%51i9W-<?>)_9e)Y)4FX2HxqA}CQYSqE zP6+ZPSpT`2c(zz~1hX$X_r)ur^!)c!7Ap|vk5xY>g#VypCqN;FE>ZM80`c>~MG4ge zOSv1x%pHRXn((*T96_n#jPr91-G%1hsTZ7M)|ax6zg;1uVVH}1!fuM32oaa|j*$WY zyR_Yc&5tRM{qDAe{DnysEXcSa$aUt1f%B?cOX?UOZ*obu{QLLg>0)~?O^@|1h=bp) z?}hB8&#k%AJ+uQhg-U)~_&py*?VmwMIcE$$D~KA@d!umW)EObBi&B_uiiw<VN2o6b zN%+#+T-qM%Gi&Y{2)Wm<7s^U`-P01QQ1LmTsz78g;b6sb`&hJ+4Ems-Xk+nh9i6d* z1*X)X^~PDBgmi~nA11G`M4$8(tqkXIM*f&qQneyS0>}ucuv1Gq2;cB3HIgtVi~JfY z6@giX?>RClT}iq!uR{n^-c+0!iP_C*QHYC!cF)r@RZPYAM5w%|*VJBP%HVUqH2f~i zQYp6X32aStYCbo!e&Bja5A(x_6=8Yw-o^w%BU(nuQ0@d+A&5WZ_k@lp>yS>`40V0h z=Gv<r{JkpwYjk#=hJPdF{n#sDx-`c0Qq@{SL_(&)SGR~0cMX5VE`i1WQq(MuN~KQr zURQa2O{A$t!0)R~Pn9TQsxAL;oK3$i8gQQ0S6)_`P=z7O+KczA2||n-PefW}!gM{& zIGxNxQh#^rDi9b}MhKXWh3kj1)MPPSp(;G1N-!fPJ}TrAYe>_80>MF4rJz92wujY< z^CWZoEe+6c^T8{NK>n&0Q56zDKhK;;*+iF5%GYU2>oPZgGT^hAPXw{%qP-~qj5>P- zzquV)pkXdZf;&2JP1*?E?vBDR24UcLw@m``d{x;fVk0C4g<zBcUTVsJ&O!&qlrO;4 z$5n<m&WwXPGxhe_4Eoitt}ep}G@3dCJWyFAF*jDW^_Mu7#Mg~TQsjeKL35`-*U%Lm zxH)QRf36DD9l$Td1i;|a1>iF!iBj-gwBQbo!GnE-I^jQin5wOfq<$H)K~mDc;lO04 z577gmQ@)2NZzERuHH*k7#0Np_^d=;AfTDT-n-Fkcd|Ks&>A@F929evZm5V%sq>2$& zmCD<8v$Sl}`+Sjc)QgXT&az&0SI&lXeZ%?uLaT(0F0z%`q7X)Y4=YQ`#vZkHGdLs& zNAjaKbmUh;jv#;{P?utViHi~VtXuAM{-v+(iYHI?LsIqEDBcqle#GJ{%fm2b<Jw;X zzU)E*%|?yK7}D~apAA(&iV*xI4$HsH7*0X?M+}zuu>)?2XcM_=R!MWhd2)hEB~bo^ z-GiXqWUvBIjGbAWZsQ*!MdbQhg$)0~!Z6n66=5Rf$d|!VD7?GJnsy8Ar@?v<&(jhS zR~#&r!$i@G4S2RxNfWu)zc;9S6^KBsZ{l5mc+lhM=#-Oi)bv<TU0Mb9O+~K}g{C5J zwiB)aw%2S>L;fi+)_-f$|Jh&_KHe9AwJ8hF0>G8Ye+o+f85#c}9bAY0Tcq=6)}~i* zW*7{{uz|lnqgZ4|yK1Z8f(Y}=0cL~9-QI(Z+|1d|81-+f5x%rZzV8Ui_#W4n6<0~O zC>3clT$5KvTd(0SL>LbwUs+-j{;eYNmqA7nT{9_HVRpUEX59WJNm1mUsTVre&wtl% zvQM2XitoRs#zXteBJ4?X%oQtyHG3Z#{>}wdgd?@(-%3Al7V`is#1YXiA^Yg99dCtE zM|?*|W=nFk=#;?1^A}lR1T8oxD816b)&Hja^a;+0(KoP_bsxgSMYVEw1J=My?=+kM z)x~N1F`}D=^elK-dsOml`~F>vZV<gM9)6m{anZqsq2Sun3}cwmhxQOgQ84A`{!RA$ zTu$t1RuyBD=qLiCosopoB8mO(qHs_c+r+B_l1B<;BPB(7|2=Va^;$cD<Gu{m+qCm} zg}6>9^Rn;P3QHymSkGjCU=X3Z7e1T#N#K<`5YK{7>-bAGz7=?&h02Vwj+S(d;QniR zGtv7aw!sHfkk^14OEoGz052Zi`x}~sSSsZEzX$i`W>JLM;p=FGhkBsW3iqXQ&2sFE zmb$2;{6cz&s9sZ8s9Au+;4$j}e*ZO>RSu$UVa)G&$)-vXW0KpW`J%Ey7zQR6u6jlr zNDBglzfRKsmJ<9kcwnI*{d8rL#q+R1mTc>2dRguQU41NAM-u9L?vS^i$c^ZG>b)>X zCRWMr(IdwvC)uxETH(CjMNxKV&JnBPWBC)mmFK_*9p#(9b3Ae9uJ<FyZpARW7Wg2^ zdP`CEww<j<ieG9@<Sh8M2e#*bwsXw6;~iqtWw%fT(0kbYXHL<H?cc2Y@PM7ylao2E zCKv4&(!2IwEw1N$JeL3e9U_KXf8Z`Zez---YI};1Y>loXyE?<}9eH5t;Mgf7jL*Yk zCeEurGOItn+x+Pz+tdD8rA4vQHaqa^o~UO<&t-}y=Hau|0^9u9Bdfs%YxN!Zz83ir zm{19ryYO5IvqOS4#(Hor)vypaW}iT;_y^oSwEMpxC_bf5KR(&WHLWx$zWJx^6Qst! zMq-K^^56H2Z0KZ<j6VtaZb@kKT>Q>GEI;w^SgYYpi${Dq4R`m<N49M!B4t25ee%1P zR;#z!<@awnkpr%cKcpe`>rux2TZ5Cgoyc*l`#Jm5nc~NEQS+Y1u}AF2_R8LI%xhzs z+;$;u=EQj#$JQ3vKJiwye0c17>w~Je=W-pJAjXZX=6kRzEkO1zbZq&$pmK}FqnwcS zu}5~E^qEt8r{$K!tI<ujaEFzr_-3Z<lQ-Vhlzr})m?Q&&nwlD)H#9C^rT<^yHD{Od z=jvarD_A)8GX9JHYo+u2vF+NI!x`>0$teX=xNN-F5)qVg^`aEw!&>UN_(u@KZ35q^ z&Z?5@w&3@!vw65{=eIlm;KxZQcq|8vypnRY7VFI<So(ec7mJ-QjT9Y`^~DWW^;Gw3 zomHT;$==CnyZGI<Vu$<>@?q@<w^IkW^#h|~rto>Y<{$W9{*2RHc#`Jd1{TVPu@7!{ z69#WiTh5u$B6`@eQf2Y89+gf=pm8`7-;=*f9r?NZa+@b}g9fP8bw!#iouR3Ya}g_c zyTSnnZZoj~jw5js&>gfaIJCRZ-PRHxSH^<NJ*gZr?~dC;ycuHchkG^_yyuufnS@Gz zOP(M2^~T%|rr@-UCgX+;y%DAS@!N+vfc0UN!fNb#B*-}acRxl-KoPt9qk%^#B5Z5< zeXw%GNVgnYejBs5)IPgyNi6Jq@~+U36UX?yU9Jxu<pcz@%P*9DE>~v7i3^H|^<Lu8 ziQ?LAZ?&jegX&G=t8<E%WUy5^SK}X`|9dnA{~3S(t~@M^9~7ewaBAw$PEBSei(%OO zdj8qx2DA2;__L##gn~#0tT3_kRlh6iJ9x*$g<LSVR&A4y%P-#O*pGG1*`2K$-wowT z5w*F)b>r8IF{Nx9HoD!h<)p$gqB>eHyiQrGxU%MDRmR=rV^?e1KCjHbXr^tq?$iCY z3FwU&b#|)E+SCOKlW!cw*EfS5d?UxLthr<4?BIRo@~Um)Ilg_@+V*B7=PVojDToby zM(D^jNohZZrsu}InxV3}FzsQC-mKi2t1ajm$($d(y$%hx-TvHly8DE!QC!HrJNc>~ zl%<%*?wF@}(fMd2a8o;a0;k$Jh(<iFV<wdjV`c^`ll8x}j%Ys;6JzA1tuw(t{WP?E z?D3V)Kjx|A_>M2EzUJMs(YVcYs922Jc`l%ej2dI#_ac)pKa|bcpX#x}DBU-nyPVP9 zawa94@#^!j6r;QpS?}Rze%a3#sg$0pn;qW+`A8A3jQB@d)dlpD<nW2!bGr3Cr7<>0 z>+6+s%MLy*exx7fV6ggA)9G&8b3T?uwFnb?Pg|8ri0%v4Ya4H3=EYlTC9tZ(jUttZ zMIH1WjP5*#I-RvHHs8_7J18#XxcT_{HhH^}(EUE^n}b3mi$8FoCUN2<{6z50HEOdy z15a`(o(R3Yz%r>4g-a7-WXGaUwkQ7=VmYUoUtsbH+YvhR5^kLKiZ_qd4W@TAKR|?+ z1SmNuD%hthZ!3OL^YTeXD9qArPDX#~E&p<BRm|nb#a!s7IFZKud?yL}ZW)ng99voE z@2TyQy2o_^!9|XCOJlEo9quPiBsOf{CQp1-plx{}t*DDX@BJ6Uj*1h#uDD)GCwv4u zpb*6b`=;Av=nM9?tkd1`z#%cpEcy1@PrCWt(3k}A4cWsvkH^l{7V|p`PWn{(0gsTZ zPcP3sX;f|7DfiAWFPRcuiqzm@wY)-YrHVo!$}iwv<#0>PL*3jd60*!3oRuHDyTFXn z9a}C*(cYdi^D*7&gpV=IDCT13!M)J1sW+p#!`7)%6-kKZw$t6uGkBmQwjHqp<2Z(B z{&d=;{qsD*6*y0}JQ!|-&pD}2c1BD1o^!COAO<#Exur06vtm`a`Mw}WcUuy?et{aW z6jOk3-i%7KqxqLAri^P&x{?ylH?H%!0IQmWUa&)0e<fDgFvIG|vQdHFxXsD6So&zq zw)B-FqSvZnM}AF@@|~Gk_FG%U`NF~_bvs(2a^6ZR_~&@@G@tPW;nyD=<P;+xTt+eE zwZ%ECaq2nwRrwK=oRZ~Zb5|S<^Hi2QEef8?33uCJ$8xBBIX1KY&z5~*_hqbISDyC* zTHaBmm{UF}sJuOq4)(I%Q_r3jJb$rZ3ADEC&d!3TBrnG%#aeAGkR--oilVKX8yqQ7 zCSC<?y~oH#dG>PN)1n!RwgYCFl@zh>(QPRtwT7$Nva%zhXz1{j^*&c;23l#|Zm4LU zljG@JSfzVTS01y?j0=gn)3~V87Wd8Pn|tO7!2kpV{U>Jc|M@vs*R)6!=L`K|!EAqS z{imJ;Idz8!IXcS|r^1sAfFBI3d>I9NUrHd%5J;?Rw;?#1exU<?&JZaMe0`LGoJy3k zMv4J%Dr;ZFLW@@>;U&v55@9yBaCbVB09}4LuO77%Y_SH-2}x+RqwTD^1WXF##a~Yh zw#H1c29imelca1s)uT-3>-qiuQiL<7Gu5r(Lq^x>9alg`2ome}9+#ZP31rp9f?22v z1<j7wu#V%FN4+@%Xi<}_msx*EfP6*3JQKZ~)D@<F7fHpDOe@&_6z%BR)&hr)F9gDT z!1$&8NNk%7xO{QXedF+5^K|aWEofl;40sRq&5yjqFar6!i7YYn#gI%n@H-5xuaj3d zd%d!91;CH<dut}o_Cg*|(9CvmU~~{PUmqb&<KTyCr!Bzyb{-RIavcaMd07x03*73Y z;YA|nwm>-k%y=ixJ~|K0A>^VrfR0`8UW|<}IbqQ!hi4E0LRj%F$9dYM(XQ{o)5xXy zQ=|2Rrj)M@hSOY1`g;<qQwt~&EWk5&aggTF(Kg)}c>&}JCr#35@~S1vv3Ckq0NPrF znYM>!Nc1kFl;N57ENy1@#Gd9iOFafnHlxN7DiF~t!xLS&6=<Okgqnk9Lxh>ZQLUbl z@#+M1_#aJzIZK=Uqus`1cm~5~G9OhsrNQTTtC3jMjlj(*#bE9akfDqK<j)l!a4z#k zON{S7h~n^*N*mNyf}*2<STbZUT|Re+bUzbsaK}`a@Zet{!wU&YinoHJ{Dx91j1u@x t0|uvp5i7F*wpakZ-2NZ(`2;EK(|F3Ko~eBR{~sebeBkK*rxtEk{uf2NsZ0O> diff --git a/public/07-basic_statistics_files/figure-html/LocalMoransI_plt-1.png b/public/07-basic_statistics_files/figure-html/LocalMoransI_plt-1.png index ff3163fba9e3801f4b0c53aefb5844775faaf11d..1d002093a2d7f1da4e99c7efdd6790b4ba42ef23 100644 GIT binary patch delta 21271 zcmX_nc_5VE7x$ep!`R0zSw^;GCz8U@A`!Bt>^l*%3(tdu%94FIN!GHIY*|K>lx*3e zLe}j2&b-t2_rCA{_uTWjpL6cH=iGa4=?L=o2(rS|1hRBg>3EaY|6z$)tjm;fV(S#8 zA?+76ES%!8eiL52y!lu!9PW&zOKq+_U!unf``zq5Guh+KZo0T2kf526`BtwX(qQN% zJItRA(w|-eC2Hp}$R4h~b|sFABFxZrG=b<CA<jnFCAnqd^4DCHUP{cmwTj*2sjbZ^ zkQA$@y5=03Dv;rlIBFsYWpIzZxRLkc%7A!iBL9wT_c*ks<)3A7?mW@NGzOtOvIB@D z#AyySz;&rM^2hpE+nQ2^EtjEFs2ES!e!g}-+R9wC;lRj7_StaOs#%ye3kRE}t$D59 z`3tYEhRyf9ppstg$Yo55#DUlRri8x@q~%EMnKa0d1|~eco?isX8iR1pamvxXUDxH$ zlcs2FY9XfoW$CM4!sT~W^b(E+-zhlv#=EJ$T*1OK@i!WGNJpRDbp<Zvc|Ch|`52r2 z)*Lm*iQXL+A~aF;;Qma6(Og)sEk>SxH2>nzb3puTR^??si96D*PYKXN_#wdzg_uL8 z11w}1{@(Dcd^i+wM_nSptj_I3qaSj97V&NxvP9M%j#+}J;iMKP7WYTT8Sw}A)oAhj z=XO=W^eGIU!y}`v{Y{^nzv5szWnyCd7xz1FXkK;-c6bJ7n4pVpQCHj;bZ#M~*1vy! zu?(CJ!?#%`ELIiD7hHTnEAM4-;+EX`ouqY1pal3&^FeB$9$uT_xhNx_`Cf2QgOt*z z*;PU3^~~X`IihVUI6HqVjPzH&Gicp}nkf1xgZBETQP%2<rK6((d-mb!k{u*88jvCh zLF9FXuhVXBMGdUF>%kU)M(Xzxnz(|(xbZ?~t&e}zMlF0p!92g-Pjx!EeLF6oGB;Qf zx<!IMWq(a%h1D6YRxhcZJk6&Dl=yoM;~bxFV*A5ifRB%>OknXCCFeuvZGhPWE!~qC zSdwxI;v$yRZ{AnPnZR9JiHmqYZhnk~|7cMw0bxQG8A(L{H9M;LvBzg3X}oRQ7CSE{ zMHSmbzN~KI6#{R}pP=3iEMH)YKO9swg)DYi%GV<f(q~8wNIW>DrxOM?k;;w2L#wZE z8iGM$_Iwh!Vsl%C9mj|6X%PJSMS2`U&+;CQ5bC#(s~r-XIg_i69P#4fndiS}XsE7z z4_#+Q5jdh!Mv{+@@YlAzJ0Aaeim^xgd)XB9U(vL?!nq0!T*Td!v~V+GdMlQAcpC>* z*YdXHYZjx<##U3$9tf6SH!CZ7bGU!{)5{ayxmI5F_Fp!{_pbi`xf!;7PL4AC3|Z5E zLy(;CHtGvP3yPnir;zulV<KhJ;4@BMk!OZ9)g?ebZSarVB^np@qjMROQgI*~`+8|! zc10vi;P`gP-&7-W$KfHhtI&(S(|X@^Qj@{y_L{$EgoM*H7tVNl#{jdj8)r)@?YNIV z>r#Eu!om!zk+|>f6W`Rle9)5*DN46E`h5os-vK*i`!-TZ=@~=O;bf=uv>(+v@<<PR zufbi!2_>$hVO^?u2Q_fJ6}@tN<V*r5-uFKAZ*A~>EG#4(1Drmcg?7@Px*t$kUaNnW zP%>fkQYTyC*Kzt+`!Hxy$%qCv;C#`}a8-5xZD_qI79PY{K67M(ORS^dJuiW;>Tkal z>z^yOx9&+k_npr@>oypCY(i)7+2)}Ua`kW0uvewD0L#s|-ne5|!aa5rK_<`YD;^Og zK$3rQbQD57b`NGGu!|a%<-JUE)Me)xt>mImU<GfvG{uY(E6w<zJ?rVE<^hf&3os?8 z#`0GGmqJtEr)Iia#y+O$TL!*H2}WPkLH?%h56+{-|E)8_Mtri}$sk>T*U-6Xt7qyw zA~m<rPy_>vJRX0yKcq)gQ2M;Zfg3Vxq#9;8{BU8B7IT;J^Vbs5G68|Iw;H7bo!8Tn z%#4Dr+}IaX`*5A9zwujm>9jWn&sLO)MmRk-!NOjN5%roW0Z1C?C6(=o<afn4iBB(~ z$GIbZG^b3WXiJvv`b_NEGBRU`dWlcWPeNa-*RAJYSNGm*J=5VbtrGD5=s-Y784WHG zP4v#uB70cN`9XyFOxo2qn=Im%_a8i;4}LB&Up3^aDSwY{{0*<Is*8z$^Sf$l6T}|m zJwxi%J$_19W<wD~XPDucL_M*^@9w=_B77Pi&-`<_tX~dq-nvmyDEfmfxJO`hkRKwH zFb=vmAM~p3<|2I(aX><5NRSZ6KtqtQny3)_TkF;|eJ}U|7rQ7Ifz|j)cbtQ@AKP~e zS<?+@+Al2i%nzoZiOsp$5PiLK=zm~^!3c6&+PCfeTEn-t9;uoh1<M<2^B1C=ix*@$ z;58Z#I`JuyBpdWCnttU_aP}kQjg+>>&INsBJP}zSZ`1nOH<_hzfN>GgZ`5$JQPQVG zfHWO?oAfzIh;uU+<)i!0I+>tTktW_uS8JUsxXS34%4KbrOZ8XfGKCkBhC!k;>sBv~ zGh_U}tRUxe@E`+;)VsDEh3&q2u1YjeOvm`<o04bAXKqe$<}3+;7Z59)?{mM-bcgED zm~fApOdAgD_5ZC~(7e<}%`O*8S|~Mc{*}mfWDpE`AVfdUKhO)*@I!&JmP3y+)iFAO zceeqGpTN(pwE@v0{7aY7PTT%kYx^HrQ3Nm_OGfZ#8ihZF=zrhv$mtf6(7c+1Boy1% zFc6JD)`vjA67e`w>AhlbJJmr7VVMd=5GuGsMM$S9K7A>B@$m8Uidy~s3?Y}GdsDJb z>rYEUe3FfETSjLseA35uZC2}O`~3WK+!^M5@!+<N$}wq9nk{KdJ?Eez&&JI};S!s5 zWu4(0PgJ&{QAgXY^KbhC=d$NH?<l{W`}v)@N0kEV{|1Aqwk)J{Z4|ecqR4D=0#MXp z<af-~jN<O1n@hY#C^9E8;61KzMW$RpbnXOTV9fuQF-AQ8_{3zv!D}fO;q)4CA2(Mx z*1Er)j|nuS8ZWB)@?vk8@j}*Qm-da^NfCsP7!J_OOkjx=m(YYo76XJwswy-!?nY~_ z^NiuBJo8RzNs6N6skJk6^X4ZGfAC3r13|(v3Ps?zNFjM4^`4zey~sq<dpo8x$vIvv zY36K(vB3f32fGEy-1>|kU)9!OHN^iFm|=yV(^#omlY-g{9oUM$UG=@r{h83w7ZC9B zP1~pe1uKnJ3u#4z4?u_A2p@rexC+50wKlcFeXD6Z!R{4ijWV1=s?oT9rlfkkH}kt> zg@=l+j(rG!)qQ{k3`G|Z2&X6$b}Rmw4*=kR=4CZQxQ{k~|AmI<%l&=#J;bEO0o{30 zn?r81)9W_)%HydXCz{UdkMFus{q1}$NP1FiChK(ghXDPzJ~CWMe%u>QVXdsBnjkFh zodYbJ`CwXvinjLdASYd#>gyLq7E3PkZs>I6tt)U!VQ1qdaO?kaa|e_KmFLdnbZcsa zN?!Q(tRO9;Esyw9lc)5}nbgvqteb>QPU)fs{-QhoFpHuIvp@SQiZTXjJKtLCL6PJ8 zT8<xdz#H-MQ#Roj2E0^?@^52d#Q!EI11pPQdu08?H_h?aw29t{`(|MVuVs){YfO?x zb>GA?nZf0aJ7M)KSojePZrx}Tr$au30$Lk8>ZKW|G}E|?6cgY1y-));-PV-Lnf{xU zXT}Wk^SwU%T~AsXEF^_i9NP?#DO%JITSCPlKZ;zZd=e}AeDXAmM--`%_uO4QKP0k; z!D}7bxy@q`IR9!&E2>aS_-c?rDa+5ME9Nf0r|}3(zjmdWwrN#$edp~^(m{AV6BhPO zGXRg0f9QZ~^_G9L?tV014?&Hl#InM14GPK9FOg==vzTLP^47VE2P4)x2u{7y7+reT zB<6_H52y{jUt6iPuB+;z9Y?>b9?p09cp_CFa=Z{vJZmcsNx4guuloP6a)D?=ED436 z=sg%GF%Xt1Py`+vu&87^$>qwvD>S|C;fQ>l4cFM(eP3(Z6}o64t1&R>w(vr}G;P!! z+un2o3orjCb)sO3bQ7t^_kh{1n=P4(vVhS&|F4QH-+j70skKUtI|@EiKtpM*?yKI$ zF{};&6%+E&K+zuzgR`wkNa=enF7_R7ex_Tg2AmNAw6E(nn$bwX?@mrNJ<bW<#fKGX zdBS<Oy-GKU{A8fK|5Hh}?fVq*&Muy13GPM@*>Esqvb5_#Aw2Mn+NBia(O8SkHW8K) zD8dOGC=j|M3Vu;s%Wq`n-g$pV@)=DP7MPcpyhffz0h%7#er0kLX?;o~tq109@asR~ zqB*8Ac!`;-Ut<d?tC+yRQkDjS`zriCte)zhWo`n>Gx%Sp;WO^9K|IsOPwk8ayF3Y; zps;yjwOu*%O+MijCe5CQsDA>3H__Vx$R6hJ!Aw@J!7gYk(~kX?6d4tgNNQyA%%MkJ zc?`(%da79L!{)5N)+jqpD*F$$s4xrM5@sj_4pKfJl;5XRqh~&}EVv-NvnPhMG2$PJ zsWe7>PH1OyruczdotxcwhyO)^!Qbh83C=<6pt!Q_LStKs$41R!6TLM9M`kSsfBdIx zz;=a*d*LNx*UI!Fw~K?qhY<(dWKzLTMbzb6UuDZ$tS64U=@5$Ss9mWQ_q^VR-|cF@ zI-b9jRY-lA2kvE@Ee)-w#=_NUSAp4TcaKt9`d7O8ZDu&}{dpePOYPQf`E?Ms327tZ z*Xvj@;2Yh%Bpz_tGNXt6;viwf=cOHi$3SxsVR=5TB{-FyKbE44q@kX#lQHo^g9^W@ z#@Pe;>FpqpJ)Er{mM6~j?T{d9gh#PgM?`&e>mp9id0|E(CRL2?s9h-eq7RRTq@AKm zFXv)qRB!jRSlGW^GsxLiCxrO*z`*h9b=dPqIs>c+m?P7(Ok#<OHcQft=5xP=PLCM$ z+>1;^JHCQg3?A*iGAS$0x{4m$W^9_3^PvWHI}sC!eRSJ=n19D#J>kMc%4xfJ<ZwzR z&m0@7X<i95bnnnapLLgb=J?}`s8{+MrPCg(2bG>0iX8Nts;q`DVBoFh-eiB7slH!8 zvZ@Ybq1&zqStKNucOko~<C=?5gbF#QI3u72W%`Y(mPRrioM0$1`ln0k*SbRlW3-k$ zE8vhI-5;vDeCzbL)S!_`L!(bkdzpzf_8wQR3ySi#HW|P!tXNobP8>Wc7JrtOZECx+ z>os;JLn+{pIfiyMAkN5yKXpDvXmaHZ*JngRF1KOnKUgMj>~(2Zeo|j6>n@R<gKl|+ zaQjG`@FC2*gh4F($Tm`XUzB2<kU_3AX!mLG;YmKLw?>Q+KZ_BmUj2;K;M#D4P`>{D z>nMa<D`LpZO$Z#SUMMOcS4LqbY;baPwZ!R8G){FQYu~dYUK%&~We)`_^lW+&G2jMc ziKrUbCln$vUtG9QBb4?#kZjgFFcrx<w`NraKG(+GG%-L}1(!a`+7Nsdk^kWZp9}$2 zBJ@wF6lmuG8T3m^n}Kbw!7zl)ywe||@2yY4#Y&3VjjwJtso5~b`yycm;vs>H44$!` z8uoUoc?r%+N{_x!3|IME{QU2t1F}M*Z$R4RcqAa7+eqUkMDOdPp=yn1GQ31C&eRG| zoO^5&C<dDbL@=NOGL$KC0?ql)xW2sRLKC#dk4PWY<OMN!zS_7W`wHitE6K%1$@*HZ zuRCX7_ZEtwi8tLhx3r?aM+lY2I;uU>FdgV+<kX`ah{u6oY#aZneBS$_XT;@i!usBy zJ_Lra?#`P*#o)3XM41w_{^G{1)z`(~tRYw>@!<bcGj*-|I_;VJerzC9MI+!^`mlf4 zN#y=;^T2!K6s!J8tH;MT=Bkashq{U-8$1@i0J~hn!YWqG7Ho3H-e8}Gs4*Q8IJgnI zzW&UPaU45kgerU3Kuw|CRcR+{JvjA_+RGNA2l#ga7`#Zuo=*4EbJ5^L^4~DXF8xb# zltb(?Pnf@<{Bv8296|ea&N>%XVn;$L;<%Zr$boEbRPWEAAD4C5*b;=bd#`|p#;nMS zBb{f;1BJu&45nQ{lQ)>Y#CS%@Zm4>Q>!SWi8UK@-$Sf&pt@w71BN=-~W(b1UIZDnf zJs{c7;3Q?)T4oPO37%2~;y@&!<GxU8z)16b%5rzh%|C)(E#<w897N>6V;pG230}N< z-<{TuV!N6R_V;o)KxX$`6~4uClCAjqzDA0=Tyw+ZUfz?7!3B1b+;{HGugN_>`Bj6j zJ6b=SPaLK#VIp5ms9pEZih}}8n`-=a&0a{Ov)!PUlpoh(wy$p36%}6!YCTjlNdZaw zdRNp{#SE_hO^J(kqxUI3*#DY6+jxB4-{q$OItnjOzBM`bnYtVsEzS5dQxk|i%nRuL zEi%L1%U#B#Qvv<bu$+I02iqBSAI|nDM(GraCY#x9HHM%Ow+iKinxWabFoQ_LS7#9W z&5T7?$plf+H}+A)bv-#w``{oBJF2g4FYCB8=9GwczHntLsw?=YW|ewW$19d<#tLd` zlBHevKKfQSryDlWu`I6ltU4n))&5~po#TAORh#sw*&gjHOT1xh<-qI7p^?9p=w80# zxR7N?4GL+EurL%EV|zTWwy}IDAkO1@yhz|;LJ|1-SJG}KJ?Gge7xI?T^Zj(}a8KXj zJ=0%rkK(J~){r4H_|vGG(Zs?XioAIKKhV??-~1^&7TjO*SXi5jS2#q=T6QkT=lQFc zCki8p?-%m`E7Lviv-@jcB+TV97A}*vSx!OXGEq>+9qubaqSSCc`^$}F>cLdIbmWvH z;^VB1+Ub5ju{;ZqXQQFYi#O1VA>RYCox{S5se{pv^#tB#Jw<ofvv%p2#VSm9&zPQ< z(ay~dgqT3!_g?kaZh!fZtN&Y!m}}a5Q4+*m)zn?9Ej&u0@5%g|TkpMS*}LrM53bPY zEnvp^>_vev6E~l}+wo@{0!Cgu_urx(Kfn-m{vIckx=KvZ;N=S2kgA^MR1@3+^b9Dm z{B60>hOemh1MNGCeRt__Wo>h_6i(FtdDaJqVk0kvRq|{CB<HxiIgd1?#=CIc*!|Qb z{`FR>LGROJcA;ioTBx$@_8qk~G#-(2!cc%5em;Ju1zw>UuR(wMm+i|=DU!1O&nY~f z!CwhrHt)n!Nfc^4{XgSc{?rF^NS?iL)0#{S-X$?dHgTCG>_~CNJZe{bHt)&1cnX@; zwnXoH{1ETFC@mPswKDgq<I=~298SZN|1>G1aWX?PyU&JSi8xB7ngz!E?bGlEgO}U! zGTFpEXDP??L!HHuSUq?aJ@AMezSb@y^>)x13Dhy3O8PHz1q^!;7>&Tcit*>Hg3M_a zIUmy?$hFQ07DbR+J_Cl*b9|B&9d+25A*ZJ~RGf_o3P_I=Q!o93bWATgrZ|*Zltpsu z!G-^u+w%@0YNzqs+XA|uNwN|fvZ~6`WH(DsFbC|UO8_txDUi1X9ql^rDS&vN!6nu$ zlW-@vVGp|fobRp<vpB@AHxaLub@DX$e=}xV<A2-kTB-~r+CyUYWyU}y`}5WG``IVH z^MdotdRQ1Q9KA9~pamHGJ5LPWJ*`RE554lv(BbahgQv(>C->~sFK02}U2^n1|LCSE zzdJc6^QiJk@)I)?oR<tYYCJ$q{ytgkrv+Gylv%urU`EDg@m94(Cn!Ip)4B)crv!K& zFdXb~O}_Aiu9&M!FQGwhK#+xA3^%feX8@(74YJJFdbz@Em@9wSFcNuM+lsB{1T}fh z{vMr5T#Xee1VTrXZdY#Gc%Q(Ny6H-iFM;}256T;k`PHg}X^-hx><4~G&=O}S_pmoJ zgv0$+)@Y<yV69UvA8*qV=OQVbFeUWlBlCqZLJ6XURhQ>VI6&5;gyuo@yG!+NfWJ)M zZg}Po#=ws!FV<>#H(v$2CdYHF(sVQc;qRd5hCxb$8fHNHx|r~dm&RDGxrpL^YnMHG zT<L1X((ktoJ&w(@yE9SL%3q&NRdv;TSR=;Ixwx?b<Z373HWp<CmW99qWPj&K`gI>f z7N%)+MJPI)t8|vFEZcdC{)@)@PY1kYrua9Wi##4hSKa&fk-|rL7TC+OFMdMc$*lA2 z)`{A)ri#hS_}bM{SwotM0WMm=Iv%YikHZi-`{m4}=$PO$Xpi5r<L1Cjaj1QP=X2oz zZSxj$j<P|o=u3`RH9(H@M-U!-0?2r&%jWZSRC>~F@8^j!otd1tYAiT0W-&ymRc>Nv zQK#~PkB-1ov`vBFq`<(7HJu*$pb#50V%%Tgfbl$a=Fws9Z`3u9mJiGu11FBm0KJ+# z9~s6RmEnVOWSRx&I&r=KWJnRX`&mTpQj*N|yJtW~T#MFS@gmC3xpt%z^;^38&k+#r zNOXrav5Yj`kTOJzAI_+C)ir+5BS5|s9)NMcR;C$jno<WzD4ds5IaHzdwBQGKbP_nq zHMCkmODbX=A&|Y(@FXUKC3U&D{%HUbzV{z};sqSA&K<S<1ao=9S)KS9(iA8D9+#8L zEa_ru&TI`m!GL-?hgNF456b!TcvT4TFEIWylemQe5d8J{s{{RCuZ7Agz?y;xinl&_ z&+PP-QYsb$ets{6zn|mu;F@(4AcrV!L)tL#^y4P7=M+j%_QcWvc8ZM}*762X=AuD= zbmQpWs;p|+U8uz12T}(y=v$8HCHKuaB)CvSi9&GFPP`yNtURD@uFkErJ4)1^2WT8# zStqq~wT*GA$epY5UFfN4G$5G3g3h@s8;4Tn+s^C6(|Yt|XJp3$9ZC)N!xyYzr{lok zmam$+HJ5H33z31<`Bx{-ZO}Xa9rM!Y1!=4y#XpFP$ez1=IJpbrh}Gje;`xszgw{A- zGTw@TT=y7l^<74*8R#hgBYf>KQqRqM>^N8HV>HO7(F@rq3vB1;{L;UL$WNk2``hbD z{8Rsymbj{kH{52_xcV@~i*@V$H4xkS^s%-C_(QnitevNMl1dmc@Q`dl{s)T(8zfhA z*cO-8%osmvu`Lyh7+gFV0|aM+`k;npsetdN;jD^Yw7<394f5QaZ$zKnk1e`-5*^>i zv+=@|mGpjzR9=bugaMN*(rwo#WY<<ikKWkv?&*1h$BF9vfE*6Ud;636)rXf*gkJq| z_Fz6)FtvsJ(*oN(e^q>(I$-X)FD2>n*+lo!(9{PMDK&tF$^kJDg#(Z+zZr|rG=_!l z7oB=ih5(3_0I?UIh~()hkcI*-YYwO#{j~X5uKHhq6TlE}UE|$XJ5-H8Rxn3C56NB8 zMXYvnpy9Yl<$9Z$!isZ6_wGN4Iodh$+EB{$rPs!kocIS!5HN>SwB0}vZ;mQ+d#Q}l z5QUL%x)J@S@eulE?x@iLm7jUhy*}bA!Uz+}N_w~ZQ2Kaf&vZPaZJDJPtvC~8fhH)T zaI9eM+(h)dZ^cSXnp-!PV;*m<T(C5J=V0ZaM^8&8&JPPy&xG9<c3pn*AUM{~aSl4V zBaISg2hI#GC-W{FmAyr~)Pv}?@LCgak)x;pjo^gn6zCaFB6idGDchLf@CC*XJ5)ix zd@GE=wGB64V-Dhyz`NdwUI~uclSK{;2u`{t;K4Ft+hfx5&^h=`VRcB;QwG+~jtgK) zEp<;xurB@MOI|~RmP{oa<v=Gt`KgZ<!Rc-y3^>+BVrAJwjW(d#4?9ZeT+f%W_r%5_ zJVaMgM`kE*mn&mDqRh!yq51AjDIjSkWK}`0rvpAme63V_1TOOh`%PJcaoFV^7H+|C zgg?rvTnx}$SO4Xh|Iq1H!gG+cI~K9fChi-0Z56uTO*2Tv|ALa~UCMy;E}!22q@tQV zn@GPkr*?y%Q~NE)e>bM%;+oBX%9epEU+DRraKh|(?t^d9k)SJ%w0sKR|BN5Bykpjm zOIL!K4ey47r&qbBshw0WawS|Q%19WEACs#ls$<1M8uL9Udgwuz*c9p94*O#1<Y&zs zN+bZ+^<L8>rFpHB+OJGx=Yy%@R_r7ie&_CW8zB2cno-py%g5c3kOPBWRq4pdx{pv2 zVUBz|U`16@NhU;q8E`~|3h30vUtV*Pc*KZMysGXuaqtj`X9IoRniCi9YN)l4+Ma7k zv_AWjaEC~O`HQM45oy3XZOk#;$>o~t&+pd|86Q&>jRUUCqHxCG6tarld-rx1X*1Qj zY(PAVv6KP<=pZ$Dc?=PSrNxJxTQ4l>xrVrfB)&DAfpigNw#47L`N-Ni%N)SUiW3D4 z?j-npQNceg+6a&66KX?KGkPI!;_Yjb!W<*>9&qrTk3`5K@gL!?Z#jwC6#KjK7_w9O zoDKATi^`!h)FP9pku%g?(WY`Oy|B%}eg5?$DD6gBBo^%at*1Dx1=#mv0)lSBT4Uq8 z&$!Ow>Vc%+wl~c#pETt_9}Y}D8;4W{8=0gRCMP7KGI*n_WwUwvqBPpR8=pqtnh@jL zZFSB@lE&~Buj@`Y7Va!TxZu(%gD8+7E!@Qk3$G0i@m_g4rO;;@{b4T~zPK2j0lj)2 zGhyqZlV`Ym`T1A4`~q|hJ>G}LO!F^tCaEA_c#hck{6kM~Xb=uM;RV|2Cj!UJyfPy5 zzX*GZumH(0X_^+Unc6u6?qySPQN!;KJ2Aw{npxp55u%sEXwL^yy6?);S}~M#r~wDC zR<>|)kWFJeCP3-Z_vA<B^N@z3M4_2W1xHo)jtpsKe*92Y>V0*<%3k!fZz_U#ZO%S1 zcq5YR;IKrIFcl&V$?=$RCk(6m;nl2j`RDk8Qi%h5vo9BE>6w#fX(F=tq?<?^le_mD zF8sNBIqjIRRW-?T2c+F3_zTIPKm~eW9tRAFV>@1jghWo(%GBFXj_>lgZK{5Oi=HP* zOQvDX(XVM7dhEdlPftG6(DeSet^BJ`hz4cl<uG$53eWr~6mdt7o)IZcRqgafS8Zy{ z)o`s!x4CX;^R^!C%RIRUPd_a%#Z!DjjZ$U9wyL$$vy-GZYzK-qhsCVzrk_eCf}ix{ zpJe7^86EjFTtIyhqAjW>FN?xcyk2Eq|I+sytdK=~3?74*zO>HFqEz_lYF!_);$uX$ z6k2MksYt!rV)~bqPV^aCV%HqC*7*sKTg-qn)FlWDi+ZHfJ2Uy3ObOVi*qwQ6ffsJO z|AVbtOkojQyK&dDtp*Nu_Q?6bDg-~EUP4)QpQ{f*>LQ?$H8n5;>mIHZ6=vKOI^m~d z$CCRDW!EbHBM1@w9-iGmR?JH4gK8isfS=BKktwoDN8sW^SutdV=bA7N%Du*kD9^Tk z_J1Ik0|Z~-O+H2q-fmO)q0gy1Udawl11s=PgK+5jm0I9ye53YS&dc-@q&soZr+X^Z zhtbdpStkBx8=FYtyc!+>yXd_pb4x4R>mkWxG-VXSG3-$j%@j88j2LdBOP@Ps*sop3 z4e$LufgxTy{O;a#{8RCG-hIdt+S}u3mayC1SjimHM3fw<fdaJz_jw0zu7WSq%wIwU zBHs^0q2Ocj!(w13G9i21cw@|QNUfCw{p3esh>C}M91r-`3TewZ(BtjRUSqz+=~%-J zvd4#`h74r|#ooVpYFk#|U72yAIsKj#s6sx>yn?li`Ei%sP|m#NZW{)<nzZ|UXj!Cr zKefB+c*pX6#NHF+YHBXIR-vE6A#QNHdieI;%-o(74okJ)aX14|*#?omL8qV(mw)#~ z-gS$Pg)hwTXAdzV{MCaTHgbcTkN0M`bTOcZ@<t%wrnt&-Bb}x~>WNQk@v)uFr;_kR zTGI3_HBgr7`J-sEmGq4TUMx_@!U1dV!%1UfkO!kfBmglzR}qi*VrDi_ujU$lJ<PjI zB_ye3zCjsad1@R3(;CyxLMT|W>t#qFB&q~1A^<5)9Y3Rb+)i3OFb5$Xmd7nxtCM4- z%;2nDzpr9nO%7Ue57!Umf2ER!#?J42AKTYF2y+R>!s%E^!*?_Zn=HUxs;1^hE;`l3 zapsBVt+$6X?-IabDBp@<)=NdiY2_<XKhW0(vRg=4*m^kNHw7dFRF4B6I5e-L#-&E* z)^te~`3LLJ{^3q4w3@h$9yr7SIerU7!3ZX4JZ&Czm^T>V%HMvF%C^B{095X`oVrh? zm~ohnjQ>%vy#J(53>z#E@Ey+&UaV$wAV%=iM8D-H?I(};Qmy|q8m!*k`B?sYj5KEH zDnQkB^nL|`4kM+VP4t$?UdJ}#+W6xpP*LIT2%i;JxsFggxO%z7j0)zYXJ89s1ulX( zgST6`r(!HiyUi#8nloa|+_GO3fk|*fuC`uXTj=g49i6eSWGND%LrQaq7w_7o&!ax9 zJ8d7}_9X8pF!?)T@T*^RY2cb*v+JNtEf;Q#hRUZ_e@_c!UObKjPmy;((_v$()e{;w z)8;#W)KvY(T-lqstF)g6e!zjm=MhM4e()7`FY_Y4;?w}lw>@~@&*Ys8zZQF_552wW z^#aG2N+Ks6L{^yZr)|}a<u+<mjHD2B*eXEjeMpz!i{5%jj>4BH&~p+%(?W~8`!cj+ zYIFlb6x!u$TCzN#e>mMa?9s#H54TSC4&+ftUr4hBE2OPT(}xE({M(lRLy%73d}wZ! z*new0Nr{1{9eGW{wJk10%e=e(xMXqbO7=3y_j^?E#?vJ}Q|!w$gdx7hb|LrOo3(FH z1e4a9#l1qh)W-9{uIBqNmoW$n|FtRy-#5X1*7kBv1CVeCE$@45v&t@1F{?)T-*gsT zeNLgT%a1%uH<4F1_PT}J5*%-CrH}JLlU+`_RovqHbwW!tB>|T}K`TJa$zk+PotLF- zEf(ho9jm&lZ&n)4=QUVFsXpIQ(mkzp{M&S9M239guiD~sJB~A<w^S8PEeFVojt?@J z!x+ceHy6`xS@&=nE<6I-ksRd9>p963NkOgEU*~mP{@<hMvgVFs;e`#)&$U!~7^L}j z<Q>w=<ovtN_TaIw<xoRF0F&_}v`!+&W6IT$il2Y8z}<b7GKYT0IFB?kb)V=FX$*oj z{jl}d`{bv3dG3r;^>Ih<E*i<)H?*2OKAMJvNS(8xJ5P&qT3*5xln1}@YwJ@}iy|Cx z(EA|vkuP(P_VRWo7JP`?maV_=sx14d&CufEVs(U7^ZqM(QmqdYdo1a&+qPp!AexVf zhHUqNYJTv&#Z5fJO5nUA(#kmPcncEwnk>Nr@!b`?q~80AZ^hO!LJ}XOsEqYk%2?D0 zewSAs-K1ApjsxMVg&PmR=!dc^R3W$Gj>;#Dv2l_g)+fbQE+I3yUm>xAWcuwd0f*N5 zqt*xO8{qzC3@~aSX*{eM)skpdV%X>Al~t0Ui2ahjfW(R+vmjR%L@030=6R+{fXLHN zsvbX>e_}=2O&^2yYYv(ip~ITEy`$#a28Zo8sCh@5g4c#d9qqPdV4SnA9{owAG!Jk8 zn<M*6oztd-0t8Oxy9o8lt1&LN>xSNph~WCzqx$g$>GoCPvqTAygftt(2>#wO7!qNF zE59+<Di`^Z`Nu2>gj{}*JplQ8bZOtC%r7}Dhgd~UKQKy6U3EU{ndC}XJ3uaYtTLTc zGPD_cl_3F!u2@%2Iu&$(qf3YuLV+TRff9bOVPzfS7rTA_tt39s`+M5)OZRsHpKRIp zJ)>EeHej>MJN=QNPt0G=aX5<J3VGrbDn}&Yg^Co&0H|_L*z+J1p*YSh1oJZ%$BQI6 z7R(SH2d3V<`g#z&8a^Tz<r8Xw=rvtG^~U71$0y<=>WfrG!v91av8}2O$icufnd)>@ z2*Ho~B9e5ugB0wfg9xU1O*4O$F9IHHyL?5I0|c_!iFbIWcw7s?;FIR{ME>dVL0vI0 z<o*G}3Uek1L%#J6%k(X)X!43E2Xe^6VRk?%;_30u_A5!{B$p`O5AoTRiityG`L?I^ zVS>PJDe=?0>*E1<c}EQK?CRv#{+2UXnfn4?P3~sD2OV{4=;K1aCt?Re^7r3JT5tFr zidx`CS@Zyb*RV7KbW)Vi_BhF>tx@*WmuIm$$3dow!Bv+@9ZTw3O`1L|KR*owg|uTq z56k~X>jEx6#Jv`hJ%UhUcSkpQPqog{yX8X1`FD3-$1R*&M9{e=6TibQ@5m?L_-9Fc z%G2Q}zpARsuCEOk$A2coD7BB1{y2F4y<gnQp-(;#4MJV2v2b*c4!FHel12<4LziOO z@Bb#rMV~bXHIZ-+1(-n%xRMP^_;r@>wM;$*C(K#Adwl)D4}J67z-6zwN(5z|9Y1*f z;Gz|lbB?-1<`S4`QAWc#SZCN(W12Ji<s-Y&KdJ|NwzNv0*di?-SSMa!M^Y%ODU;t} z0`N3&1hP%cctK(&<^(mq=_llMV|m(8nM9@eHI>_}Vze1y(4-zJ_lQifGhSJPjMd|Q z2Gn!&pet(C4jCUPH>P{Am~G>uKw_C7=y%@bhcH0;WKkg+Da~{Zq3BC}L)HS3WpYct z2opVU58ttuvd0y$vb;R`bHi;+pvnS7sYJ&9s$>9j)bpO9KpR3SQL^T;<oy-K3X(QN zn}~snvf+Q?bWv1PgVZnXeW$vBxD}aKJd(<TK!CuoKnwD5++u<FETf++)TiX5{b9|t zPfNQ-eCRW2ZfJkh(x!4g^cko<lKaFJLgt&iY-w_K5YGaVk%CRniz?cx@9ips->lq! zyj3h_%w9skKl$_WwpjzdNo>F7%J^TrG96jKN&*z8I=vXM-@K_%>KPShdU|E?+2egK zZDWw<IZL38FAn}YKYVX)j5TzYVoMwk9Mtte(hFkAX{FI!45DJ3Brj?S7#bDji3PMo zAM$3X09)MuhTR6<ENbSbt_#$()!3W?kSAvp8~8JjBLz6*VF3J4|Aq;N@tM}<#DA|I zZI0uG-d}f(uE@^H@34~>-ic_0Cy*7qYiOKT<I628EFg#!%>pv}%*YDQ*J;%hGf55C zv|=JfP@7%jO;!qe#lIy`@O920?k0c4m&A~I>l@7er}VlJC@Wz-egY)7EFOb=dA`{K z$kKYI=YO(ovcI`>uWq-Py#w8kA&P_o!*47j-|1Zw$$lQlfCDU{i-@B13mn_U#_&_b zCG>F3EsM^OW6w+EhyS4MpO2@<LfzIsPIz;gyK(h<0dlD0K-4~5*<&@q91NYoiy&4% zdmLT5Q>>*gN#a03gofWHL+Ig^1KB?f?;@Vv*f8QZm0gyP>m4XiQ^t_}Z+yw)#8HYt z*4N`#zbwk$0)LI9<a)t(OrWcYg9d?d?^1ZGy7XjPj$CDKUTPz?jYuhcyuw38it$-7 zHav|FDGlMRlf&PuOcXQqK=>dl#K6MsA2j&xA4+9+^>0G~E_eWktbTg1Bf#<JPw&YS zpszjg@;m9D^syJyMAIR3Smb#D&>%KV4PIy|h?ZZJ!vVbR<(0sGg|qf4@3&9RacKGQ z5wOwjVjx{AV(ma9;h%sR`q~P6V32Bp!H#CYboxK%J;e&9Wi7U@$y~T|{3>C&oHbpk ztOPQS?<=ArHX5rVwpR|bn9g5)*RIfIf<l40sHH0&vm_LKQgmLY(BpiKl$OKtLp^+2 z|8+1-<AL*G$}0OcJh=Cm>^0^ST>+3N`gG)DayzW2{5|=N6}t5EMh_&6kwha9w_`rf zERB-pCnI<Ce|zM8QRMN$X%xYL3MU2uJDyJ%cynW=15M9~%E4lR73b9Zz4DEZS{Iq8 z;sqV1=01?lh8jzuw*Q<xt`sM2Nd7QCHXeZVEdm_K)ZM(cQj?xdDPRC9f%iN};utoz z_?kR?X+$-Na2o90WuPFr`yi!7D=*660Fl#9gtBZwJ-W5?ub>6H=AZk}qkD(C!D3gL zk++pORo+Ga<8FEY4AFYpO@A#j*ME91S&E7UvAg_aOp<i`ccJ_@bhy>sw4-xH)!z9f zA%hiVrC+<~OFyb_0fjZYxKlaj{0Yel>}rm;<L`Lq+Tr6$I*lfxeeEu&3}FB(;T#zR zPCUHjFuA#2^yt$e<Sq!#9CIxB`NdAmqpUc7{kmS?eV+}aj*}C|hteD{#uRb-WpbFy zO)Ol;f9q$Pj%i}C1|z<ml)ALCt!S$7S|6w=3@FoT-M|Q?zysR0AEoh@WL}<+Hw~XN z{Vvue^M=BM37)ne&9-E^_0B3eLhkjsb+JFt2e!?@D{av8j0jgfxXg(axxXQmb?_J3 z-_LCCCanxDKOtR7Hl`_2CReXiad|$Q?oD*KoVC8kBu$1Giw@<xvmsxGoZp0Sz=98& z0G1|x7=3MGM48?<V)?NGa<#C0sCpN-m3wS+r1gwEjT$-erix_SUxN;kiFx1HB&R=} zl(ahm`E?kN2hQKR4kU9UHDhS==k;?i^}-L%KIvUrm$woC?XEG&{m|jN1HZ9m(&P|r z@%!AP<D=&K^0Q?6Z<FaK_ekE4ZZy?9U{aZo{BhA@mYUc?+BD4hnrEpNT+65IyQ`ut za+V2}Xd<<$&y%1Bj>MDaVt=jmbQR>>4TP3vvN{kSm*f=`BpCd@p?+N{zw)^DbDrM= zg~fO6W2Co+%%YF;csn#6ClvLPs1_Z>Z=TW+Xj0wVy*4Ou+}^mo+@2p35%>}ZUbb>^ z+2wcmSl>kUSlFK3pF|Pf?*HV6LolZUwBp#&UnhgBTC;G-@3PUfb2?@ns#3|Bmb{Q_ z!-ZE>(Uy+_3vu9MD=mYy;3=uj;Ep*NxPReADnr6Yx6)U(5pxqk)?HrMW8^e5?AR8e zLyrRD^iqls6QgRyn}Ohndn~_hQ!GCyD_LX$D|y;$PtqxKB~R>EZH@-~(LM!~YhvyD zZTmi{HyV-~_tQ@?e9q`#4R9OxhTe}F`CiBg$?i66_NgH?BFBT7kE!DO(S#bR+xtrw zJ%yRz-^6=(5aew8{P!6Qer<{czPA+R8{04VwtZ8HZI3=+-ACp9ZB=?lqit$@4=t-D z*H{lS!255_Mq9cH-B}!Hs;bnJBENzLz1f2=ucQ=z)sSX?*h4*e1@~?RiWdhZ`L2jL zAH+pJZOIsc+Rw>>EgW7H+UJ=T8Ivqkh26ya4=50)bIp)e51$G$a&4^3GGD$+WJcn4 zX`}-fiDrfBQs*cB62*6I?!ls|;bm05b#3`R>W!*cczxm<mR{uVFS)GW0lC9}+MMyG z%5W%Bx*dGN;4l2r@=$`Dv9M<PWx%^L7F2d;yQDH#!VNQj6bfF!<RUhTGuL;XC~c$s zAxT%p7aOEPjU2aRvo&-c(claj{wG;L<>6EqC=;c55)OoLKn%8~{Ik@SFGocgy=$!O zx#@4mNHj<{--g=i{U>s@qP1Mx8SEUm5dQm~B5hxHUO~)l`Skck6)en#o%C|dj1EBK z6jkvzW|9Y0)e!ovc%#1wC|n)YxGDX$Nayo80zMtc@+o6tO1xD-?agyJtZg?$Xb|_4 zqI%Uir0TD*_FwNZqu{%aHM5Hp1xKU#w6LvKg>`#}<>L06J<E>Q00Gd%6K9_)FhwKd zGtMkREPwTjEbujLagc-CEpWdMe%0c(A~DGZ$KQY|-zRh)U%!XKkngb^hOP30)2z5E z3a?potMG%RLSwYL0EHI@{(Ktr3)t}Fd1da!{G`DGJurzPZYc><6Qk^O5{F~`$(Oo# z#HWZ~g2N=47sQ{u0D2v(?$$LD3ScC}DFp73@D0d{llk6i4cn@MAOxM}gdMgf*~d4L zQmE0_w-L&h5CsS%ps~saiWFCD*kEOk#R~WSoakR>h4H|jBmJa2<svKSJN|kqlE=Mw zTh)j4me3NZO0FU0BtE~=yVAL+h7wtUL~g5|23<4OS>W<3o~g4Q%B4=w4R3l{Sc4*s z7uWvtb|Hv*el$y|{&5ug^P8#iwsNaM85{D6TBAJKKI1#`UfK_}KprbjxKi%*51lu< zYp>2L8$A^Rv50vqDp;Aqb=NIQiU@g-L%?y@eWvGo7J3yl|8(mqow6bYRJR29jj+dk z7E^Neqc;E+bO#71^hc}tWVYn(VTv|$RMNfzuktBL+QX#=9k*4FMLQlE5U968k0N-e z52g<sGiD-F3?5uXV5F#eZ}2SNI4K~d%?iFFSdV@s_&((RoxN7N`RQioJswt&rdQ60 zB6xq&LE4TWbfj>f_`m5mo7r;t{l1TFOo7Cx?dlzuNG6a>;p>T4q}e&pAcV&MdQ5Wr zgCYigdA`PXN2+rNjRe|7=P+dWa@4@K<@sJ9xHQQdYReod88S9IkhZ~zz$)`hgrt*G zPTs16VguDEpQW}H;ahC|S}4Tn?3?@q8Dp!4KF(-44DrceE{h1t+ok!WL<v=o1?z$R zFwzPd%dFn8r6jcoKmU!z;Q!XD&tG|8=`JZCEjfHv{&m0!>&_+l2~H&5Sv})O>M~fI zJ;4%7iw0ct^r0XrRxCfq%`u&q5VWn@LE6x!fh}0>WdYRs4Q4prPbCs?-V+PyI=XP< z&^L@ttr16#eV*P3*-?1Si#~y7=>3^4=+!JU7*zL|TCD6}`QXp0R9$$o)@sIe%;`@J z%PXpRbSPl${)3Dk@72_YwUKyl!NVWI+dv<UTlcJ1(+YiM9*!iJYwC@B<hf6Xf}aWm zk>Q7#M%ULm?>6{mzXmfleOb=;I+Vd!D)%&k%c1XpVanuw9f}_iA_5z65cnu(3_eXK zj%4W8eY!jFqB_~VFjB^~%)PN42L4U<R}p$4IP1e3oDWRw&Y(b*UO5LjlG@zKjiw|j zk8tZ2NcZIYnxZ92yCono?b=pdL)tl%3aismj#{AJ+gFpEZ%}R3tAQ_$h8$MZh^P!% z2Qzl(0TB+c@pf`#7h3s~IrMUHm37-%PE6+F%Q*eY>)**&aQ1rcJY+q_{NSj#y5a8P z9c>ZN^vpz;5l7xZg_FN)h(4hnhs@zA&B588@forTEwt2w)LXy*DS8Sn_mdl+d*0#C zF9<3wGr0{4=m$2)3j~7Y7)G0==7mD+w#a?U>yb)y_aM4zx~)HCDUm_aPpz{GCzk`i z&-3+)s+~=wfk!v%7gcqEnXbfju$bE+0@}iQZPGp~X7AXe79s+-a9~>Q)J2hk?YIsH z4;%^Sp^ekyMR-V1Es^GrSJWBj7(;|x^BCWQ@Y2TVPyo<d%m46^hm0(GC?qYMH>-vw z<VAh6b9?^2w$?_iKE+)QVLS6McfaFfMa#-Ea<fTiciAda&;1OUi|Z?h9+vn&7Z3&* z__j`$Do<xIVxQa;f!Y>%E3R;4OE-Cx9UF4NrHJoL(q9QwX=I=gKR^qFBY8H!x)fEG z0%m+OOzyFxIg|BpUB|<T^XvCMYC(7L`i!`_lKCt5$$cr-q|ZuU&gfBUtq=fSy|Eb! zhus_uy=P_6JcBc`3)#GJX!>+6ci2Q*0OU^y-R~9wE$hYJALOp;zTWz_j`$m{B+m-Y z>XnnfyjU526S}zg!xqnT;`}$QT0wgZp7gd{y9z|b13k}kbcj_h(o78wvbQ`|?MM5k zkUzxK(;)#@(GUkxPvy9Rk+D}k_ulnD*(lkkEq`<*05wZkL?2=-VtZ`DNjUa~ulz#s z8^v%{w3Ji@b<sH*q~2-s#&_*>KT_nM&%Dpf_GW1MS@&_VEbTVvuQ=m&g`8PPR3Gj1 zzAuv>#l0_}lYYEP*R9G4sW<9kVf9|$Q?<+uiN$DKMenI*!V=qg6rqNuC|J{N-zd*| zxoRbn9}F@YUa+*#J4lPJ-S)rC$(91A(LDRq_p#u)1rIrL4D<84mP%KGhl}6!kv$o= z*O_}A{xAWfaI^_nl=vCf=X#d3`3l;MYgt)fiu?lwNekXnb%Bm-rOaKq<_F08JSOc9 zxWzCt<J5ud3FfT&FbYN1-9_ldow@-olRRmdeyyLAbW}b6M^8P(3Xl`9DDv5rUJvq5 zW7ZUKh_4v9Lgk8h2QC3k;CSV(+&#$&fd^H&ib*+Qb1;CXIVBl%O?(T@uXT9&r&{-0 zD=OYUfq>@r%o<D-sSuaPj=fOC!?N^J6}g|O7t?A4Pm-f=N_ZL-cMb8woFrVq!S27@ z2}L8NceyJio8xE3SV2mkvhMl6k2hGYNrmM4ll>D7(*6!?DAu##Nax5)-K8M<TfMFv zWAZ9$;|y<Wwr_mn_Hlo3c^8Q#gUTxC2lWS4h%=6fe4mH~71GM#u0!iYSw{gh(P?;| z@yJTk<kMx-)~D=n?a1|uoy+{E54x9-MQ*0TMZ4SxB9>@}2gDC)Ujxs()MbrcPJfht zxc`HC@`b$V8DXV_mbn2uc_v<ql`Swr?(pKkq#Ols9q2NAk<RgcF6`t(7FJJNf_evA z$BU;n>3Z{@jy}0lD&<YFvqWxvY!u(P6Nzv?mGdDY_sb0PrPbEX$mjym&KWY3FR>a+ zNd$%4+-YJT*ph_7QD=s~u3A|tHxo~X^{e37E*1r8FK8j;_Nj}acV!Wr4&TV##Ud}t z=rQ0{Y*&#U5})5~Lzz_P?r!}Ex^$Hq@6CZ5BrY^sBstFxLksS5esLh4aY!=w!wZLF zTzD4e_bmc2B`f|Yee}gwG1k_lctGP?7UaSp>R;2jb)sz%DSgXSgKz!nf&aahk&KW2 z(!W3IvgDj4aa3-EAv-U#BWhVp8h#E_e<%FDgTdFOX<=?5$6x&_xbhu3Nz*oSH-jne z$nVaj5kd6#2T$L*O-7J^7Ry9x{5iFoZEa$Zap%k1_F)!s%NBy1i6MEMB$3IZa{^C0 zwSL=+B6=vB<?0GHa;!&-A8T^E$i)S!S5s<_{1m=%L4XxQBh5>eL44n79lq}I^Kq3B z2A17z%b<@vb7GzEyki9P7hB4t>ugLF|HW<9EQ(6Wx>x~;0<19I$Nr^peBVs2OkKKy zof^WwfWpEoSyE3#xo|4@1)ssAE_Sip7M6+)zl)+6qW>FOVryhJb}U3i#k{%xb+;Ms zKzq?cXT4+wWCcxz^^bzC$TL2awsx@swM&qH@WX59xz|%On(UDK1V!OAhvw~z58hA{ zuL_5^3l<qnv4kU^3e|w0D;Z^Td#RJ(ezZ@n;Ur_*+mGyBKb$QxK_M&H`}+uT{muoT zO+2CFgC1;(#-Gnh;5C|j_VtKj^KC_wN^oq56&9|XVu!>1y&eSZ8>VmUkAL4%HDo_7 zt6uda8^eML0}<=f1Zv~NzyvS81i4%0Rlf4KJn{H#ck$r;ekWR~@Z+Jv?(;dEtX6{Q z=yA_6MbDhF?&gcjQY8+@D<NBJ{za}2?8uPLp^(6}RuUJNyqzi3jn0#AUl!C<P*Lo7 zHBQ{K`24IwXOGXj*wR_vjvYS8_Wsj<FT1sLG;;$Y{jeOMJTCLyF_UGE4GX+PKCgvG zIq?a|UE_0Z`sC6r1}T0t{tGi3gtm$GUvZW&_?>92j;Osrx?iivE4l1v5`vIsAxo-} zB_Ayz|A;?J;fVvglz~1O!rVz1>TG*|d(>;`5v26b%EFzh6w$>F>1^7fH*2If%@=<| z4g1f%7Asf^{>zS%Wg1_6s8~3b8DD258VEg*``kvWE-Ab-6Bn5^&fj1w@ewL~lYS3d z%R78zG|-^>AebpvntuKW2Cryj!VANAP;DnDKTCn88%+(#vRQ#IKlPQiiXG{^jMoIL zCT`x2EL~m(Q~@f>F~g8AnYA4X2w8Eab8AAlQ+;#<22;6oGtH(OTLP{PJNY<c&Wz0t zok$Jj;C?a<e+}T~Q!z9?`qsTQabW(v;hfEdAOAKKBZgSdS@(rv_W02n<_D?27(~Cp zAs0eE(ZCgP<wLh^SpB&wxX%tV9}S>CjY1=X2aSU{4<hEXcLXOk_@J!QRWq_4%Dr15 zFHVuS_<GvCmEzxjkk*Ltr$__AZNw*P_~5AwML?d&1*+}x)P@h}f5E&jt&7_3wPeZ* zit(yxO^%3p^LfqSvYw2uAA5#py2&pC*Koi}Za6caoLDQm1@v8Md7SF6<1SIXsT+Ud z)1OcxEeiafR<1l8>hA5I8HT~bj1aO-lx#)FmKYN~k0lXOF(Q(ZB^lFW`%YQXs^wP{ zin2AtM1^caiewpN$sUD_rLr$G^B%o_{{DNf_n&iJbI$pmbMAAWbDz(>%{jp_6BZ(C z0($q0Qym#2WzxdGXJxa;ukPeXe9K-h6Fmh3boy$NQ6FCNyvf8@0^79s&-Sj+;&7?E zUX9%vp08@lhe9;W^AM_qg_&@R*e}u_#n<wo+IiEsujjiwmZ!iz0!Vi*!U?1txTuP{ z*yaE5A^W(=Hky-coX#F%Y(TZ0D-zy`5rNjh_ZcM9Eh4E4RlV)H%}D&2DiZHd^ISk8 zE~usG+iQ+=tv*NVi%y_}-*?P)s6%FLJ=>xA=s>u=|MsWTyrZMqdU_SyeY1&=by?A4 zI8^cgI3j9xb%DU-zuj@PRtvtcSf;gS&v>f#qn9J=73ksWLwV>BS%L?mbtvepYXy)z z9)*$-bg3qQymzl!k4X`axj$ZM%>fmC4KGmxA_T#RhxMfA1TefUV^WIWlVYa{`WF!c zlxK@j2S=jQW=9z1ycKva3?xD7Hs{LAAphp$OD$gX-iU@@N2@rksvv)Do<E%;9ETZ> zL!RkiL66u*HzZ&5SC>w^_j+e|P4eW4J&hVCr;uH!VG1f-<vnMHNQ5c`0d@xeJ7%x@ z=^v<sK*2@7rRu{^)b=X9nQpsE0DzG}htZ>PKH?xmHXcS09i7qnfo46CgImSqbBTe5 zfy{BVjmX}xrq^Uk)B!B*i{MW!era`pIDp`54pLY&gJidN=Z@I-9<zfMIxurnjVXhg zkR(v@{(-Y&oi{8J;(d14OI?(rHX9a5FiHW#HxkmDefg48ES-p_?NR<5f+yRWp8dMS z>hF8F2AZyd`H?nx6{Q_Ohc~RBL5KTx|DXD5gHDR4g8?eJS^~dY7W)6}+@=#YSIwF> znH#y}+Q1wPJ+d_6tUSRlX#BC5!EqFc&Cy$msX3WG9Gfu-4Q|cb?1l8k4;$M}SCD}^ zimPkfsC6=BxvB%s68mSC&g5s{yz7eKWp7Es=rw%RG(kZEbyUENp;F;t6<#zXMEjnh z0r#sDdkW!<_VTtC54Z)K+=aR*7K$=OGmrjk*7KSQUE&j9{-KQW%okPH!z+nKCAi_# z3PIfyr@{P$k5w_JEZf!v`)C`~Q&gUI$4F#<Q8em$*37F#vmQgWK7JC<T#xCvLN|sT zB&4|N+AQDl0oQi@%(gM}9JHM}xP@?O>wnGR41mi80${5i0ZojpUa~)9yLjQ@KoLcp zQ#yyHj}bxF!TbeX40Cz8NuNiW5dE<O4}v6b^J+s;v=u?QOB*xXzc+!J)MUE(j-F7f z5q}fzb256PG38IAsF&e@vBA(L5S0fbP3DA%dktmAl+Fnv8-p9fp86%>&OLciGam5o zP-Mqi=RB6+C*I=Ja$`g-I_2Tr!Rw#8IqK`#qK73m6qS5H^3k!I8MY1}8DXgBUgJX< z2|=3sY>bY9`Fy?tkWh2QA!H9>Kw(oV+lk-v_X!N`Zn}mT|F9(9LWr@SdKg1oLQTmW zE<vn<%!B1Ep7!Nbv5ga$x)!Yro~N?q7F+3*_zj{K-bMb<6`}RsQ}t_qedhE6I^6oL zi)~C^(i^A9mBnh7jqo+)opl*3>U9kbeoxLT&05i0ZuHylF+Tk-JoNS5rEehKm~`sp zJ1(&TOfH`oG!L0flV8g@03h-aCRiiRBW8Rl1{0hA$_|EBm;Io0ukj-!_FnPKs2#r` zzCjpbkwijswMszHYIlMds1E$=!-apZ3Z6FN2=*Yir69Ob^g1?1JnOCW@hFC2BH7eS zurqW}+dXbJvn?20f)bMWD<LC5Of|`NwXR@2Xy~e&Qa&PU{o`KQNeht|NP4;v6p|N1 zaWuBT-DaL&JXJc?D7_`P?~Gu#z|P2F{VDSXD6IdJ=+IZos7Kx9XHuxQ1h63{NeWhV zx6~<V@qktV#jvp7$=@sGF?)8eLy7)D^c{u79l9no$sG$-)xC+5JigE3(nc@520meJ z<UNiTFCbg`p-&7Eo>o0X|5!U1!LJAHVH*Nn7;l48-j(o%ccU}Dg7TE(I$^anLHrW) zbCDL>!Ec&>I~oP@(tl0XZBM+ww>!|@mUdfpXnjphbF(qPAN^euu^A0??^%Jsx>Iwr zoSDl>?2d&zx7MrmR8j?X`|joUt0|CI!<GpWK*|{ThUL%dy6HU_#-dA)d3iT0d+iN9 zipB?TI?oRlm41HQ22Lxnkqbghi-ckXC&J`$IZ0d;Jr_@N+8P+Kd_-Fwt>bQx5HSR^ zu1iAu(>;0?pX>mw9-^LD7*}@*t1CqF%irS$)=kMz5TP7;Xs!JLDJgWYvgIyPo=QBT zhLH(Wz*GD~T>5))K3T;Y2WOuUF&8pNu*5n;RLYJ-kjg18HSv|CF_v;*Ty1|3d$o@Y z?r4D)d5*+Ym28o{QiKY5wJGz2t@ptCnG<r}>Hwz{Mv7c3+x?BVWS`3M$cb2WPFq<R z@2WGekQhlp`p8>^*b-FAbj1X6cYSnxwYRV^&S-7sjqO?}c?bJ`%*I(}-zI~$xCdiJ zJm;=To6(Z#7?W)Cd1Y%ao`t=x5VO8KT)tGCwnm;SIC7blJaO%l!9d2!+!PGRzwh9_ zMQA7Lw)NS7GTF>H00bZS$IqbUzZ=|rDI#k1pe|SM!=TrVEnNrY^pM8Q{ZaypN_BT^ z!L2KkFz-Zc<Y1>g&-u$(qveVIBiZGz+Y{H`I`Uk;tV~V?1tywLXF9qH$rTs!TonrK zxr73`ZEIdMlT&5fH7L1@Kx~%=jocIibKMHHf^EK8Tg_JddxFy~6hj{&JqX^~0986v z`St~dcznf|;3_tT(D~|DJHC`4+?9*}d91j{Gq@W|Okrq)#E55cyl!(I+ut#VWeADb z#53^vphKH5K}+1vboGCG=&O45V7YL|M2B}f2yRdXF3;BKZ+<M5e_Biq9rZ74$(kQk z`#YMFuV@(9P8C{1vj*9@3bq<?cJTaq!K@z>-i|kqkWAdf!`<Jz5!ar`+gBpdKTFMd zvos*j`<+od;s}3A^X3N-&M6!UoO51_W=*;(5;Ac1#{{l4!*>n%C_e%6vvsz8n9Kl5 zy|#Jfy>`|GR2!OAM$0^IN&*09T%j2&{;RO>6KR)bTUv6FyjY6TBb=$%9WVh6*A(P- z;vQ_jG_CO)FVfV^-4-<=ita!=Z2uR@zw7Rd4nFTzAG?Sl`u17CL(8zTlp9xv&+LO@ z%PTy)7r+_~>cx_;r=o+aCCD;<a#Lp(fsc%zrl_xs+D@QhP06dTbg0Sta4-ljAS~ZN zQE{f>DifJa`)Iogie<%q28bc%UjKrLJ5Ip4Zv5SqM&Ig{6(dPnj*?~!_jgo~a*vX! zHymf5cs}>%Z%&Q;(cJDE>_f6p=D-Y$;LL+`m~`)4>X?I3L?ttfV5&@{v7bu&X?^HL zeOl|&P(tb24Jt`$F9T$ty`mum?q^}jB5wBF-&`z|dWn5$h;p44nsx0qS2Gv<1eauw zF$B~9<}ZSX(7j1Y*;l`e^aW|X);cF8K*L~&iC7<KW>{|ejA2}enn@Jg514ng%mi*r zU_pYXED9SS;@~%c&Jlv(c5|COK4p)SOPsq~mE`df<{8NKKC7nw^`wWwUpIpuL`M@E z9mt4fzuCK$qO4}~t}wm}5b(MkSSDG`eb?>Z8KQ<_a6O|TkREMfiQp~o%L+3;X8}*z zKi)r1c0jpqT6<J2^r?J9AC*mlZ_9>uoN%B?Nw{~c|4r7n^q=b(Fq{d&x?i2!?qAtD zUzHtpDFdQB9^ey`y=9CX_(K6eWS}c8ld+usfG7xPZE)00w$Nwt4h@bpIaThy;m&^H zu{1rkw^G{<Ng9rX?HSD4n41}4=g%F9Fq_{T4O#I5?v~sr!6T}`@Jh9b;_PIAg3@58 zl0U?SAh^+VMoyC#N`AeDYc4pkw6_yOgVjv+xzeODZh9CJZa7ud-xh^%%S={Ea3fPo z&A~M(zn((i2)!e$eY834<0389`n;|U-bG-pxDIv4@XZ#od5J^vifB00_Tb#U`9n|m zA(ku;tROWT)f_5c<(+tcu^P`0n{9@pT@Bf-9{12cqr7?FhlvB$4SG5{BtUN$n?qKS zM7pP8QLd@txf5L-iG_Jreol`sYx4oX{{FRuw7xobX%nsM>xBtBh^c~e?>CyLUJsR# zr>g8fp*_uapWiY83qY#CYjFiJ^b^h*Z89+n%S<aZ{p&`kiu;T3m!%TYCAf&u>-`Ca z=1Pgxk&VMcXh7>ExV2Cz5y@D-O2j`q?!Gd3Ej^i?mYrTUM5go3KOe9flfE<f!g~!8 z;3?Pd{Nn5Aq4M6};u1BF3)s~*;<V%0Gd{n3u2=7BzKI`Mx1}tz3&dRZbt!VwLVgXU zBG26xPWTJ*sJ<~g8~Z5#GorkX6A?+&hp(t-TcRTJ4nL3RErHyor1uXY?cL_?!XweH zoI*UxZ_6b8xi%&J4U3ZDFMDyo<kxpb*l4pc)R9-uQlBnWPJU_$JFF?$xjh{8lvaGQ z9C*Gr$Be9R^)e6#fM&+yfrZ061(x0g?=Ib+B^rk%j^-S0iI$ze(7kww{<!f=MA=iT zEI*eyPR7hz=fCsJZk`)L%%>LA&MWZEQ#nD73lVjONWQsjlH9|Fy)NU?8&(VM)U(yk zmLE4342G2*!M99(;|m9WI0R&L$^?7ov8#i8g0dAGONaIxSvl|}4C*XX)U`{+)korj zCWG5&LR2LF&5=_u&U7M+Z7h;${S@@)rp@>}ox3<bONIL1x3|YwB!l;CNou1f61B4> zw1+oZRWwIks4E#-oL+RA{${9csC#B6v;Nwt*!-}xg+Id_d<0&-TqWId?H*kDFf~L$ zs7KsZufP51<+4^qA%DztDdvzP7C$U|dIb7}bWqH~PdN&EL)RamrRbylM$LmvX4f-> zJOYpd8qWOeQzfO2luX%jhcrF~GkR@;80iY?wE_nIJIQxn)uO(wWYS1uGR1S~&-dF< ztmfJBE`n?GjOt?^2`ALQ2kCxSjGMLWlfBsAy_UAmy`*`4ZQzSiN@eS-{na*(iIL_U zRw-@%`vKJ#djC`;J=dstKC|*EvHW@sG7T?Usr4o>Q1`&`;WYZdO~dSfJ9(QCY5KqF zg`dx-iR$(&r11LBq(q%IN@^k;PP=+*-}b{_HqMU~{{6`Zx>n%P3RW~E<uZg<D{ceJ z=FxPmB7GKJ$w51C{&%I=sFL01v&VVx>81wF52UP+wNGt|D!XGHk@JME5`xqc6%1E5 z%`pLZ&v<oz$xBl2Ipj28*0&!Sym`z9UN3MCrUm`q%L4c<)L-!%rP_a$=l{Fv|E-3H YV`(_|>N*{(+gO6NmAz#F$@B960C;sc#{d8T delta 21184 zcmX_mcOcbY`2V@ry<Gd+BjX|~vqZM5Br~%lBU>R`w)fi%DM}e-Ttp~^kO)^PvI`A6 zdt~o<f49%~`~CfYp7T8C^^Eg+o^wVAkuL|4<(3wZh1RMRdi=JIC_bnm9x)K*i$xKH zv%*+$DohQ6{W#oPp-<B?o)1p3qQ`Ce-?l5B&A!NfupjUAXlh1seM|ST4iAgvHD4Y+ zcGt2vgD(PLfWU)7+@zm(%%;6&9^+n!G#-C@K8?oskW^!c{T?Kr{XK0%L1gT>K-^&P zV*PUpi~ESwF^iLs9vI!`%J*&hAsLw}uydw|#zMd2WoMJi`jxAW_~dOhunK|pi&*#z zR_#j3*D&^E5tSm%SoYfQ0>wt{TGzpkCm-u?2#c^JbW!)vKHJLBeJ(!bAhcTfC5l@u z1W@E2?%{(m$X@P8=%+1<1$X4RZdplzs57TDH%M0ybYGyzXP&cWJgjZ5t}e!?1qT+B zVnbKq*J(9*(;jXiK!~3#|DG(*Q(3Ze+{C}PbjwM{U;5FLHhw|BntOn^0PxqN`gZ`g zmTK6&h>|6gxvlnNjqP`_adK&MubpXKGMF}#u_@Tc_i(@l#{wpj-MrHii(JaR^@}g+ zff`5}9#TOFA_$CD=I313R=J@M`T06FU~a)P`kTlo-I2V&&U6$zeBSeaagesVkJwjv zums7juMwy7&7&q#-Ks@hOu>&A!B^nKCt%1aoBhy;;VAKx1S4|(t#sy1BX@&fZ4S4Y z4`<3<e3!+iZGb;GZ>$~#{1KB-mr9U>n?j)OujFH?!qhB#t{K4+;8l-||9Zfk?A1)# zoO|#6+|0JvldU;TY5G>IRL{cp9ovZCc18N@kS2mi5)k9p1p9<TWVo7x{NV{!0tfuD z-Xj#Ts)9KGtd-v|LqodoMS|l%qytK+pj!Um8K1vlb-LZri9l&1QvlJZ!Oe_E9)vIy zVlGC@jQ(eo0{Rjnk?qzSz=gP0b65Z1jN?Y_c3O@C7sXGfRSkMvTc+RUP^ErW|CEa& z=KF!;AL*cU4HRM5G>QSH78BJ3Ap-Kuza#hG<+tY{M>tQb$T12#l>V|WDSLB?8us{^ zFXZ^6D^vp?oig?A82Y;YF*oRm%y7?H(kvT5Vk3Q-Q3Q^;dHMHoUib5n<&?|jFHmC4 zed`rqPYj+Bw!9jbz+@AoUy$I8Fn)kW#VoOh^!V(K((16Mb!FY^D#+cP#|Kj*dujWz z_Ivh~TJ~2Rw!XBgIpArf8kE+CN~HA!B^~0~gmwLPNrpSfGC1|{x&Wj=9XS;z;^@nK z-E-0V<*o8AImyfn^{cUwivGEFes#|68<Kn48f$%#>;KGS*bX>hNjDs^W?Jb~T9<pa z%|#G+xG+<RS(~L>W!A95XV1}mkX%8}q2Z7`87uv*o0tAimL<R1#%AV7%e&=9hs;ss zsjdg-EQiiOZjXM~lsI&Mh~=8zRR~^?I^AqA<@~<D9W}o1nQwAmcyjJigtD<MIc8uD zRAvON7sJz+5}cwu*UFl3Tt^ZiARwSKr2X%mQ?E}2xb2w9vh?YW3||4SJ-WFya2GBW z@E^?MM<g+L_uBE1CXFS2oa4EtSg(wqm%lx4dCml&u8bM=)V15Baa!GTzMm2%Iv?dO zTQ4?9A3f@WToK+hj+?)l=Pp4C#^-3s$^1uRT@q<5Psbz+c{*9%tPz*GEjJS|FxXmT zvo5q?MoYZzL%-#2Z6gYDKlCiregx&Y3B|4dU!K#X+?fDc9+IAZK910^BfV?nr0O*X zSHGEdz7@UqVCfhAd<Hd~vn*j_lUi=g57{WxzxkFrVyu5vdB-4SI{(JA5rxJ<2d!2; zgd`e2<xY!8`L5yYxcOFtxA++vaWk<ZiNC<m`9Y9z;ogr6sk12Sh#b>w958Pdzns2y z4n^ed?}`FvKbs$p=>dlIH*aNduheidFN<m)BoTt6<-@OR;2YEvp8oy1_}Dz&NfmPa zE)N59xXuy_7X_gaisvkgpE+fU65{WqMpq=Y5B7`MeaS<5Klu3fMu$%ndcZ*E@J=DA zg&KpmNKLjm0o9ipsT(v5C@5e5yfYQxySVXnXlaaJd|n)IA{(RrXIpxN*xxg)XCD>j z+U<SUtXl}rlUk_y>7gs{Nr!v-B$ThL@NoBhti`xB{+K^|586!C5GoG+ci8tR!rsY# zngjpNk9$*-7-{AeGoe@J6d_e*6FHL~Nfc-t<Rfr|0&hqsi=UD2h=lhdh;V;na2r8; z*G9MX_J&m8;?TEpoo}G9{CZf#*@IWl5^u?5zS<kZPy9s@?5H=5qU*%}om?K#%U*uB z!qN2pN#WC*9a2?Y7G{!4zT##%(fix4+15_jW`Ab>vz2_l@>}xJbHXw;iXdLZ0*gb@ z_*sdFHpR1LOeeH!US^3sI#W*Nt+s7#1BctM)O<X*@x-ndV(wRqBs;|eDLW|!>v!3R z2H#g7EcN6U6sdk_QIKiKatCp$k<~A_-1KFaw(4{sBESd-3=s&ilYv_Cq8&vGWr|y$ zSa`*K#d}09Q6M-A!O61Jj;=b5ap)Z~K>xqBZ7(kO*cfpOUM|m|KD=>%-`?{+^5o5< zK`L;>fgfSQ;LSed03F2%?oP(p{f#bJ)0b#G7HP`P^ti~Hs_0EM<_R<5_oUS4MGiA8 zj4W0`lJQSx0o1W3E9>0(_SEq4$50yh%lUT<#0b|?E%*)iY?y5WWi?JlhwB^fP#}Am z`^qSc8ywm@j73$N9K<AFKW=nM;Lbe}y#0O5?PphB>B}nQ6?eW28e(SGWYi{a&g`@3 zI$kWCmXS=-P&Pn2H>8NFzp7<Psw(%0tGjsJT6&tb!iz_Mb6ooAtI{gIkQd5duJ%YO z?^K~Sdq9934oIDbUI032!B(E`ufc^U!GpdFZNFWa1wTC^J+WOEic1{aS^>KpWshF@ zio$#9j0kLG9oIjFX5h;yd_~Zj+la^OBRNpU27e-PY$r9ID%y9bXlxhhy;!zh!GA}w zH9PaEdaDs~;VK?*JA4#?sp4qxzeS6X<I+%D^C<gu=$6Y^>y0bbEk61WWUOmTN1rt3 z9w9DJ;gJiM$s!ZZdm5sEE!giXOCGjtpv@qYvO_`dz{Y*y32kAfNf`Chl9!ncJSQ1B zS^rnU;WC1=6l}9>H(>OBTs1=*qhMAMhkKS2OC<;zbon@Gr+^V0&%$*~SU4`j3<CS8 zqRkEKDkPpWFrg`#?r$ZHb^9FXFE19dH!fmpu~$iDARc_9f`K=Fgq*b(K2(Cowr#Xr zYKam9KcNmr&OjN_YyfaTS4-1eW6-sY-(y7lansGRG=$|OMqE~+<WxW9_e?9@V-B<T zPQAOIHUHbDQykcw$2&o%4bl|Fy|{P`%eV-gGq!tQn~_B_rK4lPlsW|;1}!;WmX;R3 zzRE<H7WZ4h0`_7R1mb4=Pj*;hZ1Kf=j$cnC*DL#YZY7rJR<kPVfte&^VJoaTO|LmZ zL$=jG9H`9}#a$eD^~E`dK3W;|^M*3Z9c0Qho{j0ma7oUFCL}x%1?WJ4C=Sq{egXWY zUdhsR)O=E1lx~V@Pnl%Sa=Xt2?u|^FPb<9f&;!^mFY5msgGAcNGrg6?V2`KicSIIH zD)O8xnZ_4_;hR{zxm8$?JL*46?<#R1cV3$(-jBUniP#n!*emL}r|F!|>>(P&n(-<x z%}iC!qU%Dd35Y}*M*{-s2Voh7BJj>kk(R5Ki#Gc$zoui2(hZV!i>`{+hTp5}|IiVM z#1>}`C)gZ-!_+kgRvpoupSp6J!Yh}`Z_n!>cH7*|sLf6hw?ZF`lV%8>|Lw*KBdP~? z`-$4(Cbg#wWElr+p!Y;dna7Xl1a46eWG_yjB4ou=jT|MR6|1fsf*Z5QDV}7%$Gv8t z--b+bsf>3J$X*64c=Icfo?e0W@R4tDtz6`f%fzA6m3x+e)4)v<Y+CfyY<+urrE}?A zyyKV%1|RsJ6rI^RNeoe(tVUfqo2W-m(RcUUcmHRsvb!>lZ4V4D@?(Qi8s8l}d@V9? zrLn&qVkD_x@QnW}NkgnHDS0B?;p-Z8G*!avr4o4j4i8s_(?4N<7uub5|ND;tEpvCz zCwz)1a5zTM9}a`FpR$nNKOe>Ze*dW<wt(ZZ3l^tjd8xa8n)XK*wcAUOPh&4J+elbO zpa@(zP$X<64vyk-bV7v{mm7Q6>aN9zn3wLydy~@!1ITo-I20gm-sNJmBY^(T@YGv= z7MV7AHTc~lq?WMWPp0@1^U3eQtVDZMt;GK>McWaO{r8c@>py6~*P-{BXMcXx8mzEL z?RR?P$#6PeVItR=muSjGzWt1Mz`v3g&Sd8i?uNGGGCZ>D;LIhZc6`$Fi>Mv`sSO^i zqmj5Woz%pYCkRp?I)IT}r%z`BI`-$M5Wn7OjY3c4Fm5U1q%$L@-}mSTny_7(OIlTV z5+zg7CT>HSy5`IUvAa%EiEO=>y?f8l8b!YBelGafsF<PVC=SOs`qf}i_1PNfJ&DEI zOLf#z-nBf?*r@f=pV>AnJWAg=_wDA#TW5x+-)0GP_o4C`h;w&02Jj;&4BpB>2uSa` z-sJ7<bf&Zkr6ztI$zmYxnMAJMcmh!KnMmBUpEwpg<%0Tc$UgaUlBRrxk7R&M8Cto- zig@&jqS2Qx`oLjOLr#grPyJB&R$MY4FKDK+$CE}hN2oA(M>^X2yP*%4NF-+DxasU8 z+5ncjzcmTpe{@-K%UE#kC+nXIUQm8u-R9k&fBKgrQ$cQr1u8%Y2g**z`%%>G6m=&( z29uR?CwM^~ILRQV^oA$Wr)BWZ&GjB7J>s}YSB6h|s<7)T$h~P&BIoU=Jd?=kqXLRO z0~;iMIoy8t`Pt|rs;D|4EG#{DxmK8l>p7^IcA*MEN4}|J04o~}=LNg0^rtLq^xCb9 zUNO+{97cEyGj(62IATN(h>_c=-e+E1CNa`m@wB(4fh)qtBq4oj>g8Mb?b4*oDKeX( z8+2sD_s&2g+dT{REfI0iZfyT_>A(A6`RBrfDLtBav7>2NUW$obZ$mhDTk*=13a{gt zsoPxE51DlnTgz8i3EXHDfmWFowm+qR(#7@1FO}orcZo%p`I@vQkzu2b16SG#Lma>E z*1w|kg{MTR22TAm>xswjzK<$_$VZEBOX-w<Kw12kcsmC!;nUwz!v(Q54In9^9ab$a zB6mDdjmTb{Gp}k|%@q*nMx5r^ik1S*HBQtek0T@;@I&52c?&CQK<Z&A71soH<5$pj z&iS`#Y5WjvMv5;Ytk0aJYpeBDM-b@G9`VQ`@qN*5dRSO}t^`C?KBbJT(fr*&2f0dt zJppuxYK8<jv+USEU=FU0l?u$NQo9S3tj=Ac6N_}y{U>w^q>AAUG)p3{RUc(l+rb&i zPZi5~(|m4}GF*0*aewTU@{8hmHXu;QY81zjjgR(3;&=ydi-Y^Lo!esF1fvkQo67Z> zz~i33eA3gVJAC4o229MOA)AqJMx4f|ffO7F@4fZqetyO%jonq-ybGE+F3E_tHkn(` z<9uIgBg9yONRW>)J-K<JT6ToEJh=T$oZYSz_A^^aYy`V+&g&t(`%i=)nNIlIe|<S= zX*^|eHDHs1^0B7;NerGJ<r9x7xoe$Bqi@JcV9l;5&*4WmDqEa_0MqZ>Na5VWn=I^M z?xz4f8#pAF+yB%keSiBsDsk8bO)Tm$;WHIc$Qh4=)wjL2UOy4$+)~WQhgj;!yu(}C zqn;Cs8fPGIliM%Gj2Mg0No>4uBXZRwI4@@_jPN1s<ZlW^R4`klgn-vae6pWpra^{$ z@a>Po*C-%hyhNTLP<u4?$xRvx;<cUY#`!Iae1-Ef3qtSW_^uevWu%MhW~yqx=0<y0 zPPxIP6+|hQCQ#Nqd+vt9L$iyq&#BG)nLr*}EbwSDb28czuX%kT;h7~e<vqKJ%Q4l1 z=>#Ha2Mi?QKsGMSj4gn(W^X2+*+F84+xYlAbfqwSrKyvr<zkWGZW!stndQ%q(c@au zmX%Xyj1DZi$G4X5*=9LO@5=B0L0%(VXCgP4F)^(=%eNyvh@&+~tXH?k4Fbzx8_M0G zK=6t#$<D`5;Z~#I#Ugby{0?VNis{hZsN$C74_6h{qmL*D(#6{3=%5t;<D<Udyf+Gs z{_(s2k=4KE2yNveBtLkfD>bi(VU2!+%El6Dyl{by`skH`c%hZLNR51d;qszPV9w6I z#GewMWL6w<ARY%saH1d1pZuum?InVEg-x7M3(d{&)AFm;R%|{F;14fhK_Y&+&(QSY zC%-vqbLUS9zFgUozz~(Q#rM=Mab!Wt&mFE%_maZ#@`4z=#?84Wd_n%Uo2{%0jtEtj zsCR*Zri)wV&h~uHFY*2J1&SD+OF8Yj#gFbG$G2;kwU-Khb#I?bZBMt4vf<-amx7i4 zJ02D9Cu55A@4N3_5ie8Lex>Q`6k48$ui7syQ9Jh&Dn-G4v8OP^PhU<$&=w&$@VG)W zG!+B9t&H!JV}WrYuv4tP_rbwW<~mL>6-P+!ocNoOcz@+ub0P4`{S-A=8|60~qke!# z<nWjaMS;zjG?x#E+O2or8QzpjvtN6wl_@i`#ciUR`&yR;F>Z6m1hmsI9daH8f!mt@ zj%mSpI#3^xVi+|g1wF`r^caOVz4v{u9kr-mX@FRN3s0y@L&_%J4M6Mjg9uf)h`>#D zyM!kW{FW(WVawBYQR1S_>JZDyuI0Jip4;`-*C9h)W$RcFY!(&7UcUeU^?xYPoS5-! zC-GC2t;k8Ie%*%6vtrIs^?N3|-*(NH9a3Ni9NJS*afz;1tXDHOSOg2ih<?#-T3GmX z?OpKq@v_YO_8;e8gR_2mlB+B~1F+qvzmMa~&%0^7?W*5oIhmngV=xi++QkJ1s`CG% z@LA#2E;M{4NB_7h>wVu#T4P~Qa_j7$69<)&jy9JAcsf=k*%WBaSY`GeeMT9>u9O4D z<PZv9+e8wr2`&;Kpr}&qVG6$yO_Q(dwyXa-xBNXbZ|Uo8%XD~<!}TB5pQX^Sbnior zjDY$C@LXYDTyFl@%U8j8u2B~SXjVH@b3Fy1MuwM?z#NJS7_h!ROMzT%Aq<iys4~mq zAmROk=HwO^HKow^Q{UYU($(`R%0-kZ6X#LV77TR&mM>Nyr^h`}X1GqK_p!mvq`rrz zj(GAC8Su6A6ueZ*?swF9UmvpncteSWXVC+3Wb1t_5VhT#uU@t&`BkRi9XC~p(A<+M zCOG3e%Z;nLPyD+jyRJ4^Gb#~)5p5|wc^o%EPTQ4GFBe0uT5;#=GtLnqc1fW8jBq`W zJiZHnpz&>T6mqdosc8Y^9eMeyIgTga?FVg;s?KZt$T~Ln%G3_NYn}f*5(&^j*Z*fR z<&;_+Y1&N9vc`1A4GoR=C3rj*|CxDu36Ua%KqD|tk9Ixj$;SicC+>pHxcMPJi&a~F z=bE&pRxx7TLn9HbmU-}ehPqJXxP@vi|3hy|6Yt&nFuIQs8j2X=MwHtW79Oo_0KXU= zf03JF6i!L)W&(?FD26L-_*h43V`7_k_<e$w_u1FQ`j{f90gTHf_t2I;ya4J7p5pIP z!*3<juU{}W5LB@Gi>P(XP?V?3KKV6TqTz-U^XS?XE8#ixp-e|VNt$Agl&M+mOD4~p z-Guq1{_R$7vxoNiuaxVZ5xZfk{DOLYPS_rergtZv>r6Y9mybJ?q3t$5A<m-y`Qpgr zCCEk-A^t%B0a|eR!q*$_dDVApEWrm(lf&k&zf=tq^nAm@bvJ~-p#-#P&q;|U2d~^e zpL4=i)G*2U&Q}*k^vlc}{fPJWvz171UZG!iRxEAj-j4Z&`L)F4Ot<+|xlw1%x!oqu zBUd{K*Rd!&uq+G~A!n;2*|P6V#S}E3AP<C2*XK^}v%DP|j+!9|tZlGuNy~qlD9M@- z(YO8U@(g{tP~*etXPtK2CW4jU2^l4d(7yQ2i{Xg45~nBd;kqLNMyj4J{wEL}61NyD zfHW=y-By$zXkpsf{h$Vly{i3*cecK+J?8#;^RbRtFdpTmfrU@Q0GgsTNe@{@u+pu) zR`#ab5TT5hLgBx>`&!-ncaiOh#p|9qDvFy_rAK)11t4(;QgS@vL~&GZ4O?{y*ZHjY zL;(_uJDB2-lstVS`&$pX7i+!|36dfs@YOq~;Cb|TR-RVFpSv{WabaiVw73eYijY`m zW5pp;KqMK_m+rmQ^vy*;@UPc-#OI5U(wpfmB(_FGdMI^(ZxaI=@bWke@mi-02)~NF zanG<jiLuG(LY4)Fn3g*AdGXtKS^TOq97fccRa<c=m}w~tEtPi60fZC(VR3IBP3XId zEpf7-7rW2$d{0A(GUXZN)4@HBp2FF^+Z1!==ikqMyw^|#y{Huo(<OthQp`@q@ZL{W zp!;s3((=OoaEPQ7h;;`1PQT(#aOizoXl^mrX|o2SBbM(2!ZKulF-&HQQ8?gux&c&S z5D5m_q4KEUi^y?iUf^Isle^m|^ywAjA@lFc<U!|Fq5OHo4@=F16KZvU$WV&V1YgeY z&S^jwsqoSvo<j?A4tkbUL?-CrA*q6L?Oa?>Cw<w7^5*Ro);Ttu?%?c!DoH;*{Hdxe zjX6aWNJ69F)aGv|NMdMW_<AE(noWvv#uu|?R5``P>*wTjp2_pxD$_dHW}rh2!2e9F z2b+UbZJiAI-~)-Bw!}V2_weF8#Z@85>iAQ}<H4FTifGOM0RNCr&i;{iq!*Wc1o1DB zkH<c|99=`dJrfWP#GNl7Y`M&7$?8A<MaqUTW1k#-ddQSF&2#Zcni-yyEf6%Lg%xj_ zai`w={v}cuFE2p$U>o1T@u7wl$2ccuW`$y^CjChN1}uM|Ed&yja?e65EBd2nX>g(* z{s>!6a~ATDA<jeZd6rP=H*Lgo|JK8s?4L=V2PAjN_|r(@E{d+gwASD-RIf=g^O8C% zFFf(w7(<kccDsOuD^i&LU=cT~SZgni-K7J;4RDYw;hLCxDakp2<Js}Od)(^-eZBJU zWt&OPqb-q^|F{GZx`z3wrK|K2b>Unzwr~amJJQ0F-4h97kGn_#d?uy=#v1Rgtt~Pl zf^3buFi2VUM|UHzB%?g=s>Qx|Z1%tm9By1hj86t7zs}eb|4U!`Y}nS36iyoc&|PFh z!4l=BO*RZm4ae|H`mm6>?;Xb0tezTVc>?^`56IIPLz?}wcLt7|Z8%Dwot2d+zC#W| zx??$wBvNPud#y;tftEkwfl{soLW}`{LE{e%gB))Am0s2|4Nna%a5y^X=D1SEmBD5H zi45EqUX)$bdqNiVvx5oS+{qEH{Tn29I>bFR{%Q1JoS4azMUTj*(s+kM+%g;JL6_dr z1e8#;Ve}_$pzacn@Ij4_??<m5A#S|m^<V?v!=7aipuG=tZu<xMcc7OkOEWJ3%4iud z9J9^2c}3R#dhXwnvRs)03bfxk0|@SQZe-B)bnz*n8ZciiVu;t2_rnnFhR=g9Lr<uQ zv4;r-Nf+$~4*6fNHe7CYwJs?bqS@ugLeXxXWQ4>T<3xh;B%VI$TDjg&E?pMXoE{X9 zS%B{!Uyl?4@a@tVZ!jlNBs@KVvXlMznIPaQ8EX6JgYgcRxBz#WlNb;_4*a8h`koDr z`7n3*ZPb=#Td}5AnX^3IF%|3oNKJTUtuzHPD@EM6`7v8%s){W-?#ufk=%or6x@6aV zgqu^^owfCw5P&x(o9Z#x04EIIyA0LmSj0d;4GiKy0n?>m<RD{m+({;H1AVsICg9N# zsnK0>-s1Si#8%EY%^s<%0e!Hb==<nJBmgk8xqCE7y2Lr{V-h4P4uThCTY?aFOG8=g zFueIyCbF!wp0tq%Wm2#%m2PW$uJH?tDWj3#SEQQ<7G8@-5ii=0$FoSEG*P{N@6QGB z;9;-LuDSrw7lr%#Zhz?>G%;S)@R>91@P1x9#lEUxhbb-71R{WUX6HBVDfc6~owKH} z%bM_mE4JU15b<nqJSao+Hl}T8964vW%hS$&TEGKv0WvnEN6I2vkSXK$4@*v+H3ey4 zRr1N+m>ImtS-vA$0;KoTMFASELj!*r(y(JFE%~R#3|Kp8lXFSwajv8jmvrIy@4UIu z&zHLG;Ur*un&9_#)@c@2kDy2TpzL_>^NmPGic$=G$AQU*vs-eK6^y1c;uXK2g}fAi zTv8VWP{i=MWzfzH$3{5v-C!O6eoissIVF9(G~AJ`mW@27O46)8iy;P`+#O@o^+I*- z2L;jQ7hTFPGk9_L>;%(V6`LN2_X4$QKAzW~++(wApc*>Dp>S{AU~Y_y<QNRV41t>) zWv9AbeThlv{eAzd`Q8ztIL6R?5y<_f<8H>&RIw*2CUa-T7rXgQ5w-q^^T8Mu%EDyg z&8(VhykzTLDF*s+KyG|LYH1?ADdtjVLddzB>I~y;8f?yc$Z@H?1{&CEHd32Buhx)5 zdjDN|pWtiXo-%&^K~D3D#!h5Lw3{y$=E8qiR89`~%oOC9)7|S|XrI0hF<tHuPv`!N zUfKxnB-JY`Hg$HqzC9WmA!z!Rks8Yqw@EX8m`4t9JKEB(nxKdnJMpOj*ODr`7(6I( z=J~u^M+8^;nV$2}TGQ{(3(Qg_t&k2C8+le9>~b>|Y1~v>3TkBsF05j<x^xKOp;@hr zA+oOS91V-lous_@w=fNQk*%`(tMG9NxA`#1l+Nq$cec!KuAnvAZZBxcgxRJd+~}Qu z0=YZO%6v~Fm=a@eM`Snu6b(8frJnvZ!|t6saYc2h&udw}fxZ8H$y_I2!CDAv3O?Pu zttmSGi_vp$Z@0<gv-$&0=+tMQv<kPNF~PI*aV@PaH8rPeZXtUhWa*M7n8EYhd!1a@ z-&-ZBmB8U7ghgUIQ$DoBbeB|^ysiQsK6y*}&9v`jN>j=#f_Ltj<+mft<w8E1URLBu zLji39H$Tdb#@gk=^_UU1z4#2q%=T9tDby9#cRp_<(yO4B4+lBcr0i~RXT6ZUNIh<Q zUIp=M<GyDO(F}&%!mzN?I18k@P%?8}_e(a*?-tjSh~KjM3ODc*(&Kv{z+a^#R#*yr z#TYBi&dpG(QWSroLS#_Pj?X@c*)ou5)9u+ieP(ntNfdk)>%DS1znZ<mu!i*uOVBGc zpaGolKMlHsFeYg@`wENnBiCClUr0Y31!??WVee={aRypCQ>qQ1JOpbD2;An2WNf1h z&SvRru?1h5L@Ny6c8DQ_Tn9BW7ewkXZ1QH(RCW;|lt@`-(&n=_8s{D~?GJ7Jyb*Ey z*^8Fz`0!vRz!Y|au<)&vsb_Uu*>NSl?_+$&+x~dUlYb~^&_bucZ{6A?$g6MXcR=r| z1{8=vAY~b#<Ikg)4(C5EUPSD!tqi}jaT7re9OA$Ru37#G-PiWll9L%P#cf{AbbA#I z(SkDY$AziI!g2d4`JvKcmHTuQP!&GjtUmbq=6G7JjCAzV)BZRg98S+-0iHrx2hT!v zA}ia!zv!qoVchw5LnaN-obAu!&5eg-AHLiCbKNRmX#7F2&g|9&kb}+reds#&209Kt zVnKo`%~U?n3V+iwD?<M5a2Rne)yT}KSil{8gp{sg;YDX_g@xT!Xaj|-FCnvR+rwq@ z)6EY5aP)5hfETJVfgK_W_EZrP%3kO4#J*`JbeR79pgEe3QACbM4SZCB5QKYvCAp(F z5*dIInV1$}Q}&WcYZ`|U95DZII<(4sxVuAg;TJs~S#Mt-h*%YEI*c&fnI>%ob{}oN zi}>D1xK0i}kr>)5Wl<-OP{g5*rQ0NfiRppNJqMm2l1=B!PJ+<!Ruwi^@ykHZh{@p& z!Zg5jRRd+mc_(KF4^b17n?`efzfnc(b|{1#_Gw7YHy-Ayla8kO51)r?%4=YV2Jsef zi2_nsu}B%wR2(2+)wXu*{5h<Z6;8G;j~_-n5P^z-Q%y<zvBNTr)|k%dSu!UQ3!A+N zD;OhJvkxZLv`MYb89^(ohlAm3FL!oGI~+r8k$$A*1Ad4kU@*vLeh>`|Vil~s?vVFn zytF?4J|Wo@bT=|RJoOWS(~iCni$lZQ)NTD9M=x|He=f+SBk&0AKY>3v0`x$X(=%{b zZgRN4u>m#dS^h;WP?KXAt$#}0vPe0yT=nUZx=v$9njvbG3yJ-(o{Aj5&7aN;yZ4IP zc}+kPN*@CE+C-8`0-%7%4$D9*!oTv*Tm4u`3+n9|Irr?d43!j1L5?hj=yWp=m|=)# z#-A<n$Vz-+f@9dTT3^4P>%u(}YU&?*^=(+Jt#um05OK2TajG58rK5DU=I!<-dVbPs zJc3sv`nip!nmrc&-HS(r(BdEcWNwxF28Ca}!h-asKECU9@H2wKUP(@Y$DfLCd^O0w zdJc3l%y1G9pl}cNKaJPokFYRBZfZ`*xabnie`kzCAno=tTL*BdKQB8Nls(En6&h~x zLIuoc=aqP5aZk-8`tI=~y(MDa!pB20W_|cE=uoC3E7uRJC=MdNza|WxgHU$Lza)rf z)nJ~_YZ6~r;gh7?di5-|*iPlL7Dho^^XoKWb8x>|JfOc&Tf7+PF5AihYlMf3?6!{8 z$_=teQQeF1)UA(l8^yx&vUsphhkUH_AgS5=ls*Q3=8)yXUlp$hVsAJmjBYk`v$Q{I z3QT){hmL&XA9D7(R+46*zlc{}tBt^;(whzmP5yo_$tZG_^DN~+odD?ja}jMPTz9XK z_AB#;(C<gT=exsr&X60%D17?SpC6=y+7PJ?pRsp@P#hb1Dx~;)8#$Oj3QS%SV5r<d zjlZot#cc9_51#%Wbfjzz43EeXO{vcXP(<-nO5W~QB@cwQqrY1ePo5P^8C^-@Vf$4J zL3=m8YHS3Lt2vgsdW+*;H8-9!{-CO)bnx}_<d}4BY|WWE`$n;d-4NdLqo3aAdV6Ay zr&st@H0o~){CcDA{z=2rCMI@LgS2sNeM@KJQcM)t@71?4M1SuS_e6f_FgySmY(>z~ z*jHcYjuxnu`)i8v*~Qj_Ulw_^SpLh5DC>HW1CtwNbME;v=6}gUNZjH4As?}(-2Gc5 z{|`r!do5c_!M*as-S&eNq6pPXfcgjjZ*p9fdy-aj4pm{Ea3MU~3W@2@(za>Gn+MVA zckd=$?tlw?XX-#pBADeL(!%3_mFuM`Mlp!I{cbWTXJ7D_M#Ric?(tIN$|ru(l4Atv z%@0<Rk6Bb}jn|FCt!=K%a5|jMAdC5@IACy>s@enkjr9v=FTMqIIyZGcsw}?Kj%8*W zxq#1o?bsx}tK4~7)qBc`78HVXd1ON1QU8`M+Ro!G%9F9w<^mA;xF65|&DK>O;>(gt zeTFDG)ouVj;P-3?ri8<;Yi!oWIUP0<m3hKi;uxO%I``6rmKb1i?XTj~c|W;mCkJW- zSio1iVTh{NGRCqC!n<G5rtpoNErRB)Zs)9J#70<8Xtk)~IKHWE*^fI|i0^;4q)8hS zygp91s$ooBYIp(6G`nhBUIN{akajq%HPyn^L+V6*l*eMgd&$N12>wHY0=0t;!2<7} z_96Z+8%@^fa(iSCqEz>vC|ApBawc4z(_V!AqzQB@`V(kBz1V_3lOpV6LYO&nlGicT z=wqr<P5GM`;@Q=!RKZk3;_%kQn?olZrP{4N8sgS7StJ@4_dEg0ew`V5K{gD50HvDM zuH@weG~BGqW4-iiy{RWoo2J(WoEg$=`TVf{sx@cR6z2F;xlb8$5T9`u7gCn~aQ93= zIgM7*aNGL8^;v1WucvV&X?|p)Jwo?>)+_yAhrCcCN82`v6%<nqxCwv_cma9#Iz4$1 zT(vAAdU4PZV!zBU^$qf^?|tNDI)ZxVBcD5V8U;2{|E(snz+Y@&t5wJn%t`(JVdi{n zw9H|%dfE5#($&Suefm&9VI{nJmT+APWyhyjNt+@pq%grNCB<a5*iWJO&Z(gL^lnqF zrFEV4!fI^403ezZo|2aeR<XcohZ+W;h6EW;R%Gpv3<M21h)V*vO#mxt%3F~gd-ELq zT&4Sc;dpB8Q;kjEZEMWa+2QNQGE3B&7NXAsy44vuQIsK3Zk<>-*xLv}5Y^(w4Vfru zJCq3gF5T^kIQ|v&z~}RypSHiI9>fyyM#hZHWE)eEc6neeaUkSgu%k9IMP>)GP7PJM z(nHexzAj9~@ps#c`1p<Sc#=ICVs7IeCbF$rSu_0p{f%;hs+r*VXy;C!dgzO5*<B<p z#bVZt>uvl<&`G&)D-sx>Ou+-2^QlP|V3zGF{i*W~)hCR78=V`qN9*ek6nDagb}(fe zAipQiG4K@y2#E@@#sL;6@&V%WY|PC%YSdR!SfWfhUwtQGcao*KIWpj5@z7@TW$+{K zX6d%`B|Lz02ss?&>$uzk_$HY<CsbYLP4x~-+hp#O>X2X8*sng`PQUgl#O@^UBqdeE zjgbim`Pg)1b})s)7lH&Yu~U*2WhWvS;dAJ_irLBON*3Y}uobSXSL2XLSxG#;%@m|; z%t%2NxJHX#5FWf4z!m<u%Z+Ekk-c3d^m%?GWhxtdb69B(>Ew2!PPyj9{<(|edw4Zk zES#Cb3Z})%PbGFMsGkRtyO3c!2Yf;1GJW|x(%Xid43c;?s(;Ja!HAY|di?h`skO2U z8a%{9>41iVs%L457wK_;$gBBpS;F`w_Sd3QRZH6|1+8PRnXLppL`83%vAq8^++N16 z7QDI?hG?_)x~0a60&~<0N-!{pi2)wg5=Bd}lCaEo)5$;7hz7Y@nGAaK(m+}Sftiy3 zu8b|b{yf+7S}H0B)9(im8Pw*OIVed*zW{%$`wa)&dEQ#2WG%zX(!AbEI->NVFG3!< zs*3|xHe$B@DTYpx<2;7~L)5~B0=Jp&*zi&|oFmZ~u`QLx@irG4HU^a^bJgBC>;>9A z3-eLr)wXy>xy6Ggm%58U`cJ6(XSR>W)ik}jK=q6@srTx_qsJX2Gy)QPvojEY*gj}X zQuMlQ@6;D|MJFvOw9C=I`j#;xk{o|QD%RRf)2y?V8t(7X7bU?clXIc8?rjwOb|v;a z`1tHC{iM->!(J!3%RIuaX;f_AGxRZOZH632>e<+6QpQSiFD=uhSpA*SW4Fd<gTFMy zx~nzFUcZ_Li%%b4g>tyDfWZG@ZS<%uwl-)}n-bn!J82?C7Z@$X=%P1sBXZon8v|DK zf|10zM~3YZJ#-k*%kr(BubSR4bNclW<^E^W5h^jQi6I*NjK2Nh@x!Tq0v3qx^|5?o z$y5E|rnbQ@|ALo1K6;;Ip=R3Iou={f`GLg6q6aTaA-3md7ZBcWo*2VNDjKd@4@{OS z?r*S>%b~JEDAVwsh9-q`zL;Nv;QT{pS(1bXD^{eM8Pp(obZk&B+|ShnGz#JX-lEoT z^oAayJ#V52X>5Jps_RhYg3ILr+j~!dHyd#>JiQJ@hcLj9E$15b(BSP!m{6uc%=IJM zXdqyD_cRiBbQtQZNkJJYib4TS%018H#jrKzWR%j$1TLkzRSiSJ0BvN0;(bW6gY-fF zPI}Xot=z{JIb2v^$NK%?w#$p=HdeeO$W{i^=$a=#eTBDEwi$)RXz<5RKM_e**}y<g z(ufS4EamTn$i+J230Xhog!GG#YO|oc6C|^-#D_8PRmM1@+Y@B$@WJxLt@AvVdzJ3# ztOZun9nD&x@nGUzM-#Na|8j>PI(oa(VD`<(^167j2pW;WDqU~$spj#|-0?SqLz+)t z)bhW`*^oJDspBhU<;y#yL4NX%<o*4iN1pr=Ge=K00@Gn93r)ZA)N49Tf=*DwiKL4M zBiW9%%7|YV1K&Mbert^;3h(kGWd%CXxbs(m-mOBybyk#}Cx-o8h1n0Mg>MwSYb57` zdbP`GhA+vC-7ui%qbbYz1YtY*zH6uHdO66rh}Ft$8~)f#^h^2+tWkEszwgXipsq?? zbN*wnc>geQH`g285WwUE6}t$KKYUAY$HK>lw6hWWxsAs&Ya674>VpZ$r0_|Un-LcN z+FWpx_vo1nMZD{WstM@Pg#ruTp27FI>j6(+jiGU0b7Vja@+7&jsl8(qZIf4@e;*vq zFIG#b>m0pkx<)d6PTt0tOpu!GV<Qg7B81Ct`o-$MUyGx)`~uljveo7&r!m7Fv-YNw z$dbCpqEWBE@^v}**N4&n!VpheISOy_LrcdaJ1eB!t@8`Zu1yf>&9a0c8Gd#${N#^~ z)(&3m{Sh%nwfYLlKZB9ps~T!gW-I3`jQN)@CG$2i_E8(6?C!0Q%2W0y?~`OSH1ZD~ zRhb$a(ja9am1`HGlg?h{dch2<CGUKfVS!V(NTls<_?#zC{bXLYq1w;Q!7im#io_vz z50C3S%TKB6?%CdB^?7)4W!vMIdvX)WwdABJ>qWIk$*jUA1ti8_UDxup9%zR_>uV3E z7!aEm@L#P$s>H7GtrYOipqMh!bgl7$6MDzNCBuj7klo~neWBsunSK>CLX6MW8zaON zY`?6pos4*H%irLiBI#-6%qyYAI7{o76TQkImJU>fr2XA+!0uL1vp|+si}M~D_btMY zE_gkF4&i;pIT-|TI49odJiF`vwf9BgST~C+Gh*(2fMfw*ssj5$VH9BPVfDfPFeqws zr+5Jkjl8ZLTH9O<E7~usKU!e}E2*m*@N;R<pw|1{Yc@eH0c=v<p+Ju7pP=2kstFQB zbAiA6r7FMYBAIGMKTF!Y+EU+a{2ti9rTDVa2t?TucE9h&v9}fIH)V@<Z`u<Oh}FXT zu_2K-FrC^(bu#3gfsJ}p1uo_?rwp<r9J=d-Fcx;E#lN8)fA8pfi>LYG>wenCj1zY4 z33d?SaR2lz$GlN~41RBl83;L@4DQWHPk)HJPLYNM%@*+2P%xv+7V?$ah{~mz!;iw? zJ&(Uyd55q_8Oy>^BzVl|6?aoncO~b~X7@o0yXa+#_5}nTE38B*s|^O{ZKL`iU2^B! zeiFG_OPcW;skFF%<Z<hQ@d_i#4()`6HCuM8%&6j+7MY5|5-Xy|H*~RpRLWVP*Qfq* z^&b&$CpT^vR0i&88VrK|0}8}71f3k#OH?FVNmi%j-9kb^t57J&Y5!YE68iC(mSnAG z?Vxf8C)bA|_9d$b*fzRCPjDi)!NOJ~cm;Fjstg%)N`U4)gxi@nRmapcDcqE$dg&*@ zS2fV%hF3P|SmP<tXAcs7hpdS~b$q&CxAq+8sceEtDbPw{uM7Gnl~1_pJHx$e95pVe zVt|+%6R`n2R#EgSmyaFZrFW6^Jkb~+2D%CMRS7z*aKE`dl&h0|ehXPA9C0Y;{t21V zfp((z4E5rA17bY(?~Och+P3f&!UH@)_7kPh(kE0OtafodWSbgsQ=|G6mYXZ%0?^V% z5crrDvDrhNUQ<_L03$g?!Rw!=b%FLtzo#vCTKc>?DQIM+|B5spCv%}^w!yA@0IQqd z4+a!qg@|GZ?*pm{Hh2VANIOwY5<sj<5VfL-3<omNn@8^q#EdH$=eTHO>9N2V2%(8w zV$3hW-$=*1;RV|Ue`l0qQN;ST;o{SFFF?xn4R)o!LHBA%B?ZJ&w@5Ft|5OhH!TW{x z3@<duV_`OIIY|@Yt-v^m!Z|GAUPLZhUWDB9-LC;vZsI0Tn)#uO#?vinoWq_PJ!aW? z5I?ZMmE&86y+*fCM)nVAdXwoWXpO`cg3}4vx4P~;3Qu(HnlEv%MtIX1Q>lQzTy~$l zE`%YDqwg`p+kt8KFkL%QQCIN)bbn_;9Q3@U@2>Bw3DUCtrd#ixfn0U?#Ry?K`Ifm? z{J(wV!z~LE`rob1G5J`Id(8&8Mc;K4T{H&0(IH+q5X(~8{c0Qf#af;<C`W@2Qi}In z@b((y47Se)84QHEm9#3MsnzAA8-?c{INVtz0Afr?I1Uub-C^eJWAF|^oMyOnM{kn5 zuXZCXdanA=N*C9s=1yvY5|wV#yB=v=q8gVH2MbpZy;wxS4>N}Qq+cQSjWXnm<a~oB z+5Ajhz)8!{^^<~=dk4dlit%4NP=E6!s}%#!&0}^tv@q}%VZ<nVU-Ol_XvDeZQi3h{ z2g`gC4dQ+Ua`MR+oh(gYTXmeJC_pef7`bVp25;y8lKI3Apo7t>Y<{_2Mg{7vI6Tm6 zWiyo-ydUnz73tGlRC24U1LNrVhPo9C^jN<Cg#?gx8a)}_)?%R7*b9Rq_*)BXd8l-3 zg6X#;-Q!$WQ?U8eo9x{buSX!}!-f)y=xw#;w>)-h;vLH?%mO+RuqGGKru?Q%%5_gM zuN}SO1G%WBgL3vLA=l)>2#zlWy%lOBM6{gifi_E1ww;=>3|UJMI|qzPzWfO3#0>I< z{`4qRP^Fv#50l^0U#D?e;$|g>Jo~~COs=asi18YPTC>RTE7L?*+sW!h540>t>WqP( z{xV{>aY~G_S2lGt5ZCmmLl}bqQvHi)2qBhJfs~cb?f((hE^qsiuevNuMJ>tRFMLsr z5=GpQlB0pwDX1sCKK`l~G!p=X*pLQtC1n}fH#iHHzs&@liH+R;D{=$G-AZM}E4m>4 z8eP`UmPg85Qnf<%7QWR-B7l1FPkN-WdO;l^&xHCPpPsDLd8z&$WaRSx`~pE7V;`ie z<6e|AKC?{tBOd-Z@ygTX29!i}$Rb(KTQW^Es-CuS9CJ`ctls|+5(3B>q|Uq3h<;5Q zGnvj=b-1*c6y5*0g4$N6{BrRQ16h$H3YUMJ%nZLqw_A!f`y}6d%lGj6WEs~t3U9A4 ztUJj@Beq=Q;en}gzr8o)SngcR!AO>>IG(l5ulVi#^VwBW{AKF=Omi??^wXIXj2sVf zGeO#s4Ac=g_9XUCT3_Zr$Ov7N>3>Ou5X)uyqjb6&GEj)7*rSScL`JS-V0WdPB#Rx0 zBLokv%5kxW|3Y(GFG(??fLL+hKTR7LxX<P8+dS)@Ka~*u8{LY<!<frn^p1kCD@tJf zrLn+azmaqteMBG!VJF~YAk|Pz2pRclvk*o&2WB0k&NvVHeSMGT?Jm>z-W5XQ$~7{b zE9UtfIagNvH-}6v92w^scnMrn>wigu5aZ-xoy(v~ft1FpG{FmwEECnmM9imdLlL^3 zhk+8d&~=JOWK1ot$UN%Xv%(x)`eAZ4^31gmDl}kTIEn?VNtF!#6wmhMsY(Pl3cMzI z9JEL+jSk!h9KFoLP;~?*&8Uzi=X8i$nO7R44u5}19w0=97~%lBz)kv(eGebSLR;G{ z+mFKH7r=gQxN|-lAA^Du>+Lb{&)suPXh{5Eos=g{d|S1@^urkodhrd7Sa^NyZg^1q z>pg$7@2Q%P?djM9-4Hq%Sjoo>yV6x8hD&lj9+fXGjh=kwIus8Ijx@wKm|)@a^9yBa zE^RfhsO85-{yz6xo$i)$3H;oTB*b00C9%K;yegKOl1Br|epCLIcZN-3T!W6AA?!jp znUN&curxmz&o+<(k@wm6(6`^T34n$x_$7U}zBkPDelNl`=n&-*gu%V_sKHi)mg-ia zkHzJv7W4SCY0?VxTjZxqy;g=bJFD0PG|nlP%qD;IKT3~RU`YnW+>*6OJFh<xk6jA( zUbr3=Ky(o|k`-A=lhFb`2PV)Wf9SkJpYa<86yaveFp}sid+w4xJG}gfz&3iU(rH5r zhp^s4;`Wox;^)$ue8^Ksrn}7R6cl6vrr9EfXzNGgE^5ZVLr`DS1~FUW4!V>NB|(E- z_+l_$>n_Ewf}@taO>0dm6p(E7_6e%1R9QN&m-DHfu7KfF^TQ4dgzuT1X!xjv!R>G7 z3W1rxF6*t#KaEq(AB2C4VL>@hi|TkSnq4~(5z|mk^m9GdXN8+*;{*0$&ytEj`Qzo_ zc3q3C7nlPLUh-<$t5~ri<n!y1IU0_N8#>-Kx@+w1;TLNiE@oM*aV}Ry|E=D6u^bw3 zoZG7kCOa-;kD=zEB=Y2#T*6}Kxt!|LsM3^9hy(3USD`s7{kk(E?c6R^pk?6dg#8^x z&EJqG2mW@)8O_hL7!U_UD3E~ti}jBVlaA?Ok@mAEr+@Zb=HxH?YI^$HLptp@l-%NA zdo|<@Rd3vKaU;I`Z%^MZ$k#Y-?K!Qy=F5M=A3dPt8a_%R;TNv)BF@9M!`H*}PSkoC z>4Lw`nPbXyK`d*m(ud{>>6}sgF6stn4eb^FAsMUa_5xM?ZGvdc^qO!MG3WZDC6vau zVJd!3hrw}4B`~KvGV{P{r;quMu4O7UQP%wd^06{kz->Gr`udZ{q(Cs7U5?Nh9!e_* z@tn~E`SqZJ(spGl-$14H*a~{~J`@Fq)!vzB;gjE>;+ks7cuj?FLy{H8&0Exb^5HSl zFH=81acJhJ(_HWTx(DaN0XMfR@28v_Z1to4@k8=U^qO?U)79sDP4U?rtac)m7-Dwq z#PpZT8I)V2=Rx~t>+?ir;JTzB^%NR4#wpzBOA7kiG{pT~L_A~E@zw1UGJpF%Br2&g zb2P8e)j$0{Y?`C?B?n+(@&`ve(;VK9sd!kM-`>e~U0R<SR@lw{DxbYWH+1=m!G!U% z;C_}$dAsj33bzKi^6<v+8d-)qqmlp1)u_p<&!sfM<7Uwx9^U3(Q%G$}5|F{&Yxjfn z-YUc9p3$@CReP!RtC?_s0Gz~%JgKN2DUg!Bc2x<`(h%i%S0_sSBbDcsgjY@+Wt{P^ zxwc1_17|l)>XQF5rP=^K^}jK@+Z${1`vbSbXV#0=wS^6$OZ~C%m0r3Ig#dN)5;;yG zKc42>q)&@NTBq<{!sm=Cp&(j*MX4s8?-RdM4S~WLE>#iDY{6VkRy)b}=<$f3{ug_i zc)YsR`I4!8d{ot!WgJ<GG#do5a5W)~GCS|G92)2H(11M-*?9`I|9QMw%$;n#%umRT z-P)S>+oT}>zz}{1cv_wfP4>NL&-zJ~`<j$jxf)m<o2*ZEMj{>pKR)v`hg%~sJHV8U z7?>RzZUkj-=7wLcPAky13gX&qQV;K5YasxkuaY47;7h`WfB5mV4`d?00qwj@ZoS|< zB=pZD0Wwwk6o3eRRW&9VER8Kwx+AJvxz?=ff~M-;IsYIgpq)g}Khk?C@D>cOJZE`v zXOYKtWHbvR^&FQfkPWJzee}?qwf_Y9zE=4C1w3LUzN@>H>cEV+$!a%GwW6&!D}nWE z2{m%hT+g9np&^d!rGNUo=Izr|zfKEhk|k;XNqTT#T@$MQ2BC=OdSCXP{X@{wnUnk^ zA#^kL8$0~xfm*|hY6E+txOr>*ll!Ffqv<thW`Hr<@ou&({Xcf}DrugVEzV{q8Ik@1 z<ed8bOjE=b>wEhBIY@O1#rTKUUHn+(Ntb^#af`V8rgY}$_u{?Xm|MmxR4BVE@m#8G ze{r~OS$qUy_4fL7+2cR`67p%bytea!r(z9|gj%-(m1o{L&y?FXe7stY-~L05pZrpN z#r`$pIeYfOACxE@$w`*f_4EzD{bYkEy5eK+bE7-Ts?6m--k4*^;jp`!SGnL7@tSdL z<>^cV)6my{2^E1SyRhvFpW@EBq)TnbFD|2X9;2DA?Z{mPG2vkiKbQ-Meeg7)Ic@HZ zwCw0{U(M)B_4crY`N{`T>Rb{uu9YXB9=VwCdglZi0tFto`iB~Av2$Q(fh%i<U<IS> zWiafT#MQ>4_FJhOYM5e^#*<6X<1hY~aqa;XJiOqAlu@0S`HHF0f?w<pYw5Tz3Xu8* zpiTD1v*yv0YL}>pw>na#X|8@~@e6UUD1@RqW!V`~w&eRmMfPVT)ZL5d<x8x+7sb}o zV4MQ=$f_B6%;)0HP50auJAnbe7{1WSJ~-lEMCQxm>;;Vbx~U|?#{Ki;15qz_?z@mb z4AoGC(s;*7<HrV1{J++%GpwnlTTenl2p~m-r~wJ!p-K}J1eJhD5k*9r)F^%;C|!^u z?u`^t!~>#$N<B!CCP<YCiJ~A?1rZK4^j?+Fle_W$y3hT2@1J@0v-g^rHEShnz4Oj2 zTgE)m>nJPhiKYez(J_KkZ4%+}vYv#fbgO?<!_!M0n_KL=+9goQO|s#yQIa<||5FXM z=PTJD#GEXj@bGsVM!{-lLV_zx?d&h%4ahCkGx$z`Z^B=1=4b-hQ!b5>-eGzQ$~G88 zeAk7Sj^EYWeQgy4-PsNMq36$sRu%%G-%mrCYRD1nEN8LXqHzHZB@HLn@4kj)STZn0 z*PWcW^Zk+V1X88X4zU%EZ3auwmB65j)M0G;w`m@_X6^<SWh0gy(v}CBhL>BQlUPQ- z!Q)+%j^J2#^Kp?gSQL=KTfQNId}mt(YO_o6z}GZsJ}uWut0X^K0WE8VL@vg`jA>yE z#r-$$ExwDL1E(H0EYCqlQI!518Blmp_7G6sB1Y%}x_>$%22tFjDkI|#jJ)~DQ*Xh} zyI>{g%=X2DH$2~na`U%wXf)l60}<xj5vI8R7}ql4C*RU8Hl(tjZRr2IUhMw2DFy}L zU6v6fpl~o6#5Sww%Yz1=`^E&A)d#o$IFP#^gR+r0K`^uJE^#iJljK&>11%?E7l|q( z<o+ufz8IcIMs}xHdR&i59AXBo^4;@B$DT&jbCGkvYrE5WfNqdJjW7~1-PdeC6>dzH zR(YqupRw?f5d|xtBFvjCX@R{53IsEdot^FQ1s>Y{@qxBJ9K{r=0{MG<@46-mUdQF& zEejF5>1(mdUl(zNy~WeFQsAgYh#uzL<7Qa47&390_2IRiB~tP5VyYTk7y-J$+N-yU zzjF)NE~LE^=M~|=%J5p|kiZRT?=wlq5}Pi&P0XQ<@QaC!7p@8Rep*e5T*o02JG0b_ zVxy={Is&4ZV4rpPqC0LX2|2i53>6z%k#CRRHU)?HEfGQ}-#`|@UtKKz=W_#YLcVyq zZ#oY{5Y*rEOvO9rP{mb%^q-XxkMNM{S+o@%a$gWR5KCeuFJC)-mML~f>fyLfH|KxL z2-X}(R%vC@OAffR2qG}^rVUWHxDUp~lTTW-BBAYN?&A5t(4)O`wNJ7oVve$p2~!Ye z7W$1FbxDGXQMoS=_C})wO^MuvZ-!;cSX~_)i(KFZn<8X(1cxs6xKfxX2kIMKveyZE zo<=&MARrUoB4qP`7M*UcKQkoj^P4%L1`ZS1dicl1ol-)-{(R)!`FN9yI@MOPo&YB8 z&V5HEod-SdKB%xM+R&fDB@RWWF_sB+cB&YX=8}!fS*?|167ZQNFvV|j<&7i%oqOqW zH$*i!d{cFSUP8?gma{Oa40gDOrf-Fv)3p@kq8kf{zynqv8`0@5VqOT1aWec#K5A+{ zmSLYJ3F6uE;3>w^n*?%Tt~0P$b-X;N=BG5oRzr$Go1r6IyZcYBIDFN`B;bQ0w{b!e z?Kaij>VFm`K5mkD3H(S^*Nrbar=3suX3}10yWhU1EM>U4k{w}XZnno&f-j=h&f<au zn8|Sv^ziC4k2s`68u3{9Cu69ZvPDz?HA0UHB-H^^+zSDk?XHB?ecffcl@yf-1!#ap zMAQ2lzi&w;C;N%JNNU1lD+GT8U|d;ZuE8BNgIi$D&sin)on-P60C*C1s;8Sxj%(IU z>CjnW1qirV;%YvOGbe5u)yu=38I+%#m#ahd9voZsmI>wHx{5@|hlafFzAEqR+hzR6 zpiR@h4a#=2(V4UsVIJG-5ElCx36h^PgMqz9>`j)T+IuSF6Ur~L*HpXe==C9voXc!o zBv_~43GWe!Ji!-x5EM~;)yc6P?`CBs{m;IhQOAH$WD+Z~Q2f_Hv4RIfU%#PLJoXj| zEwio8nyqT&sKvSRBH<0sjX|Vfvruv$LHX{QhWZ!!kpX|m?7Bvv`8g5hfK(D519sF! zWVi*qb<4J03XYBz3eC~<l(}^uabdC({v!zM-H?$L<N`L>7;71&z+_^Sx34WaTz!3f z(C|{p7Zgl?!aq<d0AimXLVHOmy@VES6W-gW6*=_>nI5kd8m>`z@Im?K;Eu0k^pZjD z7f8a8BwOww`l}+$sz!yMctZr=n^CtLhU258KrtIWFOAaNv|+zA0epJN+rc(~wYot2 z&2M%(0wi;L_tsSg4GF+QZ*}`NnfC*!StFb)A1m0$Q2|Uha0;m4c=cnAfxdI$zi7t9 z)W(*Hre&6p|KYq`0a!@FN6=PG71EcZd(FVPcJcYcKkt$hQY>AA*ckaFDPcn(S&Q#J z9*AMgrhV>I%>>~!I!BQ5g?h)X!FhDlRg~BGWSWtvszdi{Ff>L++{F7F!#Ka$v)2R_ zuvRQI-1{{~f=#<UJiDsZ-;p!j@<yjpnl+RnFu2t_-)>}+R+WEa;xv>vDz4MjbvH!u z)4#VX9eQ$Rv@X37-La3|{aJLBQki<<cFx;*%l$NW@gJ(&83beQO@5yz#^B^Y=LkIp z!E!Hdm+ua**SEH>nBr?qa}m!1x#7d@M%VH1S@Rpstt3SZ&@8rByG3BgR>nPYxGwwl zph1c%lh64_u}4o5bfJP#q*BZ#Jw^(Qk6W;hpuGe<^ZYk*nvPmaBQ-#W`wO4l?dyu! zc+=Eo?E?7*Z@J3ERG;Zi3fZPj2ly@Hye%Dq99KBzS6fS%*<L8rlUiWL94uRp8#?X% zm#V_9rADW^NRD00=^a~jtS}=a?r+a`x+{YACJl~vJ}Qv4nC8#4w%YAqUmG%i|IS5) zQ4wZ5JOmZcM^xORvDTfOqO~Gw<uD+2trD*miPG;9Ov*i2W7`qJeSUpqz%t1o?La&y zeCjAFcmJ4m`8nF4Lq)?YqEoP+QkJ;kvE_W{l`8M}T9a-9%ycxIvoV*ux|<7djR?R$ z*L6xdp@SjhuaD$tEb7Pcu;ZgbaKrXGgu^h_68Tev5e})LW-VudHKQEN1t^(4t6^5O zWq=RyYC5cWlck9QB%yT-BS6NnM~UQ~uYGrYD&=WpDo>OM+=e~aIV^|<0bhn3BpyXU z{f;6&mmbW2dOGISz4h%510Rhc8ycW;p|Cpzx{O+2A<do`SsJqCCVL7biNNxWo6gTh z|Je;k_i9O(DI-@v_;!A@ijqB==aDp9ocx#8mWvzKXgARGr`wP2fj3hoKazVX=Sy*< zI<lRsN*&o1WoDdbcVa$*Tj_{LP?(AtgIq++K;M}R!Cae1-SSRp^@2Tpp*4In2l?-0 zbh_k8@sk!uH(S3pWPsz_Hv4`jE(8mGU@`V_m>Ew$psd_aT;Lz4>(yMdhniF{pe)G& zmU1`${0N=?F-A*qk&7Pw8I}HZxLKDNcQO;XfG#8~eX6#w^f78uSnq**-40)ofS5O= zzYGd+(OxzLC=k*&5ABh-CJ0-F|8~;F!Z@y$FZWJ>6OysWF(u<lk$`Guqi_=|*y>K| z8x?R!76j>&hysA_l8xMDo$-Z^??r=zt4peIG7^R{&0OT`cCg-zh$ccmQA(ry?{ybE z&yyeRS<d=ajWrcQz^u}h@o`#<1y?0NV)vy`0M9{^!_0kciHh#5k_uwd4&Xifks$v< zIdRA%?i3zg!TsVu0isK!BTUL`F$393Siqsb--Pgz6Agw1>-92(#>fM;b_6t2{Lk)K z{R+$M+tG;%#lLV76UqR{U@<^nYT)4mjR-s;)JG5nhLIE$@JY0e9x9p60U-Ky5+Fr< z#+75V0C<Fq`ozW-h!RCW@s-r+n9HNKo-5U!E`w7cmp7;wq)HHQV?_?!<SmbOF75f1 zQMssw0XGqAb??P3P5agy+v;2ju=bo;TP$MPAesaC;<)#q&3evEUO#l*f4h3{wGzMp z08F1Z)TpoG%ApSG<<+sr^P9iEb~e&N1YBsIkvs#B2*^1N0DIthR5JA4){B+3UMaHU zI|a@68?^^S10V-Bv^BmcfC$Nkp6btrHVzu0)_VO$gx%`#cY8Y7Z29_41d#$@hF+ys zUxJt~_P`6oO=TQz+Egz!G*l36_RK$t-2p)sSZdtqu_emp+tj;v98QFL>NG(60I*T! zrwI>trSU%nWqfI;Ts9C)b*j+fr|P9wb&M+FzKtMP@!W$XJ$(Qe>bWtKUIJ^g=Yyxv z@~6T4r?JbFSHvN=&gjo6RaGI~M5j@M_v`BcTVoeF*&+ZGaQ^F4o8McfzjqRHP*W_} zgUYQj)0k7owr<axZ~tvFr*xPW_1i<NR|Z)?FC*J+mpIhZnecZK7xR__+wvj!aoA5L zTE=e6&($MbV8SV{&gr&a?sN%rap7q+dwk2JKaXvzy+%_bZdv<G+nL;0OJns=-#5Ri zx#&CJYxnF-e@E>JL=BEH7L-uS8ZsAHrA|W;T;vWj>vJKmIm#o7cpRGPGd~|F-!CV6 zwheXicUn`0Y8EV={43&ZGjf%_bI|L@9HggB`;V<m{Ui6#FBq{Her2{O(M`2VJTm%& zn7q5JKG?7G%!k>Wo<^;J%vUVh2AYKx<xl6oSm5{T%F?o3alN_;u`a(cd@!>&oi+nS z=M75Lt~+lxR`q?+A9$^`y2Dzmx`=n?NT2z+qc9*mK$B#$8lT@dbKi}pupTDbIj}>d zg4I^c>bHwZnlzd!6y|Tc(0cikx69@4T)ZFepGbWEMZ16Ui$uz_j~AjOFx`!17|h*r zdU>Tz8=_I6cB!t`dm?Y;9CNBJa&FGt@XoGdiLX9Oq2<feZdZ6#rn$+`0^h|M`^ucK zIwW<qe5T;`&M+SBnDm%Vg3tSEW}C(}cF`uaw5Q$a$2q?Ip4GycGtz}G<`#NNHR^G{ ze5B%E7XA9J5N*D9go*U*dxa+x*?}E_6a42E-5@pd3`rYh>gSj|sn+g@Y0=5W3&IAs z1hjZ_=VXmglS&$Das7N#yLVgH7jSI;>3<Lpd)yr?=X~epud%d62r^<6ty2%Ah6Kp; zw9!Xu2Nq_Bs@=y27us0evmx1H8<r1)MmMMK*JEEPYaDh>(H*WiYl%1Y`|5PJ&w&^6 z;0J(y?g^Nbu6WdRlc3`EUe!I?zI=^p)@l-%^?2rH?1!SktqIfKS?#)aS2^RR&)%Aq zi)-3($Dw<&BBf8|(BE1NugCW8c`r2FIyha=Ub^_7xU5jCZ8*p~GjYLhFPrj@RmTRB zy59$9E)29R1j)ruHpiUp(cZQYi-UwXr>njvCgC`NY-Cp9d;ZKM;~h_flL-~e9xdj2 z$Rj0_{C{Y@ut;Y*C%n@dAbH_`w%-5y)&JX@b!b#FW`1Lmmx{~^j8B{D7wJ*%{TK9^ B^lJbB diff --git a/public/07-basic_statistics_files/figure-html/MoransI-1.png b/public/07-basic_statistics_files/figure-html/MoransI-1.png index cf991396958a2c9e41e06c7b4cbd430de36959e3..22359c899718eb23e4b7e0d8f62bb14b4f5a9f7f 100644 GIT binary patch literal 17140 zcmeHv2Ut_-w)T#}C<-ECp$I`8#Y&K>lmtcPC?Yx*P>`Y$KuSQA4vFFjBPEO|Rf@w1 zDpE$el)!)>5(GqQAOYz$ga9ESBzFfy0yF2#x#!&Z|NpuF$+JmzzPi@C-nG`Z_x{3< zXV2&guaR5>0D$nxza9G?0AS!Lw0JcX{3z=<dJ6pLK70DYaqtrW)BykusH+3&;Cl#w z&IZ4OUw8$)7g`++9wF*rc?by&HdP0Yxl%O1tKq#u&>`TFjRqTJg9kT69SA{#hk6KD z$EyTi*&!h$-dlEdNH%!F4Iz<2NZf2Rkd0Q)4gn7|uM(`D`^(NIWs|^zo6Y6c*VmIm z)JY*|QZ{&mkml>a-n=H@iwm{_-$-08I2@N0!X;(TeFMAl$^<#PT0kuY9shRO833gH zcz+Ol56uz)WPy{%j$CkiI@0cW{d`4OqSK!Bn%b+wBfFGWS$`ae6>LA~H*hG#NmfZ) ztz5Q<%aCZ#+G%g^S=pL(GljvN4K-gol=A9gR=T{gF9rZkLaE?9aAg2ke;fq*+<#8~ z4hRS1@G#$!vG8mZ);pb(atXt2wJm^(7rxb!sA%UhZRi>S!+l*;ks=Cf$~0BkW)*Xr zVH`8Ga@t`s8g{rAC^Jce6nGxWr8pN4MXh@=a^K7n-wf<mGJqCetOIM4ASRk{O8huX zLAuO*M!*h@ZvyQ2YEO%VeUK_<eqmEqw-RO2AkFAl7%ur|i2r~!5dN?h_z0uZ0vicr zL+GK^lE71N!oMlw!b)Rcj=9S3ePOZ>VA{}J2g&Xu(DlweeE@mZa{T6pk{C|}8f&VR zixk(4q4dtuEA1WjJG_~W#+Re$<y{6DaavmbAJMCt;W<_m@tN_#j}s+P`S>lXXqCfc z-Fi%$_d)Kt(A9X?n1*Nuh1jeKsJ%f*7QdsPtc9aeXUh@>v{VU=TU*P2d9B~N307-o zkYH8y(j<;q{n93q*%(nj^On|q-WY1c{hrRr-tsf8UE1CCcyp}Gg<zO$??Yj8=Cu#M zM%N?k;W}~fREIaMv<&BKtWZ^{;;IG;=lUewkKUA1^RWgcnf9f?Eth>RMW^L0_B?bt zEnEsx<el%9UC@F*pl{{*{S`^=J|OiIke!IO?KQqGPaW!w4udHKaoVYr>}#3(%PvZ4 z8{f|!IMQPcTuW^PK1zAIbFxyd_rG=z?dcLr4!2nMfNNU_X^ZrBza^A4+djZ_x0-CA zaw&Vu#`|wtGbIvXV>MD;mr*5GWVYXod^`fH)xzyl#*J9mfAq2?mT&RPQL7+0d8lz} zv)3D11NNd<l2$!QfcWQq54C>!rRqSDyHHFT<%W-2V644YUL9~r%|rvWIjO6%m(s== z(6?t`Y=G!4lH_EsZ@+!$n+8B$qPRym-twmEr=0S(gVcT1o~E<vwQtvltKqU&kJS5q z0BL1s$Be9oDQMj)nqknm-tKvaT#Hgrn+}txrIpYM4E_@8x{Faeo6(@NAzIk{R{ns< zTPE5mA&XA0z*A0eBPdh7L+=bI>StWqxD9avv9l8?K&f0@QBahx>CHHvk}9|=Dea-p zub*Rr4o7!X?yv}0Wu+=v+=!6KaUqjH0T28Z9Cf6fhw5kGV^m*tP@GRJsxHS{NJRz~ z87r2db8Skbl8HJ6&d+hAHKN=MlTLMY#%Jj`4;_r3n#obdwFF&)wBp}CnL62W6NrK4 zW<oLz^p(7AiM<6iR8RVrhz5KFIk$@}Zx5u1x_lNIJOOfi5~k4Rv8ST<V5XOOuNO@x z%CC_v5(G=v4A;eSMn0yL*IZV?^<M9x$2pT50hczya|qFgHEd*z^tqi(>rxxd@cv#^ zN}B=5bA{vY+>9D9zCIeoc+g;LmPCpB!MZR<PfFYNzO;((Tb}p6gzR^?-IYX%(j5S2 z)Z7-H)ZZFzWo8e$;Hs4%UD@e2oMgge%o>eRN-fZfa+)-Z&M}(Z;qKYnC})`gxh>Lh z3IT18jY4NPM&$PvTHJB1#wO>qlb#F5t9%1+;yXwBo_C#vY5^owRZjWge7DX{R=6QT z*Tgj5qPl;Uf=N@?p}z~LhNfgehI6qxP@}Ek0T??}(A&E7*01w?5H|O|sR}2wJj}Bt z=Ohj{vgKZLT{3(y;VQVP)fzWpcX*_1t<okS?Hs7l^pS!V;F1;b3w~%--QWolzRRq@ zBa?OYmqLiLS;nVUAe)NCyRL9m#sy(_=A1cY2yK=rej-^s_4&3MZYIC4(1z9;N1voR zP)IVu9h}s!9yWa<y)L;|=Qt_tcuNvQIk+chNaWZ%Yak``))=f-Rb`b8kO3dRO^a(^ z`>PeyI!)qp5Eu~#!+km9gHyNEYR-h(A_X$vGTB<Wu0E_0lv*rQK?P^4CGeRH$mf$k zHvTe90b1dAFfmanuyhIM*})SUsVkLdlDHE^o7L<KbEJjMBXh1NX4}r``>VH1u^)HV z`fa2XrlEEAyRmw`SOHU+vl((0X8WnmcvyNDC#?=h^(o29I(gU;Y8@AK)nG-Af$mIb zaln>gwnyecQDcV7WoYh=#K!p{^IAiTsb*R%48g9wV?6w>sz^#o_}x_Q+AOB?uy6+p zH1|y)pVNDE=9gwkZF;;zf%u(Coz|qpF4r`SaZWo;vG$!=VSPmPl&7ufhF?@Li);g_ zy3W@)NXl*&Ry%&;b+y`e_JyK$PB)a{N39ExpFe|i=H8Jk9&UTey{E+Pqzz5N-(3HG z${NV%{Fr1l`@a34O7%p_LD%Y;x7Bz(vJ(dMy?q$t`&YlRc|Z-voH3F^bh|Me?_7II zB(OMLU)J~MZY-Ng(L3^54c8gka~wKl189sA@*%{G9I*WhEPKL!LYLGd*DCj}5$Jts z_Bt^s1!AXPeTCH+L3hXg>LeJPebR_idzFzr$>~TbuwU@ijHY)Ty>jK_50Q*$tWo|+ z@N1*l^G})T*t9mDDj#9B#G(X<U6HOsm$&Um=rvn_RG&cuu|gjJqktX)mUAl0{c?Yb zr)?1;PYYCJ!7WElb_7ZL5S&OoafrgL6RzCr?(0+FRn-|^K8`=CE9Y6&RRxEh0?E*I zuiUuiR`!{PDG=qf;lu2z@d!IiVe-q%abTXRHtgi4vjT>CQL~NZacZL}%xk!*f)vr# zucrQzjFXR5bK!)(3)%vIrl@g*tbz=&oP-*qB5rgUnfg4g8mk<9rO^nh_2Fv7eXzel zX#g&@MEjcBL~pzfH7XqA^dhXPpjj;*q(t;}Fh2!{b&g`m4L~;er*;pFZ5qtBnk4hA z5Peof5*M+LAT;rXT3@4@=fpVPr5xiu*dY?2=W~^9KlM{!TGQw?kAzCy?V~<-IQ=8t zeg-J%TeFrCVX#^cZoXMn#)qN|$bRIFTe+(Jz0wZ)53?X%Gvnh^>~&Xoaomga6x5fR zq~^}1kw#&)x$D|;Vi?(`tL(wVY@H(UIS_^;n=qeD0w%S9qjrLoYcSTd$mbCZ038$u zjUuF{)5g8X>jXXrz;HTISmn;{hK>xwV7iNJys0v<^;2VC_1Nn5XAzRXx|>~v#|xx4 zz7Q7%{IXnrV8Rb`?>?*p9IdGwMQ@eqvC%F(`5bWj83e%XmIMI*pZ|062O!vq`#%lb zUMhe~PWW?tWL5qM$Uqpxy+-1!TsG`<0e*betwwV09OlavTPF-$+N-id@$}X;!oZpf zH&5J%IJ8j`*!bde;Clt9-O9l3vo9rnviNe=8aNyOz0&s5vS+nGy!LbSu?IiuJcDT8 zJyq>5B<6P%id*p{N>pOkx*uS`%5MX{_f3I_Ndh6OjG?=f0a+1H0Bb;7#!fh*7QksX zODcf2cTZO_KMDoL&25YC^Y{IaF#kd3&p6ZXZ5xPWyL))BNPY(16w!zAbBvtOATnxJ z?PHiSJj{0An<G_yp8`T=U1K}@d4;Er=p3yhW>Iln+l(x7M`9vMr`F3Hb{(oCnOw zlIdb>-SltyPCC=04DzVR@p;~}q<UK#olrJ{49|Sj#v^mQAFz)|u<|YGg(CZWOBe-` zyH)2r=rpEuE7uu2M2pQ%+qQYGNJtm}9Rc*INF;oPq(jkQs2}bN=-2KOIVxwe&&*WT zugLM38y6Vw$JlxyC0%i9K?sw;8g7c&n)P7!_X!m#PO9ERO|+UMF~Uc(V0p53!rTaX zDr6aZlQq|-f0<WN7H^tU-hVM;r4XDh;OGTni7x^RW(ShHy1FWo(hkp_k6&=VrQUlU z9g%=Cz|I(T$JQ#%tAZ_Mk6So(6QaEph-133Fn|0!tlTWz34~!9^b6hmw}g4{DZrUs za$J#$3jD4ExOMBL=i*8t1LlZCPFdk+Ps^_?dB+o(7ds}%z?n;1aM310!L~;Pbm!5` zhrISy5D)ha{yK*%)M!R1VpQb5gx%1-ty3q!VDTa!lJ1nO1D@?3+gd!R1R&upu`AJC zjeanoyUrFG@s!;cB<GV-12!AtHS5oS1h!8nHE|2ro6N^|)+ghdb0>MxXQB;2C*o%U zIfvd9iQs~a;b6GZ#T#Fr;4~y8T!cp47U<Glk@0m9F4Us@s(BsYP?R?@Wji+lPm9M= zz5S@b3c|<j$L0g!OOJ@X0qX_lH6OHiwg2dM^HzW5_wvo^pXQnLN+$8cf2+eo(75SN z7ybA7iCw<`H(nrB2Ic}OizK;4#0C(o1A{87K)fvr1&#fxNu2TZ5ojl)q&!80$DO8> zx><?h@atcJqBb5PkbSl7+E~1J%xafRuxes$nnwXl0jFz9*<N03%naB5$#MVr=zM-s z;o|0P8|GQjP<mlb5?*S!D01FXbo+ctxS)0VU+mC*ZnDvQUb=td49q}(v7G!fgy=RH z`+mjyUq9pF{XdT<znuItXv<v02&+1H^H?;0c1;!MUtlP?=9RpX>JhN~xm%j@#tT=` zcK29ib^uv$_=Wf5vv(qY6&w_!D@>j-*Bwc?|Eelb|7=`@-%HmO8aLrPzqZyqT`1Ok zZl>r$FJYeh2Sv_P1zbKCA)YYP<~-vhvGlXXUFj^Uo+T%F&J8wv9dqXUNbbCol>NoS zAWyw`OKcXH{LwwaLoPjG>fF%=%ko_>48Dqn-!KovHJQYJLHFIy1{JT1eU|IB7>p?n zZe=`I<j(uY!ff6ziP(8-FHB&zmu@!aTaUitNeTbJHk@;$@BZpx{!I7utLOyE)@zx3 zD(MQ6ET<+*I!0~%zB{l4Mq8+OzM+nY`J(!|f(I<8Mmv9j3O!(uALBEE`AL%**3#cF za#_TU{p;;m6&~9b4UcV7*rL?|-l#lIe|-*&G<;Z54iXV*!HHTOy=&8C;=!QG*NxyA zL6=du%~H_@BN9L2eF_vUI8hk8XVZ(5ORKn}7Db-QSfGE_Ic?pt;jk47ecY)y)RdBk zs(9Pp$eU-D_QjGEC^c~A<wDU8dR<38Wo=^A`K7`VhGL3+qY;gS6VT#geB38V757&8 zl$*_vJAcpyGsc2n;5W2NYFDYqA|Jnh^8-IvOFe8E%X9@bKG;oQ<wTg+St@tXZKtfH zcF+Q3k87`>x8TtT7L#SJz_#tw*5`wI_p=n@M?9<wrXb#ikhWPeW#;3SJ{l9nc49Tx zgom4kL!z!NT9!xb1Erc0%BB<8FV3R=5@6WpXDg|6tClS%0m~l3RTvkeFKph%&+eQe zv0SH?RY?Kb#1~+S<O>r?kYfH}QbZuavGUy8$c}BY%KV15jIata<eWAY?PjQ-T{icD z(x*i%E;&F1j$|KZngawg;Ks7~h3WJ<^PaaDsJQnuePUuFM`R{bblET?;rEPu#MvF> zEY2*K<DT%O&C`CJ93SC!TYxt-IBXJ)Ml(R9-eH?*Zhf6^!?wT2Z@38~bYH#hqfy>k z6B#=(F-~YK<_|WkeHjC~da5X+>Gm&@&W1|@5m=Xz(&h7M!|Aj=mW$Zy3XWK+dc({+ zlL}*38(~o`fs<D)`HkB7Dg5pgc=l!M{0H|Z-)`WqvZ&~T)B?5ge1QejQ@m}KS^BA> z&}WQw@wt`T>fJ?rp(w{pXmouX#QDvg)@bY-aOJ`uvKy<8z`M`O%HhBB<|fj92(W5g ztGCRggkd_6+G)pXOzVm>kn@Qt6eGG=o?8YsXlUvF9p+>Q&1g+=<iQ8Lh0X$l!2n6& ze3w4*P*@|#H07${#IKXWEBTy;mrO_~kq*bW6^A{rtikE&Y1+V$7WqsfpRvHCgsqS& zd4NZ4#J|yB=Ep;!#eQx(nz!*ujy%<02pRj)Ja2(@yPrLWXui!D9pwn)3<UHRBD}7k zcbG)n>aerl(#P~Mg@|vR?ivXAE;_f%la}!MdJ588YQ%MC?H;7){^#FvXl8f|iIic; z_40P4>kkRbSIFJ#*~ph18!d`V3fOc>Ls%A8mKguehY`eCn1+{e?IS{~+{o<k1lnaS zrd7cJWf*)&@stlkLf4LMae*R3m6zM6v_Ce0x*dME7;y=f5pwl4BT*{2%E-dL3SZif z=6m?7C+Wa0?(H}=94!s%iG-EO-Fwb2T}<3+RSeLStEvoQagHz2dD;P9+nak@W2aMN z7<JZLlrmiHZ=R3ja%5Jp%H{4|EgumgY^EmE$)nNK!Ow|`+!2En6f;#^Mj`lAqEoCy zy-YKrK&<&4arkP?+1l^XeRKv+U$S_bD>4Zw@qAw-cunRsn5VCyr&7=Cw%(IbnXKZ6 z*d=T}fiEFr1T^jsN6Yq>bjK9Wjeq}MwxaRO>2z<zN~hH=YDb8^l^S=i5{cvn!IdeN zs!VBf2Wmix^wBB(^>p*`Gv+*L?;I@&R?K%py0>s@IeUUvJ@FRf7YSS$SyBWJitGXx zItP_J4dr-CrzJzb)VJh#O7*rXRqjj7*<@vQKVns=>x%q{$in3F(I4131!B{fiXorY zp*!))xT<%H>b8PboxGymbST46Ugi@ZFS;nx9D<U?6YqY>PR2U?pjWhdQGz7ZCrpe) zZ@9=>0unA1=QW*6ts!%}$~JdCLL6Pxm?suOqPH*ME^Wg{{ieLIiDOg8{oNJZ<<bKp zTk_SjUJ|*MrJDJTS+XC~7_w*opmHmBjbl*N5q#{`Aw%4703T*N`KlhcSL-?<;czaA zgVmVX&X1bo4-_DEQh}3oV<~nfoUOR7RV$X2-Ue3+rQKo{sgpm2G(B31zavwsWGhN^ z*UT<H*`IZMf+-Y~&j6|WmX^oQ`S2|UjZB3iam%>zs%rm|)*u4lQjNGATW}@YvSr&M zsd%KlD5A7PL7wS)#7a1t_VnmdQpua;z^9GfRcM+qim?5i=@8em(-!suFq0sM9xky6 zc1TA%Eg0qt_d#mS&P)>+ZmVCYEi=7TFSD+rg6V`+6=xeM*F^o!Fku#{-Y{aN3aXKD zWr<{hD-T$@d@A6Oa-|#(_ZRUStd{kiW0xRh$R~AXxy@>Ut$d_CTRXlt-m2PfwuX5u z9Sl%QoYyL7%dDBExX|bp;m?nk+Od|iH@;--T{rgx2Cs>Q#6vFl6D@C~d4GO3=?!Es zIONDe=(IlVwBGN0%h-=OYVE$#pDJC$omfsn=~6F7_(_pmryBZn4Plv={F9ah7o&vJ zY23psBV}UZ@6epGC@R#N5x}L1IE;Vih~*1M_F&#pCx!>$aZFacyG8DoC1CUXkMzJ@ z6*-IHRMq7|PRp+?kt*>JTk7P}Q~@7FP6fByWBt$;*xmz6Sa!CS<qm|3+>Zo<cK$t# zJ>{2>Wt47AzI#T75vK+q*C*;O@<eXqFk2Jn4(*@=9vc@YJPHvmKDQVl1XpSbbnjjy z`u%%Ta(Af+sbUF(6%0B4@-Rh>IKnEsPrxp?aB-FP%!b7=d66K@;*9AG%IlyFkbo6( z+hK%X29hc<O$4^jWX;d0MG@zsm~?NqEAFs7tSMn>%%qC<zN1%8YWp!v!}T+^Edhn+ zdV?0|--THrdQbJ19_P#t%l(<cJdrMWV|jaO!Nz04zcZLI78(zE%om7{9?^@;Go7{2 zUz#$G7)KUrNw%?>I<(!SH<){i;)|`h0%krE%?ze*vhFQnQDM1_nMgs+c*w@3qeI<p zTeV-6)HdM5Y&UoTyKK-`@)=7^|M!B@A0VUVce(DkEc$o4f=_-CaOB&v%i-Rle3SE7 zO$PQdugWfmJr35v#}=Lh$^akfcozL#KtnBK+>#!08<)ivZK&fvqU*BGcFMR;-n~+p z102k7j)6nxqosyWmDH9(Zg|6IgFh4z>&&|;N*Y^#)@&&Z;8lCZ^1z-fgI=B}|D7E2 z2j()=A})zRM~^gEhAoYyf4(LWTzN74@-oW)3&ZeY*#CKrc_HPMU*vLD{xjxy7C)$1 zwRFw+=e~6R-tv{fzckE$!zGv7_}|d@?<``d-Vq5R*x1-u&Qxc;3|4KqFB2#hMOdU! z9;21jw1nh>E4{;7-j$ZTjV3hvXfLA>-qMBt!OG_ev1MTjyrNALDPP42DBnU3lKRb+ zVC-{j*%(+$m+U)j23LObuEH-{-uI^vPt?GCt5<n_T;)qWkOup()RbU-Ik%1CQIIrZ zdv)2&)<E!5@1^wVXqQ$SdXKNKeY+T*c`I^;8Zk7b-e)|s_yA9YZ;J-q?!tt1a`i@U zC)9{Fx?StWco)1hCSg+VNYbK9Iv*oz3_2<XJ=epRYDQlu8=LN{|Iy5fDxg%jMtSz@ zD)^_oz|%7-yrB*gb9AM+NO9z^v%Dp=bEv0W`VMD_$SK>zUvCfGiAXT4-mKtdSGe68 zj4OGS;0@NrzFNe(nR>$t@PUhg8P!Rv|9AagT1Vu?UAQT>bX2fZ8Mpeq$qDenM`O(; z%P_l%z5xt;1be{q$h)>~@M;RIo0^R}ht-?vDgE*uWQTb~Ctg#qK)!bu1H1v;tN4c6 z6v!fMuI=v`yrZ36<NIuGxmHFTE=(|Qz(Nm2K4qh}!ckF~08;ez9{ye)7@)7~I(DkL zru+N#UfYe%6ZJ>IJEh=SkCG-ax%gDbK*08!y2CRn2}M%Ht*d;U4)@<VsFnxbbyf`j z$%cTI)C=cTSQUfo>7i>5x4?_A8}d8qeX5ni<aya(Y10)okk?3X(IYAx|4k;vk*3qv z2R?m!a^$|w{OUK6TGJxSKRvI3DY$gSnR4mlhPcXbw@qhtmNn>uDJXfjSxr=kQlUm$ zmV!Ot6p_G4laWr5EdFIjGjhWrkOB)BC(cIM?7zz5YDYM2F;d1wW8@2GdCT>sBkWNl z)?vl*T=rr`3&ZxrMa1Q)dk+^F!Gq{k`2J-EY|slUjQ<A9j8FB8!JSp6XTQPXO+a6m zd}N7u5fR-6-j<K7dS7Iw^va|1&6W$_R0Pd(vG7LA+Pw=_oJZ{Y`Q*1?ym_SN)78RQ znPy6$7tCKlEj7e^^j>PN`Aev!(7c+<rVBdGd(4Ho{I?V$@Ua{3lI$xv|4_i+sllW0 zE7Lc_D>p5S_1B^L{}dActf~Gba{N!BI`6`NF(>|6B<2InpOcmsGyf8o`)5%7x4h$j z8j1PH_UG>V*SXwZ5y&zR{3a_)Jzxtaz-#Eyq3?DhzzhyP@~+zM2Je}nk>Bu=54xB0 z@!lt1{%<JFQ~{{tIbb^HC8cMPV6cBBvr9N0xvbeQkk5WZ%Q9jc<?`7pVA==6nKF(Q zk{1{eIis=mR27)aE{cT0&cYSLMU|YfRuI;?$wzg-pw65e)cxA1SEh=R+TL?1eKuxg zzixxx3Fr%v$SVKHJVFLA`@*Br8kpSXEOAhY;kr2<ei0$DD8-72gu$H&iz48BE)?GQ zhw~q?;ibhvi%*Lp>^?9L1)mhpEy3*k%J1Z&An}=Css$5=&7v%i!~VB|65P+SGPuEK zw_{Bx&+W-yO)I1regq0`kmPZ}muOiF?4385th0nN4%{orv+a8mm~i~HIZG^S{$lGy z{sk?sIj~`oRp8CCz&Umt=~c7_HqF~IBu_|E8{Bx!Gdnm3?CimX=3_<ce`qMFY1ZKu z>-;=tcd#uL+CJD}HT(?Qv29`Y@>F70aL=;BzbDdvQ-h_=V}rhJ=JI5NH#<NkgKGJQ zx#O>A&a`Pxh?vkh?p^vshN&@EeF3v$Rd!lB2rV^{S*Vn}jDtzVmtI6RTziggAdGd2 zq%*bqo<{p|?(XZ;4b|a(q!C9d;SUV-QFj->`q@%d=C|-TUK>3#c%TS-OAw+!O6@+? zCx^XyQH+*bKBfb6VyKhUN97K57WL@Xel^jFOkx<FeyXn*MDDl#7V~r_u7+toR@l>^ zy<j=f0~wvu1+97R{qS4`P9LYSOUvHO_E=tH1$=@|TML}U&z|WDcBa>&9PffZjq}T* z*t9u0$goz)2gV9Nh)!c=A_W8hnG4AMMFfjjyO^oaq?HbnE?B@(Rv9<M@=_iJFp_4u z;&EJK!bU**jy2HaqU!$srW>0+P?nbAdN0y+<r+X9EM`nucL@e|hRRTdfpzy`j==oY z1yQUR*d7nrx@3<SMBoVcyRl!uO;`Wm$749*0ucZ>RtEsu8-;&=BKs5qh>xi2e~2|T z{UlVM9|#=F9Mat5>EnJ<iRi!f#2m*XyG|;x{nwuS|KW=$90~OQU)k=wrUj6Xg$u(< zJuxm`Gef>qA2T)=<m-UVGq)6>NJOF29_fRsgo`DbQlAt{n?hbcl6$3j@PmIdK$fWv zvzl&d#NZ7bv!0s4KmYnPj2PaY`#4zKm@*z`rFRAGhOOM|{__X1gb<u?M}g<v6LP-g zw^SX5^PbM2r(PEai<2m~;`+Sn6-!mWHhk<RZ2svPCKwy;$xY9*)2pX+Trxu?U)!V~ ziOA!La;2z8t0pm%I7WVSas1d5xf2IzlErR!i@3_nxXRz!DeTew0fc9Ak0$MP!Oru& zqf%SyMH70A$#lC@RYKGQmv>^5C(Cy4GJ%RCzKn&paD9+bh~ZD~aw|kewM-6lPB%)a z(ab-zxp&=Czn1A$<r%AQ6WLj~Gr9YwLEx?5RB$w^bHK`*uZP=mn?&N2<334HSeIJ7 z>`zB(U`)>F28LnWYclp6P%6l|@x)~0$8%?L!EKI42Wl&OOYc~f!ci$&NvNX9`T*Uo zU0BBP$`Gl)+p!Fm?j?>HVn!k8W?@qJqwBbe*c04X3c@9k7^5biwBtloPC;MG<1h)b z@taerQ)Rp5OrX~Co$f>D^{RU`Z3+^rsL!;{_f}y{jxCi-(~trRHVRX4Z^cee*LTO@ zpcPHqz9Xs5Sz|)D*!zL&O47zxkNO5R4t}U?2a1qJ$N}fx>F>L5kkB*6qx7dmkldQF zRP*Sg7spM!<xU*VlPYEzw#)o*I@?}dj74;2!D_X4l8%8y0rwz=h4+c8^?8Rok8jZn z>mWx;=TvV}a+TY!SyQF)#0Eer6%-7uf6}(Gr)*3#6=K5qbWgf!z%3$5QKQJ^%frZg zvA1@U?6eiFwD#YAzHsaOW3f`*GMHm!K){gE$3i8IA`cd?k%tPd8@$Zsre24xK3A!K z?u-z8o1}Jq4+haTyEev9FiNqB%c&f_FHe8UjVTts@aANhSi)0B;g0dOfv-_(^7=c2 zk{AI>mZ{t|d*^{@T5&6`^J>Wz2hpTQhB+^W=Mc_iZ}1K3*@~EEW96FIQ~Bk7JDqX1 zyB)l%u(26t!k@7ZTm?uQlOI{_)jas{$0i`rkm1wr^b@T*=Z+>*Isez|8aX$L*yWbD z%bHnXTuo!psb=&pRVr<Y6@OP|3xxKeH={-B?AfV}`%7wclchY7&#qS%cwdK0N9Gju zplZTE>T^KqUkH*ru?HemoP$zDc4j0Cpio<1Q<{I=NpB2_xqX9ts(-O5&r7z6f=vVZ zx>ib)J(alEtptO~`l%xxU9^ffqB%y27;>|oZg0wc4&Ck~=q8A-ZnEPB80Agie-Occ zAJhLAmBgbbM(gU#6>@3y(G5-Vro(S1hc&<r-BcgS&<t<ww4UyAi&f)=!ax$jeP>40 zOuej{AlMeh-B)!$e2-VH0xGk@j8q3~rnKBCHk<N}zo`uTjknJ#m-(fBnu{!u<nA4t z?dGP|0xo&OGujQ-K*+7^LlYH9yhd?-CASukeFy{g$oY06s!)OXB`K9y8{Y4=agVcL z3Y<+Hjf0o(4j`arrtK13>e%Q+mR2%#KfDWG7~{n)@4{;op^8dIXcPhiO%J}irVfzp zv73n-u7){gd;CzFlnv$3$9EoM5VBNpH6m7KlE?#Eip9a;grQ>W3cRh^O=VmI6Q$Le zvu?Wb{CnSq>Kv)!L0FKPGVThfpQT5+2zENJMPM_&+aQ=~<LbtB<e1RPt28UH%-$gy z91)v^<&r9=txytJZYR5CB~N|-%SEEYqXF-#?ryG_W{x+@aDP_Ns#RMz9m-T%Sp~&* z&2+6(oC)WSV{uX7B%lR4zgR?7WNc2Ky%I}<kX?%7Qpj3t`w`4X0%1_rD&P`taSI#= ze{pvO*^u7=6tS5(2}f+9hvKw+Cei}Tq_0Q{R3KM?`;Qym(MtxO#koTx%yv7tNBW0V zO!pBqh_O1&9{&ETe0bZk->Sj~Fa;l+b-^EaU-6XQEe!k$3ekOI_Fxnf9-X#AQpllg zcA$@Ihh1m>rJX+Mx}p|XzeN~0^|8?`);*gH>`EJds#THSb+RK5K|q=nUJUG;Z?IW} zMGVA`3=o?8DyF~SGtx4ZaVMlAT>WFxRzzL3T=7B*9Ho5K<QF)TlE^j3$k3Bvj<opM z!?@6%jCUi#=3c`!*xxD}_vzgQ_hidjvXrTX_8tE30RR%q`@aB9ahox#j5MEUcx&}n zz6P}#xXN}=02hvy@l`o%D6JgMmzZLZrM(zQ?dR4&?YK*=vS$Q(>PuYGP~2u!dmw;n zS0r?sw)a^zRZV_#83K3#`unxbO+!zg(y%e!Hsi&$6J<VmUXk34mioK^>V7jA%Z}!X z;f$yB%+x0XPMjTUB!TV%EHb~BJ1AV3P?_xEvz1$uUnzATqshtiQg`LVG}IHQad4Hi z9hs9Lj1ZyGad*HU2QF%VwgxvffL#AycfvvK*m1?FckBrG9~{8{x^Vo=vDBmH_x=mg Cu<+;r literal 18402 zcmeHv2{@GN-~T;Eqh#rnvK6Xxl2chq6j|DiHcN}82&E`w$(C(qP$`ZmN@W>|lD#Zr zH!3+oVnR%2lr08h8^es5=Y0kh>im}Xci#VdUGM+Q^<doFcl&&o=YE#!26{Sz{1W^C z0KxtH_8b8K1%E{n79!z4FWYt<fd6zD96Gia{tJK_0M<ZF4XDAt!+>=z{6G8;w}Jby zR<nkWFg3V6jARWDRfCVIR%^iR;eNub!{8&=8Xk}fA5fSY2(yL{wJ^Ak+X;Vi!@@}1 zU%9zqx$qY#j6@0}LAll-*IF$%3_h&6opATmPi`(LmjoYBE(8&YL{gX<Da@Lb3m;*m z={|TicL@A};8E}|5(L4^L8LH<lsokwJeAwFh_kL4mU5BPzT++ctP14*AVNEb&H^9< z_V3ww>{4`ptGAVi@vTQgx5~~5*0|w2A1LjvtxmtEB;~$wcc?_s;_5ZLi8RPJ_nCui z%C9NC3BzZ8D-y4zNlQL4C=r*{=S`+|NPs2vFJaXYP_UByPXnNBAOOI^AOrwAm0(iq zVH5C{1AvVa17L~B--ASuGItdohgWuVL_X5OcxO+f{YK-|+ZFLV%D^POX(vOIMeG>E zv8rZ<EQRL7`t4beQAc2hF~`si?ZMOyaJB@z#0#JZv%~Yf3n9Hr_T9UWN8QU2ZyyZ{ zfR58}=UHG@e7BV_0q){np1~s<v#5et_uDo=MiizjkF+G4L<?i93?T~tiQ05k&|(;i zz?unQErkTI4@FRf@-v>A#F`AoRuE(fVAqkky962cAb$&Zomh5B5%`}1ilE@p)YnS1 zKpPvEVslh)fQ-o>cPVi3-8^yLGfG$?ne^dA>lwN#t{UBy_82Fs<xRdOze2E&rnRv| zX@pL1oru}Wh)tImN-3{<JmUDlJAd-9;pN9HFZ$RJRh%m5w1H&{i;?87Ii5YVOut(v z6_bXxHQn31{=}<A?<$C+69o}bw<+?vyE`SV-h{eQo4X$&GA9z5L++ySW33vVjJ@wS z2}fH2-tg_9QU6hNz6Mn9Ajurw*7|e*_+H#yD4`!QXvZXB^tGTf6O&_mp-J!l<I%>U zO<KuA$J}pFY{6uy1)j&u!a~D>(zo-)+vZINUVv?vc(x-gA1kZhcKkhGv#}p9h_sYq z7nYu+y*y`fEgJDw<iV32PB#!s4v|4#YJX>ElY7hCz3g>VmTWyyQC1eRa{(Vt`sCa0 z*2Q>`wP=qr&=BV6H8*PV`El_y6hX@&rq-IzE-yIg!TLgE+u))z0@zk!OS+F$b&IGz z`n@KUHgJ-)o45;Zf3z^9)6WGq+%uGRT5tw_++DKZLs8{3&qFvz-+UENFR03_NLDXt z;Y1Z`6{q)%UqBJYCi<i4V=<p~_cn_I9lf@3aBh8#5%bku@7~yVq0#77=gh9PBje<D zxp=m%giW8esWejqbZzP`#6+<vO%}$!-CiRP{wPOlJsH@B_PCFJ6@R>ygLjR5IR=s( zRH2=CO1eXKotCsuK`e(goQtQVqM3T?%`TIZe14)@zOsbMtlB0bbAQHG(X$?4rJ5g1 z?WwY4kEE46zgg?D+yWPCJJ2_I%h`rjcS9JK(K}sy{1sTZ&JLKpW7VWdW6U+*;z?I+ zJp!s(FXQ)b<gCu0)H&}9HqzwD6MT-nzvdJMsNC;*<Evd$;kX5?P(6USZ+fQQEFuQs zG{}2H2-{Wvj;Q)7waM4BuiwJ5KJ+eSoKOe1zxqlF1ETwO+_owdOrzb+H)Dr+5l?U) zsDMUaPiBP$jr@citqgh@w-qpN&Jw|Umq`_*<q%Qy!UbQbE~X`vqGs)KIG2y`aoIMG zq_)-hURbt)6mMOx0qP_xcu9zkx*CvJ+m~<MCJ8Gz6_Hs`2TPTKukTmM9tfk#7Yucl z8`~k{KI-}PBQot(=oq?c$&pjFL#6`QPW?le9CYw#Xh-Yo3oFiggO!?osgL~z?mUW3 zQ|c-yXi9j|0Hu*#vmYYkl%B`hp-Pm1f2G%wJWklBN;W=))TqKS!kyF@avG`X>A6N# zJ@;ObJ*cmhP-%b}K3)7^s}NSB!chqr^<Siiv<4o=ql{)``9lgsB{r8p*0L}eT14NQ zVOe{QdzNRm6*6x7S4!RzpYav+eqZnW7(AbLuTqMZgG#*X!&cT%hPl@M(qLs_EYrnE zf{!pT<T!Ys4T-d*T2zMY-L4GW^<`kY-{~3zm-0#n+)}zZW)5f%#yM3nAk4VU_l7Hn z&+7N1ZtV2<*6#QZXTZCb;ldjAcx9Bf)!`r*DfJ@aAXs{s*sH}7{d5%>H*w$35q6GY ziV%}Zm2NEbtkYE^FNkm`@ev$omBv6BX%*mvAXd)<u~isrMZ;$ujffJ)c6ql-9?aST za;+Rn3hQDSJSQfJ7<6ibu4HJg4M-i4N_sc26-f~TW!bD9*ieX7>9eKDJUIv2*@nBZ zV_}hlK``Gbi}X;>07Pc@_$rh(M>73_Na7$kCtp*-=NDB~Hz_mNyGXq>#$oyC?sF9= z!p#F0%(o1Na6?7_LE2nv!m+gPL)$n}o2qNqeLgM<+LZ=Hk0Ik&L~Rcgp`<h)#<Dvy zj+|tt|C_E>LcTH|no&T`?~i@#m(J;JJ+U<^)ChAh>{U_7Ph)1&3%>y-$^q&*l6{k? zw}ZP<`$d25FIr;Xu({V`^}AT<7F*D_9UY0t{2Wzf;iShI9j)mSZax|zDS$2Sk*~^X zzQ~Ap6kEc@mtzYjuR}wJBn8wxqt^5l&S01V?qpb{#r`qGaqbn%xMRT{Jm0`8RJ8nM zU<}^>{YoHP+vq6a6wcL1ARl3~_XseFr3b)qpj5S(y~pKniy-!FZ{(95y4=t@6$_}G zi_}fq?gwRZ9<XlYjxgI|igdq-QyoGUaA;O)q<tRA<OGI9t@PTGS7Y<!T_Pt+1B|W2 z&_I$61-78YT0FfVrz<{N5)^heGgsFnHt(Z|jeL$OOFTw$TwLsu&7|In8d2H%-lc}1 ziqcl}6y|a49}LVPr9(cW{c)u%Y3gs;&3CB9p9Ywl9-4A}gQ5z0n;8PwG*xA?XGGT1 z_5CPqc8rETr^q3^=Ar6s>#X4rC2H++=qNKd>W&usO(PC}!w9ok+lBmUVNH{O4>u!C zY>Z10&542R-P#*;k~XUS!D``qmLUCpyzFPw3!d!5^0Kw{g#+2EKuraOW#F)hRe}h6 z)}*g?{?`Llh_Kj87*=Gk+wQbb@}qitL)b2^s|G$s`XVj6mp6y#kS?j1SdqK9#LT$F z*vfBHF!wRJm1*7zcCD^MPXaI}iaVPcEJUR%$F19!j7S<vU(bV@Cx{*m!Z?gtM;B3% zB!GR@PQ%FSzb^3rshVeo&$K5{`98=UAR(OC^d{*$eCJkzki>j4H!lf~MD1X^7GuCW zGT(p~txhE);8784jWP`C-w{~y8LccS>>?E4zpq*9JvPFe2p0gbwgLYM&8L}Tqdw+B zyyN9Sdw*5vy3|;~l1p9N6!>^1PlLFGnA)h1QZfVu6bNeZy6}?%--4A^ATBk;<1R)U z;^ThLW?*8qBquw_ME%CYVCD0_tIU6)(8e09b1mL_03joS(%vNpE<XqR)-S*sh=E0k zU<p4`=79*<bqf3(!K1xi0DJieSa<~yX21^~D1xO25PwqBr|F(CG3Fl(+2nsGHOfn} zF^9*;DmX5&vO{aHB6xe5y5@n%x$6jU!Ax{fqV_=naIU=oCVJvD(3Wi4yG!ovQY2`} zlV5tk?~WLF`^xR60e|*OfK^EkzI-I^7Zk{LJ_+-)NeRS-P}lSnix5LG(KsB$8FHcU zJ=Yck1e4Liy_!Wy#Ty|`lzHeCKSh9j`q?GeOoQxYbB9zqdP!N}G6MX*H`KIaINO%# zQM&@2#BmxviV1u%JsrQdMC1O}$;cdqBAno58mEyoq__kH6j!h>+zgI!w+Oi$SiDLY zc?tllI?{@Jnz%!`w88x7LnYnK+PzZ@<nFbGK2Y*YANSZ9yqM-4ft?X&)Km0r<ye+x z{^D~2(*lkf2N|okmUx-8={Z(#dEiP7H!3{NS~QqDb|vLFM43ng7iT(5f`TUwmcBu2 zW=!T@`bDgkr=ensL_+P6BK20U4cEeLG^7M!_PF}2x08F6L0#L{Atww%5mTDIRdP^? z?ZjdB_4V~kNESf*6sJ@<ZI#~_nDWB9#Xc3Y4n72JgV;nFon5pkp<uP3&2lCg!NOO! zdlFs%D*^zo;vojlea`(@zL(u)zXK!?3+C_<Qj$lYp1!{QTY2sR=G0tGAa8R4<4n<~ z8!agkPtxRSvsf5w+#}eQtQyc>EYmS#Pj6uFqbTOcr-7OV22%=1;t($5$W!YInf!r5 z(>fTJ0vjWCPme%d5|Hsl5h981p*&dzQZwtgfnzbyvoV4rsREd+51monc3|zmei4N+ zgZK@6pEP7)zjf^ZE4mo0LlC-U%ne>#XL@n3jpd^+sIrgGgJa7cbn46^03lCVAGO>H z97;93Sb|d%EH_>ytsz3^nmOV?ldD6g;=S()Fh~FXH!ilFPx7yLy>=S#0dW32Lp{0r z*^8$JLenCi0$;p=efv|d64EkaM#u?krx-0{?3LkbQ%<%Ym-v2MdpyeW!H#JcgCQY= zK@B>86_UBB{48GG@0%`6gL+2vN_jH5+Jt?_GuUUlI;$xPx}cH?>&0@Tnd49Y&2L;^ zH;eTD!rOJ~ktrhc#Z5n0w##$c>0i3ZePt|9e!=3-pQgh@Q{q>FJ{5?3mF3Igzh9wl zdX5@{Rq&sDgJabH9E-CS|Mvm%qZxm_7H6?IdvV1T>G*|`?_q5IC*Qb%{694GzVl$= zQ}agc_3kqmz?z#V*vW{fPy0?H!ZJoiGLnh?(yw;GP*x5JRLm?q`uIa#TaxvTpn!c| z$-w*NQa#y*F$n_Ty_0Y2(+xZ7&!?#E7YCUinFUtHmlB9ZZnriA%NKOFiuA#KkJEa8 zJ_`s}sni=MKi<?cZP@=BU<I3+Ruw*98<U$H9)VE&IVffdtuwu1OUw19pgA*F;QDFV zDcNUMzPjh>vMEH*(A^#Xej0ewTwzxq?wfXmX`TsTb0xCe_eJC%lb_2RkW9}|cfX?Z zmulnxu|)q&q5rz6{@dF4i*5AJB>E>1`HO)2kF@dcqV7MGhzt4z#*sr>9A`9|!>XuN z9WR9A{4{F0i0{FRNShzJ#ez>n-QY|)4SgW#YwlqjDjVeh)erDxe)HtIb~g{t6I<DZ zHjA~6VYW>?Y0$U)=GhNRsRN{k$6sKMv!1h>wZ{h>FQ9q9x-*bupY#w_?=O*9ButuI zILmju3I`t5%7*u=`^d|N(?~lcuYHRMA>{PJW-W%t0PQ@pW%aCp1DC<KrlST|Ma-hb zpU<$4<321<M$Hl~LnOn!z?Ys$h*8mk6XvYI0q6Uw9($gmG~bW5jgSXgZrimv{Tg>Z zo#xbMWZ`Nzlx{L#)YyAGZezs3SxaY$(Dd+R{!bmp3#AFWJio=DaPxyoz9*#-vihWw zwd)sm&Wc`4dAJgqpk`%dJ??gN7(~CFV~Xi``)9#N^Cy8#U&3qKva&D2V?$c04ovSS zxEfjikQs$=+h9Xf7B@mhj?dxt@R{%$@(SVfkY#rtEreUBvg=Fel1MLP1baK^4V1RB z%@_NudB5)qopVJ4@E*EJi93TBf>DI$7=2SfvvE*^KwblrEqSK}BU7DFR&ygn^IN3t z(3UHar&M;2RYg?;6v1RxkCWV;Epcp8-q3Z+_QdI=0Q+TlK;orR^eW>*;fwd$mzDi? zU^+o?Ln7<o5T|ljC~l(4lcWzcf3i>b7QvrA7OBFp6lkpTY<<RdxG(x!U;VM52KDg- zQJ!kfR?5IHW-hR7>%TE_hO)s=7H{Ez?nfc9`n+}zd-faX9rvg*<0dUQFzp`!?*|&P zGIG3_daxEdpAPh-nap%&)+qxCGV)XVlH=~YEz6G-zgF8R|0VS;_{R<JU0QV^eYZ$9 z9^xpd`pCv@=IQ5uVtzJ8CUPp3D#N~~ze1lmF?R0aaHJoyVeWe83I^njaUV8gemhs# z<gk4CIpclwU#YzLuH5AM@MA#=`NhYMvdI!$Mk)F81?+)E*&7nPZoBz^6>GPg3c0+$ zL6^)M|IA0DIoBvdc5$}BR}r`&;|yLTiq^h^<<@4cfUpADYZ_8gmvz*`DVpnS5*CZh zsP(Eo%dXu^sSv>W%$b@{icrJ|*ExjB@SRxyRVr@StG^^_&`<n8LSJj*;9QY@D-I+Z zAD8_jaVFI(M|_GOtH$+;?^K11eF80{yLdK59Lsp77j_V?H@LCt{QC0Ak0h3Y7J71A zhh7F$ISbmnIIP`~>VDr1{k1$Y#AApyycs)HhV#znWzuK~RX70mfi`BXZSm#}hu(!z zf4gh{H%(emqRQAqO|Y*@Tih=ZU5O<85|i|$oLM|ur`-DHpET6@wAM%?OeX63{IJ@E zyS~Z|Bz178mf?QyApSWkKJ6X>VgMQ5YuLExVh>y=aowQCae-1kW27QS|Hb1I{PQf9 zFj3RyFea{8zF@wj<L+;-;&}2`&z6qsZ&o-y%U|a=zAD6ufq;2*g?T)fVv!fW(=lfU zkS*nzui9tbS1e`qwS=V38pmC^HAjLFVV;p)nPs!I9DryG_-bRIB7q`=7e);z0jBI% z#BuAclW`|k|2qvKzD=!7BO??o3;llbqU@z}ePp7*oAKgPvld0F6|L?RS1{Wm+@e$Y z&ZnjZqE-k+TzS5J9vwM`Tj;{V>DwUVnD$s&jpovA^|N5ZRjh{eq6z!4P^fo-Wdm=f zw@se*;$OZpKjl9MhHN?4ErStGzUL=~EWdLEw3N16DRdE3qgQ1X3a_8fLose)?n>~8 zCb;U{gE^kP2ua|Z<8jYVYHNNA4qV>4`23{P`3MVyd4y-9P_U`Bb9k#|1Gvl9(nqfH zpKX%#!rpvHRv`tU$Yv~3;FY{OtMh((VMr}+dzuVtmU%*6QPY{LEU&8u%o#go=3%Um z%s^`7L)Pz=P3Oiu`1Ii)Hq4Yw->Ir->3D`s6uRR!fjt+rA+!bA*BLw#*st7jBgiQ* zE;HX0^!C?|3hQKRHPI594M*lfR_DM_r|Yo&T^Zf^@ZW9}w781lzwnzQx~36HU+x7E z;D*r-6FKWro<aAw$gnwnP;sD4)?aY<tS}%BM@@kG#v3-IJrpr`Gi>*liR{|zOQ|*f z7lq`zMy=@A6?dQ%!B<-Y`<0m0@FteT7sEX<I>sFgUxZs`&Zo%x1O=bN!O0~psWECn zr?LQ6)+5|ozu%m%8Vv52g-_t7JMzq{wIlBzLuPVA?$i?Xw>jbw?FAxSy(3JxvHIAC zWV&_F0Z8Dr^T{ACu)$PfNM7FHmF1d<L3QTI?}c?}3#I~BLy&Fp@q&7-fQu5EKlO!< ztSgl)TDcJh^j0vHv26F|kT;&}!R_2GF1;|za_H)kA5ogJ+I%|7<OQQl*Ub~e+U{;h znMLy*;EF$=cjB?2Dq>~8*}~Ghhol7V+wA@!ZwH<Zi7RHT3&){;&yt(R-TKF;lq?!3 z@V<@UCH2pUeX}`V|9EI;TMM!Tt}7H1B(PICHYfgs<BEtEU~uPbjqThnSj*#OUP^*) z>GMinp3SHKMTr$7@nZ>4icWati=A+~FL*b1G2-OLxXQ|^Ug!}`ZxaS#3Gxz_8BQAr zo@~LFd8wb)TD}2G5sE#(>22b=?`#4GG<FYjl}w3hA9V8vrffbM#K5Fm6Vh0B`nBHu zz&hy%e}ZGpED7(VkJiSmY)a&!Uyv|W`<ytOrh3qrX=CuF<cLp9Dbzhmj60RfO-HlP zm$-qwW&PuP5gOXWhlhaI!Fw*bwB)-L^sMC2Cw+OV@j7(XtCD6vvf2Fu&Pr4c9-44f z0m=9)ZC5OJhkXaSF*rOl_enzytey5HN^jqCU3eBkVC88E$1%0<mV+eo<vuoyb;w1o zPv&3~ws5O<3X2_y#0p;)zdCpJ7+Q*O5e#~Q7jsA(2yx@^ETI>4I*En}&z5rW>+|R( z;~%|%*`Umz%xuN3h#+R(jjU?I8o~+Y9Ee4!f!Rw<>+gX`gA1f@ZiKXC(w3PoR1x@o z$P*EYl<rb8|LGrUH<^OCb7@Q7sX1t#@<Z<f&h&UMt+(MU$E&(ozsz%nsUbfGL-f@n zlU}UO!R-=1GPw<HaoLU^f`yFtAC&nKnUJZFC_5X>anV=Hm3<k3f`0N_XNwHSv`t-w z#L9l$blGuGcb@NgAlUT2+Hf_pkQbO|2cIREo&&KtQ4hw&tU6>?;DHezEdKdO_-vpV z+@O{V%tOsTP}86Ij9#(G4KnX(Zjm-Sz)YJ2MQ94e9r|R?t@-9Vo8Aa;8ZOlSk&B1{ z&F}3i0HkNbZQ74f*g5E&^5XA7tO$Jm8P5MZL*6ukZ4(nk!=#>G$QljVuaJK;H-yDS zry<^64!yh*JKO!HQq%k}JC&H8M4o0=crJtU!S@sXl3ZpMx#mZ9`mta9iNSABk8lg; zIZ@*K{Of<wOu;&CKAh7<x6F(3|0*!oSI|$R=BJl-FD2wj+wYM@OT3FtC7)q3LRCHW zdw!JbM@@r-6>Oz9x<I<5QmG$gh-l4&&h$&vtn#Uiq<I2Q$FhneX0b-P&_MHZ;Rb0v zv@LzvyeK_oXrhH&vc8z6CwFIwn2S?b`6FVS1I|y011UELGiySB6l?Sx6YqYz(C9c~ zANNC{jDo&xIQ=W-NL;igjYq8+-6-pU=$}&%#YJ;gj5O%sGo)7J5xaDF=WCuwIgQ>P zql?AoD45kSp*IQ(_`Xm6?WfJFEtqa&Bc7f3@(pDtG!{o7+HUC`i%H;S+{LeZT$Cs= z4#mq~R%W?t$;<~vw7IAYvp|zaFE-a#=k2`m&i^9Qyt*fFq{+s{M!%Nwp^Y8)BP85- zc;t|TiH*eX-}zsAl868hR6Fc;>suxFA_8{52^y{i%K4#sje|0zjW<E;PXVX&q~P>t z{yp*_+5%<vRt@2#*6y-BbG>95G!SAixpxwyrtW<tgu5XmJlm0`hcFOM+wEAvEOav7 zAKot;n-jXGN>VRrkWnv5Fmyy!$og-c6V#{rxtC3)1zwSM(&ibpgpcsbhA`--=shP` zuMgy&%+9GVzFb#5iXuqO78ADGmy4?kp@_bD>ud56s?#u+Mnb6;h-8JKjd9lV=6ZsS z)ilOE4m+ahyU9|py+6{!iOL}P`rCoEe&RsBXHUcaZw2}&<foV=mni}86scnN)gReN zz&NM}lWh+@_(84s@0I=kGof<I!WC|E^CHFnQnXzB+PV1dyo%&cIQ;9*r~X##oKpU8 z#ZCp_e=)!RjaYaudnzLS#f8(~iv3%$b2mf2uk-&THT+*qUW_aEKWCDgnqA|2e{Kjm zaoW+8yB%m28Bg7HoH1&Y%5YQRURTM9zti06KE0{*SreqH9#n}R(}p*>-fb=<-I(5m z6ab+!t5|!G>ZVrlN3`9XE`_W59Ms{>Cs^N#U`PG+WO%32_Fk)?u$jU-Bw_7W5`zT# z>COMM17@VK1ed0_>HaebF6d0{weq8|I@5LbrmVvL&+v{ZeCrDs+&8^@yUVL*gB5)H z&Q}fnnh;sCdEK`m@nil7r--k*iAXArBT9D`?3$VIi>-nf(8*6<GNY>NEsIfv!|5Ad z&QO?{&aX7BIe5AySov>FZ$iN1zwkFhPJY2$a$g1dp4%yMf8F%YqyJFY=gei-P34GN zOd0#4UUZ$BHl*BP?^CVBA2qLDo^z<yzIE*dp(ywiU<!|W`mY>&w^<|0Ei`+(z0{2D zmga~aIb1bb-KbIDmFX!4q_~Cofp_M8*L#QH+gJs^wJ3rc^GKJ0ZREKG79iU$&0Adn z+dgmU|6rkKG~}GyM!rEMA>N(praEx5m@^8W{?pt&xTpVbzCvZ!ueNw|k9Mi%_SzD! zBKp<Gc+7bQ@|$q`_VzbY9X_mOvFaip8xl*sa|d_R1H*AA*u1k9RY)(8Wc)!!594*R zuEMvWUSVYU4YpERCa(=hKeH@OZNAomj7gYM^mDc<zG7@FT*1A?ck5EA+=-uNGrOX{ zWI`i1Lwbj=<~@7LN0;sQd?;Pb+9xCRZP{td&Jf{P0RuWL=)^Nt?&qhz?6xnb|0g!_ z1KtK>S<T<!XD_>$y)OglGxr^n$P0Ku;_<Dfq09~CDKQQf8XKJ+<J%G1D3o@+g<MJW zn{@<Ii)gwv8`B-h1H|A*6nmbEh&HS;m9^2r8KX^$mZmmjX(Qsc!Q*Y@$T1EY)y~7I z6%VIZn03D~GV>MKH|M^Q&m6GQl6yP(KYciK*GIR1=^k|Mjq96-j~oKp*u#O@+xrw# zBSpZl7##+`(C*L18r(n(qkreS_KF<1*96l1JPq6>^l|44Lh1sIrNZ3U1mk;;2HFgs z6+ov2aKrMR{so6arJK4kUs$qPaqvZpzn9?wssCF~@ov43aH4;5-Ml>?a<9dgYA^>J zQy`osE|slpP*kwua40#?hVMoRds9|&?jQTMXN9z{NjqoH?x7ZD9m1nZjVd++a*VtY zy+a{{61&N#fWJgzb1{F*9u4>Q*j3w@Z}6$fE$h~HR&Tu#oE`s^ZcMp%NNQ!N^ZvEs zATqGYjcI$Nkl$8SC6C`hqM^-8!)dhDQQVOJNL;R4@S)Kj`TC$&jTzkqE`6`|hFF1P z0qn6p<3!<5YD%#RRIcF5e%{qodd28)=m##B<iSl*$+@rhZQnA(<%9>>OrgYWxay;1 z<klMqMbjplmN9fRjq#$NR)T}%ZzqqxZc{sHx12s0!g6o>EJ%6w#5U#kh%Llz^7VH2 z(lGfP4-7p`J<!ptaXpHV`djc*PhWPY>v4QeO7p^)5142pv^zB|N+8MbU4ZI9tKUOa zpQ=a6X`7F{In<uF?@BHwWi+_*ZBs8ixvweF@Vf04)B7Ry;Wl&~e`|cn7W<O>Mu&yT zc^>n4zum$l;U!X&ABuq<)ufP91y0VxZ6mLaBCPS8p5Dqn3W{MaB!1C%a59O{@k1d} z$8r3QuA%AKgy?&(oZ&~^*g0prrBjow!~xa2(p{=+qF^$lz#Z3FiHj7@ph!<L%KnTj z-L$o`#2En-rt_av(L8gcl;6A|_TtuY4ga)wsZwX0(8}VErYeRPZr{9UEm5(z;OA_5 zMt3QwrqRSxlZQ~+^dx2_v9@7x|GF1icBfW)+c8XkGh9UlZEI?jlhaBsH9U{`ASwEj zBS^LG`$Q9Dr)E0$rEzWUmWsp%D-)A)(fx*Y0$7z6wp89w!vk8@$_lcYnEfBgH{8HG zr<+onbJI%i8wg;n8foyOkMDIe{CgFIoXW`CdI!BXZ0Y@I`QjMeB<v}Ct-b2r?Z<1h zzz!q2Eqk*iir`E)a+_Q|qG4P%crwTE-AA0|O>w$YCW1sbhg*={UHHNYeY0^pg~__{ zUL?nB1W&?L6*()xO4Nx}rk)2KI;%KxjrR@<^GUjc-$&d)6lGP3p=ZfHYP2IeZLL(0 zn%zh^A8w1I*^NGsq|SMk&o1Q?@+r#=>K)sACon+Jgh5W~fZvwzJNLZ+4Rs|;^R5Pu zV(aYL7OJ?&mmB;@+c>YpqZr52`A>Qq5e!c3bz`Y)D5Pvo?lqw-z6R^YB$rcuW{WUw z!MoRW_%|sh7i4+KLmun|((0V+UX!ni)tp9S9FH63=>GQlp502(9{-n(rSQ`;-cjD| z@vq?LO=*vd88umW3&G(&7j`i|@ZGxJAxTCrq0Xb^tYL$SxSWk&(&DA?yyuOM<GyE- zl5fB+x6Jjdb1m6uKUK6ZlIYrA29?#z_YQ>cxykf?aqf*v-1OSl#2kIk6b&!f%k)cD zy9GbO#z+%>yTi2%?YX15XehH~Piy{ArqG_&Mb=+PEx#F@y(W|XI43mOLKq9rx&z<* zLO*Sk5zb0cuNN}UBr+OIpOd|q=igu3a3S7-a><e}et<VC*)|Gx(I&2oUQe@tl9<Zi z>XY7c@GB7FR{eka9)vwxe4!54&G$Yqhb}N%8mfHp<~}w|pW#-D!>BJo2?hK;joqLt zw8*uVOlrrekq~1_b5mQWue4JL0&5~KyS3_(2CF3&k;!~hg2ME%uyz9A@^F9MnTxE> z?q<l>M}uY9#_EMOqX?Q6CBk{HfcARPlt)@4XH^jBWKJN0`{Id(oel8o7U<H}#5O&; z1x)iakckLED6*Ef>3JQq<Wv!wnmlYE?~9I{53!>$bl*w%X-I~n20Oc(l_fc;$YL=l z4$@*y*AQ3(d3UJNTpEb>i0{HhNlZr4k6x29R~5o4go;|IO`QL{1=(T+ubv#B1;4r= zu?6g7W5^#pBz)*ghJSAL@c;>u@6dIi2<G69XQ&o@LkN9!W`S&}EoG!<@Z-?%(@$xS zJ>PJK`&F~F%rzW29C}J~En0=eY43cvm@7PQ7JBvj;>eW8$h4O6&VmcI=)-qaN7GP{ z?Zm#af{%{A7?qtXpkWJ0xJ?`h>JCw~%v*IwT$Om-aaCLF+H?guYl^+bz1kh+OL6P| zD7QTZZYY5zb%9O#jl%Q+0c-|llI~i+4akc!q}f%y#(`H6J4u1?!*KBhUP}8t*c<r> z!y%s<9hcQPNkhXPf#p^U)jfW4t`Lq;1WTI6G}t*do&(~5*d$qtJPSXNh6Fc@T8cug zCn}g(*mdEi4D{qg>3wNrQW56q!~ysXEv_*6%JMGa76lbPZTiOAa;qY5DPD6XlN3C9 zL`e#Xl}CX!$6I@{6zxbOn5PP)@!rtj4EVO77BLgOYsIxZCyJ_g;fLwL&1wmHuk=LI z2qv?M<Rbx$Lt!$Pa?sg%o}jvgGb~%w;%P0{CX56Rs-?S%p{|kMPLL9KvAdSfH|MTU zu#T5;sbqEOQTQo#X5w=X_tH|YUj|2;_On$5334cK+Eew3=?C4cOT)GLQMeT<(jbLq zuO;Y8-}s=P)<oWT%>uMZBSBdzIU}og2y@)$NrBZl@>9%7tr}?J)5i}D9*z1)-x6ja z9+U4d&Y3)k{R|nD0qt$l<{QZ)TE%f5Cp1#J%la^6V}&Ip^wAOK#}Azz^)E`L&7&JB tI_J7sBelr8AKFJi9QObI+f~?@RTsdrvqx+$z%Q`@`}gYYN#AAZ|6gp<<{AJ1 diff --git a/public/07-basic_statistics_files/figure-html/incidence_visualization-1.png b/public/07-basic_statistics_files/figure-html/incidence_visualization-1.png deleted file mode 100644 index 573c23b0e3e6d18f1b59f99d3f20f6d3aeab929c..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 53684 zcmeFZc|29o*FV0_b<Oh>ks%Qw6d{F6DH)<NM5a<HG9;1=_h=$2Dnn(uWQtHIvwKTQ zROZZ)$eek0@A+MQKF{=hp5OC&J+IgAkKgz8dX96CyZ2h_eb!!kpS|~4d+mGI{ODm$ zHW4-e;5=e@@HhYy{VM~oFwp<CvDnc7knQFs76!7Kmv_75s%{)Ms;U91Ha4m@^lO4@ z0R1edXVKF(ssS6>HuP)4#w8%YCV>8>+$Mp3cAkx`y$Boue}w~7>9h^*0Got>jiWpu zAt4}ve(ek>FApfEUzeT&Jmr#zC-)}Us3!bHObAd-_$xqXO-QiWkVq(}|0R^uubm0y zO9`DzrCjRe0jlKzHsuNQlMY5dmNtl;o#mZN<x5LnwkUu3^5yHV>COb3&V+!@a{8Ij zS^k&aNk5k8T%Aix3;T^1P4yNR7njNdmdX>BI_YQm5}mw(LBB3xUe~bLVC-oUR`m}1 zR)PKK$1v=arHmTgaI9X2Hdg?|LN`80<j~AH07*D<P|xC8!bBx|r1W9$VH=fiobTQp z324mfEX=GCUzEIhA|UgWqQ~uvuD<M?<<BzPZ}j$my>Qah%9)JCm4r{nm6liTf4^<F zLa)1~eau7gB;M0DSaSTz_#dK4yt;c=(bma7%|a^lFBe;socW<8!!%w!%M|_+N$SX7 z%FQl3g-*}lbp0PQ#3GP!<mwKI#Pe~%6y~mUiOIrO#``XIt*9eT#l}?or2kv<KSF;^ z^%U_9ZMLS`uX!|?y7-Cgx<+xN{rUMb)NzkvW@VQUw{FP+N9|>|HK{HBt2;X+h%L0u zajWI~zc%O62D<wSb@UzYHjuFpg*K-aKkGA3Ptbm^g@#ICGs-;?*h_84mH1axIfkrx z10(s4>q^x6KC7wRrEL3g+v(-}odKJ3{AdePYGN@%{y~9?AYS!Q`Q0q*AgftqYN+e0 zwqRQ2+U)v3H#2e4aV6lXRO-pHHdRC=$ZzMJr1psES7e6A@yR<tJloCNR|LF1w#Sy= zBhOpX^j>%iLC?Y>6Ggd->g-(GXzN~*rYuey?Uv{XSso#G)Fl0_w`KoXVn}TnIIaG% zRn*RFAQP8~$yJa{4V@ASoks`<1P>FbH?o5khx_7I&*jZU=kIh^77t$U&K#c0BnOy_ zw}``fMENugR7&5rdA&)ha-=RxB#PpaPltz{nV%DQ$qyM*dDYFo!ikH@v5p>_pq?7^ znA`>^f7RQxAR1M|{`{XEEGvf;OPPT<{>@&Z&3ZiFcty5|+MT)lOQOG!?7zBXT`#-- zDYG4$P#S3nUYefHce9$Tk-*yfw3q7x3mh>&>|=!Drqu~$y8bidJTh(8Gbw!edTg`q z>bh0-?tO}u;}vW8kv`3-Dnky13SI?ngPs>X?sj8Svueg>AA`!1s~XKbXw{CxRo>jA zaYSsMaarR}zKpiY>b)=b>DB5sI(mMxN=V1@2JO)6<R%Ryh9y$Bvb=SL(Wrtng{SRK zoLMj~9!}e5Ure@klng$iJpX24EZ(Ee@k$mof=C;m7(3^G$nUYZ1Uu?kb@Eq)2w?7| zb7X36fVo-ntH6@+wQ2uq;z`e6FHVyBpY04d>F5&qRl?8akoDOY!v>0p)_1ug+R8i| zX8Uz9+CCO*vuoQd#lxtAtLtOx9*zf_pU)6OKJTctb}Tvcb9OfQJDD&~8Bz7RJ6b;e zX8xKk7Hqnk<U+My)Cga{SH;@t_&Q*Hq!$OZmdo`%b?wR-C~avWJ~U610fIJk_x-E; z!5=RVTPuH7trDGIz6P3&7I1Q8emv8ahNG>&$jfZkrR@n^Y^xsY*Ih4v<GCKc$9Tay zs~~gtv`e3|<xk3JO|=B=%u05yW0uU&a=mAAIK3qgQIy-u4_XdXd%saamd<DokIDrr zEY_AhNb;%7+xklDcIEwUp@%*>Kb5^M|M85=ydAhuv-;ImM3_vgn&0PlNPbt4U*#Q( zp@?%Fjk;7v@+@EB{wwnv#Uitoe25@vjRf$u7?tLDrCg~BHjq`R@@QqfM^1}d=?Z?R z>$dLoC?zLuaI^is;6NP2hTQ>*Mt{vU|2~(L@2TPe<mJUsMW*l%wo`)kmAVfis=Oeq zi7T5=VpEQ<(3D+4LgeG?Pc^0&w2tP_i28{#gc+8#O$&`Yv(r6WwR*;#a}_2-*F&0I z`uSS?+TA*n+leQ;9}t(><z@%IJ#T7Qjz^6vrXL1f*MR<r(0+%h?6UBi<lxcr`38)u zcQ#@RbjHo^cI;N3b-6Eb^qg`+!Ijy2`C_^{2)Ko?!GrPo+%i{tf%#j7JZF|+$HLKD z><;y*ISrnJg}T%wY-mbCzjiL4xFj2u8vCZs=VYFGph1EJ`Lhz^Cuf@>HyN75Z*?Xf zx^cI%imoRWU#w#1ZZ2kxdYq+N@K<5;j$|D@h{Wj=>B^48N5yzWN|48qe%qlAOMgMx zK<aw>`s$kQEu~bSUe<r=svlHs8O>nytBw7ys$Q(Xt~;iK_L(P7pIN!(C2AIW0rp!~ zgVSgc3vZ{3NA$QvFoR9Z=qtP2fZ^NRuYw8N3cNkf#^kTtNw5UaP0DgM(wxS=&NXmq zB;=vXpxO1+Kdzjvr%v5H8aUl2$3$4)epUtt&E+YXtr|v;>Ggb~D){HR@;Yx|uK?&D z|2?0-lNEZHr^)N`<=2lTwY>Sotb{nR3I)3}P)^*PczbFanosY+h_pE}_Lv7-A0@6# zadYbutj=jET9>yjej<*GH@lFjR4f5U=KEAKD<ePK>g?eRyhn<=TJZ<C?_InRV;VbJ zo})IH%+Z#@ElIuK%nM5I4#L*B`}S{CaTl=FnoF(LN^+F;%AGjP5jSHToV)woj;rjt zUQ+QvsDHd76c>HjIbIG(I^Z+9tRAfcgL#=<&5C5t_5g)XrNQD2!~EXU1D`N~)edZ# zJj5+fx;=kAM*@rVq!x!%-A4{e_qwhKg#}v5o^Cpj+K|<w8RQppCplkYz2tgr@rkCs z3$v=LbW5G#-#x_;=JrL>`gIT-4x&my@XXG!Z@%r7x!nDv{GFU=L-oX)h42}A{Z*uM zOMY{As9bdEYk}pN{GV}TUoP5=XZu4-U4i1Q4{)nPp1nND<f{>Gir?&2uaK`EU_2AE z{K{_9`!UA1FM-Aw$@sY<B;Rl6<^lcRf4imJSo-i{o#HaajK$Q73;QtzH`AXC*X0$R z_3GsP+Mi{)g9?`iu{BG2$3#u2Vzs&3aqD2;<Eb;v>C4~K^oIkf18Ca9^@4GSsW-j? zjmI2Mi9r21#kmyPyx&lp@kW!=*4Yg8LR&?BjXwxuJI}Y%_=bxc-TQg7R{CFDTh57M zT-z$K6rQaZT3yhVH?@4m3}5Xzc+>mX(DIf)|IpEDL&rA4r3vZTd+SHc`s{O3h6USk zY`^Bo_1K}u8{K`}bfj)Fb5z+rA|-F&H?n1MAp*QM?+EPu<FMclnSt(`A#l@ooUQD= zjqas1NE{`9^i^x0qBpdB6A8-hg$apXvHUB(*iUP7+Cs|S3!ToVWXE%d;`+qt!$0k- zNW5aY1Z_q+T)wdS%$r@sak4S;p8a*lyy|{@Os6TC75e0~IZDpPB!`!N*)!i)x6!$W z%W4PtrPJ#?*<tLC1GXYUeNH|$F+6Wdk$L~iY-$rw#6LJ@s8$7E+&(>Q9QOD{!}a`C zll~J`Z#f`I1S2L}F&J3q*I#+Ux<#U|hnwQ@cUGfBMY)TNb-P?n$6akMnsdkf|0{nd z1Eso%_nshX?ATFs;?gSdQhlHfqLO5a2zO^-pWd>f@7&oa9qLrwx2C}1aRNTR9mQU| z<D9(WaVl?3u}F7*xY;d$zILaJ#)EKA2HbOR!JNDClzw$ar%UlPiS7vi)Yz`S$oZ=x zv|t(+{}1vrP$475E<155RARu!jh-Sf$L{s`ydXM?br;cZm&*xrqFz_NOK*s~(8c2g z=`v7!@euNaMn1N24-sSo<h=U^h}#Cp=D#4%&-2qkPQBRx5!?WA{w}uxa()AZ^Dl_& z_6-o54UlJlLC)oFfSmfP32bOmc%FAdlfNKh8z3jX|1HS54G_k^AZ|<>Ag4D#)WIp3 z!Q*omqthxDyJ1jOAkAazxSmI&8@Tlwxb6sLovA0vorjJqT0mFMl$kJztuU5sJ+UE{ zv0=;>L}fC=)Dt;cer^MHJ1`aR0O#&`tb_gnQu5!|&sRLEOJj1_PhF<w2hU8V=UwU2 z`?o@TWkVZ+_mM&4-`Vdapvu36`nP}mYaZ8)l5K|RHoDrWHXACbZ>Xe->o3ICKCjSi za`WE|ONZ+VX4sHs`VZ1of?luL6R+O;ck&GVKbe=4>70vS<muH=ywMcm#Xy%PNTJ^; z;pxVmwr||2kj}Y8e&&dFs}_O@)|a-?(m3JT^7&xIqhVshkP-i=AeG6hU!|bMqy7J@ z*7`p(^#ANZ_+MyxegFHO;eQSCzXtj5$BzGPA^$hG5EiEOQzwAw6@7&JI)<^L-D*G+ zRblL3{5zVg5pn(MoPRRm-lb_xs&2u%UOc6dKDg0m8u#ea3TM$Cv%e%n<u9prF%4S^ z<nv;q<aR%%=^n)*-ON^rF7p_k@^$n6PCTXL?J^PPWOr&^7g2e&bBw5af>7O+N{duw zRC`HJYMdba>SBY_0v!Tq_gg{w_)|?!7GkpCL4n9s#;9)W1bBR7!|EroQ7pdjJ?6ck zVHpSES>fp%DYuy%gd%{t6^PRsY}Z|ZJ_MP5uf}X5964b-<b95&*<KNR!DW6OGQjTf z4(glV^2fzU^Yqcn@!zNDv=F8CT;FADRp#|A96qHUxz*%nG$I#MnO*VspN?O3&|xRi zgO1njm#6fPFdV0YMTBUb`Q-4)c^bP1N%#Meu>YHgG?@HxjFE{lEBFMi>1=uva9B_n za_A*Wy8lnghSi79L`k8OeW)b%5T~^P7^)WzSC_F}s>UX}s6;WQ9k`C4Sos&lT{U=$ zuQ0e)dgc!$73^gjT;+r}KZ@ID4Lj$t1<`*H9?%IRn>(~<vh_bM<=zI=r%nLPdF8uq z7F*eA%Z|Wk^eFZp)2!&Y3ZaWLzL`*8d<T!(wbKRunURCVGtehN|3d$pWJQf_er}R$ zSrV0399Oa2!`Q#uYK5HA_RZqt_tV*~tJr@?;`;TiKKQ3!)gU6m3&~J&T!Gq`)^#>0 zZPg6yUc}HmkGmJ>9H%DlgvExtRUTI!2hYVVR&ZKw&BXYj{enlcC#^ZDI7NPNo?h7^ zUrkrPI(E&eTii~d>FUDEM9KW5m(_K`)^3;Em_hQf#+?A617WOa&fAi)n@hS6OFcK* z-<5)YOXWg;TQ>ExM>L%NDz0<om&+WRBg4EP@7S@b!`6!6RlO5^b)Gx9bf(b%D{a_~ zSNZHJCbjAN#7|X?VD<b?EO6(*Z97pQHDWScngb_#$Z>1ItYwb3kad}lmBIciLd6UY zldE`mZ_iK>xH8MbZ6AX9_bR`KcUX#VLp`}fY}(a&662Q8>B;`j1SZso7Ql=Ihv1i} zvy;D!16ePDm((}QpKbOm+c+F&6!_t!Wgjb<fv~iiO!FUK#}+5MBUbwGAUj|u=+Jvx zWx!??t9H%7;*xvEiL1kp=det(WToFken<$rVtLJ1=zW+K<|qQbb7XCnsCu0vLuJ49 z`AnmB1VrxvbSpX>mvFFId9VxLe@?~h#_w+`HJImVDznv!BdgbDtQ(>5P?n@>k4RJX z^S)vdH~jhL7ctqBScoOf8fW(ry9z4!=}H!Fz9ZzQafEUs&=xy&2AZDcoZJ-t^wCV6 zUuMpcZ1=}Ac$J?YhNU5R<$c`kJ*x-ju<T{eho#oTYeZ#euG4#ex1kY}U>l#nEN67L zUdjKqggHQ3%*|W;$@~y&wKo&ngd^Bu9WKjZQmJ2(I(aTM5p6$l?s?)dY>Nj6Tso$l z%URTqMM~(-(ufKjr8LjRzYP18F(MdYx<#v4Z@FIurptOY4-=hF{(kuY=Om511!B*a zlCbfpM&^%tJaellm${po*D|b@cJ)D6`(|>6DFVJWy&k`{@J^;w{@G+b!XozRP2;CX z1>^!|ygIejtM+TnxCza(iD>khbI*QN>{FVV`*w_cioG(Rm=9efr(xo_&>p*rZ-dw- zYG!ngc{LN3%mHEAG!lc8Y46}RM=G~d=!rveB`%)4-3R`(EVY%Ny3j^+m5zMD)Lm(3 z4&IpRfW$t0Qg}rs6{7`3(|Yy`eE(i)fF-kudnf<Ej6c$NZ5NV7K09ase7cg%i*;;$ zm9=k@n7KUVI%j_J)Y2v@QT|$O&~;3C^V+_DLf_$}=?a0vn_p73k7&yHl2A=;`2lS? zvKohYW29BnM3b~(*ql(aG&b1frGcPBM=FA;*H^GJyAdlk&2*yNI!2><Cp2O_oXhw~ zJxl?77Ra7)#h-Oc)q70A$)8V`I^Qyj)ttq>6!0>_%$NJ#tguqKn^3c9;dwHSV2!O^ z^^aeF>{hMq2_>1Yzs&{R9yI!n?O`g3>`cr`=aqOA-1R25q?t=&BLD4A{W{SwYhLow z>cw_>_&N2{*JC?WEDcu?C4z}l_ZTUMA5XWe_SIt!E8RX44E?Vc$#m&8EVIW1SUMA< zNAKPbiiJ%-GZ)BlSmkW-s16gwev(Kn8poq86PD}t=lg^K4+oD(TRdtvEBqcS)Gf24 z$a1BLGwo7F<W>%NW#97|$McLDLnB)~B8bD$$v*3=JWwWm`>nh#6JehGPbS87a#m0} zrn}>aBsZOj8%KysYqT2r1YxwLUAGW;8?jFea?}M&6UUz5;E>Fzz9xgm6GV6N@Ynl9 z9|onKyGII#MG%X!J{}xT8Br0|@4fC_swkb2KzI(VAL!8hU3v&&{%G8SidqRg=sI6o z()RRNKMc2cF&^~?{;|ApYtyBai9G^ZIFe~VN=g6G-uGf)J{XncECDgg7g-T?gk*pj z<9z6Y&PTYI>^DI2Ng8ebwnzrJ5Ao2Lipd~a2C&Z=Eo#_z*<7o^=i)FTNngfrCksQ* zqvx-cakC0<$Fsbr%Iq|Lbj>lKa<mMd{!6g@=a=}>4+dC$m&5d*^AwoTIGIB|d#KzG z^&^b3jYi9*98&Va#=_U|A!QE5z0cBxI_P&|MWrxnUgWIz)X~Xb*dG{aWA#eH1Xsx6 zERv4{{9Gk4KW0MyQM3iXng!NVE}vuc`Mi*ls6qa!eh1oR;QAW&L<hA3C#*eGy>Fch zE^#9Ct}9>x+wvdt*ddjsJn(}ZE<DMSimq|F!(r+BS?m#E?IS{8I<TN>a4~3$fah!M zZkE%p-l--m9?)#;<7v`ihJOA<U0%UU6>Hk7#BDI0`XReK8?*WTJbJ}jYqNzX56;Fx ze``EHh?%x+OtYBK4Eo?!%z<ipB{CCE$a=}lU4D5s+l;?%m4O=l)90(Hk-RQg=E=y& za=ThOw5U+dA-{V!lO99Vx})mpHHHyx$gLZn#WJb?XJ*c3CJ`p$?(A{|ZhdKQbECUl zx%nj{G_>~P4e|_jcxrY9HifcN#;{^7dXaRQ!SgxxBFky*zz8So!I#Km#AbvvhV6xA z0jik+W4DC9CuD7<yfMK?JbgCAoIKief?%HE|LRNM75*>FUkfy$bu`^L6gXf|KG)v* zFgtumv{u4FHy?o!fpBdGt^Ids5S3FQg#`#!vcM%{5X6JrBFD(I@G1i#kM2t41~^+P ze6fb83R(UiEG8)tvNxqF)SEW#+M^wM)%lwRI90s5$tZc`1qa-uc`^_RX^#y@X0~WC z5Ll7CPne#;(io-=YU8?hZ;3ags6sT4(_?Infg~JR$N)<w8n|%fT0hN&H03jy&*~!2 zC@{PQ%6g)<6%-t-s}e^Gj}xSkvi;$?9340`XGZr?Q;;^eq@#v7AAf;Un_n?P_d4+) z{#D(vldC6is0kX7C#uH?j|mqU2yv`GPt6gwz^$<fp+Fz@=>ZtgLmg;S>}X=Vp4PrD zOo*Aljhmk(I>JN`M{_4DP>hLe(5QZ^lLZdRb_37i)(%YNt#G6aO<-<MA~W2DP1L?J zVLJ)j{3)R_A&|z|MPje-{iz3cdyYJAWHpz)mmT;J^;L`q26qHl^*avDd9&O0crrt! zkjXaqZkrw8Mzy*$$>ekZ<>IZk1d0G$!cz{9+(yTKJfo61A&`ag{9T}_H3BE#6)&7N zenMr*`jgv<bps_7_KSRJ_fdiDL%KqEC*-igyc4yL4UQAy5%c0~D$_hCceyH*^k<9) z_`ig+UG)u2>Z6zy_>3`2US+=`)zgnvfs_8r@XED+i3LE%XNegp<v27KMq0TE6Ptb? zEP00oA(UINZ=DFh@^C0!C>wX-qfp^9IUH!~gnj><ag30XH1Q1#gnxh9`dvA2_mwAF zT<-RpnAr&_Df<9k34*;8`UqaE^bTNEcu9mXA-SXT9ZgxyhZ)em#bXE|j)f#ma1AbA zCMzR`z_ZWL=&B-&#PnSQf}m8%0S^TMcVRj01EdswLX*q9U4*Zk_&u|V02YEonG_<o zr*(=IcEk7MqZ%idZuKSM#-3xIS1{+Vd)COxkoD^#rV^jX2D%@0-0@$)X=hCEO<%L+ z$sHt}RcyzS?sq%7FAj%lB`tCncBTMnPCIR$Dd)#+>tNMoX}^hsD%T&p3KEX0D#P6p zGp+wsuiBm*FdRbqP<eaUX|d@cj$)YaOyGiAjw3|r_Xhhye%)rqgmzvo#P%_eu5Y^} zaelGsHO=K#kqOhg&>qZibsMiz7wZ<~{mbMFcjKvjo1sng^qNXx<O4=X#{>{_o!i%x zS>me%4(@k!!&;Khnx9Et&iCyg?rJ@pN@Q9o{nF-jIL}#FQlU~1<}2atBI46Z3<Z6^ z>Z6sLuqA0o!FYmggM6|uf0>>8LfZZt7HOCm*O3;B>l!j_Q>Zz_NvjC?rcpN9Mv%#Q zMq4Sb3R^dMOLy5$4%OR-!Yi%o4zgZmU}1{crukw^3~<bPzqc68#dp5qXnzu9J)^xb z9H&h&Lu%f&L4Sn628J+Quh%ZJ<6exS(v2OmtV)(f0rIDK2n+;GZ!w$`6XjSn0r|1C z4K=Os#rzmhuR*PK&%e2G=M2kvDcgUPVdV%xb2b6c=C#?5El2j=9^$*S3srd`&!Nkw zBQDgQ9FZ$!mpLi9J+19X91yg{=T$(_b5a_X+3vk}pT=fZiM^2Z>83any3n#XR@Eok zoYl7Kyw?HC$HB*R-2=bRQuT!5&YA}|Sbs~hoMbf-m=QdAZVmN-3}&><V$Kp@&Ic#Y zp!cEUFvRs0kCT-u6X(e~Yz@K?E9|rl7I`T{OOvbl#-6g&{K)q)2*GYyHkT`8XhIka zWmorpGOAgiNK{qO>@Eq$w3EcY1?aqVD8ob63NYjPsY;-EQLqp*UG3w9p`RvLel_+o z+v6D<{jo{DicpT^JfV6vV;&&K?XpUo1j2ar>6I}~G^(Ogi{`LmzKWlGt@ge4d1gnE z<Tzg`7vdBxbQpM?Q3mKAelW?3JR2(WlYq#i_4|S6-^VN`yIF4gS?tG9#2_i{d6kD` zlNYdrOpko-t999KhrnP=pKGTU9?~q-JMS!(O;1lgJowT?)K7r@neq(`H@~2pQ+^VA zCyu)Wglm5L5cQ&VK}^Fc<Nm&I#;-z`ld!$VYDy&nSY9FUP;(d|2sj2v^D4A_6sx)M zJEEW3#}7_8Nc!PR+yZa;o$BwdS9@9$XYgN+r5>j2R$5U(c+`Z(vBwsPfKK8&cAq~y zOLR7vWxdeIy+@}1J#Bc8;OPGgmDG!gAuvmeJeKz8-cH@?k+?d6g3^WDpzTDyxgJrS zzN@9JEH*7MDvsy_THHawH<-jWgo}|9FhzeAQrmI0)!`e)X?gMnV^;7khtD(rV40Gl zv!ISQ&s5W*OvA<A#LW>82*x@g*^c+D-!GFzA#Im-e%(XrwdizTaZtWJ+jO4kQbMtT z&QffHx<E}>Kl83VLCETgqm`uqC`$R_fRFho!1MB*lf(nZ?y<aGPG48fk!OQV548}u z%ODGAQ*Z1dIYsUe{?z(zU~#|B2-nK5u|oE1Hp4CM2PlhQcozl(aFXQ7aU8n60PVse zx8g}cw^|ap-OTcNA(y42;=1T0c885484b4=0=0*Xtu!+GR;ZLr_)ITqk(ATin0pZ> zDz6fVlV9usSfLmhio88{TbvLx<V2D+e{=TC7nyOh)5*q>+}~s~Cp$L(=7Vcel(FQj z<7!|Pv+Z`}mT`vHPQU5nqdQB->&N?susbbnW0zlx?W?xKff@cJmESU)iIVNDpQBqB zNFuCjqahVhoA47IpA%<^)uXNpB^?hEPd@+x-&G~Zy7N-<h#NhK#!<j>+9;WYH<)+) z$Jq~so(Ote{l4e>@wD$X7A|6vP*!Diz$*JPX_uDDh;AM7E+Bu!gH0t)jm?87N*v_^ zqkvODiZ+Pnr6fT=4>n$A%VqQ8W5~x53JL2ZM{&&>N%SNI|10DDI<mJ<0C?d+<>pho z`Hqu@HPM3CSt>ueW9ovHvcK+piDnzDqh?%gVy8Ybt056DN?oZJB9&vCFYjbz|E`T= zp%(K%R92jp^1Mhtt^%8UWFO%<iNzMiloblC`#OYRoMmj|;>a!9DHgPwcJ2b{h8(lL z`_<2RHN}g>`c9+XPIj7B_j(^I7zPVNRAnI{!Gei>VK-^O{7Hr#w*k-GO5U}1Toh)B zI`^}!?5@}1l!FjNPP(?Wz#)m}DE3_A9$dq!VgooKYmiBBd#kz&bN@~5A@$ux_NG%F z^fg?-g!s<7+9;c`WMWOChrpZ)0avsque{xT6?B%(J+?h>ZJYnIIQesp0p**J&pfdB zEu(LmP1{iI#eGP-T4nEv1Z~gjx?VMVQD>`+qN!2R87xZyN9ZjpPPgI%(uF=(a60F3 z9|WkL3@GW32Y*N=?kcX9AM%93cl<|2F)NrCdF}z9lWbjYJ8oRMQC4n>Ph#s}l{ABE z>L918rB`|pKD@p1R-YROoqHt5^J+?pPMl(@RWoX{OE0-$Uwznd3!G&kFi5^hEYx_( zOTd7{39(CGERAf$&P%A2&5zRZrE57rYbq6o5?wr@kqPPpe#@u7<SOJAwlAx}n4#aH z>wR(So^y(_mBZyE?9iKYhsB>V{c3ODu}Kw&Zhkj7<_eUR=Y-mc2dr@K_YUBh@7sc0 z;s&pRI*Tu583~QAyKyM{ax%}$>-%+HxZUIM{7$@rf29qS&+;dBjX(3&|K!0A-y|3h zN)M#iu0HPh5+zo^AN)vaC+oQ&vDWRj^F0hNeph_+5|r|I22ol(wHof9*7un@qT;m7 zJ;vfp2kULGxom?8R??(4JhUaL{fP%?t`#41zUB4P2Wxp|DX(;!^=P#^&S~j_*{`!N z&8;r=XdsaGP`mXL%TN8sSR_ITvRzfJ6;1iDYHq>>htktlBgbuzE!;t}E~q-Gqo4o$ zbdZH<o87eOg?Ys5{zbxo*`U8PXLkqVt72wCoGX3iScsU|#Ob`3Nb}BZzg~vz?bQDV z&k3MZlK)Glt88Jy{dea%7H+EhINwQDgXIkGU@^-($uAcKPuyDviY|xD!hlWm!MMgT z<v!OHoX@nb!a;|%zTK<a4Ld&Spos`-fX#3pI8v$k(eP%gF||Q<Em=@1pPDQj#4l~a z1fsYJ4p3Z;Bnlgi)$BSXlIAc*^q9edVbCblTQ``%-Sf$j<9%%LOHqU}R-tZkSN{Am z{>qUkMFkgH<806Tz@Pxy_`q*<swn)z&J(hCLJL^oDwSx)S}KD*7fLY-r!~|))h*hu zQK{LBz2w<T^|Li7ihaRfeV`MM-Vv0L+gdzGoR_jV(uCRUoePZ}&Jc3RM7?6kmySJu zw<kmGYH72LDAcYn#1yd`Tjk&{2uoSuoT_bRo1!AZ^YggDF#6KP35#HMu)PkA*Mba! z3&&g7R17|M7Zd4)OREoUy&b3xgw(Uf&Y82Pps|?&{Wz{L8*iU%h3+u=QAK6w;E}Y~ zNmClU0{zF=Be0v(=Hpr#JJff1W$;2L`_V2xgkk~##KXt#oiPY}KYpNrJ5ToPuJ5Hd zc;Cg^<@MBcKGS!%3IqBZoDy$P93!v4)Bo)561x?#->k!8dC#{1yZwg0=;!XX5wr2L zPIFpbMlk*R^UD_^Cy>QE_x~Lu4y?pxP1ga=bFy6YNmnVpJApU9<M_MlbHRZ|?7>!w z74%py@!k@f?VTw6?0sx4#3ni#!);*&)A!3qLw3T+Bz=BZS5uSBC;ik>WXy$Yip-yI z{5oeJ8n*^JZIaP$#4>8GT)KD(e~<GY%vRI}7Ls4P$e$R+3yc)|y_%bzOmB^_OI>6r zl-n_d?F2as|0eO%vce9UHV;1x912&J&9vq~Gg_ijKlRP#oV9x8<)0F(OgW06+R(4& zK4;=ICyjD|;ps>QLd!+Nrl%9f1ox*`%dQcbLDRH*KYz!5R!Igp-th|>eMFA?Y!9$t zG#j06azl>s2l-Qn+e4ff&<ezab4X7{()d~9U<nRRHXJyjlsUANQt7yVE|vV;ZpSwo zW62gM0pM6|Kq!Y$Ql7E`ZVMxf`-dGoT3_0j(j%rbWu()B#Um6(aB3uSfjSQF8+3xV zUv2|V+S~TqZLXm|)Be`pH|b1-bE`q#wmfZ2VBy|v^vvz4EQ=Qlyv>_9@5m{&Z^t2I zA-t24^tS3P5m{s<2#>U6h2FYTqkkv8KkX@HJ1jTkSW8*{IXhnGvDhYA@K|!~=~DKb z#A22&!~8rZtI?QwjGL7+;x>ozyCbS0Us*|blo5IFYZP~>!g<Y=r}Ib@^-Dn83U_%+ z8FCdto3ZGG-xhnMUq@V3coB?ph>=>OS-91pb~XPfV+Rv@zr&C@M*B+EPmAx$6mcZ% zL?vo!*@&yDwX!I6%3bv|#t9+>22kf>=ncES-aos4{lT+y#jqz~Yzy{j`<}RL5@Yzo z+$`^RwhMi+czGPk1edljmGO$Myc_ag7TZ(rfw*eMv|(!qe3{xSg`T|5&!)sv?T9wM zjh>d&VtKM9Y8NyffR)LK=I(|w8AzjowOkv!V~7q8KAhneWXk%vc-tfWaoA5~Jf2`T z{Ye}lRBqO5xJ>dt?6J1D<`_%2Tp@R<*7!Bd`n~OGRK&w^#7gU~FioET%N$X>P{l5c z^qZClSUoLVdwuf9!|vdtmj&Ld*G(MA`&O_*=7ksm%g+}@pvG9*4#8Ed$G8g1L_WG! zCi-Mj<N_n1o?xEsqQCcc&P4{erDiUKpvCh^wg!C8dp_N<eg2(j7r*7&%C=@K0D;>y z@~uFNpqxYXG8!`IY_$WeFeoOb<pJHDZ|fEz{n7OS=bJ;h*fpQ&S!*?HWfGkPR3Gaj z=ww$}J|B7%&qr7}t&DY6)zw`L1%d~5B7fBRMNRVd-LDm9czP56NF3+AY<)Sfo&$nI zj@!7`Jc<wH@^=<@-9L^4mQ;rWz-{)D;g(TJBa{6EE)fq``5~Jc=4^Z_cARrG;p>6W z_opeVSeNGec_(a*NjJ{XMkb4kNB*b2sLyM5A3o?XMeVTmcchf`o%IWMe7^loIq*}( ziHd!uOKgFWgQS}`Iv!Y`7>dfosK)G&MROJd-{b?AwR=PtZpV?IG{{9hj?13CO=X(c zgr=?0R}C_wxp*a_UtE6KZi0uW>-#4A7(sF#lX-UJl&p=<!we<6O&5N0jA<j#vx9k6 zSN>vdu5NlXSMTDtd9JwAQcyeCSK0Gdg!8`=*^W&ypedCN%9W*RP3<mJBlCjev|~q@ zpoZ{FzkcPN(e3P6g$KJob+Y&6VC_uMGa(yGJ^aFTuim`ykR1?qVA*vFzt9^cad`C1 zd%;K;52O7C0u$q_9i&18ji-Jnz~n4VFL)|l^WS_u%UlVgX;@)zE)(>6jB$irKf@2B zz6Xg{K=LN8L!j|4bUd2oMJQk0Im3l_PH{6Sfb0D?IP?#?iLrP+D|cwT_$`9UP#ln2 znM6EA>cpG%xbpXdXH1oa203!binFuATN9q-YosY3Zs}%H-Zk6J0z2n!6%fAfWjef~ zYi+>?5hf2;PZ>JoeT|m8;kh8Y5cdhW3qTiIMX#`)uZDP1F^*8bKSeRh_d&>K%oJ44 zqIJ&io8t$1zMEv{oZp`wagZ&HuQS#k!gSj*bF3nb`SMNVuG-V*cWYZflln>I<v1C; zm70|{lS+3O#EJ4*hf7dB`R#1uOlxi@oG3YY;XZKT2v0kQfikN5-N_!K$__pv`);|g zb=rn|TC8a-l2**Blv|%Mp#SYN8AEKhq5MFRdu;pu?)917o`Ij9%bA4PDk6lgbLhz4 z+OKcF$SJp3?5ZruqD{z%N^$%aZ4`nbH&z(`19?l!uP<d^S;gKq6ZbYKf8|riE<TF8 z;IKzTs3pQ}3@dSP-3OYuc}BvDEsoOFKHj3zb~k#Wrp5cA5J>WnjvpPDMt@sAzf6bE zpcy~p76l4#zY&;M9b!#N<v6SSXmHmys(+&3U{Th=<`H!eHgYp4Iz|Yr31vaI;A+9J zCdYzv*V7$|XFZ4JJdd}ehqn<-MS7Xwz(wPSad+YS(f;Qk8A^9*9iO?rNiR2Iv{L_< z27*3QvV6(p`VYiY;em$uS66Y43^1`8>AgGyw4I_Yn?>8BecXQerJajN+kfxW#m5r4 zwlSY{2UA^<F<Z_|2`Mn*GGqYRF+qBqS~)MIy|R_PR7zqbbd*)fMG|WbIAd}j)>#7K zGjb97zvV!bFSj28G7mi|cnAfFGPyHib-yIMj~zJ24*di0%6Hlp2;7{etjXC)CgUNf z!Pbf!UuK2U&z>o;T-xKT^|nUAncZB-O_M5&$o&S@y^_NwtYBc9Sz9cWd@NdUKDk%v zQFN^Uyh^OfqCDT>_{%tx_$Ku_YjRH69Rc&b%uhZedtHn`PU~?*V8G1g(vO~__zdQ! z8FUB1yaD4MlNAw1EozQnn{nWB6pPn8fkuY@m;1TV=n|JVv8|3+wWm5IHq_|LWh_Lg zaDpQJyhua9b%#PsR(_lJsvgc<lC&%sd9rvMTYDnHHXw6|9S0p6_{8A(7I#ip_sKSQ zWrdh)cUhdKqIH@vLz_9rnK0jST4t*`PyWQ$<3s!CujfTo{*<a*>*C6n76S}YXyu7j zx}V&}-$Q`spqM8E#GcW^=AKp#$%(0hInr2gG2(Sp?jdbl7E}H}(~;vp#(0q0?#0gh zsINBelJM-*@1h(H(DYs6B&yW=Mr3tIrTQVyZ|B5iuI`SAO&fLow32*$c7apP<xL1& z@Oavi_XGM{do|YIDYoxS^*9jzgK+|xey8oQ9A#kKJin_Ka}R=Z!455#Z7-Tuev$(G zi=r&WJ)8S~B=u^<jT#7KEip`cTC6J^-LDVdOKmQQnWwenv-9u6d4p4U^eXl}0U7Ay z`|WF!R%DPb(LLV>pyqt~E==<sI`ex>65E#e)j1@YjV^%FV+w7ODzf%4e2`7N<!`@f zhkMg_xjL1;tKdM<IladD-3`xpWyfgk2pSucQ)C~{Oi|*=mFQ)G#rtOzi7TBS&foi* zd@SbT78UtTK%+%65?;TQEGaGJg{Md3Ac`f*4EL=sB-QQReooS97M`tDt{SLmzVp+M z$n(IEOKn<b1lboq99WMO?J5ob%P+e!=SK?c*7`5lxt|Ua<tEJG)@x<Wg-A6Ud-ht% z1*WgVCkW{SFYGC=CG&WE72M8T5^3)gfUG@tx(fVT7Ct@9{3D3UmWK8;7jPJ?k@2W< z9~U~U!;hOE$K}=d{raJP?qLQH`fiad*7@K*{=ytq{vJztF?o1?4yK2?>5~jkb`U8? z-DY}AicM|Oc0i-XRyjd3p0Ew+f~bRcqOba%m3y%efJkz5xNx<9YX41pyf{1=Y+rPL z*Nq)dUbPATXs|xI+wzqo3~22i%2Skhm)l6d!Q(UAV0YO`gmN2x#{`vKVr|@QTWkKD z3H{DP`i$KhyWtqC8#ijQzUPP)L^aj0ff8ONf1>4_F&f*Xe@A2w6y1THP`jJH)?YU` zzZaZXDQ9bJlq}9!_NsqmIlp3U^RUubkC0IH$_!d3H|tsf<+8q|6#uoC4bpJoq+E{n z%k!MzI%DbEExhf?kmEUn#JSgpK^n1LSH9q$TM{KgE8Fh!oWARV<X9LPtrW_&Z}~`7 z8)Eq&W+`4PntC|=_IN_1HcpbY5fA%&qGH|L2lAi7@!724tyl4J?|&4O&3S;@7f@+? z8tLzCMyb%OaX?fqHO3<lwzEPQ2gluQu*pQqpUGrnmZFz`Dnx-(6-<1yfkz7Mg@5HN zu`2y1U;cl^N5PXAwS2jtWymf4MwDrt?2Sr3#N3lx(U+6w^^MdXc}d$0cp@*8`D#*< za1)An!QpZGW}GBMc|JDq#qA#@7b?EzsnKdbV^C^IC^A7*EVFT>hu}{0l!WzzvFBOf zgXduPf{D{!rsXc1O{c@oB)Yx+S6oY^(GcAZk~jhFchhzG&70#ET<DR{CFznZjM8sZ zJ|GrH!>o_)^v|C`>KqlfE9>(HZ;JfnW4e!#bQccJB{PFVFa3EL&?F^4zpV+&Ti8o+ ziMzL+4D_qkQL#O(jnm`-Q@rFeY(Gq2ybnB|kRY+09}vp$$y&jYXx4WF<)VurO>E=5 zl-FQ*{L#3Nk%8xv1-DKkMaInw?3=*XD0zaPC;Ei^w*-A+a6XSDjufc%ws47!zEV0K zCMny#Me!_nAvm&df@aU$@RthA#y@S|>d0qf&oeSpf;c;2ct*?jUos1JbId?lK#9;V zbd#S2Sb!I2x)yMx=IM!o!uyPqZyZ>mZu_-1?F#4bLZ{>-_Rhks?Xaio@E9W5SE>YF ztDdL0MmQiXB(-Oa4{n8|PJ-M5QIFDagVw^1w-=<pb`ekiXL9?$BYUy2$Pe9j-7+dU zqMI|>Y&`Hq{_8;;>4;tFPV!s&f~2HR9rAiLGKtV_f~q4toCgS8ysrM-&%Tc8N)cjk zw%+>$@UB!x9w&3R>eH6l5_96Wj_#GbNz?d-9~mJkR!T`;^N;%-ei=^cK3k>OVnTS~ z)-JD;F=OQw%qb_hYDw6ARYU|KjBr=5i58~$okF5Ai%JWRnO&hp1iX8Z{*yF)rywWI zT-xzyYCS>nLq|OjTvv!DE$`=rLmt2_!2?^9EOWOkUD?y<!Vk7JnpK~lGt{LXat_!* zFT5OFvnL7}Jn>xLR+F&}PS==+xmXtRRINXHpeceh%72_O6&Ew#v`3`d_;e$Em79=X z1AlZi{uJ<n+)JLLS3k>aKiR<!)r8dM^}I87wygT;QSHtu>B(io87gAPG%v@P1h2W` zG6^U7ZF`;+>YC872}U034Pl4L(rR)0>x4osY=u5EcPVh3N`Y(4Obd}Lq*&r(;Bn!% z=B32tOyW`T%@#EBoU#6u&(8yS!#3fjsjb^_(+lGC7558t*T&K5!Jh|c7H`Q<#@@L{ zS*0g(n<oqJr36{XZwvORA2N(=kMh(KhC?f|sbJ1exZrR(b{)x|JIED=LoaS7**>tY z%;yT=Qpr3Zzb)r__0SWbd;(?$iX4U@mcfUOAjQ9C@8SIr#+?C9woF;EzbvP6s*@PL zj7HVfX8-WoyB(%?QGNo;_g2;|S7aV7mtQ%ebF1-PYHB<mwa3Z)ToX%JT;owFxKP2t z2|Mv4Z0M%vK*<*f(bz<QlLCqCAP1L>=C9n;yDXu+=f=qE3+oy@s3KdeQoj|>hmjC* z4En9ZDWdEo`Pd0=AuxxI=#gQjn*%xyuJ|VVre%7kVI!buPszn=GJ(${5%iH)oaTUU z?(ypb_f0VU=ka#4pOlKj(_@3K?XbvJ{_bdL7JPQufB_^%?08{}gGUs1R+RmN2~Wkx zU+Z%v^i^*{{Cx6W*=qf-Ve9rw&r`0?Zo9wQz~BE2%w15ro2mPx<oO%@vdXl*pq~^b zf-gFPJ-xD9vGrbUpRcY+wybV*7PcRGzyu1%ww9ha=YK{#QRuDooECldTa$;mJF6X7 zI2TmIe0*GWq<Y_w@$SPA7`ONuUio0FYP_ZIRdrd498O&i(N}L$2qP0OwqtL1J#&cY zo%|g-%eNqFSiNs&T&q6(zVd((O<!xzyjz<ny`o22=xSycPyxw6!j{=S8LT?t=b|3E zZtjpu!(Y6XIrPYug%bEJ1t4s<oYGKX_*{;)W}ycTu&W{wbw-NH;ghS5c2~8&SR45W zLIE3cCd)e=po+hPJd`m|CCk#tg)T@a{vm|Zl4y<&dDUp<fQsXeCQFp+xD{o$%-akU zKipdJerXn55rY$znE?!&`dYC1dSBsbi!HwuWXjlHVG4M!l)7}J|5R1<AA#rR@IxQV z;#gxhAz@Rag;)0>5M+`*+q2K#&+F<QO<!L}vZ;OcZZ<<LVkW4pimQoh%oXk-R4%(5 z5y`T?){Vd?IEK-sdTrBZXQ2JuJ%>17c&L``+WC}Wte;rro2)T6XAr+Nd3%4ZG=&Q^ znZj1-3kf4u@-dOjB}&foWgqx>jy%tfP25XL1kfnpoxSVib3^o%ru7+LiH{LXmJ{?L zbB=9B`av<E6ss9^>x;bdiVkQ0B^Cf@p4DhQ&#RBluCxqK@u7PPza0h~Z<u(O44>ha zC<GR0j|4z^MF@w!-D}%<OJl%2uUQIDl6=IAt}F*_r8r>xb6zL#k~|>;23_`t7@>8| z_&7ujI<i35?+fRoxBd7nzf&J1l@zwY+{~IjS_#u^CtrTFQuBy7sH;7#`?$R1MuIwv zMWD4<U3KNwB&*h~gDZ2+J(@|df47zSN5P9ganQs=$%4aXK>-0%42O&s7jM0tUyN;~ zhr(8TR%Rd_2J;@7y^EnTlx<uLBXatit<w;v7i;DaILlvPxXmCbcpLMFN1QlH5ORD? z;t>tQJ24X?fmE{DdxF~--M57a7{T4{ArqSZryB7}-nn@5kkg@`3fq020_iAj9N<rh z7%U8U>u=5aaX*Di!l2(p-|+^fr+ZAkFgnqGtw<1F&QKXRa0LkUw25xzar4U3v)7sc ztXiLHWTg(>XI;?iea$X$ca+bheI|AbkEDL%ddDbH=|Ew&nvjT>eRU@qtgCU)hP~*A z-R_DD019JYL@k<Txo)kJ{&d(Yc~N!0S?;p`bjq86vgpknm?5*m1-(0JoEq{+-=r}- z??%<?3OH`HGFGrdd4>yXu1^*?m7!YtB;7}LoUNH71ub)3`K-{ks$CUy_AWU1(Y>Pc zFUP(ui=^P7Sj)9nRnb27Ao@miFYR}|i>xEv{gd`^i7bO#ejy6aGF&YEDD5nQ@T6XW znfo?NNI8?t4EKzNqs~5mS^5tEi1+J%8}}8tre|h*j`#XrZ3`UQqtGNtPPGw=uRS#| zcDPBVvp#&rV5U{yl;>D~{ZFTxUKb-E49^3UL_LXIUN1?wT11a?Dlw28D}F+|Qjqp) zH{*`=BMZG#*Qjhhe>^aHq*2Rd9KwuqI=q(5fS$sq21kshZZ~FAI1%+e*`km7pgo^3 z>`J4zbFmQpcY3v>2Op~LWZa1d9f1&&`S<&t(f-&ag}Ap)CEOw;I&NzCWRuQad#GLi zt$EWqpzjNB5YuIX<5eHeSjaM;C^(9}S~dHwmniWg`%Pc*TJ@#ExY1u*9kWJu!-e2q zl3=(Z5^*eXi^*p#YW0{d>-MqrX{%gnRj<VP_#i_G?iGCld!RhflkIzKb@k?T!ySiV zYjoJ=9p29bR6lILFn^TlIj-xGWvzLy{4W16k2lE#pZ>Br20^zG1R18G)&-{ql)HmR zslz}>`t~Q15<Q&#qAaNT*@4k-vodn#Pw8&ErKA4^tG#{qU{R`&=DB;b>bedAxR_3M zP+}NF2%ng4c&YAx@t`S(vUkRqylb<J(Xq-^*_Oe0cFFm<)>QYzmQFqSmYAbT+s`-B zbW^xVn_()*kDvetsSU>o4%El)0@I1>JmXGxkTx6QpTX;!TY70i^W<&tBc}eg2qHN~ z+||WYclTr&I)z7v%4WHxBftNH@kATuf|LC6L(o#Ja<Gi4QKnzVHSk=z&-WYo{1nMg zqTk}iUkyII7D(7U8?~AA3z59kA%~OHBSozT8b)a|-fBH&TO4|#b<@n-B;|I!-w($^ zbib6E-`RhbY2+HPsD3&K(kudxlDS#C8kx=6tB%6?8--Uzw8(;BqN}ex9lBSjE-Lg3 zyg7=0Zuz5l;{}b(-I}C4f1!DTvC$?=U;guARmR{f$)p$m-q5$T`oR~xr2O;sK22W3 zF0_*FL$tbWd<4)l;^@V#ECrSMJNCAR<RoMy=C|pYs;Tm!SuaC3dU5H62BZJTrt!#f zFK41>xJhe0P8A8O^TBe0fSV6m)wO2scyUS349jQ7K8ebxy|aIri8_4cpw)_C-Q6Z; z)s$=1g7bh1GrW4f<wZf+@-~)=^N9KR6$7|s=U+}c;D#gTg|rc`@77x#9IItSBtOC> z{XRCvO*q}xP`e%H1}vqsSE<7n&&4?Ytm8QK;M`#)P6!q-cL8Cp?>Wu%H~Rs47}@Ix z%J=(<?R`FDg$xuAsxl9}q(y9&B-?J;*_9eTJDdO6FZ)J5;ih3s?sX67$i*0OXdCee zt#_5=A-^f*eyUg9zAf=Z?R?KvGGp_V>3cg`xalGNs)T(Ynfqw_mxnQeRi-2jf#cKL zgx<QO7=}7X;<A=}qO};lo7M3218D?nSQv9N9ANCUh%NcS4W;3(TAfxfKSK;<A^m7M zHpUS~Yu{jN{}(oI%QZxjpY-e~eN)ONY#f}t2^8)XT|u}M%*MV0fpVI<Q2!0C0KwVS z1H(9iB)SJD8D>5?mo$zY5D4+*M%}?FZaPqa0emBkcjCRCW@=kTCzjH^xCC&+6L?a( zhPB&?6WCWE3H8l%$&KdAVb@vucbnCvkM1E^3o$`@!8)4s0Q!p=j_NBTXxx|k+C?e1 zwrp!$V~rDX;^qxcU3|)sh({$_of!$Hw~9UY;-iHUhi;0T57Dk{&?sR<z8CL3^;VCk za9Ki+T`F3{n_$V0sQrwTy*f*e0czzdOZYlpz(>nONK6oT^AwMhwhg1><4U#{OxHc1 z-GD_k^F6!-e%iIvcNi1wC*;oS)yEGbMTu9ofJvQ#KuF+w_mwKWv>_?VdR|f(`)=AL z`qC)hwy&ueeIvx91_8*fKQv160G`%v0NMVDu)v_?qDWhwD1@TUOUnC&$4<>B1Io<e zuQiE%gMI`0^XnIUStC{oy~&LrsaJpXx$`4qT8gw{1QpM0__8{bfxAh}XB1(hZ|uEm zogaSadbOd^9DbJ*1M-~UW+R!w?Cb}PN|5jWe3P-HS|SrYmU*>6j9~(5`_Fa<H*o;D za&!AV4Ud?Y=R%ra=2anta*Q}|-&Qe%zBmVJxRaO$BI$Os`>mrI1K1_nsX7P|pBeef zyqNul(AT{N-$(o&c$E5e`+VnVf_E!LjQ9Kt%iQ1k2E{MDEyE5HLPJttUlnpEy{KGU zz?@*j8Lh1h*#j^84yeMIWx|!t!S>!=M>I~+-8S>z&T@zN&Lp3uha}TE_4HnAyyB#9 z6Z#5rr~1<^=EnbwtWN1e*^f;ihd1OoDTEz)YmI5(B+sv3)(IOGi$X}US3meoALm)h zsN`dPbFNTha$BJ7s?ZtM@@R&$DTnHhXY}F;Krn#we8QO+9ydb&DW!-Dc(g1`l$@k5 z3UZs<$1gne_WGQmmiaXs8wQdTl<TVG(peAEV?qfPCjhlKOW}m*d*h?Yn|3hAT{61T z^>Ve37mhi%=P2EJJ0|92HS;cXT%0ik6qVi^5n7Mj`hN)f?yx4luG=$7fY5srks#80 zFDgW^ASfLH=|xeB6a|!G21G$XL8XdFRFqy6DWX6W5JaR&?<yco>78Wm{NC@r_j{jP zp8NN#Ig^|zXP>>-TKhg<sbIxRUfVbkjWazJ@mp-})Ot~d5pK})6RE_z)bcQcmaJB$ zppj<?9Vl3Pc(cx~F~rss*~Ed0Es~S%T0I>|rllFkhRl#4Sf(~-wtj4F(e)&fiKd%V zBW%q|8|jmMe%lg4d9GuUj=|piho6-LN+l0RK63n?o9^ZLg9f$5+2Ab)EI7ETLx2Yn zW|Y`6fCs}C#FJFT_t(Ep=<89HdYk*Zz9SbgN@8Jds@a2xY&^$tbn%CMr3o)+^|C`- z7yO^iA*u{S9#X$bJHH<Y6wQ`dw_KOP1M>BN#5+UWaHn|Ml{xO_?%b92XN(M~jqTDq zC?{>h3HFJ`GXbZ1z7WtJ1$60_l41a=klC%^k15(gBOWth8!oVhgKPN-t9m;7)Se1k z#2Mhc@h%LY+&L_ur2tWfKyQFJL<s;=F+WC5b!`%t1Sn4kCTf4g5{$64DP5syJI`lK z(r?##x?3IBv|e;ieWBPqk62R<<^w7i5BVEBK&~l$&r}%Ka+Y|B9%T5I8eq!zEOD{( zOZFzZ$7mf`;z>YI7yfDNY9T12uv;$(u9^C74=JFm(Vsed1$%l|LC?Fa6RX`a>o;^H z=T-B9bi!;75uJ`4B1QFB+vPbhW`vWR?i}dM=#@R^wb)mCji15?<>4oUZp`~-R4)VD zdvugI;9PhJuzv#+8|OQm)V`3;!W_E;?X^WTzZKHUo%X(Ql?#(l**<2N7m`4#Fz~SV z(Xg&V=>PAmF|fg)uS2Fz<m}j}LkN5ZQT=_f_Yy9a@2cLc<?6gL>vo%^P7N&$S0?j% z?@NrG4J4%xVh?wpd!F_((2V|)wlN1O5za;AkyuO;-h~dlND5o4pTS=_vOWlr@etv! zA@j>XeTkW4a--hI_Nao!8M!2$e}05{%h4U@Yq+Yxax9Svnpw_zx5Pmg{YZ7Ra#m0M z7}LvGquc65^DJ%m7Z{+41Sgl-#7psjSSdkzoNSdl9Ka>j#3%ux4T+rK5=x1mimQrO zP8?l?VAasb-CdD+6xMilg_^vN`fRWiOL+2f8x693(qzXJK5NkGxk393oyKmxCK!+g zakTp9ngS9FkxxbAH;vR}g7AlAE-Gn$X9bdtAd7ASVt_9B?vrAuoxHWPETij&##y8j z;J`kJ67P{r+MO&$38A9&S`_qytV`4mlrUYHIC`LI&D4bT8{&(8a8+9C12DFV;0XtI zKNeiM7n7%BO>1TYuIK%pArC<1><0`0RAasg$Yt0v{STkk6O?8OO3#47vQv5e;f6q| z5=rApQpOFi0wPjrw50&{o5ENKwvm8+7Chuvh<mRf%6`lOJs^|p*Gc@~z9i8Z9PwAZ zu6iM-$}_?9JfQqhf+tDuR9V4b`>g)B+|a37K|s%1($T8BZ8on6<RA>DB`6{l$MJRs z8De#rrz?8}ZyhrG7w-KUvURAFlje!%;2^3m_y4~^Xhd?P#dm9<Cna@FIR}2C=Cx7^ z5f<4wn8w6J|FVIL^iYjq@tva*G`e*h<*U-(1LyJaMBX=Z_4d-|>$n8LI$qdG@)s8~ zy4X9i?GUMpOfb9amYCkB@lvW!FUjWr3erQvXD7}OEPzKn<yw)3TRmQir*O-3tK~g4 z$*$y2`TQ-IEC#sj=-syg=^B9Nt6p?=cM6OH&)tW}>EAGQk3jRq$aXAo;OX%ptusR4 ze7F8Qeo32fGJ1X?;h49n2{foM7YCLI5&?bGNao%`Ku*NO{c(FP`$KfsXbI#^<3@y5 z*V|mreNNH2aV<yoC>s>W?DYa1$GpW%L>M#p?^%D~;sh18n+%k{921=a69mK$N3{I+ z0d>wDtV;;q{}M~*1W6VgNT-eF_*07722oz`{jX<>x)+0^TNI~tW$(Q#E$AC_^mb;7 z+V<a2Nf($<qTi3E3eVo;0)cp!ZwP@amcN?=N}m*om1bqY5*M<njX<>e_G!=}3ZF$R zO(Um~J9x?=gm~t%mH=>DY~;nj4%{UG{_s2#1LR^%mT%e5y>~tJH;K7f5T_b0XYaml z!hmXnd@2nf;-cAmF`VsKd-w62@8!(1EHD~!VO)x*37Gv;hzuwLL}sY(soN8Y?tggl zqNP`5KwshESa1<#pHphJ(rg&O757_xu@?Zbgk`9k_Y6IB&4<8@Ql}X%MBP6PX@#A} z5)Z*;OiA3dy+1*gCzdVtSr8wXeQ<cC{dHq~Vh2o+&vZVZA;f=RN-QmmB$|el@u#D) zz(wuc91~l?SlIyw5wJg*vBn6r$li3zTFVHVJwL*5uI7}J{fv!L8)IcvOBggki&cKc zFa;a`S%koxR<&cuOXDAac>4Ojyv8r$HEre4(lUxTwT)n14?{#@=L@zQdJKRN>iL~0 zZlds@B%2j3O%&h`J;P-97gv{d%KtG~k`WsFjy~ieN>wlUs>TeQ%&RdCN~ZaS++gPv zv?5hgj9DUJUAhL&0i|KAmSb{BG#!vHGoi@?{MCKedjH12f6Xc8G=9imQX+JwD*X@i zq|wOc69(q9l|=Xepou~*h!){mWEN-V1R5?bi4v0(eZ8HZg8b5;Ud7zF?w5@Za-$YL z%NX#Tq9@MaQ@=hh&uKK_1~m*&Galq4imHDC6O;bZlOO7xv6`?lU(;g*CzC&FBB;Yi z{grjLR5P*|6v_ZGY-e{P>>0twQd@0up3>bJ*CGBV^mpo^ifD{5W9MOfH4m6{C1aq@ zz!&Ch6<5$Gw`lQQ+^wnK&mM`!>w9FRjCpq>V>m4-Ix^~-MZth)&bFpdF)j}fP6xJP zd%uv~pu^q@d163^8+|M0!4ePp6yf>Tcsh-M+lO4j>$|4bDpKRG2bzHl2)!7I!qRy< zrNQ+S`oG?*AMYM@R0BEBrwYA3<ceaF#(ley-FAHSaS@^fQ5_q1#p#A8Y|Wigm=6dV zUzorAhFt!#%;X~?hs7qiB0vV<{1Z{Q*F4&g{ND((y(6cPFtG`;iHonY7OL5(RBSrA z`kJ-Gq5S}`ns2fWE%x+Hu9|vDXi*Igcd$#@X6___^CBQOUmPsKrWUkyU6_FjJg?*H zZ^nQGFjIu=gB~yWCnLpx92#AI`&f$di^WQa*wg=W#}-73K9iiUKM6}5*{{Kle)rDX zvXszLbRT~9&^=<P*-Z}@_|T$S1}?=FazDR$B=AOMd{mqLvSYKc`6~Ye0rcQN{8s6S zD1r>l4@0cL=3Fo4!#rUCI)3Xd!NMZHNr!<KrcwRCTRT_uKWw4vU@u$Jeo$aGv4U!6 z&V~5&2RuUl0GH-v*a-HyalkD;M8E9O((8W9=>V9`e8eOr#gNZ)u7%)nPO(d^E=DS= z7c?E-uR1}w>k@4TafG_@QWL>e-WIBA%sUG9gLEfv>(VeW_<H&vR^k0{*ZJV7+N@dh zyB6*mbk5((sR?mT<*s{s0I-3zBoSV4^l)T@Fvnru7s9_~w{t~w_dmqAH7^tUTC72t zTIH(a<lXMuxIliZ1^nl;CthLU@EP=FSj%pjuhCQarK|XXZsv*At%ukl1;ENlJPjXm zzX+~dPb$!3UCe*I0$_l-0z)RTfW+#|nme*}(`9k$I?ZWI9$JkEikDvdJc|(kPM+`L zKLXpHYH2`Z5O}Fq%RS*;-7wmt?y#&LV_npxT^B8Rs~5S4K1H`lFC`*BJtNx~3zC~i zLg2Z@5R`<}ae~@Yi}uVeD#uNV^u*K@*kOI!u4|EhL8s6!3;IikL1+l}s_B~#UT5yK z++FvK{yYVlNgY*c4g*BL1azoBU}luH?dX@40%gI2l6~2n`$i#{-ivGKsic+B@exIN zq=(#FNh-A*og6*X+Z=f5JL&C$6dLK}JTTNa_SgN6Y4kv2zwy3$APIpgC-G&JLqUhw zPi40N@h*>xrFK2Fih!j7CTJ|LKRmUCJ{7RGQyk*<vh5A6s#Wg+Wc2(?+x8ndrY?SP z$Cb#DxfOc)1*%Ht;MUAzbygc<R{r)#@G-5vAalM=`~>jN7GBRbJA+qcEMWkZDxa$j zw&;EMK^%C+lVpdSzA#zxS!w4{$~nAh0}7}q(tC3Q6_zh7A$|Wko;6h>f&a~S`L>ek zLMR}A-4V{*^g}byfahn2+K@rM(TEkOZjGPI+dX#K->NdtDCwNxjn%V2>nIuy(G1ML z^OH}277nr)5IA;$>eoXuIUh0h<O|3eWpLpNww!ksqp%?&Xu3?WVS79edGa>ut?&m3 z<T8NIedw!p0FZ|UGhBHY%wJr7GeQ11Re9I@`S;!4px2KxWb$GnF-Z-91?6FbcV$2Q z;Q&!U2Qc+=T?FObEnCjQ)W!DS>MHe}8er`YMl0Y%^-<b52G*~L7Nk7k8&{?|-@aN% z`?~wl{v1}v5y@<uMpETPZ-}K$d#0SVQ!V)v_vq)8Ow_Li>ru-&w#x~eSE0t+soWpI zqu6-DWN79>?1^W)%zzhj3FM{R%VMO+PpxjXY>mG{;@)0igGxfA@g#SKt$JZl@rH4j z;k!{-Nb~=86jhZ$Kz;bGjq}YqB~?i|7N4Rz(00@LW`cRJXp~7!0z0kKEAV^}6Fxrv zN|`%qS5^mkqOAJ-vHh4M-L&xsz=;0^8}^_^2JXVh<rl)`(iDj1M+a0bYPE6IFR1lm zP_n{FVR|cG|A^-P_W};p%D0e2EZpgu-@&gizy8AcN&okIgY=C9Ol0V6<D^<F_Kv<` zXVU#dk%p{*&b}lDJn<~J%){}*dqIX=l(W;N7>%(0EMR(x0fu}|MTgxrFkmbF2f0`@ zaf$R@ig2=jz?wLCvPy)izco%MDKL`(L>jwdUzV~E1j4HW(IJ0B@L+aU@8Lq)DNMBg zC(T;XN;)}}yxQzLk3uhdDjqUssK^i2$FH9>KFgYY0|sgUb{;0ngV=+AMSh5_)StMn zo{<bqOpXaoDn6dnI~X16{^FB&NHC0`WU*4;PCjrQ<OrI!AbdZ1JuK+qM`4~x^_L!! z{MLkoc%9y>q7#4vif4o%v(u<$S@Mg7*6m7%aQ!n9O5rt%jE$xDQq+boSQ5MW5{e<> z(Fd|yh!%*hALuVqUl7Ug4RQF;OP=u!9^^@SOXuzlmP#JC@b00at0;uz_RR#eR326s z^D<l0n9smioPwSyF@B16c1myC>0p^ORd%scT@Sdy=$33ATv<1x?pW^9Bqg;T7iQ-N zaZIBzgWl&0i~_D+?4UKM^Cxf0lm-AnHty8lxAizFMaY8hfjoqYMv(`=2IA<D3Uj{N z0AvRSc_(w}w?cr!k|@ZC`(cVxnkNNkO3sq{QE3NJ+RNhni>KGcXX;H`)2z+3$y2Hk zrC?Gd#>p&>jZ+0;KZ&vZ?Xg_??#hC0A4)5vhRklC3F&-@OO{jKDZL0UNpgr1myqTo z{Z}%a=O@QsUhla>x{5dRz5Qqwc_2#kLo9a|yH_**lEoRN?A+Fzzkwg71buh{DP47V zf8l2FBU0K=b0OL{QDOzJ$t&d49YBwWsIwF2pcxFj#R|_EJ}79;<+XnC!05+j>ag0J z9*<q_LE%Fm1G9zM;m+w?tBMK+;w)A{#*}6{x0qO@=m9)zYB3avZTo|8sG?f597%o{ z=T!a+;uzXXE~wl9QW2CBQ(utNRO*BE+br+`D%thm`!dc2^@KeW_1N|vlvsL<ro+xN z(g8E?4Sa#|#*<gZSc>9TYE+kBLe8(-DZ{{p>#xkbRjKRpnUhco7^u8`diA)He!~Ss zkq%8KtYpcc=7XQ{<QnJL(XX>iXQIZuPGMb!`6Rw^f0Uutzkfun=P?6iEg=P{!Jv>B zaC2Q4*h{o=;aWR4&j=oXHW$;&G^?YX4~w5Xy(r<!8_5V;r4~h~XVNT<odm3^OMrh{ z<N+hUc{y-_AJ+I7XCL_t3mTi+RWM52oJT-7b8seY_+%89yHmtd8T*GlIWzbAMv>2d zo$Y!<0nuSWP7J7We#BCCN&muGymzlTVqJMC|8$qoA30Fw{RbaYcw+caulPZ*o%vYT z!9jY>da$|ZY)BrStW2J>j4e!h+9lYwm*V3GRnF+idbM6$s>BoP+R^w_A2Em{WjRjY z4v*g}wU%PB)s6dLF7<b=EyHD)I{q9f%9GCgIE)Ugvv?5TsqE6Upx_Mt75SC=bI+7q zwxw21KEt1Ff5KSF3XVY0vuD@V0Mft$E-roW&tG;|qbeRkcfDq8%W`2a2W48{>-=j= zt-I<hBY#6JmaL9(Iqp#1UV-bU#pI18W~S)f0f_=oQjo6yoQPnObBcAZ{Q?0jWgr%p zzq~kxE9L}ZKR*SPh*xju9bc~-F4|MZRX5<_qSZ)Cqy^q9C@L6pbA%{d#D@wpH?A)3 z9?ic;cL^l%%7W_VjI6L<GwrDKB6njiV&Tk5Y1*rNRt5sO3RST`T8V!{Z$c%r(d|<q znzDw|fkGv2d%2TcF&vBw2Z>ubhMA4v!m9hv?i%|Lgrp>0FXcVa!#-z57R6p;=zhBF zT8x}W`pq?!N!T!G$#U;MP8gO3Nkb(b!@@5;HLz&ev^7zW18fGwspv2@>S7Oqq5f2} z;t-~ZXXZ3%b9)cvzdjd?AmzgCf7}jer<Wc~E~X*_4;-S8D>RfYgn#z6_}+DYnG_Gq zeK&I=c%d0Iis{``2WBG3p)JFekguc#Lk0bVX+La&b$@B(&t8hKB*yPbZ}VdT2IP_Y z)YJNF4>p;&Ja>D?pRV%@m6C57CI;!JbOzib`JCj*W6qj$h9#g&;%H6R3CR$E8Bsfg zJkzhe?}b1?;rGV~4>;gX@woYUPCqwhtNujfoWTd0sxsgP0>CUgwJ<~zB#XSzK%~J) z6Z~Z_q4%~)5Q0_}QC2{YIvp4>yE72Xmx>oJ^u@u9N(HoGM#4<}+uurCqWL#f4AgD& z<ia(;$gc`97(?`uDt$+g$DukC*V2g?)qiemFNq7dp4wDOD|zZ+!=oz%#t@AgH7_iP zNxtmPZy)7zprV!N+9;8B954pf$Y~HQJlfz;6Z+86e9H&$9D|=$or5?o6rq1kV7u^; zLgVw<Q9z&vYa^A{B<AWAER0+B;`-yT_c>vDOdjx8k(h?_)VfbS04KqIe$0~nftDR4 z-Rfwtl)p^<2jsQ>6afF#Bj8zEqZS^p;>@54k27tM`Q@CDgHQs{Qov1A9Z6b86!JqC z%qFaE-uQLz=Up0DDt!HUc{MKJr*H*Zz7sRpJG~&zWfRDP*8O#C0nzF>ThvO&NeFDm z1~XG`sdFCRK#h=%>tFAfLX;T#h2Gcw--W=RtHNp^nfGWnHkxAEY6kqt$cd@D2gQYr zQm)f0MSvh-T{V}|`?XKUz@_YYGDI$#xqpE0HV<)Q0@n~tEMaT>kV}(cbJV`=Gg2C^ z?GP-?(9=WLNe{2MMXx113G$j-lFzOz6TW)m)ehajA<#!43(VTS^<2#`E380E#SDig z&(vUHMCt@Gywg2@!2OrUhhKYsDWzxLssv7|K0D_Pfx~QuEg9Ds0Ae0Tt6G2AfAq88 zm;fNgfL*9e_rfFpDaEf<@o5P<+&ql+1vY#S-0goATS}IN<px~IyriwUTGQxseVw^% z5Rv%N>YVD=KNSQBCjK-<<6Ny5UiBjMK%V~6{v}IMLi-oX)L&Zd|6d%MbU=5~zyM=- z!?Et0p*Y`++o1V&>nBA8`}VlyLfe@mz(-&?qsC+*MK~F|VQObBKcy~uHJOH0NGg3P z=PXFR{c~i#5Te}S%%<yqv%WQOm2JJg;C!pM{<IX8!GR$AaYs)vt9#A{3$u#pGMChz z#&K9U)u0nj;lQe4VEZE0v-_n?$*5z7j#>G`53dYnqLTWeUO|M7DUEgS89tpDd;dTO z=1vriop=xr;G3D7h&vR&ZYI9j9E2%E-*!54_w*q8-sfk0aWhj0-<Ri3+@4CDpwn*^ zP4m0FK2R`8t2S}r1#>S5UM%J9WqY#blt@mvM%ZRO*z3NH?2l;GyxUhTnxPWqg<Yqc z3?s66dSh?7BQ!xY>zyzRoNX`BC_2aQl8CT|-ex}{0loN*S6!v(bEh3RWVBPSkT4BG zdPscW-go%y^i!etlI%BHpV2gDcy;~La0ySv+S;(pXB|S5q-K#CrN`J2bHom)nP4?C z!mjvvasTA#MGgaUG{`x3Qra|QuZUQC?P5~*0*?5?r7xsAEs&ZuaPfp8GzbyLts>@M zAGoqweil^!J}CH1_B<7{uv{-^(*xlfBJvvPYI%;2#AewA-&@mz;wwgOfSD|4rI#u5 z&4VWP_5Z+?tGf@Grrpe5`A=BtJ(3_ebq^C~YTqOC6L{2Si(~b}^zgI@g_qa(_D6NT zL$E@w{x1@uZE9$$z)WW3^)%K_RNHRn=^yb$3DmwyEMVd^4f^WRRsR)B*!yfdMSAmQ zKj3BWw0{qkIUPsE8a5*UZlEf9@%{&rB41)qx7b*_q-STx2FEeX6psR1#phSSgzObS zTzpB0^@9o4L7$#pO2sZ8^vR}!=#S01k1ITTb!>|hQ^4H4?kozdrGtK-zkL`Gokgzp z*J|SOsfwqqU!Dwd$`QaDsSPe`)OUaSdTi_0BaZm(KO$oEDttvTW*=G6&%{+Eh#ob; zQ2f=DYH*uvv;L5E%D&zk58Mb+T^^*E%?&q*qsrejj61$*ZzGWtE6ChukT*e(wh?%T z=%AYpMDq)B!u1vs0ucq6j$b}nTeKQ+^cY34+`;HF0P<gFrHSh15L3Dj7L58myR6n* zQJaM>BcI++HO)H1wY1;S1%0GI=+coNyz|#CZFrtSNdms?G*9N86k=ANVrJwsVb?zX zdF9PJcfiGZL0domYAKi9H-2g$-E4vdxvFnHulEk9Jza_m+8KRc_H?x$r33%>0PnfS zf2iv_UU+>{5RAmJO{_R%SrS?PId=&UCqk{0Y?3$HHkJ?I*DlI@*n3t=q?fESu5|S_ zTK$|R1JW}!?6|@G{q+0x{JKf!nBu8nSCvcI<8fQI+u3x)<i*XdPh(1p%-`L>KHxMx zh=(OTO~HO`7PYPM9HfZn(_xE(EbjR~*2gg)3imoNgjP-6cSjxy`!Pe5uSbNSrO5?G z_*P70jUtd-*a`_asycm*4Y)~O+M#pYKQ3;(nfH(@GlJ<l#IASZUWsNsOReyT!Gnc4 zK$#@I8Q;E!mc`6ix2pj7CdiCd_menX)ak*6#ba$EjNrQLE4Wg0;y<xh?vl>|vbOt2 zWFJ_0@SG<BBk<-NiHVSoCya??V}|a)-dLc@gP(ssFeIMaNdKb*BD3CVQy+2`{(DNv zN53IqEU{rJ!cVQS&`Rww4qPp`!US3=#t3F%Lr>arJ5KLYo$VRVKcNSg?+BvCfL4E4 zfYEHnN4OF3+}i$~-S3>5{nkVl_-hV`fD02rQON0xR+~M}jV3o8?|$yPtbE@9o|fz7 z2`IgS>$<T>+R{{-b4k6N-sP-wVB$)d-al8{L_|TXSn%;>cJTs(*<y?7bh_YAQUW9K zOW=wvaWD~FPUg&ine2gXu}V^VFTMGC@W_Gf9~=^i7@c?A*Vpy(5x?(b(z(5N9E9Q# zv-m1=B(1V^vtA#ZT)&Dd(q}h8ND2vm=z>F<qdHPh?~vz9f;7o>#B$$SN1Pr%CMQMc z@m1msR}{jFY2n@BKKG0v7jfqMyn%WD-u>fmqjh?s`M?B11!S9f+=vlh5gX($Ti2-_ z{F+|M#Id47{E|#;wE4-OMy%_cdaUs^w^m>r93|Fj#T2C(h_gBl?kEx&kbaq|;p!S1 zw<x&MWYawgK&7MrM9D$efL^IN@g<@H*-{ge9`!y=mpzt%ZThPJgdJS`p4RzJc3zJY zGjT559hU^be;7{!rP+EcCC!`1Y_|RkIERQ$dQ?bG8*%(1F2CXUjV0fQ2qleVP5)<n z$BKTYFl9pii_I7gfcO6inH2<U+<j+tK^!Ob#$-yn)o^I8!7Yg6R)){f?;qa&VD9{g zRGfVGsy4uUGH^|@B>yy0e&N>#<cpg!2`&Fe&BYWY(t*FyEf6d#0Zm-E3kNa77D!j* zDrD9SOxF3A-^j-~+^03F`?i7N-?~cRdfLinB_QP8Y(W#V6HlX1J+K=W7)!?6R-tTl z5#ee)P(lNRxo^lWk6dS*?JM*vU}d1^9Xk?p?A6MXQbOsCQ-0#r6*GKke^AF6-$K9i z#e<29xr}Uefk(<1<5Vrap_9vwc)sBmqK2*_#p9e3HoqNCWCAmJTr1BimgsvjzfK(G zG(uC)O>UcUg2K96^M)a*6<hIu3@Ddr9Uh7rJL}VkWWCrKg{pUPsK?xSe6sX313Z*q z5n+s{uwhzHWHCKE2+l<?^gsA3=e^7i5h3sh2?GR9^3i<9N$UbWKZTdRFI=kely!4~ zKI$_5^t$+wWEID7e{-ca-xnfWdKm}DPHLRS#PB95%06%w_*F87S%Tka)J*of*(waB z#tWRgLI)aKyY@qED<UdHR27c94>$5KG6KaHOSuxHzL|~}Q25Sen(4zA#y92fOg;B~ z7wfx^jz>LR47Q^g(C6`j5DI5f`aw}tmCHlxne5m{y`cu1qMlMh;L}L)xrW@{dp{hE zP)dT$jnM}SiJ56PONNk{T7QOh$El{)(^q;OyV>t+KQ8uVy>KM*W<@v@3Q>G74x`?m zc%u3pdq6DGYrco8z!I6!)Q!tG{<Um&Ov{0B3g7~Y<v(n4x5o=@-_w4Jf?k0u5O_`7 zugTTJ2IRp61gkrDl63Keuy8Ea5PbM@$JuUg`~^E<TFS82LXI`g^%agFO&7qEaQ)`X zxdNJ`t(p3lI46zaU(A=fLp4-fN^+_nKf+O_q<jQLxPa4ChUofJ799}1diTu+OVV>h z@9JC@1iEFeUz^ncIc=m-u_P0{Z-{<aKL8?FC4)J~6$UxW$S<oI|AluB{6F#NJT*uW zzF!h)|CuM?YJQiHy>eX1#O`#(2mp@{RUcpe*tD2*B|3slpLa_sOq|yD$q$v(-$V}E z4IiYvKKh|#+knaadWSD|yaX*vz?UupDN6`5rC&SZsDYu-L1yesMj`<Zk*p$L)aLSl zQ@<PGcEDMTJoSqgTIneA1%@<DEHQ(LLyCWH>K_e)0v--EGuw%^1RO$@Z_mx1T#x69 z<5N9z1XS<bZ9AK_?;ymHf7O}fuL^kP>EY<dsyKp%k0yqqba3p102u>oXUgq9hKQ}3 zIDDQUK^E|M(-Q~zlSK47kUCdX`gn(PS>Y4l1#N>KgV_UPkv%00^)hCXK&p=gexpdx zyRv~Yu4cOX6vD4*>lG#2Gsosh6+O(5u6bnmoqp*C{}LY{I>lTkeR_Q)uoG~6wW|YR z)OzbJp|@Sk+S=Z>^hEW~QuIIsEde~+n2+->pcw=I*AJ!+oB(AOirAklh#xPF-uIf@ zmioWZb4Rq7`I#!5ZK5sLoiT9yJ-JOO44e`w$ias!{v%NH{qyNmYJ6?eh!^=pg~|4) z)@gld`37Qn@>x~jHsZ#d7^^>Xa0v1@V)n114MUW>+N>bk?tFsumD$DHT#Tsu!d3Un zr+%{H3~9NWQ0LEE+<WylXtidd@d-WLA@{?<#N5FLd7<Q@3i?KDhaOzVLJyJI2=I1` z@)Nmr4qK5~L7$cwP|s`O*n>T`_uc=r2!8Tbz;SBgP>nWSw1l=F9sIt%Af^Ea`lwm_ z*kM*62Epm7shV@<r<V%mZGtN?aO<Xz2_#SbsqgOw!7=b|R}u1ii=+t>aKNqIR$(mf z(DmMR)$SrdUOAd+Ni?q4`XX@{9KnqwUZhrSqs*(xdzW6tI-GE-wxFolsy-yVj7WF+ zq01HZ0102ZOns&Sh&38ti=`78spp;Km(%GGXMQl$_xU&fcH(Hu{0rNrJ>}RV@5bKV zXz7>^AV(hgj3?Uh>38mg7Qi`3KOJ0IvAlhP)?eaQntoFz@chGjQtfMy*-jm*M&4p^ z$C2fjMK47hwI+5Ws=J^iqde+u{<(yo3EzJ8IL3#?4Hjd!w40`Gz`Ds@Bwfs<_XfL` z1$|XlGhN+3oYtL}0>XjBv%~JM-9w+ZKmT!<f`Nr`Msd`0ASbbWboeAVgv<|S(`e(Y z@T)(s2b7P_6GU@g+?A690}fo$8>mLetKxsbhLBSjI753_BK$%MjlUkXM>@8jrO^-E z(n+`hl8sCcMXG4`0hf-zFQ(kor?aFfmM&_C5b#J-=(F>R{2gkoeG<vwAa;>h!G>H~ zwGziYxDEL+aF?bh2t4L=+qmtG$#L9Ft*Qc4PknF#Q3nI%4nIE;)i5eZj5}&Xt3ua^ zf0g4?V7_{3S+P3PHbaHN2@l<-kb-qyIY)Sd3GZLbo+6J+a#rqqLcEP3^=UX-{kcJ3 zJ=c1F@0ErlfTb4L^(*O-o+$$}K_c6>;-23n#Mz!HPnqF(&egh;fLxOMcvJS8gncOV zro{CoP2U}mRp9+A&RgRs7uk;|NzGYZ@e+T_n`^1NY>GdlGIDBiEd?<6h$6dj|Ix!= z9X!8N86zZ)qp6d_Je$sgQsk;)`y77b=4ZNNNmNMynxxUXT`d;Q?3?<CYQ#&J8%~0s z?7}R65LqF*wfvy?HMdzU!$P{-3wjV7_`CED%07iCXXjU3W|%?$ZC5ccMKah$)PU`& z!bOOfpJMm*shvjbpFVW}HY@cbMQAFSr;GwBreCC!Y4ln&)DY~cI%vHP&kjc1(+8SQ zlIe&i;2Nq($uDI#4GV?x8^io1eQu|<J_#%FfmUH`davg4CuGRKyXKwq0epV|KZB5T z+Te#j%r@Sy51~YfM-ahe;wT<;yY27+vP?SH&)aE=&#nt5gbw;AvOxZfpGD7u0ZS0- z0iQ?R2l^^U>g=h4g#mNIW{-$ZXs6C9yd1XYeD!wppynaG2NkuCE<rj_X2p4%!=K9l z>|=P*sDm3PC2>o6M@0Qy@)bY3d*AFyvxN--H2!9UgGRc^Nqn%@F&^O9pab+*(Oq`Z z=YE|;m6P|XT8fooNS?Gq)`;FJ9&DEI?I6n92h-MqumaAMS=slD;eyy?PVkz_`er36 z7za%r3wrW<kcO6ilfwHm=^4Jx#Z*%j8!KX}&rW<5ASZy>KYmHC15W&sSMkQ?gG-yp zRUFZW^2o2Q8{(+Q9&>qpJ>&A>u;Syt)h1*##>B$TY?l9FUSfeb@RTpU6`i-n+c(|! zC1DpEJ}2=)u}|vB$dvl)w4U(99_1%c4IAQ&0g+(+=|>2ALJ9<6x5$MYns<s~V*9j7 z$B?hyKSAfse?jLa5m`gXH~lP&)`Nx!1qS%cx;3Uz>tntaJFK(+i|(~y`8Ulh<f;fL zc&9#wrWyb1MUBoiPK=yB63Ykz+$Ut{2^$fb5K)x4D{s+!hP$?Xjl@p%<2#kz_#2d| zka6(%KEgLX=3$JD!EtX)Iv{h9seJkFukJdXrHwO!(;wMzVBd;#xPmHEo))-_G)ryo zC*-6aiEiWyLTd3G<HLVxC78}*XnvBSUfq-u8F-eVf0Nn#ZrA4}Y2Qf~!X5BQ>RaN? zscbRE&SSLqJN2k#D+GJ{GlQ*~7ASIl_jX?6CHJl5`ela)`oJ}L`f#?b&O;zPi9YJ- zF_BlgklnCz7QDcU!JL`2{a};Ts!9C*g)h%TYwv6vKBU`#jQm0hvBW|(`r4GM3W88y zis*r^t$l_#yg{^nHY|WKY*=f$53{<mtqZ<i)r+8x(}Ch{fwgm;hzib7h#iMIsz%G1 zwfu}1h1JeDFW?6_rp>ZnA4V%V2oa=9MyVUW;BWBdg#8Jpwe(UF#=FGTJIq=0yaE#R z?8KKv=YK@d>e1AFpph{|X@(4~PlIq=6)UX7V`T_I_cddgxtg~gS#yc31Ul~g_Sz$9 z10JEzU(r%D_8;sA?7y+k?#buRdJ*m~OBNo|o%~j_W_k*BJcnt<#{}BL#5u`co&B=$ zHPTK=xwqfwuhmYM&eg_>7JJrg(_>HS+=QOWgXB?YuIs2M6FxT$*tQ3HnSP^M1GD>w z5B6t!v*233-C|XZFkM6FP^Qi)Fe!P#{#6=S8qC&eLX}ZcphY}e0;thrCZ|8%$*4O^ z(?i|(_Io^P7hHd^FN&1Sa3GFm`SrHNI?92e&*_$|hz4y8f7Ve}GG&AzDTu!DyCAT_ zl2X(B3_K{syOt4LLK$i!gdiV32BI_K%mb!%!Ex}`OAQNqO?0fRSjMsx?cQH5{HFdt zL9=Lf&c%)`R29UX5PcZ+i!Y+&lMKfa8zzDF2xrUwgKlm>cc~Vo%dx`t5PDzBu0~t{ zWMNTN>ZVQWEC1MN?hsej%~Qhf6%c1G;D)C-Ww3y^Vjiy$b-g&_{FJ9+#0IK)Giv`_ z?Ml9wF%Q8$ZAT@Sy>|7+8DTnb4Df45GutM1=BkaztMdDl?w0xr%)B~AG-2TdN#!46 zO~3~)Y{o{{<rC{#ox7a_i>VpR!H%>=G7<y9H97<xXsLkJW9U?F%8lm8JMS+{M+I#l zO(D4913)P(hlg64#J<u6i1l`pYx&|*Z#D}}V0l4;1ZDtT0qj|?mDA8?;$k=H!{hzE zoAwa-;l-a<Tb@o-GP<gPk~Y+Us8epwoTbTRqW8>BVxMojh29TqI@sv(T~>yF!*q6$ zpP8S~gp&4jo!Pqe{d~@&KO>V_qPQ?q8p-001$D7!HH|SY^+>6Y9_$V{c(eMD=1>l^ zG1{qLde1%#r8637iE^K{GWGwCPE^S^#D)ouh0Y_3bH|8_d4k|2jT9&w`FYku4vY+k zaiQrTbTU5ym{m2W`^$2g#gcb%6$@j*bZo$x>%74P<4oOD_0e(5TjXE{P=zYn!h$k) z^v<JF*F_fMAHRK|XRAZ5CE%8}qw|uELo7XU!eA3j^r0Hg(kqt8VP+854ti*>AmTkF z`pun}tAha(^KakaUaqPGbijTFxEQyD^<{}@v=IK0W)UG@9Dz#4J|5A{=Gh6O&T-%z z{&GX)nu*HchGw0u`a<9%4vK2#_UZ)zA7(=M(_^U2gt<jwm-CYbnE0Gf6ZA})S_<_B z7fxDD%&#KnrZ$Bt%c%wQx8HJrHyu7WO4@~ejGxx9a5bwqYC&DrS$&X0o45Ks>L}|X z1nn8_%GbntGwR7M7vB!!2I-H?>Z8hQ24vMT!T5UWuyJn4GRYYlI0^iPGGcDCR&tR; zaAtF)2Z-HWYi<k^X#Dbd7nt1!HgkyYPW=^6UOtThBY2FHn2(&Gd0sF~@i-rxExAsT z1O*(Z>tqO^XkaE=D_=6bRnZ^aDdBrQfB_OIR%@Hxs`N@fS~4|89N7|e#}w;<@Lv60 zuswE82y!6+mu=J2yZyspDRo4-XyI~fsN-Lo@7F`@S^{fn<HzA}zruS!33Y)RJ=mjs z8TqaO!VB~QPUDq<6lZ51Vt4IYGD?bcvBaC5{W)Y7gX*U_n!jGsL#@MW+a7bL+^PD@ z`i>TKVt$G?hAETA<ppaVIRLJU<B9Q+MuG%p)IFI8MBVYjQC64HZU>4X|NCKf*K2hG z%suIlP7{&_f%4X~SLM0DUus*CjRLQM7iu&&x8H50?1LNbN|WZOqh2C^@C{%!oav_z zYy*k&`?6olvo5!VvY{I;D?ny6lf!*9FJJ``S@#!KKwhQhcr+-RgeM+lH_w|gdiGrf zd4P-oXJI$dSp61F47v3CgCGWC_HBjC_Dx2<H{7s;=qC-O*enAH;oejhj2b@Ab)T(s zuKT<^_=C%Xmflp5dZxx$Q9}!9MyweGGoi$}t#`JJdDXUt{eg5l<Ku`hSbFuJsP&sl z=;MPU9>DYrAOEbm?^Wdbx^|^3>eaQ6F^RT%N{h;`38zU$37Wc|J~lFp1MG0BIv0WF z35Yk{1RM<jY!!U1>&l3QC7V>ZT#zz1ur~l{-<%OuK+sc8C=mt386<6x@ElG20Bd6r z&IvxK^D(yI@TttE*E{zdud78frcQ@zkek!hRUm@JjLcen6?i)hcQ0iZ<A|q&9g)}j z-@ESp)eI2C??clJgk&rRLgSVGX9$%#o<{>Xa2^joT&SVBYX>)Mjr#pm;ZOqw%0#X9 zB%LtodlZLqPSej04Y*y5$e}-{!kqZ27Tt8^6Jiy0FcY*&h@&kJiQcIa1)FcYK+BZY z%UhSg_1iI08%YY8+z1RHkch5|E+?syJ@u?mb(%GnsL(7ed>l*3jU4&ofp)Fddw8;C zeOwDX+%IHX_D8<bwvOG{`W8JLx~xgUqN=kzGsi#!e#!&dq9U+$vgRw>@%zir5_dUl znJ>_xgf4j<D!LjbdK?T!;ENF*W-I2STkO^J)Wt=TT&WDREmd<9>(Qj<s4!XWz$`V7 zwXMRy9FWJR=v&%%N#!i`2eLYX-`hwY4@Xt<%Qkv<7FTWQBEVxmt_F3_v86K^=Po+| zE1NS8QjA5ry2f?O!2&?V@!~_haNxoQ4VY`tgT_ZPAg4+1MPE#&?fnl5RrtKz=w%#u zMKw+OB(gZS^ob2ieD(FrN(?(_6D1Bd4`JZz7Ig62Ey+gf34-Hh%$~a!0hNro3?Vq_ zz2y=%#Ued0W9?mV*$kW)8}B(;d8QO|#HL@^6-+#$_G%pr<42b{v+-g5j2I>R0q1gr zYKw>@VF(v$JSYX!sJ&905&^cdvDo`~55v2rH_V>iI$zC9qFQ|baN+G_M2B&*Dqhjg zeVO!l5oP(jrHM?CEM6JY7Y!-4AVvU-kqMeAS3yNQyu4%qdZyFs<q9tT{4_{68B~AO ze3|n*>SagaFk&pSaZ99~XG3<QK6@590472sA54CcC++O_hP({TC6;<cA4Bg#H6hrE zS?c}F@#k9&9c%d0R!A!nN?u1rEVvd<Le-u<hZ#S?#?i@F5HY<txvbA&viq*<sI<TI zxwv3n&TWx>z<gTdd*bl2UT%*a{fXq8s+c(p4(zQ4$FEqj`l+!GT-MX3?+JmnhE~{H z^d390vN>N%+J3+GOJ;AJ0R+~UaO;K9-v4nt*qKMaIr0_c<-()mS69O>1GB=&>HcK( zC2Gf0C*Lv}h7uQie&y`t-OMmdHK)eAt=|nRvK}8kONej&a&l?H!JUuJRH4Ou57uy` zJl9fa0U)b^!Z@pcoe;~Z5xwQ<<{<V<(kEfV^A=1_2OOafXE*fd;G)Py(#AEfTk8z4 z8kbsZmNo6&7?uqL>F1sMg&KP=Q7{ypAWA9gdD8Q1iL_ICxs|pdkc&Iqx#hU|reaPn ztNb@Go7H>GX)BI0dRHoS$v8ebxYLdt?iO?y#b;LzaMFI$4acJ+&)$avWzxvVV(f{5 zR!bZzCI`w)Jca-WgG*O$Hq27PhunT+;4a_%OFlCEr&{9TIx$i|Or$pqBiC-x11yuo zsB?IM`pCOGij*#Zf9Oe1`PyUEPI#y|oiw(Ke@Ej!cWB(%7y{M75!LvM9A^8@yk!JG z7H;bLzP5xo4t21=n)%9)LRkLI1;~GL?2vPtXziwg&9p_Fw|4tfJqzHoZHgohUZLOs z209OMwEzA6o$q}xsAdhGpLJR@YqjvnsK|)_b!_}s$MbMYNlGZ=^?R3g;l7*beUfFM zJd``X8~^>w?6^#}B?dl7ylKJ+%T$SQsnb?J89!$y9E#LH+f(7H1A*L^=N0u@Sx;!i zE85~f3N!gT8MF)|A+D&OovQuGeV6UJj)H0qsN?`JZ(V&PdN_4V6(SpUB`fBcxU8;l zz8?QbC&*eAM&}I6;)n@2FJLCN@Wb66PXGk_oA0*ve>l6>!Ld{(Pp1aC#QoRd_#fI{ z|33btA_NLjtJX)AX}=(sTQtwBANJV2D5l5g494XvzS$gQS*tUVfO>D6No0|yZYr*@ zq7I-MGpJ$Ael3H0GuIl9@`4G=+Xujt-~wIzH=g^iF@LoO0Q{9>0(BlEBe5W0f<^uL z)yorwfRf8}6lndiibxuU<l-SEj%d1Lr3oMgQ2OQvFGc<JyzqvGDHt@7+cv9nR6w^5 z;Ef2LNnC;+2lvgtqXUX`qs^cNPs9)m--uNwK|djm-*+xt_|^6ERt)yPAbz<2hOE~A z3o^8GdbRw8sfdyqD#&vY0_jEU=Bjgwoq%#ExOHl>Ad=Wvz*(9;3QACA5gz8l_+Tl< zI`fv$gqRUl8u+i)Jl`1>13d$!20*jJ`<~h!A;(*SB1%JrHGVTirgU(K6l)G}`O|rJ z&My&|x!1EnBS#cB6Pf8sGC&8KCa6iiSYG%SWpJoZn%{=6>TaLs{2}?>+{K|6bN}h; zv7uFnq7RCvwPtPTDKcNKn6YCh+?;S9X<Wzw3sCQ)p#WFf$L96=&7MHwWYhS4g#BM9 zT+IH}1<H)x2=&|oWj=fc^Yx3YB@m3~(4hn2k1wZ?kk&&;+9ul9N(whH#K00rlk9y` z!^{KlU!!#1nGQWUP3rR7zZ+)v)b`5jG~?j~JY<G1%V*zuDa7Rk5m}%Xb0Q;1f?T>t zYM;snbbv#>pYrcb&kwfOj6m;dl04ex=!I`^0uqLG$<lcuzDNf?xaWFI0hHD=uhcOm zR-oXLCLegvc?PLr_8(hxxI$&#x$xd7?8e(~_aXQUxcM4?P9|b?c%asY4%8p&+%css zpYHgQ;pVOUs`3XQaJz7WGy3N-@OM%+wiPO?3yf%-l7z0z$bv1~VSkXsSjGq>MCBpM zY<&kb1@Mo;@0wypI&A<kVh9GEHC}gL+<ts6SHS8m4o0m>=qa*CmSS7BC$K9R?*23I zEgW&7U=+Zo)T!UmK4z-{0UheV);WnW^Mf}iNSooP6&U5^o{&O9=qXu`X_qmucY2JS zqXOEZW^=os;2V#~KOpJ@8+0f@xD6)l7ZjX6Y5OS05(emC!xzsFxK(Ir+TAN|$Cb)% zVXm!_Y^a)kY#eLnP@;VC-w#S)R__?>Hq_q{jkXCXTL2_?+F}7R{SAs5D?q&rd$aiI z2~<hE*_qv)$4XOTXXhVp1YCL{Ophv>v{qb7a$jBDa#MEip#wpW>ghqnf|(fD(R$l^ zAEjNLt!{vp9?%iD+~o2PywzB@$1@U`z|;q4v~ftOckG*CPFv8~oLwCJ1W{ywLyGpD zLP`gpR=-V5qqRg^JPrcktY3wEa&OUrh`m9tQxGv0GK?(6_4;!;%b+f^?`mpjo;bqL z#vzdI=<aZXx}w+vv`{UTfXncaGSr<{fP6kxbvTy}ODJBkoF&!vGqVECIZst^r2{z% zxf}wAp5>xhvHY9V!bLpaWHtjZlkFIU{CR1MOdu8XusG?PGvDw5#8i`l>A5#LCaDLp zj5>6OtkLL{!Sl-N1{^F-d4(r)0uidqnMbtxCON6JI4KL7UjJyF6Qcd63PZl7STzty zTf~F;4Hv`t`V!5Hu50x!$Lg$(KUhI({%)-AbX>0I1;XL)n(pJkc=j+8SUpqlrcy>3 zivvpn*-Sv&e9oxb!IcvX3A{4iMhqdc^&*9ZV~mY{j`1CQ7e0~A0FSdAxb}}t@O{^s z)5zv`(xW~1f08Y9wy%&y4ybGf^~uZpc#93#A-&3H`hTE3YVe{k_rNMJQ~3M2WDib@ zR3N}B$IVuum09#IR{s`VPjEiLOfE+h8R2S9fo`+~kOXJ}N&Apq3CP+7Epr}a&-dIz zd#RlUxUQxhWG#^kcmP|I%}1Cx4^xdLbPe7-lJj)Aa0!6`1@m4Q$Y)W4YUsNiMptT? z@N0gJ)g5c^1p)hC(avWS>u{)q7Zhhv1nHA#-@*0xkkDn}rV^c;ZEH>9eTW$xaA>+F z<sVO5M7{S+CRnhB$Ys<pz*QwZd+D~uo%|Xoki`}(O~|}5h%8(pkpM^5`^<yz9R;A` zyqLM{Cc{um|Cd<vVW4Bb5Y9r<|N6oBu76+kn<EH1G_jU_AB^x!sIjRLfg+3fCS45s zS(IP3O+p)oA@=XVoFVF=Dh$DkG-~pnZA{2@*Vr0Gt?)}Ktl$fB3&7|1t+w!Ru!9xe zia>h^6!`2Hdi;Ffio#L^cj7BD#X12~eIBH*Wz$nmz14B(MgmzlJ~&9?a-zGKA`1o+ zow!6g*f9kM&L*gIf7un;;tN9)DYJU4aL6TJ6UyW4*I*2Ux4y@dM-HekfaT>q0(q{h zQA#Z90}|=?8kPMSK0Csi-i5dWqT+}_zyvQF->1~S%a#$>&3~|EwH?Xc`?;yNBp<8+ z+P{I6NFpzgd$WkzO}4(gW%Q*Z43b&@Z2;Pl8+89%`>+uBeGzUYlF=R-gCXELHfid1 z>gEbnbkzwqqHc4*t0bq7G={n+G+kP*vhT&{Lz=xMaVI?j?ZQbt#W0%G@s?&<SLM$Q zR<?dHUBo!agCg9-IX75;ba|t0Vhx$KJWe&WBa3TWedE0<id|i9Ta~7N@>%mHT$;Bs z9!`r`HfBI4po|N)zY8%1byyrVL9%sE^dQM}=N}sMIw%vVti8>u9k~MjHOO7RvO)-c z!xNnaP}N@Gy-=n+aT2*YH9^WDWq})`c}uJ3{q6(5GEWH3!sTgRW}()3H;{f1S%KRp ze%PKTdCP%h5>GpffftWca4vwuR|_m0B0gJ~N3Bl3TC6``R|iJa&CG@u3wksM<e2;p z`Zm{b|FFPmv4JQ1-VDjtjVp0jwXI?|>194b6fp^VaW%zbs;1XZ25`eEAWUSN@30^^ zyn!j>q+r1K!YSaN^o7}aM}$C(@F^0ED0l(_O{KO)#3Qc={2K=Ipt)MDmdV>PRCW#y zT|TVTfk#ixRuK6=_{#J$CAQ(v($JHd(1erMG^%~zUB3G1jqJ2n6^39gGQo5n#9)B} z1bf-TLCcz+ilY|aUjc&9-mkwBR6di2%aX$2Ey54>wrmvZAlnq$VYKD??nDqtdyAw{ ze?<5;KfBetrPMF&bO7x<a^VW{y=E)3T=Po)WlKQx;ZC|KYlS$@aa})2Lel79nT1z@ zNx6^a5=-Ceg!9j7N`b}>(ML3^`Vf9S;fuLwy}z)+94&_u@TeDB-&D4H@6tm&K*>Zx zdl{*$`VBEjbMN1I{$X#2CT6qsXw&hM+9Zqh#hc5;Sc;};eR$OjHE?aSKJ-`$vtP!7 z8mRWI(3nG&H8^OFrL$)5YSF$i4hV2V9=G(qt8`qd6SRoX-1I?i9qCrU0;S?aG-k77 zA-?ixJutRaGq)oSCL{x)_cT4_%hmDOY~>Bm#8n9xTFQBMPpS+9KVdmJgLvm4HvpI? zox!2lmkJli5PXs5Lr)nRL-uy9N06;d{`vTE#OpL$alIS{$=M8gx0O0u&c*<DWB_`~ zqiK!j6ebX;BJd2+6Qy=wLA{xjFtl~oA^$!9C9trHWCZhooc+5;A0O=%2G^5s)(sg* z%=cQAS|x}Q3kGh%5a3bV-I`T8Yz7XDe2!O)D4}zs$Nyw=zQ~dexx}I##zpoYOZhW) z82T!Y4%1D%g319b_ow^|%KR}6eX53htlhfuZ8>~%dsDBd{z$D&TD)I|?z|aN`U!E3 zcrKz#Yy;Z{$3ov@DCkBX*j7a`Tz|B|V4Lt26jLel?0g{UWyI6|aZ(5MAEW6)eKq|1 z4BqXy&SSmGxW4h&`%c%bG4Nv=Z|U!+gI8FVJU0Tm9|Y$BIh;Rsq4rLUhjDj=EJQiN z*3wC51`*_W=I&g_jMMEWeZj+Nf^@DUiQmvo*Pk6p5dNDk84$z2uGuy3AgA}~h1*Vz zLxi{Q^l;@|pzRmT;)o`<y7ix3iIrS(q%5Z;fI*pSpQ^Lx%Tbam*TPMlzx<j7B|i12 zde1mFsQ8gDPWrjuWrweS<};L=7{gY{4LH>IIQyc*BzCBbW`A3qHb4&QbP29gk*W}d z4-fXAdMa}J^Hbqg?_*Au2E$9Pk&f-L8wdQgD4NEzAp50xgRI>B$N!_bH;;$%d;iC; zduA~9u@qS{v``WyAu(eqS`kVmv=W7iY%#Y~L`AF0HkHa66;WBHMS8WNY}ttt#!~h% zbN`N4ecqq%=llIVet-P_`u<nuy3c*?bFOo3=en+^ca`-u<2yV-YUir9i#IOj_Gb2G zKbWwbw=yd$b^A22T;rE|#n4Vmk$j0HrLnUp32l4XHr*Iezy3B>07XyYb@14O#X11r zMn(2s6%7pZoJ~6Q{87{_*hT^&T$6bP_rR}3$T9r%+I^lKVRXbkxZUPaFc<RKBn!>B z{v=d?iWk;+=<&tv!qmz5!NvnJsL|F}tphDd_K^Nn&RGtYA^gTNad6zzdtMBoC~!u4 zB!QDHI^S^m<r2T}!LqlnA^vID<W3i|QBc^4l#;C8g4rZ|`qGDI#&^K(v1Z;vyiizc zJ1PA0E7l5-N<QvDt}>lM(5z?>|8@i@;g<_@{kKk!m(jq&Blp<oyRYs`O;TNZD_YY4 zR|t5Vv3`a4l6{sFvLyL0`5!fI)&pmMn4>Z7H}($NQDw)<-Nez8z8bu5KsTSSA<J*l z_GO?@vU3`KUd&}xbdb-w)O8qLWYoqa;ST;<m+ecfy#MJ-pwq$cWAy+|rlTf=4#h4m z_Yv#H+jaX;+131LE34ZqUf};2M$3>IR?t{R+>POEqQDQn0p;x^%duUD3{J7J$0Ta1 z12vml_MbXnfWIJdCbYV_3;IO#<%-V0@!Y`6g0p+TVa%yghfhQ%D!LnYR!%;O;E3o7 zM?X=~K0lp%NgDT@%lS<l_>L8;r2qb~%jxD*z9gKBdxHYT%+W8Sa*inH^4F#*%^1x8 z>$YR-ricWeJ$QFC<Hvhpl3U0!W`6he9ol;?4f@RaD1@WV?%Q|Pd*`YvUI{v~0*21S zw?5fTlNeq{f;u_jPu>vuWCyoRG*;K2pR8*+2W!{)J#Y2b{t<CSpz6Mvj=Ue?`Dq&k zs9T8kUz?i+>l?iaSaM@-8u(@vW90{Dq2Dhh^#kKICJNiG=RJOT^1tbEh1kUJyu@9m zK(BsWe@$6+i7cH<bPN%SfCG4nM_7HNhlGfVj;>sIF!ig!F=@N47+o6QHliAypfdV8 zOVr&klv2`FcF9n3qa#KS&!AG(Pzr$sC$4%GvsqyA*|5!WE)4#xX8)xhl2d9rC>)fz znGvpSKbRV#YJB^u;;d6Z8&J^uN5Sa%Ghpty3{w}5O2iMNkf;@<eWM!cxA`LSr(4TQ zcAq+@*_2sx<I}k*O$W<2L5#IqlQcPj!9TOhq;IM@rQv$a;zxEmP-lTZZBh%kcNy4` zp!bHi<Wc8pEV`IsPi9Wo?|x}(CLFzOcBT+#2USlQe#O36lN|c8=W^ef(hb6-uVQ*D z57#<qMn!nF86G(`erP)cJ^t95b5~Zc5QCLf8}CI?VT<XB+mQn;+sKe4w1wtpLTSi& zU$bW|LN@v>eQ#3OqpqJDC%HltRikD+D7|UFu`O#L3xiLjMbw7pIuG9NXE;D~VT{{u zp6)}H{Ju2a3uaf(-8J8+6s9SB(DBkxY-|>qW}*}Bx!X<{mtUH8kDqEoUJyF<EOm2( z{tAq<S?J4hf$!E64z(iFw`Bmw>}3BBBIwuFo<kUFmuB>m!>g&lfwx)?^VY1qv3xq_ z=-_kuCB4vqtKc3&2-vLOZ|jfqsoQBBgASt~mamwM7RpEcvhOQ#EGhWAsGS1Pp9kvY z@mXD6>GBc}iKeHVU*S(zoi0_DBvvdteNW6v9XFg#bzr7(Zg`|X00xgjMaWHr_2vuf zU(k4EO#CrRMpzNp9jOcNRXIjzQHIVC$HcVc4QOhk1b0xBB#*flyAk>GP9GJ-t$+Tk zt8a8vXI}QJA6R^hWLI(pD^lF^I9c(-&G&cjGA$7`ZN7KEjk-ohoWp8G1av}$_A~e% zu(CAomebS#AC^v)@wF2anjD*o)3@)n7LyTWC3U`lydzB1u9G59rYngpPBoIjvLEs_ zg*i+gvD9WF@HJ&w{=Ilf$}bGWFyMcGMnvS2(|D6XE%v>q7fuNOsJ8$c$x&kxs2#ag zCr*hzQJF{s_S1c2sU-52?>;FFz<dqWHgwdhTk_dIr7w&NXmG0jJ0IP?Rr>vX!hs4^ zE*8P`g#UWtft<{F@<}V<Xa}ansjpFXHgm#jC3c@g)%JFE1Azl)9hP9SfpdoR;8$i+ zpR&LegVl}|k=T0dhQN#h96sx*qCbG6Se|2q=S4dkQhWM$R?%YJ?&E~`)ArwUN3wN8 z_p+t?l;aFrH)9*}SuZBn5xF}Fx%5P%ALM(l;_hQseB#xn=brJ(J&_)%8Bvz`Hd^yB zy}nf9Rc*)V?w5GTAT^_L6GDU+=C~jG6)qhn3=Nh6P!(w=E+AH=o!VArcRA9H%wOH- zEa@XkPS@Z(gdr)1IcjR6?NRgH>yB{d#!+c+M0y3%#}D=##Aw%7WJGCu!_gLzP|L+; zhkPgewx{tE01v$WZeqd)81u2`nbN<4tZ+RuyK&aRgfp(QA@t|yo`0nC17GK5xj@~Q zW>9>cNdr%QlownPg&O0oD>|QBF27NoUVmZCKUC>@hR3knrm<O{(uE}4(;Ec~5C8_m z8(T~E1tMOxY}m*b1GaB?G?jhYi=x(Fhsxn=7T0`hV!5@B1m=d|UJIztwUV}zmYSU# zXzTEBOXIg~qtpKkA~N!+40cn%$NDY6)b|7#EZ^>Y`-bNRxCUVOoLKO3@O&R23H&>o z#KB!}Eke3#3}DHkt25?`<N6prv~21NSYZ4u-gJ(JDTi~|8|(@OY(=H6fzhIoccsd_ zFJz8(?q%Q9O*-nQFuV^&4vfqz(|bzPzp5>B`I+9@KOD-FHVi3Hd)RfqS(&NB51uG1 z**zd7b%)peMOmj_a2V2ejNhk-Y=9*BEe_{uy?Yi!tVY=2t0u?3*2r2YLXi}+2EL1v z^1h5qgWXQG1PuQ@xv$Oa=+s?kubiFtm34|Tb@$$s*pHfiVfUso3N))#j&d(nB-k#S zXZ|YUmKcd<Q&yDPRiC?`BpMjCP4s#d;l$u~^bXzEk!%_m4(;0?YyegbtUUiv%T@)o zH{)#@cbp&aHvsetoCIz%^R8cHcW~^4BJ%j7%EOnZrwTUGI|hapW8zZ;yDrkePzUBd z2%*6BMfP`51;XzgJcbf<p-x`$UlR?vKQ1YP=(<!V!%R`TgM@D{w2OyZB{Dkeg%+dK zYc>s9*Evj;E%&@y$tWsr`ZiwI^kW;zUHV<UTch%?(h0p%R@9i7Gn?PmH<r7Qd6&<q z#W)Ft%=mBvek2wAl(Z;#;OE<dT(PN4ndiA!(f%WEY4}a#yAc0Kk{+$WJxjOF0+;V? z#eFdW=5xTpEC2k{tD5*Ip~OpAbYmI95)EAFYG#G6!!oMx*b~U#pP;a(Lbnz)TI#ir zO_Yp=1bxHutT!(U<!$gbEX=&b3>edOSiTpvyTlkj_nFIUaMJLap6YbMmh3)28B(|K zU*kTDb8d*(4@0N{l9$Hy#DAQ=5p$PQ!BJx9Aco&iI)vGsP?{?=|L&#!v8_U|_&M?U zLL7oj4OlB<L!%Tw+<TVUGH3aocfhRmHh}g<?(hb1cNC-gDx&ReHN@DDc)HvPMR@Jx zp%8oOcS%aWvxZ&ZnRCtvTqC5|*acfjQoIT~<_pP_LHh1Fuqzx)7>}IKRE4*TiWhjt zRmA;TjbEubp&gusE^K(=C3DEI{q-g?w2g83=gIiMbfq|GkZ2khTeYP%e!M(tm>;_q zs;Kz0u(Fglz?^;L3vhhP3&%A@pt^uz02{RjyT|+%3i-3_pNrD!`ay9I#K*oU=%4Do zwC3z{hkF}UH7;3XWR&F|rqeziIRI&nlAyo*ek*~R4Fvrj-v~4rup``VvXU0uTrQM$ zl%M(7#~V81l7Vx5H#@ct&UnG~i^ijZHYyk_OjkiB2h<P>b%Onh8cUK$%g>goUVvvg zm=UmNt-cy3D{wQwBr*{T%C`oN^rVfvDO;-Mc%s)yg0u_O=k*_@9d}9*Bh=89qyCf3 zX*XS21&rx&s#EmE<=GLVTJ*1F&#gicc!lCJnL}UgnJ57nJ+g3~TPk=_a3yhylOR{& zY%I91ov@ZWnV>_;vS<G499oM7M^buMn1J6bBg1F+_w{yVWE?yEptNQ~oX1p1cuM{x z6?WUZ>j=v1DCns65VL^!-ed*P8%pb!kPjaq$M5`n$^b&BRW*y~`qJ&O;=AhgL#MZZ zr>mI8b+OefURj}&``g2!dpB?-XBuSCmG>Q2abOV1jSpJSU;{!qPZKabVhe5g1xw)E zvCJxvfd0mbgYP$gqRtJ-TmVH^wQLC1`Qxl3jL4h15%G$!oBjgqjykog>(7>Va?j$I z9Z=MoKkfFmPN)lA*-yCF%LnZ5Fvj%yrCSF!)!%e{|A}(^5A}I0XN<VHn;k#Ig0O@O z;yv8n5)~S|T41n<ol(jOE&!++aQ=q|s=9-dJC9@*p7dy(PQL10W>_k1?@7BEu6Ikq z+#1`xfcIjFJFFB*TPP$yT}Fk~^Y2p;4oBP|QQc1OP5#+oxQa6Lp7fZ+%obXq46|Lu z-*)3QY4}M(0cB2i$zyokkZ2ahIBmsly}Fr_@%42|i9UFp*1-LxsI?R^c-yc3Ej23X zX75M2%@-<yW#iU;W7@8>jCgG#jLXEpXJh*13ya7w6rZ#lB(Re}S5jSkEjqgGs`BK| zkC;OMJ_n<33|R_GN|dzz-^fQ;N6rOp^Xa-j{qt(j2Duk?6XOhBpz8;U6AWAY!|dhi zi?VY<8DGG!?B{N?U<iubUc0lp!7kN5Q`gT`2L-XSe#Z-Pi+4Px`}X+W1ojrwaH32G zKJ(g6sdJ(vFlM&I3vTW{47>v7ekQJNtCt|J5x6N}6MI=}ff+)eOy3h%)$tFravt)3 zP;hR$gLqI#7-~?Ti5?ZTUuM9`Qj|yiN*_<{{GzyNRP|H(U4Y~Es+k13d7`5Z#{M4s zXw)xYiz0SvJDoF7$&E|H{s+N1RW%{}z7~o4n2EQr3b>5E)p(bd+9~1R<#$b6p69Oc zpnvL=*E|^!xWh+YCdjvLKx(hlg9TJ)3OwSUUm*8WEmHV5w|muyBFu7f@2e7m_%-el zut)bg4JJOm_w&dc^joWgpic#FE}b2TTN}A6NvHl+1*E5wcDgM^p%T(wu<9$B+(|YX zG#nfm@|~goD2<yN?+)o-n4--5x;nr|6>eYs@lHSDMdhshol%}!$(|>-uhxS!CJDF= zHs4u84=x;}xbt$AgkzRGGe%$=L+V!&HRC~{u#9Gda`lw|nU-#?U3MN05l*j|7u^g+ z0E5mYWy%ZJM|uZv8K`H<9Pzsq19nSY=PtQotj#6L%ki2edF!F!a{)Pm^`>_zZrs%N zbq@k}4p=z78sSF~B|0ZMY`~5JSKS_!>4V0NvA`$S0ryB2Wgu<-i|}x58MA@-&{AAw z{yvrm`qL9K)n#?{S6i&znb52|PF<atq_{Ro?0b$0(28yhY)IPhdmPE^c?z1p7+1k_ zl*MY_jQXgA2F+80YS|-;2O~2vRG){FaXQ7uf6U>3BcW}LFi#-4q@2a#X}C39>A&^c z=&Vy~dvf3L`VWd)WcWym{}z6`nrJ;oswB8OXALe~R+CTA-7&JFBX8bLVLu_aOORh^ zh^kBXHYwu5_?$C0H)9v~yD`gg8nhG&E^*@y%{kXH_rfI#yQE|pP*t1Wpw2KK!u5X2 z$1`dwrl(~uf%8sYr3fA*hW{SE@<nsHP0{Zu$*%BQuF1WR4Apr-^B4u)W#oKqy%%_E zZp3~GjwXJWxxCgkO6dG7Jl#v#3R?a3j9s*Z;BxN^8_clxhb0M+k#>@+_Uzcg|3TMo zXWXKV#C!`&m+BX+=D#GQ;!Aj}zULy4X!T-mPh}-6!h(2u*A7THp5qyog!7V+1w~or zH;+-R-Znb##72SX=B(2a?i?q)xRRB<1WTK|IK(n#leWX(z5pVi7ZwhB42CDE{V-;i zjeTEd0n?^rd=}09#aQmhq{r0-_zH%sU=ZM5r8Ip1k#G}&cA{DwJopj~-1b8riIgM@ zH>y)+rAVDtp<TTws=7*rYkN*$O#|-<!6WI(TlcEQ*Z5h$zO|wEE`+Kx%|xy&X`Bl~ z)u+{5Q?vjs7*s{8wGqVTe)YlD$eJ#<1$BJg(yM*NKP9`Oc;ZjjH*{FnzH`^4Fc0K= z^cE?Qx{fjbxy^ksmHKpuTwD?s2JO!C`iClR!42}wGXCS23UB77i|;i@YWD5<aa$Fs zBm;4HB&<TFpQFlpuT9e_TTwHTpTJ!Aeh$+LZw^AGr}78Rtr7U@sFdMu3&*xCut*v% z#0lImVqBa2`u_C-K39noI_i);@;FqG<7~5M+hg;$m$+)%{k5?jN0~KZ9~)l|iw8wc zV!SdTpcol9kA;t>Bu&U`3V8JjZ}=X*<sXM$8Z7{7qM>TPm5kBxIu*<Hz?L<uc6Gbb zeSh(*k&C4sr;?E$_p$FCvt>2zG7I_ToHSDp5&C*yCjH2nrhQ&8b>epcAyqnY+8|tA zhPHb8dyc?9{G=QS&kNo)Cp}RlK1*XCAh$;fPIb!St+QHV=NJDF|0x?*>LB2MD<Go9 zzvV;pUXrPgQOD0)k4Y(Jbz(5Y`befvhHkob1Ea6m_x29?8UONwxm~#9LKL4lAyILB zA+$${v1~DPFCQ0rQ}DiKs$;+v<75v{2OTr*cWcfegJbmy@4nqqHv50YVVuW)yf%~! zv`9$sJGjiK-uhe0Jz{y*X$7LST;a_npo%iVJmqSCt=ukezR}T$TiM3<$4+D%8L5|9 zs|W^S`d!OtUE7~trMFs9?7Cfgo0q{v`=%{6R$vVAUrshPs=c%D&<1MTwvb}%>6(dv zme~=pPgw5Ne;-THAf+E&8Zdw+|MTx-MFsef_r__{l`iywmx=?rU3EtVr>o@vH_MU0 zdom#R9nEBQX{@u@?U#g%jTclc!&Z@?>VAiQYdjdy=_^>#9vH&E9ZZu4rpLt#JLGTY z2R~|Zv$jE<_c1TSWe>MC@P($Q4(vjX+KLlz<V3-~PV$3V=XS6r(f3Z?;#E9OywB%J z7d}4M?ON%oXu+F!X`~M6({ZbGjHz0ppdi*`aDNs_>)4q?qJ^_ymgOclvcRw8r$5+8 z-K^XwZG*Kxr{@yMYazXZH;P)v!x7;gOFJ@C`E<$pLta&%1$)80FGTD0ppKBdQRvaC z69+<==-yi>n4h|W#FT8y6@k|ft<QX+-+BJ!$cmG}6_HPXqb$mFQRD-Jt=S7u_jLg! z?dQEZ(z_bJAHXp&jR-#DI}#K?hGxMcI3<V!n7AQNtLafad(s}Np2PKy+c#+N()w~Y zw>S47a#VGzbEl-6`=;;Kpdx<WeV|RDgpqcSElk|jY|`opp=lmhA`2l3pzpFGVe|+D zA*bW>Ev60>l{XPIg|&tV6(P%UyJ64svft2dl2<BcV#@x+ih&WUymSB5LwkXg?TANW zN35wu39{f>jmXH$qtGgUCzJ6oPci77OUK-&-K=F7LHiB&182p1xqX#e1veWpd;=^O znlGsFHBlD6DTKEP@(B-wk48`VfqVcR8>zZ&cW|7753^L)q4=`LNpmq+D7m7%jfFn` zwE7oDYTIdrH$Q=v(|`6kF!g|BSz&82(l`rVx-c3wKlmsN&M~w%NfCns=Uz#)^#>(O zK*wjATI5*nFky&`vb(leym&t+bu4wqBtr<9{&AV2OkSCedX>}9cVlV@BBnsD#ne>h zkaWo=ia5}gN)9jaB$NmiX(KF1khK82TllhrgWIoi<$%d2(r>oMO}{Q{Ft`vs&ZwQ4 zWYy`1WSTzd<c!dhuRA(crdW9Tx-=9k#f4ql_oz){p3A_C<jywhPeNw1!RM=IPp(Q{ z5@vNlZR$?oqZW%L;<#bWGoRVe^~-YY7`yPbtvqNEaqp-<&6$o=wwqmv*F%02_@!Mt zL~w>JStFaD?2O)z4O!*%9l&5N$!xf(Z4Go9-WHZf2bHTbpMTO9Q>t{+T}LO%h->n8 z>%>WHNAl97+)&<egSmlAmIaO%=!ozZsXdHW{#oztTm^WhJ@bXDk+KjoL)gWr429kx ze)k#1TnEjO>a563zieb6I*V!yJqx<4{DG4AT2s<&JowM3ZZXIlimo`(Y0o5%8pVA4 z`rs=%9yY1=(omA7a#IR-zdVta<JQ%SG4BT59+&Wc^Va|VyoGiUPoXCGL??(Y&#^U` zsD`(1R%zC)14I-(ru!9fSD9r>qMPrkpjrKoe5iJgi#OYn<Coz(98Ly>houjhCYwUK zymYmoTfllpuq;x<!&TVp+EeO7ulh;Ehox*3rEiqZ7@dD;*l3zv5d|KASMk?DP|A&) z1BqiS`Gu#VMjatZL5zNJ7gt0rOBkl867cTQm-{S<G15{Gyma0(z9>vYIl$WwWNIW? zZe7o>2upkJJDM^u_r=J=>dLffMlv?_56e#q1c^2na=YjfQXA*rdM_fi=5mh2k!wKL zVES(j@o|1bsA7A-xhbwVRd2YT|8)Dy-hVa~oW$Z$({n+O>t}(u0lwPz<PO~II)!<3 z5jEu5oZ{u8ER)qgO@x^Uu$p%#bR7?6yfoj*pwZKXJTGr1(VxmwOj{&c6Hk??ri{oT z%mtLDq_+=a_hmc<HU+QWZQI5W@7KGvntmzrOcg#)nA3hAUpzxXw>)`NOv@5_OM_-Z zNacLEUEalMzVd3*=*s01_zPRi3Ebb3m}e;6@^)uH{v48|J*JoMsV$KeIZ)vFa9{e% zGY5c7_wK1N`IM4-b(EDDc2?>h*W?WIppWyOyLP^uOE+%30UM*`Uj=jE`WRy_2>c`H zz}YD^AHj~gm3oi9kCGOKU-fZ#Yt46zxrFR!#291U{f6Of8;a#sN-qn;6V~Jd?ruNn zlOBj>D;6(~klxxeITa+j0;TBrV+V4N>Wkt<;vqDx5ko0YbMo8M2>3wndFXy?tXmY> z?TOi9%VNOqG5)bhSQ5;^WSpbB=||Z;eIe#jiYE%Hj&DKUc`zv+g4C=4h2Rr~4z;el zuFt_>`t!)ewr>b_#lxH};MoInwB`<G_m+I|{=~IGqbsNc>%rDrpUvf1Ppv%{k>k08 z(*$ZB_}t`zFw;)Bs(Yt3<X-E4HZ{E3oqBKC9B?M32k!rDKAGFAg3+7WCW#}UCrDk$ zTmUDR<4fCCk%9{LE$-VJ9@|J{(J6L=@6sYKOfTIg1~rG{maiJwi&Ds?b1`Q7_!MLk z3qMb17(||UUw_rrCS`6s#=alH7FU8DIqFCEPAyvjN&M%Mt%(?Ze`4V~P=`ZqZ9Azw zgT167v&_U}65&+#xbE9R0+k!&)X^GPFJ&(3e;L!I>LJB&?!rxecXG^SrojDn5iz)& zXtfSFcHxCIHX;zR7VvXXVxVgG?7{nL@=M0P_7k~n<rF=0bG-|U^wBqW-40E5&T%#Q zmM~~wWO739SxapQQ+y77h`7Sn#M&*+Tp{X7^tGR?#Su6PJ|A3GiI8}4tt%IcHza;P zFIhh7{z(RY?Y-a6K-zeD+H~1$kikY0A1X&Y?YOxJiu|Q0V`?Rb{qL6?Y;EwH4q<9j z@EyXD@4oMwR{L=dMQljS)w7tDs=w=4oCm%kBVCs>LOBP1AL&cjdgBeH$L75v?nPL6 ztWK7_1?@c60_ePJeYHDL-Nf@Wy<l0f%G*@HTjL{-vqldxtX`tdg4=(Hpp*G-?OvYk zJu5Ak5V(ordKA5Dx$}TV(7<sa@*i3R`MfM!p3{5@{7%`&QOw=1@A*ZCXR^KxW)!<A zPkESLF#qV+o3}rduCf2-aZie};MCc&roH)g(p5QwYi&PlGJUJGQi-omf{O&tU`LV& zX@4FCHWs@xY#*uaC9&o0CbL#CK*A@?@MuQmK3>z@)qkn`K1jFH6v^#FpO--jws>rI zBjXn<fpoL|xr;u$m9Sey@oPC!&-DRlT>inVRh+t(M(1~Tx}U__-vj;uW?8_n^NI;# zg33t~@Xe>yxUoMsyHa7YDDzD$6<@hji%~QeLMP31KOTN4k?ty)zjXuo|9DQdBlWAo z7p@wKDa(Gum%})}fEi1?Pkb@@P!WWatISP<U!UA3O<&=rD1!UR+kZ;gAV~E#4<0TK z-=!sbNCqO0A3OB8yIf}EP-EP3(X?fHYbdk>J@!=gs^h&})K4~mH*M&Xf-I==y{OIL z!z!NncxuTk!|s&a%CftuH>xgibxq~J9tu7}F-;u1v5|C8VxtV^`F?z5<dMNcdR#S( zUCNI<`H;+!ciSfpJ}u>RpELCpTL2t{^o$k5R*1t<&&@>_H@4;+Mt2!4F}=?>LHb1c zZSjl25t1a>IEyp#bF`WS!g@SjqgJ~OXx%<FIp@@!{wEa4rjQ%=rH(Q$lbO?NnwrXj zV~<m^K0o660t(KdySfj8(v@OHvf!@IEczYicctYT`xbwgZhwWmLkW1PU#ZMiiQKrm zz|Mu|c$rD|H>_7CAKMFQv%SzgSCneC<qptue8S$g9|5I|6}}p5*<Ihad9{T9c-z*9 zFsP!?JxER8rGM*x_j&p4#ZFs)3N(ts{#%a&JwxMO9eyZOQ|hIycz1u38=2lbt=%Sg z#`DeMm?3nAc>M@&{rG;ApfGT%LR+AME;FcAei5q$!<E9&dmt!mi8L&en5#B^=5xEr z`UiqfM!~`)csr^p`G(AHBuXNzB|rprr%y~&Sn(2{Gr}d-MhKjx!LK?}<LrAPsD+4& zhU!rBxWi*C;{#f6Nmni3dUo9LRF?>R)b!i8sEqbcOGV<d98Ugh5nRvl#Ps%3{?)-w zdv;qrf}a^-+h|C?X(2qK;p~{&58~*Ds;+PN(5d}9#te=pJP~I53fEWc0lPt$!K#ze z)!fv<`idsxEZi}-Y-N5PhV;Xx`I`gs_w2G2l=W<Z&s@gVg0fI64E&{R0>5|XXKBr+ zI}q34?4h*AmG=afcNAZ58r|Q%5Q0p~-YaqT=NdrwSY=~l83k5}q?!Ca+UO)N8=t}2 zfbZiO>U6~^MB^FnIinCX!B2k59Qimj<*W#_k0;lkP%W<sUu_#}CjCR8ioGGR5o&q= z3QTUIJusxJ&?w`Y0p2@S7#Jl`i$W2NG&jwo7V98-pZ(G~)xXx|5Z)wqOYDZY!x%?u zaJto3l6laI_rK9f)H-r~`EGK+b#)<DoYl+~=5PzR>OF~?Sy+CCQE{q~y4lE5A^c`f zhZdnWa_!BNI_`o~AsU?9!c`AY|HT_*5^-TY?0Y98d7dE=VoLoYXdq(MnQ}9(!@N)t z=JP$k+%H9)Hd&0tFS1@ySf;AK*oPGET@k*h0D_7x?W*$je@upbjM9PS2}##itFON9 z!hGqrCS*3DwsD}Ur7riH%5Q%q9bY)?rXhpXoPx7yw2S1J^%RGK%~gVl68X6efYM-S zcgzPFWue7CjfCdc)(McKDMy-r$-+uXYq89S8bqhU`!H&N(l3~Z8KrQ45yf*G8kMa{ z99y1<IuyviP7|n|Fe+9VxrS9KtwWK%cbLpDa}h=F#|K&VWVKC4voQ30N{S{QM|}vM ze>v;EHixT5W-k`8dQHAd<0R?Z@<Io{H)whb<1uo!rZOALLZ`$(RVL>Q6GM5a@aulu zE!o34e6?=kKyg<1<lYp|Jvy!AL(AYZ@nwH|vp}yV(@Y&c&})Ou#+HE5j^si{2k~>c zpASos<%G&}4#fAaR^wTLmS-?j1*8_KrR=<0)_K9bx+-wc0<I6=dOtznYX^Olq5PTJ zDtqN)?cp+z^cm%tQ}CsvN_06PXcA^_;Cb(rnr4u22PLSCfvPp_Hvn&B{RX<@)z1f? z&P&og^!=QSP{iqJwXlZsWcCi`BugGBTInQsC|uPKern#|Abqx-09{mIVwtG@4u)<Q zn$h8*w3%lrr>u4*L64}rt0c3{Jln=`FJXFP?8>V1SWQ?m8c7ASiag0Aq_+T?h^3K) z|2++6<VwKbjoqJST!7o==4?V_5ug}sZTK<>A$GbML+1(`?`@30(!@#cYZs+-TI=@e zsK-#Q=keMSuNlH*d414zrT1;$iQ5`*kDVpA^y2&HUtg$Me%vPfp#BD#89r?5#BCe+ zpFdYxpr2FhyhWJK)Q=OsJH2eA>Ax;Bjwq=0XMX<Pb%N$s+Cp^97q;u$orZ$?L-S6# z<{qHjnblEqNm?zVAY*63iR+d>q@erTEX^$fHwtH*7E*Fk=G>Fp_8ZJr&l_JD{saZk z=D^JgUKcQ(PRQL4uI*Ss`qU_RE`;yAgf8_NYxyB|-|#~TY8J2J!aX2K5q#DO4!{Yu z(LVF@<VU;0sgjJTl0n8~0U2fsfvVN(SCLjLXg642*ac3#6oh{%{rKmcMp0`Lxai<m zyMN4>E^zL7P<fRK5y#Mh5O)WoWB{LJmC>D_h;@aP_fVe+bU!=0Oli<J>G7j2=tRZ9 zKe`G-o$u3l1>N`xurp{#mHz<FrTo;I)(dAt?K96%m^-CxQ0h}8f87fS+yOXx?#-Ff zPc{6yukEfm{`<*3wn3X=)y2(Zcm=(#m2r#omt2dO2NSO%ZXZdl&UGPQp95#GnvxVX z2ddWp`b#pw%~gd+<urX$aJ6jFVkJzEWA2>%S;-vOc)W}Rcc@Is0dt@V3mjfCgXOEH zxo$$ZJ%ueiP6rB^$k@$JCiuB?!Q$OP4-8s^OHsatYtP}FCtm}^$h0l$5Mb?Dbp^Y2 ziP>>12-s88iX!)Yh{qy$ycm{lVi7slUN}1C6&Y%OR2Ufr@Du_Tf*m_q1)kAdlse-w z!E-&da~B)l`hwy8o)L{_TXHIYACQ2PTAZCR#s-?4s`e2sx)VujBt&oIPaNK;+7L%7 zzI)x_7)e5MbDLmIvIz8gaW)|}6Z8IE%dzYsImYo|_6<g$@2VSERa<_BbmXV<`4V{& zupG1cBvx1I>#q0v#{)ZM=s#LEu5h$_yh7R2S@PNQvHH>7RZkU<s@S2rSqjZq+nHAy z@!~^jsF(q2!zeGp?Jf*Cd%*?;8hfq(A(W|Xsdtr=&*V`G{F<hXRf})3b|im-o;$v+ z4Pr-%#gdFy7=T%L{~octt;*n2(86%pCC#&KlPc6LXVv!R@KaL`oi=h6`lNCbNr;r3 zy@>ABwfL#qRhM?239;T>s@VJ*AWz<t!kHaPSlnL@Ti&$EJ<)VH<NJ1$`FJK%L9>K) zYa#Tr?#;vbu_g~q&o$6FO`1jQPmOMqp|{&~n^G5(<eWOJ#I!{5f)T;#UW~0P#!p<q z8hm>YvvVRpaFZfU-&vm92Dr{~BI>ddbK-Q<Qr0`HTSyMwP4A_V;e%jl0Q98s80>(^ zFOPnhAv5DGSDMwK-6(s>lemvk`!G84bPQ$xk~(h~XL&wnUg2tUrM?fU883n^o{Bi` zdDrgZSVX(c@q$Vt(sjPvc>0$)%$n{@GP7$8a$U=*H0%E3ab_qsr`dRsknYy`)V#B0 zSLcABL-&L!LKi@6da>!%ElZVoOqI!Z`DM~Te{=T1KSWf`cx34!|0fT_>W2%h&wL@Z z@0x{e(WGoRA?sn`Q?Hv#E#5^i?qWqpnBUK=Wy-=-Qr=@?z1FIjglTEXd=J7G<GdOi zq`_;~Ty0cFRVzTg^0AknO5cT?vMzfRvr?4Z%i-s<>^GtEcu3SPZ(2U}8WfGidJ3G! zCJTNx_oeO@h&<v6)?%Fg)I!_j*)VKwV7_D*Suy=Y**WaxUbW8@HUd)nk+T({Rpr{h zWNCVZ_K}z;>^9Lh2t(&Nqc+{W_)x>PgCsk+&i}pn{%q)Xc@a3ieD(6A)k0U^Rmx*S zpPWL^`k0-vjsa%}5%(?0Rq%4(U9+30=6va!pL4~5K20!j<N|sTA+XxzpFz7dW0`vk zQ#AZC`ACp()$WEa0epxcW9y+OgCFaKKzq4a$sK_LdWRgz-AEW{lEZ;z7G1>a$EV;r z@og;Q%N!0<i4&j4Vz@-hutg#FkZQIh{AM+K71V%>JBzr{+mN$Qu_yi@v5{y?kuQf{ zT5%z_O&FhK4ESe?;7_$qIf{as%#KBHX5u2Pd420gL0oMzCJ~Zh^a$Eb73)LYN<M!g z*3Y7}?z6;$o)%3q4wtNj_Nu4PYhQ5G7dyYQ%2RI<*pB>?u8urXGR_a>PKPLVIjp2a zC&VTaUpA+Q!1Y)Qe}U7UDwSoc7C@%($%WG_s+!^y3so1w@>RF6`3K08#&nbA(KfSH z6oK*XA|>;i?u9u}EDAtdBG%$fLT&S`GhdC3A7vijNBb&hdo`ZPZ%Z6Agdj0!KQ9z> z9P7zM3#Ke|rT!;YRjU4>qlacH^-_5gICs7p%aD?U{&RVT4>Xdl8}+`4yFPCPYUZF= zGoYs`0*NBfFlV>z0}YoJ!GHbPTM9m*)WnZKPq>JH)?l0{*z5(TKG;dilOUdaMi!M* z>E4emr}*_25@id3wwxPh0dSOK*E#%|==Ohj9X4wZ5UHxL!|=2k9^y`h{u8oyy3M>; zy&n;n&TS3mUgfXUcF9xwVKDzf6YC39apQ_n2Hhsg5M}oqj!Dk9G2Px~h+hcCk>YPF zYRT>aT+^&)`ndUFk%4SAS!I#5xd{I9D)v3}{TDA}nsW#Lx4(+_O+)++uDY4ogo>t$ znFbdAz~EQ7Yk&us*Kd5x?iluB##5qGi5pxU+w8++x(~6?Qh5ZYi_#c`e$!6Z9Ucfw zM>u|0#0wLPY_+Sxc*5v1xhMs`qqkk4uwD@(obRm-%nRb8TbSBYzuQ(q=a{b$a{uW< z`M1&B(VaL2yQkz|Wzx-`|N5I00(Cv*tl;yt^0CsW2fS)O9sChFh-=)z(Nl<vGDh^A zD8kIsA*h)xh3(C@%fJ#_&V~wtV)NFRy`HMMiv@Y<kQ%Im)j2VZsaShP0o7ft`!r~K z5w}0d!Mh%}zU`&7=8Iuzp9UJ{(|RYfsGUi&xLg*CtX0VRWv{&iBqVUVZ%u@XIK28w zV#XZme>WDp2cGLsZ#N+FcSK+{PgwrX)H(0a@HEd8JY^#F+pgrzKO|sB!JUA}2ZTEb z|Jv3bQXouD_hE&u3|Gls#Gm&Xr~xj#RHrFx&qM?RRE+}HW-G?kR^F>s<P?cWX&)kH zL$h1M)e<Sg^3ArL)W+eA`98#GhA13AJXE2KzweoH7J=y_*!GN1jJX5B$GMD*t-C>z zYrES2Ft_c|yz33$cOD)Z_6t~4INe~FEoAD)%eB`*Zo+c!SFNQ*a^B`5^%XmyD($iN z@SFl!vghY_O=TGHEZsKyj(R;IIW&bk#x}9SyuQ+eORHq?uM3wJnSGLl?2zO;ShmY~ z1CSAtm<@5P^fsw2(KCd=kv?AO$=5G7Qv_uNWoF>XM?*hNu2#=dX?QXE%2yy`cGw*X ziK!a@2u0|3J27uuT<n3gFy~FVa8+{Wu0hM)&|vC1sM}s|Sg-MsH`L^t<#rAYEVi;} zK5`J3u6e5UpP{`-9I3z`{weioq28~#Wo9U`Nn4?#FA~c;@(}Z%5wXR5)~K2ZxxLsx z3_3N@g>8%^+XSh3%E*qRl&bf;S@f6uA08{E@$Q52@OmiqRk@6-ngo76_FuC0ty`xb zbT^ci+-!eL4svxPwU4>oYDA4!rI*R{uX^@hU+ASxQd{(ATZERu%B3suf!E-^zZ~2* zE&RXa-!&v0-4VaOQ}yk<^Y<gV^&&ZKiYaJSl?qkzpP7A-Mq%fFH$VyKD@m<=rZ0Tl zVu({?l6~gKc)7O!GK@lGsaf-WjdExxYJg`BWH=cnaP+mcyS1ZP(1-qeeCYHA7#ZzY zD!1V8VC*F)o{fbLZ_62*YAQ)@qoHj)?N!7KFM74pV(tU!z#CeBSBt{Z{fCT?h4K<| z=AB%B1if)6Y~5MYh&hmLcL-WCB;ml$AYQ_G^7Nx3e!ZqJcrTyXUt|;ci#A~H<CnsB z%uGU#j2qmTnVUEqKhBBE8EC1C!&K1|>GsgBp%*KQxDoLu-{XPq{fhB|t5C$>HuKYN z_LB88uR#b<N8eTy^p7%J{+VNDRGLeh;ZrF%G53qg7=U#DIxBO>FqdH~y=!taL#YV) zC!x{NJmg>hSrs&ctF!*j;{S$!J19d{=fJP;{L{{J^Z)MCT;Kl2)Tl&yVa(8zb9>>C z%gm>Xg7h|@BW+EuHa%Q3E%-7u>(*2BVZy+!C4AkQ|KZLXn)M1Aif0!0%LVtL)7(lf z>v+*q){**rO$oG0j?$=pE#a#s$!!^#?EZTXxo5N8HPi7Z6XhxfvLz3UmuU-gjI#tJ za}!AHqwHE{@%NCuh`RJvi8JuIxmoo#zT@AmcUnh*G2PPYa&=*Ne-<6Y^JHYaZL0T) zI##@3hT<DQ!ZV}S;2bsgfz&M*OE;e+G_fy6(Cpfm`1}ki4<M8b5Ht%KfU`JXZts)1 zzBdIot)pj#LTP?WqZP|Ch)QnR+FCNqiYQ0IC&ZtnUeRyn@==AHhZyUk0R%W)81bIj zfAnR(iap(V3CUz(j*>sGS)N<2yJ}88WBN)(AbVjz1NqL3<U%G*-KU|awGqsm8I}+R z71FC8Q&Tj#7e&<K*}<m7&Ksqn!O=+6F{I0)SL9M<`Xh#Cmgz7UZTWM6V)npDMpRb9 z*ps|q<0pG_O?Zn<Pf4k$|3`!vv37&R;uE0)F8_2)$B5^HSnp%)RCE&1iO@#tJNbS? zf3w)Q!W|Qe$ZMvwY0F@vijf7{-m@6zT@03o-Ow14dN9t`H|rda>~;%{4LeJ=E|x;9 zya)0g?SVtg5XJOpN?IGEwSmMbcvk7oyh?pDBQckO^Y&%%gl;I)FX+5GF*;fJ`ByoW z-SmoKzaUTK&5X4CL$Xr+;p3<sVixDdSi|*^m9brA`JqR?-4z5kyX^kYcl`eoi%5i3 zC_h(ZE3Tj`oZr$%*&6e&x`AhAV@HeMx^7kvP@t0Czs;<v4obS@57bsRDFo_lu$Ylx zcdkXwRygfyBB87P=05_g>Wo^*I?ocqp<rgq?3G_$cPn4D*Yms9-(e(yxl>>&=*Tht ztbxS)!J2FF7AD3yo>BF29)He_=)2|jZ!?CX+NSS(7%rW-cQBYaqXz_}Ven(A|2UT! zrhfjv)L`5Kd!QM&Mzw`&Z<T5`+$i;9%q_M3{Uuo$e4~K3OyloMQ8AW((bEKSM9_w} z$Lc)cZK8?qeVPA=XPUy~YhMZc_f~YTsxg#fXmkCqvO{NeceqAz88N+iI;^l?{vFbX zwWwK`*~wOn>~47}EW-UZZANM#Pv~k=&%BTTlX$~5yrVJ`*|mUAOi|y6>cf*eQQE;e z6LP2jNYM+kX9OVNw-v$LsoYtQ^|oEAbZCRcmjCb+Cv%(?sx$4UxrNzb_1~P@@Pv9S z_p%=0_wOtJa@V$(qi!Yz=BQ7{b*<Ov$S6W~Hd>skz5*)gYTPy%oFRMezZq%KXTBsk zGv!4M0;Sm%`-g$e_xG16VUIv%qx{S^OTgBx5;%8}FCmL{Yd)MgYR!-TjJng|7O(A! zh}i$~9*6V%ZNk_^^ksh}v-{4>QNo_${-1$1Wwa6%H2gnPc#?)9rsjay_FvZ1vwSwP z$v<uFpTk;Ji#FJr)uXmn0{>L|o#6gE(6=$No?-Pxr5P!8XN(+F^lbJ9=usPcst93O zwS+#!h)tC5^1p)KalT1rW1GYnzIcX>l?vuvcO}uE%L18gSioalLgF~##c}q`LTBtg zy{&jr@v~stC6mc=GZKjvaVnJLw(E}C776^pRgBqpv`W-t<~xRn_2?Au7+SaPEMqEp zJ=SlB>S(JT-y33~O4%8c#9%g<I7zp5n3E*%3s--!`nWpl=rZHn&Xzr2|Ex=`4fH#5 z1IHJYu2KY5?S~WkRb}!(kKvS+?uL<EVepd)ip>;(Ql)eOgUt4jY27?wdK#~>p>M`= z%q3@(=}t#eK+8jX-8u3q2CK@YKEAJSRtxlJXJ)=e2z}bo+m+nAB^j)mKSvmUZsxQ9 z^TZA!ud*C^wqDG=e@rl(G5qChE2G+A-@oVC=&$lZGSWY*s`l71((Pkse>9P8DLYU9 z+4019-`;Z77csz|5yyYIz^=V#J1_2&VrK5lHvTcn8cx!G4j53}A$!{&2GWVf@|^xl z!r26e&cYO-4{33v$=%6b<E+8rUJdwPgyb>QT0rB!*<>Z19#)b9H4FSUY?RsmA8wMQ zYHjnS!x7Pb)*Bg)(%*OEG2q!E?H)A!Ep-lf)Be8XWHwRnEAkEUo_8s67XKINXUIbh z?w?~tQKxMuhIl4Onf;N0WA{tXUa0wFZR3FkJ!Py)RMC~ZSP1v4P8}MUj{*=VzPIW% z0_S<8RG@}CEA4pLey#A7ON1<Fab?`YW6wmGxd@3zc+cpLR+)2GYu~EAXcrHDuO|Ky zdK{UPCMDSX0#8aM**RCKcU7_G&}=7GM0-|;$W@Zmo0EF5YL*b*bw*DDKPEe!ipoC{ zXRp>i+br+O=Zow$SA-I=3kZu_DBpEvRaMEj-x4aBy{#N<Dygxyd;Ttb1<+MyUgsnO zy-!X#76w^fpM^^ETqv!#d$D#m$<ANY3iPTFv<q1%lp#%S`SbVH((X>Awnp(#63;Nm zwtZHX5Jb&QR;&#RJ?Pu3R?vy0suJKcF2y@!m8I_hzx+QM8AUI8wpt@dE;5n|sed@6 zDc%-e1^dX5B9bTemj~3P;qESM=-^pYXe-n?V}ShCZ5nSec9^ke$?Ry||K_IXOOU>j zC4s928TSN4|B+L()Jb;lO<ymf+i2p#53p?1m3c-|eWX&MsFpFjian6+|4kpZA_Hee zZy&HiO=5bP1{jdtRsRZ0Yh+6cW3A^;qV%o0zjS9P7|8Bq-gJ26z)^&(zudE7IYo=i z?jj`c|9btRNeUaY>n76vNO5HFefFJNxN6J18Qp|IIdYJy%Gk4E-gK%Yn=yQ}Dm(j) zj>slA<oL{@%Hb4F5aB`Yu`O1Y(9S|yasJF&DpBYa(<lYEbE%@c<ALjFQHHO@XJ@ZH zEPA5|`9Xd0`GgTg597QYAUMKRx0J4pyTc*-QKXXF56zDR>K<4_QEcI>H9(yX`f5#K z&YX30=Kj!ZLVK>tZsHL1%|?eoj@+J|cH4y26PF;Ph}4NeY%C``sfc>Q=UrE1#aT)B z+RokV?4%&Yo;hC2e=F=EI~UA-(3PLkv?0`iNS{?mY|jb`)BD#2JB-}cCL|4!dE124 z*pqTF(lu=bmrfzZT;B(erQOL!+DCZ4J1YtpWcSf$VMhXyz;gV#o7`}vh+mlV4f*kT z$A8L{dS)vqbFLxp^04YxfdpQ#p>WkruKH5k)WxiI`nOPVF=JYM?h9eR&7EUyPc9sq zk+cP@VM$JaAJ)$Z3!ND59OzhI9+lDnpVl=Cn(8icQ-wLMj<d4`V{K6tjC~%7jA<#? z=ATV*#BWl2>cG+aj~8C@yl)vAs=#5yu2fLPepfmqW5{o}{QEeC^X((+#jRJ|?xCTk z{(YC5-dC{n6Fv--yPYX(S+Q~RzVmg0A&)@My@RBn;g9e4O5#nd1%GBo%!jc`V*06N zQP3q`<uMyZaZ%WUfIItxW$Qf8=1vZs=B=R*HyuG&mSwUti(~zSB?fVZ36~~#37x5m zULhq!RBp$Qs2_Z#_HBVtk!}oP%<uOP-;d;QeiUnY+-y_4W0=wM^w-%gOF;;hD(D-U z_;^}Erdlp<ZEuxv6N6Z(D15v}L1jP6m&}qu+k(O$_rWh{{UoR5?zCpZBi@K@=XY*w z+3LBj2giRl?IwP|ve)Oex7mFfsv0VrcIzzpd93zwbX0!|vA>Au&nf!${c|X(&gP%8 z&Bg6eUZV-tb5L}_>)-vV7l=Z1-NpB!Ew1lbCp&(9zbm0Hb;90TlK;zg3L8)5zaR9g z?jgd%hC4r{WTjYj$>ct${p!0v6-+VjWloA{pgA*Kl!>Z*m#&`Na&4B?C{cC1v!Ww4 z-B?9wl$8}z#hM=Y5wogOV{(KmwTm3({Wb{=bn42g4F&bKaVdDg^~Dl+6LGE_@sATQ zBc`gtZx0=t@bF?rt&|VLs%4C(7dDM=)!219b|@p$B5Qb0VM0&yE5<l2paM_D3zFWU zy<mNs**ydle|cWWnqy@}yrw}%YvziZo^LEi#_Da`-nA_i1WY8x{Cs^<KF%#Mf>U@~ zc%;6v_2$1Tg;JnxU%92Sv<D{Q+`?m1@!IT|^SA#wyl-acGU1tRzMPK|dXh6t;-`m& z!$&`=Pd~TsNS+w47oV7P>&h{A8o4`{(B|X{eoGUU{9mI&99?41r&?PLwMPloBdQak z&N*I(S)oGmGn^(lGuL|uS*~JxN|e3|isd;skfv(7nZ}<3O>)YdCo@a&$M63?kLXNj z;fan9aX9v0tM<@N#PYNMHH;gcpi`;yuNj<ocxKKAA<ucqY;O}JFP)dvtwq6>htApO zV=&I1htA4KdzbHdxN@;D#Fp<l?1&oo#g;dwE5ef5u?6->nxhBr{C_=|Nl1SS*mrH* T?I8-w0<2rJ+3JCX`^o<YL2S8$ diff --git a/public/07-basic_statistics_files/figure-html/kd_test-1.png b/public/07-basic_statistics_files/figure-html/kd_test-1.png index 925564b06a5c677095386aa29f9448c647115a68..11dd8605be7d963b3b0989f9c5d36f518d36efdd 100644 GIT binary patch literal 15735 zcmeHu2T)Vrx^F@dP^5`~QX?Qm1VpOTs30IxlqMjcAfXeHCVi{eKqLavOB4hIB1n}k zDxFZIhWeKhS^(*U0C_v&|J-}$%)FU5@6DNW=e{I+C41Fxee3s?^{t&3Mh4nUN4Sqb zAP^>99nBjM2rU4Cz`iiRz?^^=tKkp`l+oy#i57SZfha>DNQkmBL>Wxc5F`?U1k*Aw z7tEq&Q(s7BWwbI9sf+~EGG#Pc89j`oHUqODU>R6|R7O+FsW0$H84`^~qQP_+SyqND z15*lG8G;6TK|;{KtAfSUZhn8E(Pe1#FuJS^T?VEU^zblxm{Nv>lp&SN(BKCN7K3Hf zo_>Fol?{XMvSBc#lu;->Jw3x{<zX~(xD5QDsU=_;*vId$;b96`3rvP76bb|a_Dd;4 zQ-;A$+3!5C18Pa3i*f<TjKlYIEW98PzGu`68a2J*0D-_Ex|$bF9;7Ue2HLY*BqgjI zONf+Dkjv-OX-vJtIrvt#DhA0Z(~*U{R4^psx)pZaO(>XR7_IE1X1WoV=_Oo~?Y+CZ z?<}O38)0fVVBJCkq0zk*1p&wr5Gcdb|IruLSJvQuLEf|4RB!(KUMqpw+2i{?uTKtr z%U&L#i;0|>-3u^GI~~{Ey_L>4p6!^FKVX1U5%{R6fK~KKI_9`m+(cMR-|Z~ue{97+ zrOdA3nSL?w6$EQ`C};n!Nn5ThAeAoK<Y8Fw?N_S<Vjp^*IhPi@qF&Qeq6^F`jyeOm zb-#pYGGBr%f>i}}Z>h`Sg%Rbb9<Gl97}7H&XIilJUeXUF^lEgGuf(`xiyVo*Ii$y$ zF2^$6{S^=N1_Ch4qcNGz+W)>oD@KmR@?l8Hz8w5mTZ}%;#9+L2%i_HLKD21uJ06-V zS}k*kRtE~T#4>kz&b%I_7qi84*X;Uy`mDm^#})H_1ZI*yZSAO{)gQVT&{J{|@O8E{ zn5$kncQA~X@yEbx!>$YlDRFrg_Fu|H&4l~^;=^cNc<n01L>9m-1)Tm}u?^;J8OmLZ zeJAt=670$$DiB}F)v8Yu8#R+8ErM8JdIBkB#q_N{+4q}taXy#cP9N%aXm%cpclyK< z+ZjGRGw;6hqr0bb<1wx;o4D2T8s9vhP%5kVi7T$E`0V2hQR%k#j!7(Q@!q%ivslXF z-!AEtJ##qJ9B#c9EESsUp3e6M)svL9?<p2v-^Mi;nr<R=haNsYy-~TAm6xrVGHSiZ zHT2C{YG)5R-?62;-|N2_Vb@ypLDgm7xsu&hZS7}X0S@Bx?AR%q63be6ZGf@lX@V?y zRytB{q*uF@g<D{8a(G^`sqe8b;IWX}{&fYbD{&+OKU<{{d?sy6uhc!^Wq6On>J!Rk z(mu{Xhg(-q1>w(Fq+2$gJtn9>PN+Gjzc-1Ne%!}<;Q=bL#2DyL8%?cqn0dkvJw^!R z$Jpk7BlSIhN&G-G*nJm5sCQIBd^Hl(1kBpvKM%yXtjKBb8MbMC%kev6A+Sfx*c<&! zdZ2>XoERBB+Fbr6pugq)LuAyn)idN>o;I{nbeu1czhkj1Tdb`VdhG~Wi5ZV#Hb^Si zWa!!{4%|5F#e$YwKa0@b$cWm{;D2oww|T94@9+t=k4<)cwi3r^ok|4}#dg=5H4+LI zA*C$01tOx5>6*?J^Hwx*%d5_rdAkY20>hJp^TJV?@7Xc)v*-<VEL%tAsY5!v&j^?L zc%7d?F0^~xIbtR4&5TwW7i~G#PvNO7Af_Qb2UTJj*f4$J5C_VIv-^90Il3-it2KJn zp0%U3Ir6&3!Om<$x@n`BhitaSS2Nci>REZmHQU#b3w=89!v%{AwojJNP7t83C+APL zY<}TR4(#h%*lI~%m!329+dMJc)2qSUfNIyVRV#?smqA2~tpU7_epnRe=fyD2nLsv- zW1SQsR6J|%FXIadyV!XBAcg+v#_c=H2h47j4M>;dMv_vH>Ed}zn?K*}UQP?1A_~p= z>gG?k?!VO2){UcW4sgESJg+}rquU=7aHUAC&=i_vc|AdOcfZN5vw{_Vhc~OAw?!|8 zsY3?ws<^6OkuilvxN}R_I(EWw0lWC7XY;#N@!O#3KZ8op#D=Qc%m^e-ZvL=v?{3dE ztf)CY*!d|gFOegaD2_E<bZ|wiNo(-(S)x1+<ya;RB^!*sc4KkFLL!x`3ag;U8taF$ zTwgx60&Y3_z4zn%jD@~f8&$vAg;y%4=}p|eVzU~`yUBd|61cAC5e=SW#PkAeXP{R- zE*|5u{3v+dND;9q7^n7r!{3$@V=0O#;HmqhkXk8(=O4_4ydjJ5hfun0?5G31t;ig( zU*v=j;74VH`;CJ-VJ`GJ4;Wps**nB_gCP6NRZnFi-_<aNE|=+NVq{e9;+qh=`S-;e zBrNm$p>)X$h*3T?mSu<=nq<4zGr40CNx}K{-wLBn#}pu5FEc2cqt)SlMleIF>5b4# zDOX9<6n~LG;7A^whJl(x(D`dYUW2I`dR}5|f{45~0`KfN9HK+*ETOp?@_iaSj3u9k zglK0!tIY1(7nVCp&p$rx1I#}!;k3FVEa}R3$SNq%Bg(_S>6HPH>FLB&8W5=s@FM-j z<pwC;%tn5-el#Z4*0w+{n;Uc0O3Ko2P~@p=;+rOy4Ob02lAvcatU{pkY4qM}Q`RKs z8Ylh_SeS{lo)v=;SryZ;+s^N?a$6MfLrIKQCt)<WhsXzau0?4ee*E2&EP2vsS?yM( ze&H1$!2F(Nlg@eMZBm?}XYNY(mH=gFh`yHxUanu5Ci|9)Ao#GUFJH;ca1309y4Q;J zL^Xc?<l7Rk5|T)Q()a+Ak>do9y?afh(r<|>VtH+GE-&U+yT&|3S4A<eDW1-0V>%AY zS84WoHTWa`XU?X9lk?AI9^JN~fkzG>DFYFiArCJDt*4q*-kQ@l`}l5MOP4>ust*jr zO<HQ#>H*y}ChjtchUR>j_f1dY>2qc>Y+Y@c(&^_4Nm2{6&6DS<OJ(sxhl71KClr^l zCu20~Paz`hJ5n>(Q_htx-Pv}44t3ml;9pz7gX#FLxOzk2Y5akv<-pAIj!$ZBoh_M& zaak<25JGGk5J06GpRTNTaV;|`d7joLZ~?dDv?aZ(CgkjVXjbq;x=D@U<eQC`o=4EZ zhadSI`MI!jeSn=UzGKO9{OrBMMx8;nDu~4w<%&fSFEsvOapS((5^ZjQV6e5?+nFJt z7NWLO{duQUb!!7Z(6Af-X>Z+f|0NL@5g|~-60pxEU!GG(Hj3(vep2TsEEzdDXpV~6 zoJiVBiRut4<~mbn9-@9OFv;wYSl!Z>O76EOO8xrekN5)Niq>kU^I*M-j3XfXmR;#{ zWLJteGkgH$%P&}|2H5BmyBHaP&n_%0kS*zW#1Z#=9^aJe%KW6$VqER5%76mDc~m%K zXs3>)vbk5k;e6eRQZ;&IdfzykmoBymg}eIZhAs1u4csFK=={q9)$swAu6b~ddka^d zgRTU9&UWG5^pwU6>&A26ew1sPbjwiO#zrsgB$U>1WPB=D@H4RytvZWX)v*kN@cE5r zziGF3<>#Q-uwi<38m2eX<fpn(3wW2hxp{GLCDe+)h$B{mY!wk-zYmL=1)JBtRsD^# zd~3c9^}qUSFD~R&<*Mj!NU=FwFWUOBjOin%+OBRrGTrLuuE~`avf_k$3QML!TE-cD z$!6R<u1RLJvpzmg_4f8RE-z>IyOoZ4Z^Y)a!~Hpx4(X&VFVN{EZTrh#j>=P!YW~eJ z+!3Q0e%=k=_C*#FR$aq1YF(O*B&k#<AvM>II;Nc4d5&1QbE*p8cYV?(ca3okQ?c+N z$YA_k6;Fmrbler-iXqYJyTW+(Zd!liiGiMyGYA|{JYh*)RSNl#557QUrzP~5<3lUp zJE_(e$b4aY%ONJQ<CijGf{J?x?dAW`7ZA9N3T2ePOG7&nNXvjY_y6o_wt6SB9!pbo z2~eGzeg-*ZL)&Z|y<2sRChP$l+>n-GkQchD2>`f%x^b##E02m1_TOH&-e|@tUGNTy zAtg`McP?lICo$cQ6K;C-?StgW7L;g9M#0y~Ih|TxzV>NGSudLq>rEZxkSc#b^?J)( zvr3e%6Kyj))RJI#OHww&yun_Dr3<GNSmX<|{`@GNnr}B&y`;KYOEM8hjK-S_=>YxZ z&m!JLLN<~^ozBWP*i|h+-na_RL$6A7uQ6J1pfitN*?PT$Re{b2uV${zt04eYHcSXo z_k>!NL1?84kNKe?AE5Q<EWOxXWE*Qw&dYW}PpGQ2V`NKvPiI7f`%v82VS{vUu{u@7 z1%fLJE69YLc#D*@H+omf6k;XQRG5uQVVW9<x#KEsVei>Z-JISpC+yuVOAWuCw*G22 zzgd54x^I>Z&P6V}3HsUU{S&c?oPi3yycpfYXAtOp%R@zUGPnqtJadO1e$m;VbHVy2 zW%KrR0A3>AuI~!4b1m754zJEw+<aHBW08^k3%5HVrjoMe+G*7XO>(3UNvqBq+g2cN z&Ey`LtKwop(|G$K>Er^U1!CH4<mw)z2-6cDR^SbS5|$;nuH5$|_q$yW!NPij%7c=U z@d@&Nqa}Wl@gn{*S^Xyr1Jcf7x%Kn^N;si^82wnyDu0N<h@~f)V2759M6SrSZQ=%P z;HX@C2ekzjQ@|sg%TRSYg_1RLfxIQ!=Mj6qo`c3@xfPe@c4IYkJod8GIJxk|`+l7` z>5%mScGoC<`>o2<Iv3u42BV5fS@$QJ59ZI#eGI|7>fsq!K^B$X^kK#D&%Ns!dM;MR z|HF27^hJ$kh{^}9>;CoPu)Auqp{PJ;LDG%0m{AD+S@f$2QOaB1n9vW*XKHL1ge>Z| zm%}fXjJtoD^+?0AW84}Rd}N-x>`bR3HeLz*oF*;z{A52EMUxd%N3z`cI7%_+TF}IY zKe2c$BYHToFVfrp!gfh>)LwI-c`HPJ6{dkd?`Y%v$fVYI|As3^COdqM=!le9&Q<b= z-Dp3$qu?6ppWWtJnmWka(t%N4j+-04KQG_%bv>7N@_xBNAid?Cq!M3!ymSGbA#jTo z^98!P)Y%Ft^_wJ6%oW>wOY0iXO0zG>o$&8;U5S_=ZAfJItC;4Uo-P_VY@~LjVJOj} zHShA~h9TiuhmJ2@pMUwwwW4&6sh@d7EN;6xcTAhXXzhVHdAd&+oEfdyJ-|0}O~X|J zF?}Oe<96I)r`~uT19~HlB(YFa;2@AMk3OwkA6_G}A^vS6+IlxvExNzVFmNWoUf|`z z+j5cye@%|z>+=_6TuqUF<?B~ca};g&7c-52*06a3gaO-*&Q1-Rs+7!1b(&s#JU6;D znNT=*{rt|7;a(_45YgYAMihHfI>m)@DY(2*`qxq$%iMV@+MEZzGufLuzVsmZ0oAt> zN5`Kve9_DPI>;CZa7(8jpS%d%BKm%+3~*h91?@PKVQ_?6*ra^SeF3A2mz){~t-&S1 zO+VK@4z}5vL0#ifE0f_6oV0B${Rn7SWuiwf`i$Yy1YJe)M-JB%ntf>%^2{*5p`JXq zP+dLG488xUtsz(0#Y*|!@a4~RRJyO9bH#TQd6rEm1%X};U-6Nfj8mYO%Ce<Gr^9VB zGfEUcgFT7aIf^0XXI`&7DWY|ENHMg?wm0J%NawvzNe%+9GkQiQi9&^obw{D|pVn0| z6R&rg+V1O{-uhZrOc#s#OEqY9FDg_GAH<Zi=7AMI({u+5@v#@@HCVvYNZ5{5+W0)~ z`EvQW41yqZKEP4!o-+!IIt-mJp1L+mP{({7H59oNTt4Ky2%E>t6w4uc=64%V3$#uR z>X?qIH+A0Q^ukR=Yr2cWG(rd-{HUG$;#AfQF<c+iFG%DtV}_69O_F0vxSdwU@{ydh zjNAQJ`?<C2^EsZ|S-bfILqd37ldaM352d=Rf4v)25y`T6@bK4tnkh%e2va{EgnCS{ zENzZCrSDh6S9!hGH6Z+ngBGyU3Cr!6wYbl3lzP-_?B_g0Ub{#wXQ}E<PxaE3TA$3i zZCi)E7d3B|#QR6iEYwziRflt_SmkFLdM#@;jxiY35knBtPsq^IEj_jiYl*m5(eo*G zp0F#*?3E)d#%XocJJ)7)_oss5%Pk(5(}L@Y$EaI8p0Bo&d0E;SrciM*(U_sQIHc%$ zD#1~{Q@Zi%OQ+N<@#<<#s$4n2N@lBs?0gbU_nQ)WJH@3*E>exP1CLHeDtf3EDkHG3 z^KGneZ4LRCYkB?38?_wx!WSovGDugG7+M|;_J0AX7@QWlIYYVP_Gqp$zw@!v2z#Yc zm^HBhi;_x87wP7K59Iw!hUNw+1tg*t@|BK&yU5l3{=U9ni+&PM=L#3ztLtTs+*ky? zbO~iLrb^n@MD_^;>+ToPr&-PWV+P&;?%XRRNLDiKU+qU-X6CULm2Jbj>-0I50!ABo z6CsGc?(D`r0EA(kmf(0()%>|2S7B7o>yl;q-T+1WiO-Kx>l%7?F2$1Yla1^0u-<*5 zuT7c|Ldv)Nrb9f_P$;igMd@Tis{|Y7VorQVOWA-YpVHWI?$Q&m*n;#ZgHTn)kk(Gk zkxlwA$RU&T6D9(>jHLHB4YtCbO147qwt9U-Y@g(5#W1>_S#zV$zN;VOcj0)>0T1=0 zYp!h-Yhn56!2><gT+5qhx!!Y>*7DGi_}V=#XW+(K-dZsjZjGNw_g(!7N1U?OG5@3- zdU-Bx<Yjry;}!lFiU^e}z@y5xSKOtwhW3?<ms4F=NFEPj8PK9Mv~E(H5L{hKD3RR% zA(9n-+e?OScB%53f#;>A*^?@7AD#+7hv>s&*LI>avExxMAy6w;FQ6!*s7^&qeg=yQ z);I;FQQ-0fkbQjtgd0bfo--UZ{0>d(<-#OIT(1xkJg2lmm*Z)#>Cpr|dc7LzGV<7s z#MBb~@y+E^h%W?&u1iO|T0aSaKPQ-sCKYN%QEgVQAcwju_f`}Vs$QJV=%}fhvi0Fl zOy_%1zW=pMlN)Z#PgY3$NCp^;Sch4R{QKr-w_JB~*K~q$3&q%19A`j&?b<H*rSIP! z9~fQ~I{`gnw*W2j=sXi-Y`kEes!dF;diuG2L;bk|qJlW7N@*Y^Uq1}?#cV{{P$L9} zhArp1?SuW1B31E1BcAq(f=AI699{SbPd*GWFKJX=gI4UhJAKZMS^d(B+oK?HAC@oF zJ(iY7NVP&7ijKU2D&HH4&;cF|-Usrfom@i8^|#DNwet%ymni|hZX#olJ_2Pvi1jhV zzpZYN@T7wNB3WImXX#jQJRg#qV_e&qR_AEb?pM{~UApwEYkCioTr2y{cS`HdekA9e zHuT+{xTy4*1-gm=sx5362ga64Yk%fCb(fscE(?-AY~;f;+uuqog5dI*vUR-_y|>Ku z(yjr%&mb=t(B&n^DRYsrj~lm+5;XL&-n`Orhng#yg1v;?wSZhcjUEHQvd(gK3Yl7{ zPphK|R6Be)mnTjTPU^p5B{@i{L|;%wyJshUyVekL;sOE>{osdG$tP#+W#RImQStjO zEiqNL_;B|Za)`BJF75HX4>ry=A>voKpsR7g((V;~y_Rly?uDCXhMrjgC}5sl*V?iW z3&DxzLl&>5KzH5`(q9i2I03z3@8I~u^7T1~7Udr#uU@}%XxLqAvmP523p+jN`MsaX zhJM1J3HNoEVn7QnJooYIY>{Kp^@7%sS1)^JIoSfl;4l4YMAI^MxYsdOp4(N&?1A<x zU+SwC7FY;%{=N)oZV6U=RNsp^<S7FI89m?9OR{xA*O#nq*x<>*2p7D;ES7dQt_R~M z-Uu<xE=lU_xagmx2K~`}v@4?^5;8q}yYEQk9!Fan&0USoQ;1=uBfi%uwntT1?*RE$ zr;-GwQ<)`L;V8WUVAZ|wzJ;_DPYBf-S=X{SwY+FnQD<p(!!7@%mudtGm#<rE!~+I& z(t9${j<Pkky4^Eh@|8p7tu-a+39d72AMLh>oN#)sikOa60tsIjL#48Z7dwy(Z}nou zGCvg2+~r$uRm|qu+Oipc3WhE&J8pG)H1K04a=<9HmvQPDv9YK3lT^3Iwe;t;_BS*6 zFcXsP($^S&98=xCRa?KaAe?N?l<x34@YIr77}RBN`8@eJ8(bdGJei$NHn8jnvEG#w zA&Cs`y4_mN=m;?-`nQa|Q)UlXKeP99>2cdtU4QNLS~4_veuQP#cr65xPa#@{LC*_} ze<NrJ?D9Z=L~|0}20PU>>@L6EU27kzifV)OJsYLG9lTYXK3`~@<rVWy`ApvOb0^ym zjb($czMp`vY2dT_v2c-K#>*NsQ#jt8Gn@`9zcxy2CW?cr@n84O+qz;unx%3aR{7}5 z)R`-^VxaOQ)OnPEx6E^<<nA?BS7*jS7L8s)Th%9hQR=L4HT<WoWN%r*&%E04fzWU; z2yRRG*;dd1E#A3LQt{%Pi}CCK^kIVWj7=Hpe95JS2q_{imt#D<TbcYCvZxsgJ?|JL zAK>*fz}N|-=jV;X@D7M1A%0x3gFiX+1UsCMmVsH2sVj>Ctw=*l|66j{;7V|WAk9=H zq#g=A#s)`$RT$9EAyDpr@6_og^hSn^E0mE+Gy(=a#w3Aof&EA*1)hK!gcbAfUy`1h zfZz)1Qqt2ytM}(uENN(+p35W5QP@DN#@^J<ed@g|qP)|}cI)1+u|+13u2ZcLT%(Ax zc6LP*K_FwmU>N~Gm_S=LtjnF^*AI(#M)U6yS2<}Jx>)UjEHDHpqT3{ex(HTcqjTC9 z(H-KsRV?g3bzcrNaomDOjVdd9@MF>ZR^VCSpB1BK9#(J>@Nr~!!$K=?PPgsBrZRKA zjYLjmZ+}KAQ8Ea{$r405mfoXh-`gxaP7nb+JpsG>>RWchg}s%LZE+3u?m014D2<8c zNlZh-XCLv#**C*HtZ>BT6sTo;Cy_SNrqYJZ5G3n0otS)`vWAM9TCo3q%VY>Im2?!K za0x7<A`B#){<(^vGE1|)0W=w8&j?$$BO+vt`xmDp@LA~HI1n_W_?LJq#8X?d6YAgT z`Ni-hbmG<XTG;)xzAs3-qpW_K>wM_Rmvjmocc=}vfDxoz;U@;zRLJEb%|aKk-?0Wu zR*VZGxg+4q^)PDdG1&d&?k|mkzgzPkw6>?VUItPe<qH!}z`pab1=CNdH9<A5(}DB_ zFgN>!z|tmuH{e0fjL-#XabpgFW1mEK2GJ?}*C`!L>@}TJ$mRrieAK5B8fP2ctp!fj zlWsQNb77VXYUzpy@#6W#=>TN)LAO_<kJ6O%1FGOuB^n`#dNRyo*0!PND7fOwKtDHn znU`L*;RMFHf?&U-pUwqF0_EYICz-cFz1z>nhKsU@VCb@httS5j${ApHo3g4|=&1wP ztnvKf@&{UnyV)_NbW`$m(9lox&BWLIHKO2gU9+PvjOY0|1QykhaJuDjC#@3}>fi2u zo1KlWnfH*2+x}X89UI1nZc4r2VI-)|y!g97hdb1;$m`hQu6eMk+ii9kIx!XYp(PwW zP01LbN{}ynAqKna(K0lPd$JJ!jr|WEr0Y;4^q%{7t^sB&&Hn1JWYDrEgP5YD5&mzN zK0S5FX<z1xQ!^;6cXXgTzR{|r<F~KTg0MbU2zj5z{PrUCXC_2aDm|IzbVhdihIaM~ zQ2OXNFb#Ggn@XszHrvvs?1$7WPK?$l=9zTjMTj*7!b?Ye7N9Qol_3mDBX?99@u8~N zvmf)=?=3e~OdcQYdgsz5*5$%VEtNyWqhh|!*7P%g0T0Zb=g`Wa>u!K`4U;Jx6yOuL zfN-C5yJ1&QBQVQ1<x-W%w<BGqpQcUI8N6i;_;>S_%nng2-T+o*-}dMi5bSAn+!5Tx zoP|dv5sTk!=Io<rco~F1xxaHr=QG`;rTs1CgBf$Pg6*g_;rB2EN)vIFv}sE@{_E;F z8rs<tHvtdZDf*h)RN;(qi70d=IL)UV7`)O4npokcp$rphmlqGsiY#`{T9hsNY~7iR zIQMrzfb7-=D(i0;8adtkm=F;j>o8AKYuvm~y!ipC1QhX2nzv6g`S|zY8Qq?TldZ?8 zybwp=+N2adGuX$C>dnr|#gE?hTpx0u0?CCpLLB0~2f1Rc<H%(L0vBj##lRW2*C@_& zys?<5I;@~SR3W2#Upeav$e_zd(Bj&q?9IGvYbwm+#G4(ZNa{-FKpY$?s=<E2!Fvt7 z-&b!zqsvBbmCsO_VFYb83p`Vs4P}EbA81mL$rEMj!80G0Wwr_3yS&M_U74EQufTYC zZUR4of=EBt*VoDVwQO!bK18lz-ya4$xd$DhDL%E;Tw97?<QZU62B%8h&O2FJrt}DO zMy9XIvW>pV0r_${7HWBGP^Gw-yXJl%jLH#9phykze!0ev7T3w$)RR*8SK<M?lL<*} zS8SVQLB*>lw7I$)quqEwugivLv*M%agPZdzQR%x6tVyP!`9}^gyEqZ?*Nkn4Mu0cf zd^|l4_Y&Q~EqzU@$}>xqTH}e~DEIfFVhP6BrLehUf|8{e3DA3037iBi0k{lvB7<fy zIhkqF()#)nT~IOKvPYzO@&1y}ge0bRy>dMheI8LPr$Q==uQ>i#Mew5xyz>I{Hn#~- zR?K8p8?jN!joeZITdBd*@l0;FjiBd6X(DZGP}_}K0Jq|mDPLZYo30_S{inw<#HY`b z)1Tj@&H1EU8Z>%_EuS|S+y%abNHQ47|J^*mvv>V&3`A0--$HAyjIaEz^`D+~phL&l z;l^o+rIU%l2(Z)Ns!$g3;aMGd{TaAlT|Q)mLWIcj{^E28@@sU~Y`2lU8+21@oluQ$ zj9sH7Qd2<$NyPkXXF-R}%LRyoZ6DG1HOK`yP<ptc*4%<rE^MDwzvFK4q!m(8`@7&Q zLZEdc&fWSXs-4nT;Xq}0J|s~kns2w*0wpse6Br`DrT|({5dNSB-8o}Tn!Ba@_7zo4 zaA0;<yHyc{-c<K-e$U{8wc@ayx1klY<~vf(bbwwXA2xG;VmPXyxeB8IkF;RCdElaf z%cxKvQ28ehyenqk`Fy0S*H6@Y<|9A<)+YS7NIJz$&A^k)+EY-%wt|Q;*lN-^P<QcA za|&5Dz>!9dqBjvLII-wOGo=WxBQZVTF#(b!r1#_Pl*S*|K0bimS-vOwQddT|<y@%f z1QEZOT}}wt?(Q+<sUc-G{rUs<XgreV4mb%`S3qGm$&m_pc|=5VPmcz<F6lS!FeH|2 z{c$gm^*VO=cQ<ggesHmSP_-f}ob5p3BdQjD7@}gj^A_}LPuj~;S&{?6do;F4q_VxH za`85-B*A0ZRc3^$QSQNFKhk&_&Q>!X_<#<dsZM|?S1(;A=p(jKi=k|o|5TdvbQgJv zIteE*T1j|ymk4Y9o2el7HeWpFJtXlrN9lMmY%@>}Ya<?XWB#GDkB@XkWDLc`|Lk}y zf&gBD<^lnV+duo8pz%lwy$~OC^q#Wd!JLM-4W`{Ad7(7NS>gUv^>teZdR4K$qfvKt zG-_ss61%@8o_t&DZ>rHWB{$m}TZ#o0dxZV7l+~FIm>|D&Q33yJVN{XoVS&Vauicl! zvXxK%0~O!|2x_bqLUw(JN}<l}mR~Lbng@`=jSp4@BS+Xi5g!c!a!ASBCqZTTy1?cA z%%-sJD^u-eD$u|#aZ0*ZmfH>2B0QTpKy#CG!USkX#(T!5L-#C#Q_fI3%LnaWQy<5P zD4I?1aN-PT>Etff$uk9P%iRqDXJ&s7gf+<DKX$|hSSnf=pE*^>4kAhUDJLePiNpug zrt%iDSN?;Rn}B+3Ih^c!Y&GIKh$Oq4(4?%53)?fE+;A@oI#EH+|5yR^1@;}&%2oT1 zO-?o^vZyu)lp$R^51lyr<`j<L!Qk*?)Wy94{CLA(Jf6+KswkZI_i}>lnP5g}0iOko z{)s`K4)^!`VcPlMI<3hR$RdVG{f!N96pQHe$4;OGGkw3a{SQEanrvqO<yayFM~S{C z_z%XP&w<F-@ulg>v`XbL>Dc$v#N9b0W<`JIo{Y=iL!U2%NOG2=a2vlsPr|z?>j`x( zT$notGCTXNUS)5El?rh*jY-OLrQdEyCd8dI5kcCBUt3#?8c?TSqsko!r2(Lf6O&io z4-MW@8#-8V_vQJB15=vCM+M;-L_~z={a=$CjVQIYTHB3Txh*A?yza#!<^z5aG*b4< zK8;OOTts$c^W&R(+PT!LYPb&Y8_6i6z|d8)c6F_z$v{XOfE@ZQ3t6Hz&}a`w4X^5w zHwV%!`T7;1ivOqR-yYyo2AFWF5l&>#@^7~sT~X|sr+_R+_nf>!rSv7leM|7@+M&EC zV%6c%TF;uA-#S$a;Wtp{vD@E6?EUt)u}ppS74$nBx@byLecncRF1&o#Ez$HEbUPj? zfhr*#f0(<*yGAe#q(qR($R)%l#5W*d2Q-mQdrBZMPmMv`!@#lw)hWmf8ZmEvbW;kA z0-Gy!f6xi+66F7q?4WK(>Y$_!)EDDesxC=`t)@)^>3{DVRP!F<j*1{MCceJ#B*ow# z5{oGbDuO#K&7N0a$=uff;gE$(;6^79;UUXCcry%ozwT6`9Pv$tApk@&34u=n%^a)K zKSwk5$6lR)4xL$gKC1>VKgr~F_A7PpW$1+tr`yId)Xm8bbF;r0=vB*5H&1?uG0^0) zJ5Z^eIoLe?q1L~{{fl`f)bgITW;&GA?syxvLgyp|vKR4N0sQY%FeX&y>2>P2%&s<r zh`SgDoevRbfm(VYc-p<cXoF!256YzPMj#J}2F;W3mD+U!DnmOU?z<ay;3%xlK)XIh z5&zq(ya|i-2y-twLiKDv(K&f~1?)Id%&8lO66nxTu!jRp|Nql}B?mNlF@I|fTQwWK z-%B$)?|vh2r)6WBx`K}2Nv)_p{qpD-0LsX_qg`%p@4UQ|0^Rmy0v6Yqsa5PjwVhe- z4<1D&(#_R(9>gYO=$w*DyzHaB|Aa2?00dNYW=*}kUbME9_BSd_zCzyTsiZDS&V6zK zZx75RH8c5k#^!ZDg?exoJPhvfIqv|RF$V7K9&azlms6GC2^hGaVO+-t{H3sH==k1A z97HJ9e^v_m5C8c<C1_Fo=a*LTb}wxzYM>y*zJsxg-FAbn+4l<^D+d7mPp1&7OHI_U z$_iccMZueU-0#n_!ZrW6mywA~H|<!ucH2lzwxhOGqj+%I(BTkbU(_w@d#OMkzU9y4 zCj1p*IuMN0=xwSWS<(jUamdg+*|n~X&do8#z?YtXZUlGyN`Fa!QKBEjsbQPn2M_;| zsXxzXglotdVe{Mof{==Z4<EpKKg$S~Pu~2qwMPNmTky%JcmH_B2Rdtlsmso86gG>z z2K1jmcM`$agfno>AKCxPaT5y04XCa)825Y6zrWNYkZTIB<#MZml5qFFSd~Cq9fqy{ zv#$$A0!EI^5*t1<8*Q5649demk0x9U7Ta>hgl_h)wbmI$YRIP=nv0|K$!LHq^c0|( zqV8<}y@P}Q{^84iJ%zJrbUIOu0&IZ*H8Ki)1jc46v!OS*S$P7**g&s)Xay~||9lWe z4Q=_V3P)-PZX&<~GTYD#8XA-bdwr9ov`$TzSGSYlS3c2!Pkom*t<8xJ#Is}gSX!0~ z!e>EY8=k>FmO4-#iw|^aLoGB#{yEwS_PtyuIRPGZ{F5F5i)J*=OdS6&fln~ANkjbW z;NHm(p=7HZSz|wiW>T`SGwL2Ldg^ss_c@x9$x{`3x@_N<)<C29qc62%Gj2UW{>&rO z%iY_P5b)3r40(nfy94~tFT769sag;@0m}1ISemzsy)Pr*lG_6aHTIV5X^H9Vhm|{r zDobcV9!31Kih&uiIRKnoll>n*cIWXiGXdHEa5(PL%bnBwFOkp}I}jKL3V<BthtjZu z_U`}iTFqKXg(5}-cg>FS-J!T4cp1>y40R*2Uv<MhlLS*T;XNfY#WG)`E{4S%pOn*5 z(xq*-4ik9HAS&MI9DXmF0bRwQLC0or<7LnBpTcZ#KemvgV5<|^;$L+I5le!*Cp49G zWekkNVl;sft!<g-_oD4mvKU0c<L!uF_N+gJ8<h0f430tXbNy_B{~1%5W=iVcXh2qg z4EoCdlK;RU(_!9Z-xOicL%$r=<Qt^o|I2HypeDVHgufmw%(5sxNOrCax+5|-J+Sk- zCOvZmr{r(FciAs#QwhN}7j*tg9gCXC@VU^Ko6sS$vxF#IH?34)Xu$a@<x&H!3FAVo z;f<fey3t`tS$j-fXFpWi>=EB48y=HD1ZueV(+WRJeYSZ&DR;k@y>L0kB<UtQMomAE z2X4Ih*js*OzM^JoDUaA=t=~9iXr%y6=Oi6}IcCnXxF)CHBQ9fQOL=YZCBsd^ZCUig zxnh?Lb+9SMnIv<rZOL=?6TZu#Y{+V_ek)`M*%uI%_=wmPoSx-fvKF1>AV+Z?7yWQM z$@q{?aMGqcVq>PBcrkF@hgAG*QDLu6e|6oT1GAT2rdzXbbFF^N&{(-&%NTdbCCg)3 zRNT>5egD&L;GAJkEu9$7_d;NPVp)27>z;(GsQ0xVGlOf_dQ7I|qjk?;NR5O3NY4sp zGOCFl-=-|uB)v)tE{%HBAm=`<t^CgUYPJ|zuR%t4F1%yq-4XP@+@dFtE7?0Yw!h)! zN1$B5L9}G4HItl^(jz0fqwJ!8L|N}p=v5G{JtYOuqL~i2bU$cZK7`sK|FBM$b9Cyd zwKL=k;krq8L(^Pttb@T@Ce0M+`E12E^!0WLS!WR}whmRgb_tnw)rZl=C-!%kuG8hH z*PMUloJ5)IX7p;*EXz=Mq<d!T0z2H1ZFeKt?kM^~e5O+LF`V4AqkckZC4-3bkNt5N z)Y6<bbT5km=53Wq$JZ%$vLOV!m!9e2$Iw;zPKowT#IjgIMeYhlwL&G@xmCaT1)i*% z+lieLODI+{_*$sx$KTa^>#%L=Rh}j}4x|IH85o_VYm9at8h~is=XQ}SlYOfp94Wso zmh~Z)-f3A>mx0ysQh`J?qo<1*V3$zl{9|`}X-`fcn?_imleu<71#ye9tV~Br>*JuJ z@G!+$Z-9+o4)vjYxhGaCs-Jm-XjlpYEYEN2p8RfQt5pY)jJtW&7uXCL%2hFw;~!dZ zZZ!};=LjFGl~k143XXR10eZ8YQLy8<#n~f~Rz*wX5_$8bHO@t{+-O=aJ8O$RzeGP& z8uWw8Y$raSLcR4joZU-PATPZ)1vZ0{!iN<cavukh)pbvkpI5C?SJsYn_0cU^1X;~} z+#nOOxFvUzRBorap(Rk!D6SDCK?ejr`WMOk|J{G<E_UyJTUdHbS;m|1$<&`?h0j)O z<5WmL&4=tCJ%l5=&QtFFve?Jrwr~2GoI6g-aFu}K-yPYiN?tjYd}r$z^ieq}IkQfj zFD7$@BFiJ%X<3(Y`k57vB$17V7G(fUGJ8>RQdIZH5aH^0IJS`d98#aG2Y57QY&As1 zINHt#3`wV)?pyYZVue5OVldk2)o!p!BT=?p_V+5c4u95WV6DDD>tu%V4kj<-VT-}) zJ;H1qY?r{0R5exrvz~~R%tukMrL{34;iee!Gf2G^`0upo2w`3D3DP6?llRDL<uTP~ z6eoRi36#O1=@|7lHHa-1km@twVQ0)O|E!-S+gsyY&?H}Tl*ni*XuYaJ!M@)>ubSIj z^+zLh7rO^krJgMgl=;!<57JdVJ1Fdt2_X5%Xz<LW%3M6ZaEWVD5J7m@KZMISPIjKS zZz(i^0RF-<bm2aa1RC#}xZg`OX2uy3>Y5hg%eJ;N3+zO@YA*k-Q8HGWboXtdiFR+q zah!6tda|~q%EPSDXRK-<`?P@hu>{l9%f<Dk9(wO7Qn2;Py;cohg;s{HJ+QeX3%W-B z&7o}7&Dv(){pVm{=k(a_48Z_S<1N4je*pexZ&9`5k#YW}31zA5bYM$4<;TeMHDF1I zx-zbaO*(VmJ6Fi}&mB}>Sb`;;o>0g1UoX5r<KrdDs$KuPrkZwryYn+##%+Qse4+Z= zL~C#VMotR-?;))G`O$|Bx3103)6TnzcIo?jX?BFwMu9xib-WZWp-Q+m+qMcm{#Sb2 zIqTJ0yyL>froLoP$w4ah?u)MVN#@@SThp^M{33>9>|7)BelDK|X<M*m8dtXXbhD@B ztLev+7WB)Wp&&XI##nN8Og%L)#C9ip<Z{kOv!_4qnc8wR^09%f!uWD&?mB9JS9`lG zN)v|7D=!!6do?YmrDuLGABFp(b_po-A><_BxvR*xQ-^wLphgSwyfjrHsbx}RLj9%G zH!N+(zA0vm8PhTh`^hYAib@($uJo6)`$9&+N5oa``E4p;JHN%(De$Lma?Ea$WOuwY z*g#=X4LGg7%d>K41V+mcPH+reQdhFynAsOZKpvg?Z+?*|E&k&p$0dz9A>d0_%Ruwv IrQ47G7Y=F4k^lez literal 15750 zcmeIY2UJsE+b4QXLPwe?AV^g~Dbhiy0jVNY5a|lir70+#AQl9XC{214lrBmM2trgu zdT#<EigW~oPz(@qcf|kues^ZptUGtjtTk)C3FIW%_1RDPJ>{JHCPunU4BQM51TpFB zX_-L~6&iw&@92=ACHVeo3<SZ9Cg;qx!A}TMf*==2NeNN{R}AFh0=a-I4zz+MN;Bo< zqNIdTa&b{|0au(72BU--b)ifHO%Uh<9WF{3N<ZZVzTjLi7#9q<j=JD*E;w){W0W8a zSj7dx{22<mDa-u%z+i9~%qRwj!{ES`j2RupjFNFK5Y9yjhXMaCpd0j2R{HaS!;OMJ z+$gw`ab$8|U*9N3X%yo!iUa=`N)PA*Yy9~b9VLTN;4(@klOYJKOU7Zyqu?L+rwuGX z>3QX$R0^0u@2h8Z9fEl8QQmO;)QU3%2|)T<8s>o+i(@3G(dNu2e%;BXj^aZ%a;?28 z;;ubr_en5V%qYm8YZY1cJGOZ=k6El`l1xrH5H$o#2}mPXmA}mrcghrwO>}%L4|J`7 zAY-9%cIexR5DI!L_@DY+G!~cB@4nKz8THBF#>;Tm^@Yudk@HR=Tk}z4Zja{<hyC1W zE7y}9+5TQW<!e2yAF^!D6jU|Z-%sNqFEThi(>3tTVW-PyB-WG9IVCmwvm{nR7kxnt zVID3M6EGlw8uED-R_h?y;Oi(Wv<aP1*1n~*FE1c#iz@%{tPawAhf)0q>H}T3M`IJA zrHg2gpa$1OaN=Kwpr>62#NY1Xwp8DQ!!gg^-VnQ2ekJP*GMB|a0T#u%7WL_%saUZC zG0?#`C)8h`gwLuuXCmbyY)U_rFHz6)U_*B=FuS&>yrI?OpA|-$cLq8$(_tV)h4mpU z>62JGi%HFEd8OT&iz*rM=|wGO8*nRb)jJ_dXl#7cD=V1FE#U<*qf<<hT>z$XtCUeB z;+iVz?_6s1s7tfZ35~#NKSRzy604~{s}-(BpwmW^sPrJ%T7s$Dl<0nLBW6Pju~v5> z!{1t|G%*a3Xyn?Y$d2`P5=6;^)%>567ppJw^otN$_&wp8pu8K_YwT0yS4nSzIPn2% z^Vf-v0fZC8po+X3W!x_7?S^YfQ{PouzRfoJ)o+~Z^V{8T+}8KIaZ9N`qj{^k0&;&{ z#5}X5*s?opul8g_rPBCJJ+nRkCvuqSx!Zi`HO!E^6SipPV|8`<yib4AdAs#dWWViF z!kXnw3rpE)gXwFfTgH7E#0kahtk5Ew{L{%08+M@g;L4=e>*V~dpXK-qy}p)NC&mjx zD>j#7vww0*&cij5EHXTuK87Bq7u$6t$)TyFuab@Rm*rYdrs!MlmWTcx2xyjjlopKc z<v3bi%#!!zNE|JpN6L7y5A!mrasMze->||0tt7eh3Ge(Pjv1B_-;_h)-SP;r^oQoI z4`&dyiRsGO>(HT3`vri|YCdHe#SEM$xksdxa-R({(c7LC;a^PoF~6`5%@tk0t|%~u z^c)sejFStJ7*jT9x3RkSfW4rAR<9^qAtP1o{ha3u=un;@v87XEeT*5NudlY0l-Y(- zKV?z5m4>blM<lX8mgr4R9a4vLW~R)Gw}u#~fH)bu#cdAuvP>87VYldihW#jN5$UP0 zuPlMvScvAmNfGVq@r&UByfVhQFW9gXKQRg!BUB<|Qq;|-m<Eyxm3lbfvWs8to-VHI zQ9^y1QoEnry*u6=>PnD_9UFX26%CanQy(XGd2eirsC(+V_9k7+y)jVwc${}GMA+jz zIoNjh#?)tzV65WT?XHuG#k~FAhY`I;eJnV|^3s3BS=iQLOU_8JTk%^t-z?<{Ii0bV zvMaya7p2y?MNxtccKIGfpVojrF0A%K04h1QwjW3LlUb7|C4>Vz<iJV5yAbNHr^XBO zu9c-4zfc-KH15S~fCk2>AEd*dU~#4-yKhqVd8LNBU1E51LVQLzjh*Cuoc&z3U!T?E zV{q@+w1Z__dO>pf+s~8l7sp?<K)<j)AZ#2Fn9X}yk*ZmW>Actd+~@i_u7?EL8tpu6 zs4l=VlAHQgi9fqWu<LPsTkW2)f)O*`3l|Yu=nHL##Bdd(zWDa=uto6=H<!jdTL;Fq z@t(n=RF2F^OON!CHXM4|A^gke0L@G4{EMmcwMHFa+v4+RowzffJD@`^G)D7^&PCaw zuX5ge8o>713qF)m8(xNeeI1OKCM3PhjTruW!XR`R;cbh9ab;IXK%?Ohc4GEc_?(F> zYD+YE=j<Y(UL5sY2W=##-g6@}4KR4P5SnTd&f5K@@8FaU%bYtCU?`b4auS7$t##h5 zaPX^R&ga8kWgWR-yfW;bNo>`6-d8cI^v8}?Sxi^Q{l~?2KPGy*E)r}q&JL*COhfW4 zs6jP1UW6Q;*hg5c5+$d5U46qPT&7lL0r!en)qZ}#CeSBmzA4kD?Z_!G+GyuyM`Z*T zp1c_rG|z6vV&XJi^uv3n+`Q?JdF%?dDwqn-iM-&zuAV=?Q(30TqZqOe9`SitLpuDE zM7$hSmb=g7(4!F#&nJ3@dF7X4mwnb+I<i0a&|%!UJ)9)I{$Le|Z5&hRnsO+ifI}SQ z9OcPqA{{y4XBnQihX^s?BrCtyHMUyjxUf6rQykdo0Mt!MwaM(kqWRPj8Prrw#a(Ei z6lvYwwZ7saserhWMiU7g;<!1gqD<Rd@nwi#pzn{U#niN9Nk2^ZRBdaFy9H4tJf|wJ zAElQs^Y0R=?GIeOXB<(=i}YZ^jGesLmekD{knoP+X!>)|)yD$8n*HSF`?Vu{%(a)q zko^&y?bTmuX(+-i7^HDJ{6~9R?&+00Y19s!mvly-qg9L@N}+LEUreq<)>uF4b$Zz{ zm%pXq*4H|&@F=Zw^VTtM^3Y}T`u9R8B3C=@Q%l<B8-7*o**Lml#1;D`J7oV8VscdX z^dD=zK$ZX5$t?S&49cL3QIf@^O&4#D=TT$o^$s|0hnV!`wpV^q%zL~3wEE6~uGjlq z{3SMQ>**OCGwYL2=7YJzt<Zzlxxc>sOYz&pyzd=O^sKOT37v^w-16?Tpo7*M`U4L~ z{OK^^m>`AVpwQuqjD?&7Uk-Bqnh)_A(X9=e@=4V*lt5XU5)B%CMVG}nA6TH*Y*;G{ z=#1Mey(G14YpM;rV&4g)B--k(qvvHym#?_W;{WPm>$<o)o%vVoVCx;twmR4g4&Dgz zBgo@7*4L{VcT!&OE<9gTd>rYjsD6}xZS6=QpDEe*f>HnDB)qebd=lZa;_|bt`LvzW znHjG0$IZ8jcl@txsgy971dm7FP}Ed#=Z^_Fum(9J?NmjIkQA^%_Fr7eq_EJ6G$4bD z+hZclab>#1Q0$t)#f8m79+vO92csvdHhDG=bE~;}b=~&<GFt8M*29))BW%`JonF54 zd?Vd-!2s*$=sMStzZFN{Mq3kXbb&VCi%p!-#3{I=tu6$8p=-x`0q;!#FK2Wai@|D3 zf$bS}`LK&4gV91t^Q8lMHc!-C)_ofD50@A&PHncFWW)ps$=`(*74Mxln6Ae?D8rZ1 z0p~p(8ez;sm{pu|9H4BYM3wK%c9FW7BC}>G!qy!NNdlbq$LP{-<maf+*eWaJhXq)! z<Q5Fd3rU`p$ylYgE*U2}@7lkb7`DzySXC%<hGmR^e-I#S-WtQp8pbIYiy{22ZNHl_ z<3s0unA;SOpe(!eQ=nANNDFj(Tb(ERoUFPe$87k@M{2?!d+9^;2h!-i;lECH+RE>0 zn@HM_7Yd`AY5SSnxhD8DXO*GhMLK`NJ-bDVtmjI2Gs(idthCZO8#xvyIT5q-^xd;} zcB4Pf`>rm#mz?uEZCr#f5A$`O|Nb)wN4EyKQ^b{txME9n1C}|t*$K;Z>`Vx!b_7PI zz%mbyp{VH4ivPLafor=fEDlb>sCPNKXejW^|Fn08wqt15iB~76njhJQ)3JWgMjzJh z!7~b?=s4kPT4?kx9p(svYE2h?m`wnyj+l&wU=o{vE|uGxg_~VD$Ah=#&#bhLof@e; z+`QwpHaW9|S2NU+ihUN=wvw29ZgMkfc381tVMQxz<l*#|iA2T^pEi5_b44>}HdA)5 zsjLj1pWvbFll+F8bD@3qXo%MjxQ0grFV2e%eLL1zo+Odp_eqSu2=BpQLRf61+K*kr z`BwI_VQ&!1TdfmHaOun@^~Z$xu+{q|)TP7_`={Q!)tfQbuwe%svgE$jQB%n8H!7je z8LC>z=Id<Ij#S{qsvuY4m<UJNPp3qWRBo^F`>bl`$PnfUj(+@A&jarMa2S!ttIB&$ zdor?uqvj`BXWGwr>XgYR7H9D=oA^OmYN(aNHa~AS$|fzkHJ&-Qo4b)&rk_<|v?JbT z2*{jd6W|%eSr4#c6-MS0pSb8MC>+M>XVJ32Wg}F*I?{%*(qf9v6N0HT)%jpNeP#Zx z9$NhBu!n^%dgNSD2u+JLV`b}6&rZ_Q@GY0{%9M;w;)qPX42m%Mu`8CP5xty%k2qP# z%A)FtK7nGH@zBcQoICwy(vVOzV_K18|D=fYF>mhmwFa$|OXCHqtv=4^!ZQXlZ_?td z*1HW!-PgPyb2t?muH;Uo7^ds6OPmtbIghw<x$Q!c5~5#o{Y4G;N6#E<)q$EY#X-yF z+6h~$wv97v*lopO$)!-Eh{yaHq;(BHu44{<Ot2`+lrX;7Y&Bwh+NtwiUAm!}mk>cw zeS16d#>W@e0`0mSq?vdTi9So`JO!n9=EXg{!{=-aTBuk7iz=<<S+N`|g(jo-n>Y9- z_;>mu>vh7_k6W4&ViIWewmbYkZ!y@*9kbC$hkK2WExO`&?uDM+tvprWUn6zy3UNB3 zRmYTn#Ifg#>cW2Pm4*d59&KszbQEeTlD}cJFT3f72ucCxS?NJ1fFk==`sa6$EnP>o zTJGK%xn;^pU(gX37&iRIHg_hxUDt9IGVEnnZ&AwoT5v0o<wRH!j=q-;v$Z(nA-OE9 z?31{5E^bTBJ&wC~z526pvC$PL^SGzSMm9364IfKoPM*);A1vTUwVlfud3u7h*f>j% zVM0uvMs<>`4q>-0e_12XdyJiYIF!Hc{LGHVNo_TaB(P0d%{=d=*XW{Oza)<^H!{Tq zyck@aNDL#2tl#^jrJyswW&I&|%$Q+y?dYM3w5$ZjQ+FYYuA2kn_U$ronFd;g*6j>8 zxqJ|jSgJk8=rOkY*8idvx<cc{vUq&`bXYeIm7GD{_Ao6mWnYTtjg6cwEst%r^{9m; zCn;Rs*J=E?vbf|Uv(u(F7W2MU?x?tY%kf<j*7SRc1~7Ll2MBg68sut+BOmv)saH8@ zXHe@Yk0xY1?;YH^irrE$w_)U~-{C4Pw?dbVd+!veJ?b!(zk9(bMIzvLh$2tWQnS?h z-6N=^D&w*_fjv10pd|LqcnTAxv7x*jyQf;>dvKZejBB5jM(9&loT(q?x1@3l4||gB zYr~6e)l$$M;7U`|9nriP#2Wn63q9pJp(FAl^g`cIU`P)y;)+x4g(4b6zvHl#l-HP1 znP2^cN+=uFF&eCOu<Sg#wU3kx%fuB*%Y{9>#)~w!hZAj+<YI0%oMTJHNn}sbP90_c zml7J3B3tcGkON8HR*{3{)QL;qRKivow(<OH;|Py^B?`JkIe!Kd+2p%@?h+xFh@+mH zMH|)ozR*$-vC`_=G5>Wglj-kyH%;4ueosqdlaaCpNI8j@4m)3up~N1-@^_QT-Md_v z)5&q{x4c3wQRSyd*p$rEnebHJ$Cf@Ask=n1Njjh%t24@LBH{YJBCePjT$!S;+FT7n z&$C<cT3mPg^ys8%-HMR1lFPaB?@V{A*aZ}A0LZXmFD%|{a1|R8Zv|(#kbDsKz%%Dp zKXYvfKsn3w2iz+{nrAj|<)@u#n|ZVFopbRVS&moJ>P<+WY-3@Fb4L~DDVi%zqZf*} z5&b8F__|+z4?>x)&3gu^mMfW<*`B}pB~sdsK9m1mOR0l>*s-;vq^UJbm35FMRldxl zmi&{IK<LSFIfSHcQN<$x^p~#<7|Rs&trboa2R^?N@JMmz{+e|Jh~K-iPzYsEq008U zx<k}1M|f&^vMSWV(rGB<{j*lIm}D`tiI-69P1nsjg}b=?hvAhWi+t5%JBtIvK2Ghh z&mC1WbeOnBn-WpFZkZvFQ<_Hz``=(tR*tbzv-KCT8n#AW2~iA{M`^R@HqF&{#*|+g zxZj@bWA}y0f!|ueDE5qG<Cg;=g>l3_4(%UY{)EL?$EU2=&OLWB<=s9W^YjAWqN%dt za{oxC`gEQus*!+>;dkyrigv15WYL;4nh+)S&q;r^$ouZe9>i~)yQ_j7=}y#lmUOT5 zXDw~zF$J|KF@hzNNmy0!%Eke>>~&I+#eIlL^UVz-@f)`WJ64}|AE!9a=A6|J*wu4s zU6PGu!NPL>RLyMgs$S;7^C4m^u8+cnzYGbp@}QO|zH9PPxblV9^G%0-RnSjLhK<HU zr-e{zcBxB_mAiL)<=^nws4=k}qiA8!IwnKDFf991|6F)+y=^@Y-|2t5Yr5G#6HyVA ztq@yBP!H)?yZQgS9{%qX9+Qxr6{Y;V``S65%4^%zJ>JTwkISlUF)nCQK!WLF1bVgh zf-ZjHSI#G~Db>=_Atj6BREM#|#gy3CSmUbnATtC!g07_13sLbT-R+r<=PsRPxw-C_ zzTm{_f%g9D&YxwOvcM06K>@VK$y<Eub?P0G#igYDm9x8XDlK9veonF<_L>U}6eW zG3mz{w8Et^ShU{4B#f-{V>`_g&}61|U5$Lhz1R)|ryZ+Z3ehc?Y4Il2@DFQ(!5wgK zz0RB6F@+9(d550*$MvLz;U42?*ety>hh>Cu-bP|5?8Y6aQV;)mT54A$kW{&m<9<CZ zT+c{0u53A{1#x9x(~gJnHchtXx<O!J$k`FgE%&Ia#Gc0vxSa`&i*(Yc_0o2ugo^2= zyX;tw5zFm?_;j~%-=s=6>%=2g_!O%Az<p~*>xsY1ppFXOJpFYke}b+-cq-&&goe}b z@>#1F3A6x5q77EEzouO?A!fZ_Gd?fDyB+Hc_wt=_AZ53KA|rV;RRLkX4R(DwNWXC4 z61vr=)^^ugoho1ZF+*kQvy;yXN-7&;GQAlKnEI}$8)mw+K5Te`Ow7P+VK*AmkY0H= zb2p}1I`}1sQ`43>N4r0<ktTKiXV1bCT%+2>uu_p-jSGC&(XA2}(>aR8Py~7&RQmo) z=(KyR!_@4#&aP(as~qIMqvU;YWd19X6*O*Uy9t9;M#&e?qs=3JPxmp=OQGhkI}~-$ zy!-*MzCw1e<A_L~+|hx9JKx*lhuvFo&|DL`^2l&eu?T9up@I4Hi`!h-D<UX$%WL?^ zcvjfsDYXzWM=A9DVg82>rk*!mYsli&4tq8wr%>tTk(Zr^HD)WRX0zI`iYGoo&qXYC zbeAO)vwOwZhDcLmfD!Vju6heZ;!@N>9=R<`aY;tZZU_f#-DD*d&>wP-R2oMwgBr1G zC(f*18Os3_CVRurw*mHM?at1{@_!|V0oQblQ^@DHlE6B-Y{(X_IDMJMO<H}3T~5iK ztP5mxF?gRIX|3WjGMyvk;LB5Vi-G&g$w}R=JfCmeJ=qO4PAhWG=<4b=ai;JP`MF?^ zN13LU+?)qQ7B;-=3q4Jv&p!uVbS~+uphpd^A}R}H|4uW%x?Jw?V404fB$i?fs4EX7 zz353GXAb1rPA#*{!>u$=!?D)brI*AE7VNfyKEC#Qg7~WV#||N2#U`<n=#`=_FHQ*& z_0AeO{hRN5NmD<$0#<W=HXF!9Pn@0Y(ciguPc}X7@y>lUuP$WGRTY-mvMm(>T!eze z8q|Te4J{l`tm6R8vwf1cRj|%o8T9C8!8OQ=#UyBilwCe1PqLI?Zk6M^c2UQ9ot<r6 zdEhhWD25fe=9?}uqZB4J?1r3?rZZs-m>082ipwj_o8rzs{KK$oe=coMOs$2h)rXDP zGY#bv#kU4DzB_ot2Myvp=G6=FGF?6e$51>#kz>va6UtZn%9myyv0)Wj-fY%Z?-+Na zsF^?9X9tSNr;OwA&LZutqf`8ypXR@-kGv`P$te0zqRQ3N!T;&<g_7SF9*hjcQ@I_{ zWbW1qyK2wJ%j=Oo?0E)leesJZOm$eGk{`1aQeYz;DD;dKLB$9IFuJQr5Wng}l}`=d zy5oy9e-jwj<QFZ7dd2FE7EM`}#3!qJSfA!V^xuNsBVcPTWW_b$tr@}O?=*T5F<Hcy z=wo!O0)pMp0DrA($Ucx4?f<Y3Q{%W;l@f7WA+i|H`2aNCVlojOUQQ!Bk~;FK=rF98 z(ET~+&T?HQ&MF0Kdp%<`M6W?}{E_)_7LP)i{c`ZgdYjoh(SU<Stj;zCTK!7_9h zfZ9h{1wbmMM<<6O5E|-IB2G%GR*>vDDNVAd;d1%5W#kdmJ67sL*j4ulB8iiVj_VmK zGPj=SJkzkaXhp32y4PYJ+VF*x{uX4_T+bk6t}25mN!lH(fA{!1XzsNs^@ts-z@;Y$ z7L#28W(3tf(^=R|H&>URo>fW@rpaFo;A&}L%?<^rC@VFWKmf<ps;warvJM&zGf1Q6 zm9Um0meIzot_cC!;BbO8$KUL?UhX&qBWO-ELlQ4N#y?zl-ZpXDqdJzj&XVNwJvBQH ztbQtzCSMY?3!rqs(NX9JfWM%2$0mS6z%qa{RER5DU`eWG3a|eoNB$E`fN9;rx2Gm1 zCi+0NXmh^+N;4nawc$*%w;QR?{G)o^r1X4`nVd0*qLs~1$0t!GiWi)h%sF2q$O<Mz z!&~93v@=l~9|8{Nil~q7y9MTH?(432#FLa8maah=L-9s&&$gI{#AC9CGXNl=Z$rof zK1*^NRp&}2WQ(EuuWh<fK6@fS>@#`Gs8E<4Fur6b^_p#1!VOymAuFE9dE_uNE{^=O z{@AIL-L8vwwyV|S;+{RHQ1=lkApG+4d-&DixcYNTA?wULA}DmU0J5T*d+6cIhekhX zP(aTA!d+b5kt{$eg307+_;tT<e}Df_zqwy3KsWX16j616?mhjujYb~mWM^yCnS7Ot zR?}oMF)`LU!1HLdj3(pGA?&-X=;I1PLsLwr7-UdSRoP6hYIPbM_GNcO-wF|W_Bpzk zQ@$I-1Pn{}qaBZw*><BGV4CA^MTBDFn!PoUbwJg(X&=8)NspxzK(N%Xs80XQ9%M3N zAFHvJKi{LVTQtFpQYaO+o*=DcM($a$kI;&i))1SOqz5*e75R~!%}#gn?MGNqgC<%; zNa<m7KoIibhd+~f9{uR0v8Cq5QiGKaJ!-o~6a4==*I&Jlq;U%muijkkntGo-RplrL z>_YPiyya}GyseE^ifi_AM|R!<;yeXsk3ZI+wD<)fUuptOI_N|JfYdFYG+so%yVgr^ z>;sPI7sTZFV1+Pi0ZQ9L#>2h`FQF?$gbLM#C4^9!I+M6}uq#ZX7jL+Gn3*!fsEx;$ zGZ4Mn)WeQ7I&#hWE4sEDnfp*LUTr_t`^Yt`FDMoO4;v+1<;R0pQ=tIvM-9C+TXY~G z5dZAGUTVA>2L&8@L@J{Rrr*N}hc>+NW6%Bc-Scdx#jj%HS&@mh^d+0q51;^^M-63Q zt_*7aQE}2&+u`ujDggg(AHp{7Y~5?U&N}1jgs2GC8f-f>E7A?EQ;_EWJ1pE5q;}hF zX}IzPaPR{Lu|^UI_M5wWb{|m9%a`DoI&RG<%2z$u+7_>mH~ux?N^B{hAhQOw-nUqj zbqG3qkn$`**z;AwPh~@VTDbUKpr14xSnXkKUemaB_!$ULyH67J`W|7ecI>9wZx2>V zgA6M6nZ^<0bPWJ+Qr(apK2|0t-i$q$VrGIgvs+T5aBa{`5ddb4R5j#0sy1A2xjWF> zOQGf>T+_1gwv{n*>C+A41P6AY{9I<}Ua_Y?>`Lc7sr0UD?T_W?-Y0=t@3UX=>{7{~ zqpW(Fy4jcIQ_05)IbbE=ta1YXLe|T^a2lCEpm}CHf>hq5{2pxLbP29eKW7{qrXH<> zXU`Jgr4TKKD)%#|Iv%s}T%>>kzfla`c3-l47Osphd~YA}x<pT*#2hXB=tfW1$1X#z z6MK|R`>e-h1zvA%Iu`x6rLf8_u!jD~zh!mzfWZ3CxV{OW@@TtP#f*+e9$&0Ly8yPI ztCV$^fA9oP_(kDFK6K2I{C3MXBxGA#m8*H22JljApD3!u#dvblz5CDV7tkD=jSaIo zmTEpUlygT?yS;uAL0p-gou%~|r%R?t?>)5}7dYg9^eDHVQXfB!NZgKOWFu!nf>#<C zOs3>QKbCM=aemY}`q~Zdz#_~SSm4$g0R^G^+Kg^A2eIylGdY)i7#*haL_rmn{tQER z8lEovFF2R9MIPNde}BU4P{4L$hq9OD(!le@QTjj1W!-0*y{$M9rQh?=`SYHV#oT;9 z$d0wTCKV#7oJv-CQ@-xMKDu@voB}OKt;c&Cw{SZ(xUgxKg4?@Z>X{U!#Ud(RguSYE zs(hb+)Jk=X5@^sI6bKOPp8buRK^Ga{FdSAJPXeuX4`3%Fqe+rla$dT_-Zp!#)c7zA z+`1_0UWkQc2Ev>a-f*DyQl`$8Ds1FeFd-mS&ci7zPM%_Lz`q+Wly{9VZu)rf`%$75 zLEz8}<hgn4@FwABOSLMtA4*dWY>(zUc~ULRrafegKEfj8rLLUP>x@$f5Mo%PUuNaG z;_LZ;hAQl8DiR2-iVt{4zp_ylLo#+-g>Ti7Ggk=dv4otQoFB0U_h$Sky7~%{%l!4{ zPTMJFjFL~IrL3zRE6<~k|17%)m<0sDP+@;zw`70sIkfoL_T-5%SPB+%&DDOcZZ zI?@SZ+H0q>4F8D7<Ocn94lK|_KmMOj1D~t~Y+Wkr@nqJ#$^8e54w<3LcyMLVY4!A+ zz#lusDl9H<6hVodUXa%9Su0_6cGlz=0PGuFkJ=_^f`Q2mRxl>hx^cLQjBT1#IsVf6 z$h?PrXBaReSB51KasjGznY3<Z%&1JWANQk+bSKNIBl&>h1g0N*Lu0z`<We`9*oH7a z9pCli6aZ=WAmkDd-oS$%+Jji4!;u+Aw%9ZJBi=)+$g_{$x3-9&P(D!%ChMuuFRL6` z1!maZNcg@ReuYT9igeEK(UFLUljv)C2zrBm=>R-+^dlRMv8b1k6{c=6U_`slDgSDh zreHP&qoWv2BId%s^o`r^KK)EJ5%RtUxQ<BRI+!pUb=(Ap-!A<C&F!br=^!@bqxKI! zbrP8vYEeGM=JnUI)%h$)-7}FW{X47BFkg=_5CA|_Lx*#prO4^)^zvX>;6C^o#fJmy znE0-+*;ni4e{FOjT{?JAT6#AXAByA8x@J;L;1w|V?QjVleu}Ywfg00Mo`J#@lt`D$ z8=a9IUCq4LG5l4%=EB}rLpy%D{!{78zDC&;)#t_%OM-<`2}i8xF{9BL$%@~+_29yk zhIR4JBp$@1f>0Ik`aHg9oz5ZHN<FInv>z26E5H@rr6l{qo7K!Uo1AUzfAFzFC#>r` z_^OG83svF=V2TZJV*^EsyM!qS4!$>z_4GJ=8Q;^b?wz(fEqQ8P+Wwh;bRB4iANBVd z;fDbK=`cYP;CPqxU|`{$O{QzBq{hbV339z7r})CH&(TLYB(OmFIAVuS1!qpVaBG)p z=jBmCGN3B0vdzM(k}gYk_I}<EC%fAoscP~oMp6*@1ZrSgBv8n)hx#>}zPL5&%%4aZ z_^ZON4QkiJgeH{sz&^J#^dOJwCT&>uTpulEqA2R-kK^27CJ|{4abeyNK!cB1MDC5+ z#JV+x*{+E`a{(aA%hYauswbD;1x~+K2W*ml1vS!d#d&o1S*j5L;2nx$?3Vg>$n~9i zR`3lu?CTF@=|M`Oa+d=<<}=5R2IlU|s<iyiIWM9+S9LLA>b|><{Q-Y>;U03Garoqi z?)N%m8~r3e<F5x3Ma`d`O$hv<I~L!w-DVi_*S_}`&^~?+n^|fvD@171?Xh7+CthhO zfjXM@@xg!4;S7Vx1{GEurNWXw`*(A}Kk0;2F7%plu=g*^WOJc{sBRE9y*PZkv-aQM zZk1>sm5<2fWBTa+yW$^@WCEKF?LJV;hdRjIeuDpEyKFvWf#=P#kzPF+9jE8mgGjqf zeSDav)mPTzAIZqRf+RRLm-|V-ax7EI&Y!0^jKBN?819cFXoM?KvK%10){|O?5qk#q z_G_pq#Y=*-yrtGcpZoXOFypn7qLlF_AU281$=s}(Na&?FWngDJO*!LQN_<U^Zv4Z^ z6R0E}ke3htb7qRdThxI&Ax3D{GGMVNu+o3@hJWMC2D)w??+;JL!{1a_|Mp*4wbiDO zWsBzX#=mr$Ra~y<BW|#8QatKYYB$wU%}pN<%L9uSzdG+Fvu+9(dWMzHsv7f2d2KTB z0E1<9ME4&YI6~@i8S=yYyn7bVD@fzUJ#g>o;|d>niY-#oVnxsXo7FDK<1#v+AEs%R zqZ@q>@*EJ_|M6E;TmpUNi^J3lazeG#OlusM&>RUmUj3H^i|*A?(xGT@+pvkc7yp^K zTe7IwK{4k`2)W>hr#o_;<lLnn*WSc=KFYWkAA3EKNxE)-&%8K@D7E$pql7z0H7$RP zV01*1*#Yju|4uu`5-EqgOy#ya_2FXxr#SC)M<cPPr)Q<{d4mZ>3S2PvVZfWc^pn*W z4XO+4(T9@{bnE8B6ZfM}9=T>Sh%T3+1pi|?lQnN)-G74rp!-N~%|F3E@1yl+G+Q7d z2AM;^Ugq$Qk~z%$lTTeCqh$KL1d2XsQf|g}-+~SvnXjFN4d6d{MEpO=Nmlf%iclNi z%t1#A9Si^DGk}hl0L~}S=>ilwcy<5KahWn10KcC*@+E?)`xf}|pxOB}QuQ_u*8ab( z7XNj84MO{c-&wAII57PuV1bbRJ7#={em^Z$4yA8GAE9IM<kz*^bpQ|d-`a;+d9!u_ zEH2m%l?2kPc~Dft4c&hRyZ!Svz#@>*#@zg{brrGq-TDhJFR76<Mj3S#y#-+4KXd;7 zUvvL|TG0cf&2o6sH9x<VxsCLO5D=&e_CsTDW6zeJ^cpt;#(0@#cGu9nlF;J~QG{^? z?c#JWvo5Fq`g%%F!2l~oq8}lUGei+ILcS|8_a<a}(P;c*<kxe6k;~EnB?0O}s4_Jl z|DLAZBb#1+nX=X;^h8JIr`_baO6PxR9VkKokEyd>zV!1JNFx6x*0K6I3iGeJUv>!W z?Kc+p0}(c8Umd^Q_xZSW3{WtT=_;}CbI#0??yQ~<KK5+DDiA>x4RXlXBEQ884|?wJ zl}6ejiRqc(TRKg+n;-W)eN2bX$<FwP4<AaN<jrcLQ2w2!S@X)PEmch`0Tdk<Y|V;w z)Y{L;(|wx{OH7G1c32#zfD}mCzAG4a{ucoysDL+yIe>De%9AldGay!I5;8OoqSPb{ zsaF1ki?$Q!BEa<6@`S%dNymF^r%(F5vv>!mB`RVI(@lefCg$1Rh<ju2fofoolu-PS zSvjG+DW+;hMO2b2W(8FSqB)R(EAN%WzJn5VPZsR2D2(FO`4ev<nEuPS?=sEtjkUen z<Zt^|AjGrzhAzK^Ogy_$JB|O<kq;2+Z9A+8)99%(%<lNw(i|rix)kYZ0v>5$;Il^$ zwjwJCK~u|?!1-%d!=fEzmsEZPRr5cg-v2@k{lA9)zp~m1|947@q(?M*4@dE$x7c0K zOXK}&%gX$Vpg2dzdX(xAcKBl0r_G0ET>}m}c^A$E=ED2A*_1<??{Hz4Y5jcF+$3$A zG=f*lfyH*;ZMs5=kC6gh?&e)_XM5}aHWG~))D`fOyYUgfM?}UyAD{8b$**sakA3E< z;0odpFm2PAK~f<*Ti{<+NcRNCS03W~$)`}W6mJOEQ*mJfIj@?lFL>87(ttpK_NhqR zNPdH6Ee{VrqzjDH`!MHh`NoH^FWH}T*r4VA22Maipl~+fVXNFPuQdGaGjxhU78Of; zlZEY(ro~1IGRUD`6aVr3$JSvQ(Jv6prGlV($MZk@o;)|9j6}bp{$0W)v$I<cUlu?; zMC@Gaf?Q903}Wz2e%s!cEcppir-3`oq6r7SiL(iWz~TE48P8c~PQ0@cLTw;+xTsDU z2zH)FmusPaQva5w^G(*w$b($(L&J=}oLIk!-#KLrckYMFIKMRsyt88P%R*!vLtK%3 z7q5XXKQN&}eae8U*&fXw_0OJkn7aR+HiY=VJ&pe#to<LKlkUabO{(=f5N98@p~}0k zLi*OyH8qY4|2jPrVtPPzVCK@o%-ohqNAF72YEnt|^Zv0@N)o$5%EmT_u|<KWPvndf zvmOUL!N*lVUZl5EvaH&r3zA+7Dve~#;e7|h7I0l=)7u&ch-rC?Ox@z5883GipQalN zNuX@heMa_a)yAdZu4TpSCd$5AEKf{#lNC@kw&4-5Sj-HRU73!npY|@A?6YhCG}vV$ zgG`C_XV&45O~D0ay;#Y}uPY@-yMD7O<HW6(C#JervSsI$Fm=n3x$*;Uj&Js_`Db3; z;2?hk8<jiO>UL<XHhE>|1(x+aE)0+(^#Q_k<n!n-zg4_E(XCxkO1CzCj;@aL;kJL1 z6?%#kwb8hUufkIsAquoM>c%VPu7(z31!=W_1&K<(e>d%n8-!=!<WYV&LSv3Z#bU0) zl5s^;w_t~jnyg^Q`Q#y#i~f{<8m-=+QBykMQ{*ZeccoyGp*kZ+@7pQ<IrQ|2tei;) z(FayBivAm%+UUs{_gJL)&!<LJ8xHF0*xl^&OeRu<<cQp;)I1{bRQis9%Zc63jpT@K z<WUvlQEq{-xpo|p^^y^zi5?-D|25N<Ea8@eG9oS6QBR)huXdepkJ(XS!$yKzWAm#o zc8*@8BP3GI&gox!a`d)U>x*>Ait)PxUZ@#LO0m2vZA=(n<}DNxevGVy+s(q;Q$hDP z2fQe_Q{ky!CVS$2`}yF3+araHmy(6o$*Qc_mx$j(r3_N2%|_?$@9hbXd51=Jtvqhr zg8~kIJV9p{==#3jE>4-)I2PG{-XpEOeXz?c$m^Kv`{Fx(Y<GpL7tk-}jebv<jYv(O zkZnU&jFrp96#~=8(HzILnHW5^qYvY-z<rB)l4r|}Ey+H123@_srU>Qz@q|0faQW*C z)Ab*<>jb%h;52WZ+foMWke}p5*T^q1w%z=CI1+)w=ZH#ynwih&%n5t`O5}Wt`T&r4 zfy$SLv0rvm@fpJ#_g+t~QFQj8adH0JiUC5Rtr_+u>TN{IvaR>Fcv35LzpHPM=J=DQ z9%s?`D`Oi$Mc!ZXBt|xZYSfRr3SjQ3a8$6{tFXN;clZz};PYbZ-0WhOB5Ce9P@K@L zvL=ONF$p1~Y6hoC4{Cp@c=@3<iDz$_%cDkBea2bN!6QpSX1zX*bn~%lW=RI&zc1{A z;;CT7H>UsX-?y;DVRu3!d2=g$C-D-fCr{dv=A(#H>~kmHqgVy>QnMFB708p`ZzYva za4{gL1PN8f;ojTBV}U7SuXOK2?}vB1`oAXL)lcLnr^e+BRq}T}8>=+rz|q0CWQ!of z*pFZ0a*h`+UT=(Yl>8|zgz|M^$JVaQI&CzyEcg)0w|HDlSFWoFQPFjZBMy+~%YPp4 z+KC7~AEE9=qW;?~Cw8-@p1e7EXG=QU{lKA@Y?|NbSTh1xOm@;MRg0I&CAd0vkr+d4 z(>>@tcsP-`e))j5q}l=MH^#fW#BB}hq*^~!3&QviGw~z7)pTzd<>60LQGBm&8i_Py zg?`b|k*-e=U={hm2Vy|iAoN6BiY<4pm3i=nL|mIUsct<A#lG>LPjIi(|G`5%h`N7N z$cpND*vxu>2MOy;Mr%^#J!Ipqp7hiLe9UkL3H*$%Pnr5bW!w43XVyj5$4Of@3%a2b zH~m;=djwIw$<%JvOAdyQyU)eQ&RfN}#2I7{h*d_R`lb!&_~2XR;wWdI{uiAuN4~di zKA*tPz)B@}LVR4N3}Wp!tH3D(WbU%zvG*-qb&`*x)IUK53;UOMudfTR!oi>hlW`Ch zW#$uk-=Yu_gI64V{B~+PqJZz3Fe;vnA{hyRuzO-}q;tZRx%P(3$HN^$KculER<Cxx z1%Opt-}8Z*r7L)NuiyFJK>4M4C4t47hM%4NBcyy=+BGgVfm1d?ych;!!r9pg#QdZ{ zx81I<*2~-Bl+9CL-tJTk>`&?*A|`bYguI_Px0vT+jEmZcjr5cJ44!!UR!pe7G*J6p zgqWR|!xFn4b=4=X_B;PEu;bYB-BP>aCth<$zqeLBs7TlhQ~@i>XVaSR91r0$x#nCU z)5l`Y$#cf9I;NBXl%(VL!yjl4!oB5AA7!8Niy&@SifvX2H%3mK(l$`^t?=o1cSIBY z>c)KWlM$YfQ++2F-PNG{4L+ktRd8S4GbNO8=|y|%aM?$YG{hf(KWy2>rIYS6_SYw@ zlh8<1JUdujB||-afw1=5b85idCUR-~?F)6#ek)_4j{Qd)UZ(y5sI+Kw@9ao+aJpXI hRk8m+;o*KV|Do6eipS123qs(fuWh9DQuETS{|6{}i?#p& diff --git a/public/search.json b/public/search.json index 40f3788..25f898f 100644 --- a/public/search.json +++ b/public/search.json @@ -18,7 +18,7 @@ "href": "07-basic_statistics.html#cluster-analysis", "title": "7 Basic statistics for spatial analysis", "section": "7.2 Cluster analysis", - "text": "7.2 Cluster analysis\n\n7.2.1 General introduction\nWhy studying clusters in epidemiology? Cluster analysis help identifying unusual patterns that occurs during a given period of time. The underlying ultimate goal of such analysis is to explain the observation of such patterns. In epidemiology, we can distinguish two types of process that would explain heterogeneity in case distribution:\n\nThe 1st order effects are the spatial variations of cases distribution caused by underlying properties of environment or the population structure itself. In such process individual get infected independently from the rest of the population. Such process includes the infection through an environment at risk as, for example, air pollution, contaminated waters or soils and UV exposition. This effect assume that the observed pattern is caused by a difference in risk intensity.\nThe 2nd order effects describes process of spread, contagion and diffusion of diseases caused by interactions between individuals. This includes transmission of infectious disease by proximity, but also the transmission of non-infectious disease, for example, with the diffusion of social norms within networks. This effect assume that the observed pattern is caused by correlations or co-variations.\n\nNo statistical methods could distinguish between these competing processes since their outcome results in similar pattern of points. The cluster analysis help describing the magnitude and the location of pattern but in no way could answer the question of why such patterns occurs. It is therefore a step that help detecting cluster for description and surveillance purpose and rising hypothesis on the underlying process that will lead further investigations.\nKnowledge about the disease and its transmission process could orientate the choice of the methods of study. We presented in this brief tutorial two methods of cluster detection, the Moran’s I test that test for spatial independence (likely related to 2nd order effects) and the scan statistics that test for homogeneous distribution (likely related 1st order effects). It relies on epidemiologist to select the tools that best serve the studied question.\n\n\n\n\n\n\nStatistic tests and distributions\n\n\n\nIn statistics, problems are usually expressed by defining two hypotheses: the null hypothesis (H0), i.e., an a priori hypothesis of the studied phenomenon (e.g., the situation is a random) and the alternative hypothesis (HA), e.g., the situation is not random. The main principle is to measure how likely the observed situation belong to the ensemble of situation that are possible under the H0 hypothesis.\nIn mathematics, a probability distribution is a mathematical expression that represents what we would expect due to random chance. The choice of the probability distribution relies on the type of data you use (continuous, count, binary). In general, three distribution a used while studying disease rates, the Binomial, the Poisson and the Poisson-gamma mixture (also known as negative binomial) distributions.\nMany the statistical tests assume by default that data are normally distributed. It implies that your variable is continuous and that all data could easily be represented by two parameters, the mean and the variance, i.e., each value have the same level of certainty. If many measure can be assessed under the normality assumption, this is usually not the case in epidemiology with strictly positives rates and count values that 1) does not fit the normal distribution and 2) does not provide with the same degree of certainty since variances likely differ between district due to different population size, i.e., some district have very sparse data (with high variance) while other have adequate data (with lower variance).\n\n# dataset statistics\nm_cases <- mean(district$incidence)\nsd_cases <- sd(district$incidence)\n\nhist(district$incidence, probability = TRUE, ylim = c(0, 0.4), xlim = c(-5, 16), xlab = \"Number of cases\", ylab = \"Probability\", main = \"Histogram of observed incidence compared\\nto Normal and Poisson distributions\")\ncurve(dnorm(x, m_cases, sd_cases),col = \"blue\", lwd = 1, add = TRUE)\npoints(0:max(district$incidence), dpois(0:max(district$incidence), m_cases),type = 'b', pch = 20, col = \"red\", ylim = c(0, 0.6), lty = 2)\n\nlegend(\"topright\", legend = c(\"Normal distribution\", \"Poisson distribution\", \"Observed distribution\"), col = c(\"blue\", \"red\", \"black\"),pch = c(NA, 20, NA), lty = c(1, 2, 1))\n\n\n\n\nIn this tutorial, we used the Poisson distribution in our statistical tests.\n\n\n\n\n7.2.2 Test for spatial autocorrelation (Moran’s I test)\n\n7.2.2.1 The global Moran’s I test\nA popular test for spatial autocorrelation is the Moran’s test. This test tells us whether nearby units tend to exhibit similar incidences. It ranges from -1 to +1. A value of -1 denote that units with low rates are located near other units with high rates, while a Moran’s I value of +1 indicates a concentration of spatial units exhibiting similar rates.\n\n\n\n\n\n\nMoran’s I test\n\n\n\nThe Moran’s statistics is:\n\\[I = \\frac{N}{\\sum_{i=1}^N\\sum_{j=1}^Nw_{ij}}\\frac{\\sum_{i=1}^N\\sum_{j=1}^Nw_{ij}(Y_i-\\bar{Y})(Y_j - \\bar{Y})}{\\sum_{i=1}^N(Y_i-\\bar{Y})^2}\\] with:\n\n\\(N\\): the number of polygons,\n\\(w_{ij}\\): is a matrix of spatial weight with zeroes on the diagonal (i.e., \\(w_{ii}=0\\)). For example, if polygons are neighbors, the weight takes the value \\(1\\) otherwise it takes the value \\(0\\).\n\\(Y_i\\): the variable of interest,\n\\(\\bar{Y}\\): the mean value of \\(Y\\).\n\nUnder the Moran’s test, the statistics hypotheses are:\n\nH0: the distribution of cases is spatially independent, i.e., \\(I=0\\).\nH1: the distribution of cases is spatially autocorrelated, i.e., \\(I\\ne0\\).\n\n\n\nWe will compute the Moran’s statistics using spdep(R. Bivand et al. 2015) and Dcluster(Gómez-Rubio et al. 2015) packages. spdep package provides a collection of functions to analyze spatial correlations of polygons and works with sp objects. In this example, we use poly2nb() and nb2listw(). These functions respectively detect the neighboring polygons and assign weight corresponding to \\(1/\\#\\ of\\ neighbors\\). Dcluster package provides a set of functions for the detection of spatial clusters of disease using count data.\n\nlibrary(spdep) # Functions for creating spatial weight, spatial analysis\nlibrary(DCluster) # Package with functions for spatial cluster analysis\n\nqueen_nb <- poly2nb(district) # Neighbors according to queen case\nq_listw <- nb2listw(queen_nb, style = 'W') # row-standardized weights\n\n# Moran's I test\nm_test <- moranI.test(cases ~ offset(log(expected)), \n data = district,\n model = 'poisson',\n R = 499,\n listw = q_listw,\n n = length(district$cases), # number of regions\n S0 = Szero(q_listw)) # Global sum of weights\nprint(m_test)\n\nMoran's I test of spatial autocorrelation \n\n Type of boots.: parametric \n Model used when sampling: Poisson \n Number of simulations: 499 \n Statistic: 0.1566449 \n p-value : 0.012 \n\nplot(m_test)\n\n\n\n\nThe Moran’s statistics is here \\(I =\\) 0.16. When comparing its value to the H0 distribution (built under 499 simulations), the probability of observing such a I value under the null hypothesis, i.e. the distribution of cases is spatially independent, is \\(p_{value} =\\) 0.012. We therefore reject H0 with error risk of \\(\\alpha = 5\\%\\). The distribution of cases is therefore autocorrelated across districts in Cambodia.\n\n\n7.2.2.2 Moran’s I local test\nThe global Moran’s test provides us a global statistical value informing whether autocorrelation occurs over the territory but does not inform on where does these correlations occurs, i.e., what is the locations of the clusters. To identify such cluster, we can decompose the Moran’s I statistic to extract local information of the level of correlation of each district and its neighbors. This is called the Local Moran’s I LISA statistic. Because the Local Moran’s I LISA statistic test each district for autocorrelation independently, concern is raised about multiple testing limitations that increase the Type I error (\\(\\alpha\\)) of the statistical tests. The use of local test should therefore be study in light of explore and describes clusters once the global test detected autocorrelation.\n\n\n\n\n\n\nStatistical test\n\n\n\nFor each district \\(i\\), the Local Moran’s I statistics is:\n\\[I_i = \\frac{(Y_i-\\bar{Y})}{\\sum_{i=1}^N(Y_i-\\bar{Y})^2}\\sum_{j=1}^Nw_{ij}(Y_j - \\bar{Y}) \\text{ with } I = \\sum_{i=1}^NI_i/N\\]\n\n\nThe localmoran()function from the package spdep treats the variable of interest as if it was normally distributed. In some cases, this assumption could be reasonable for incidence rate, especially when the areal units of analysis have sufficiently large population count suggesting that the values have similar level of variances. Unfortunately, the local Moran’s test has not been implemented for Poisson distribution (population not large enough in some districts) in spdep package. However, Bivand et al. (R. S. Bivand et al. 2008) provided some code to manual perform the analysis using Poisson distribution and was further implemented in the course “Spatial Epidemiologyâ€.\n\n# Step 1 - Create the standardized deviation of observed from expected\nsd_lm <- (district$cases - district$expected) / sqrt(district$expected)\n\n# Step 2 - Create a spatially lagged version of standardized deviation of neighbors\nwsd_lm <- lag.listw(q_listw, sd_lm)\n\n# Step 3 - the local Moran's I is the product of step 1 and step 2\ndistrict$I_lm <- sd_lm * wsd_lm\n\n# Step 4 - setup parameters for simulation of the null distribution\n\n# Specify number of simulations to run\nnsim <- 499\n\n# Specify dimensions of result based on number of regions\nN <- length(district$expected)\n\n# Create a matrix of zeros to hold results, with a row for each county, and a column for each simulation\nsims <- matrix(0, ncol = nsim, nrow = N)\n\n# Step 5 - Start a for-loop to iterate over simulation columns\nfor(i in 1:nsim){\n y <- rpois(N, lambda = district$expected) # generate a random event count, given expected\n sd_lmi <- (y - district$expected) / sqrt(district$expected) # standardized local measure\n wsd_lmi <- lag.listw(q_listw, sd_lmi) # standardized spatially lagged measure\n sims[, i] <- sd_lmi * wsd_lmi # this is the I(i) statistic under this iteration of null\n}\n\nhist(sims[1,])\n\n\n\n# Step 6 - For each county, test where the observed value ranks with respect to the null simulations\nxrank <- apply(cbind(district$I_lm, sims), 1, function(x) rank(x)[1])\n\n# Step 7 - Calculate the difference between observed rank and total possible (nsim)\ndiff <- nsim - xrank\ndiff <- ifelse(diff > 0, diff, 0)\n\n# Step 8 - Assuming a uniform distribution of ranks, calculate p-value for observed\n# given the null distribution generate from simulations\ndistrict$pval_lm <- punif((diff + 1) / (nsim + 1))\n\nFor each district, we obtain a p-value based on permutations process\nA conventional way of plotting these results is to classify the districts into 5 classes based on local Moran’s I output. The classification of cluster that are significantly autocorrelated to their neighbors is performed based on a comparison of the scaled incidence in the district compared to the scaled weighted averaged incidence of it neighboring districts (computed with lag.listw()):\n\nDistricts that have higher-than-average rates in both index regions and their neighbors and showing statistically significant positive values for the local \\(I_i\\) statistic are defined as High-High (hotspot of the disease)\nDistricts that have lower-than-average rates in both index regions and their neighbors and showing statistically significant positive values for the local \\(I_i\\) statistic are defined as Low-Low (cold spot of the disease).\nDistricts that have higher-than-average rates in the index regions and lower-than-average rates in their neighbors, and showing statistically significant negative values for the local \\(I_i\\) statistic are defined as High-Low(outlier with high incidence in an area with low incidence).\nDistricts that have lower-than-average rates in the index regions and higher-than-average rates in their neighbors, and showing statistically significant negative values for the local \\(I_i\\) statistic are defined as Low-High (outlier of low incidence in area with high incidence).\nDistricts with non-significant values for the \\(I_i\\) statistic are defined as Non-significant.\n\n\n# create lagged local raw_rate - in other words the average of the queen neighbors value\n# values are scaled (centered and reduced) to be compared to average\ndistrict$lag_std <- scale(lag.listw(q_listw, var = district$incidence))\ndistrict$incidence_std <- scale(district$incidence)\n\n# extract pvalues\n# district$lm_pv <- lm_test[,5]\n\n# Classify local moran's outputs\ndistrict$lm_class <- NA\ndistrict$lm_class[district$incidence_std >=0 & district$lag_std >=0] <- 'High-High'\ndistrict$lm_class[district$incidence_std <=0 & district$lag_std <=0] <- 'Low-Low'\ndistrict$lm_class[district$incidence_std <=0 & district$lag_std >=0] <- 'Low-High'\ndistrict$lm_class[district$incidence_std >=0 & district$lag_std <=0] <- 'High-Low'\ndistrict$lm_class[district$pval_lm >= 0.05] <- 'Non-significant'\n\ndistrict$lm_class <- factor(district$lm_class, levels=c(\"High-High\", \"Low-Low\", \"High-Low\", \"Low-High\", \"Non-significant\") )\n\n# create map\nmf_map(x = district,\n var = \"lm_class\",\n type = \"typo\",\n cex = 2,\n col_na = \"white\",\n #val_order = c(\"High-High\", \"Low-Low\", \"High-Low\", \"Low-High\", \"Non-significant\") ,\n pal = c(\"#6D0026\" , \"blue\", \"white\") , # \"#FF755F\",\"#7FABD3\" ,\n leg_title = \"Clusters\")\n\nmf_layout(title = \"Cluster using Local Moran's I statistic\")\n\n\n\n\n\n\n\n7.2.3 Spatial scan statistics\nWhile Moran’s indices focus on testing for autocorrelation between neighboring polygons (under the null assumption of spatial independence), the spatial scan statistic aims at identifying an abnormal higher risk in a given region compared to the risk outside of this region (under the null assumption of homogeneous distribution). The conception of a cluster is therefore different between the two methods.\nThe function kulldorff from the package SpatialEpi (Kim and Wakefield 2010) is a simple tool to implement spatial-only scan statistics. Briefly, the kulldorff scan statistics scan the area for clusters using several steps:\n\nIt create a circular window of observation by defining a single location and an associated radius of the windows varying from 0 to a large number that depends on population distribution (largest radius could include 50% of the population).\nIt aggregates the count of events and the population at risk (or an expected count of events) inside and outside the window of observation.\nFinally, it computes the likelihood ratio to test whether the risk is equal inside versus outside the windows (H0) or greater inside the observed window\nThese 3 steps are repeated for each location and each possible windows-radii.\n\n\nlibrary(\"SpatialEpi\")\n\nThe use of R spatial object is not implements in kulldorff() function. It uses instead matrix of xy coordinates that represents the centroids of the districts. A given district is included into the observed circular window if its centroids fall into the circle.\n\ndistrict_xy <- st_centroid(district) %>% \n st_coordinates()\n\nhead(district_xy)\n\n X Y\n1 330823.3 1464560\n2 749758.3 1541787\n3 468384.0 1277007\n4 494548.2 1215261\n5 459644.2 1194615\n6 360528.3 1516339\n\n\nWe can then call kulldorff function (you are strongly encouraged to call ?kulldorff to properly call the function). The alpha.level threshold filter for the secondary clusters that will be retained. The most-likely cluster will be saved whatever its significance.\n\nkd_Wfever <- kulldorff(district_xy, \n cases = district$cases,\n population = district$T_POP,\n expected.cases = district$expected,\n pop.upper.bound = 0.5, # include maximum 50% of the population in a windows\n n.simulations = 499,\n alpha.level = 0.2)\n\n\n\n\nAll outputs are saved into an R object, here called kd_Wfever. Unfortunately, the package did not develop any summary and visualization of the results but we can explore the output object.\n\nnames(kd_Wfever)\n\n[1] \"most.likely.cluster\" \"secondary.clusters\" \"type\" \n[4] \"log.lkhd\" \"simulated.log.lkhd\" \n\n\nFirst, we can focus on the most likely cluster and explore its characteristics.\n\n# We can see which districts (r number) belong to this cluster\nkd_Wfever$most.likely.cluster$location.IDs.included\n\n [1] 48 93 66 180 133 29 194 118 50 144 31 141 3 117 22 43 142\n\n# standardized incidence ratio\nkd_Wfever$most.likely.cluster$SMR\n\n[1] 2.303106\n\n# number of observed and expected cases in this cluster\nkd_Wfever$most.likely.cluster$number.of.cases\n\n[1] 122\n\nkd_Wfever$most.likely.cluster$expected.cases\n\n[1] 52.97195\n\n\n17 districts belong to the cluster and its number of cases is 2.3 times higher than the expected number of cases.\nSimilarly, we could study the secondary clusters. Results are saved in a list.\n\n# We can see which districts (r number) belong to this cluster\nlength(kd_Wfever$secondary.clusters)\n\n[1] 1\n\n# retrieve data for all secondary clusters into a table\ndf_secondary_clusters <- data.frame(SMR = sapply(kd_Wfever$secondary.clusters, '[[', 5), \n number.of.cases = sapply(kd_Wfever$secondary.clusters, '[[', 3),\n expected.cases = sapply(kd_Wfever$secondary.clusters, '[[', 4),\n p.value = sapply(kd_Wfever$secondary.clusters, '[[', 8))\n\nprint(df_secondary_clusters)\n\n SMR number.of.cases expected.cases p.value\n1 3.767698 16 4.246625 0.008\n\n\nWe only have one secondary cluster composed of one district.\n\n# create empty column to store cluster informations\ndistrict$k_cluster <- NA\n\n# save cluster information from kulldorff outputs\ndistrict$k_cluster[kd_Wfever$most.likely.cluster$location.IDs.included] <- 'Most likely cluster'\n\nfor(i in 1:length(kd_Wfever$secondary.clusters)){\ndistrict$k_cluster[kd_Wfever$secondary.clusters[[i]]$location.IDs.included] <- paste(\n 'Secondary cluster', i, sep = '')\n}\n\n#district$k_cluster[is.na(district$k_cluster)] <- \"No cluster\"\n\n\n# create map\nmf_map(x = district,\n var = \"k_cluster\",\n type = \"typo\",\n cex = 2,\n col_na = \"white\",\n pal = mf_get_pal(palette = \"Reds\", n = 3)[1:2],\n leg_title = \"Clusters\")\n\nmf_layout(title = \"Cluster using kulldorf scan statistic\")\n\n\n\n\n\n\n\n\n\n\nTo go further …\n\n\n\nIn this example, the expected number of cases was defined using the population count but note that standardization over other variables as age could also be implemented with the strata parameter in the kulldorff() function.\nIn addition, this cluster analysis was performed solely using the spatial scan but you should keep in mind that this method of cluster detection can be implemented for spatio-temporal data as well where the cluster definition is an abnormal number of cases in a delimited spatial area and during a given period of time. The windows of observation are therefore defined for a different center, radius and period of time. You should look at the function scan_ep_poisson() function in the package scanstatistic (Allévius 2018) for this analysis.\n\n\n\n\n\n\nAllévius, Benjamin. 2018. “Scanstatistics: Space-Time Anomaly Detection Using Scan Statistics.†Journal of Open Source Software 3 (25): 515.\n\n\nBivand, Roger S, Edzer J Pebesma, Virgilio Gómez-Rubio, and Edzer Jan Pebesma. 2008. Applied Spatial Data Analysis with r. Vol. 747248717. Springer.\n\n\nBivand, Roger, Micah Altman, Luc Anselin, Renato Assunção, Olaf Berke, Andrew Bernat, and Guillaume Blanchet. 2015. “Package ‘Spdep’.†The Comprehensive R Archive Network.\n\n\nGómez-Rubio, Virgilio, Juan Ferrándiz-Ferragud, Antonio López-QuıÌlez, et al. 2015. “Package ‘DCluster’.â€\n\n\nKim, Albert Y, and Jon Wakefield. 2010. “R Data and Methods for Spatial Epidemiology: The SpatialEpi Package.†Dept of Statistics, University of Washington." + "text": "7.2 Cluster analysis\n\n7.2.1 General introduction\nWhy studying clusters in epidemiology? Cluster analysis help identifying unusual patterns that occurs during a given period of time. The underlying ultimate goal of such analysis is to explain the observation of such patterns. In epidemiology, we can distinguish two types of process that would explain heterogeneity in case distribution:\n\nThe 1st order effects are the spatial variations of cases distribution caused by underlying properties of environment or the population structure itself. In such process individual get infected independently from the rest of the population. Such process includes the infection through an environment at risk as, for example, air pollution, contaminated waters or soils and UV exposition. This effect assume that the observed pattern is caused by a difference in risk intensity.\nThe 2nd order effects describes process of spread, contagion and diffusion of diseases caused by interactions between individuals. This includes transmission of infectious disease by proximity, but also the transmission of non-infectious disease, for example, with the diffusion of social norms within networks. This effect assume that the observed pattern is caused by correlations or co-variations.\n\nNo statistical methods could distinguish between these competing processes since their outcome results in similar pattern of points. The cluster analysis help describing the magnitude and the location of pattern but in no way could answer the question of why such patterns occurs. It is therefore a step that help detecting cluster for description and surveillance purpose and rising hypothesis on the underlying process that will lead further investigations.\nKnowledge about the disease and its transmission process could orientate the choice of the methods of study. We presented in this brief tutorial two methods of cluster detection, the Moran’s I test that test for spatial independence (likely related to 2nd order effects) and the scan statistics that test for homogeneous distribution (likely related 1st order effects). It relies on epidemiologist to select the tools that best serve the studied question.\n\n\n\n\n\n\nStatistic tests and distributions\n\n\n\nIn statistics, problems are usually expressed by defining two hypotheses: the null hypothesis (H0), i.e., an a priori hypothesis of the studied phenomenon (e.g., the situation is a random) and the alternative hypothesis (HA), e.g., the situation is not random. The main principle is to measure how likely the observed situation belong to the ensemble of situation that are possible under the H0 hypothesis.\nIn mathematics, a probability distribution is a mathematical expression that represents what we would expect due to random chance. The choice of the probability distribution relies on the type of data you use (continuous, count, binary). In general, three distribution a used while studying disease rates, the Binomial, the Poisson and the Poisson-gamma mixture (also known as negative binomial) distributions.\nMany the statistical tests assume by default that data are normally distributed. It implies that your variable is continuous and that all data could easily be represented by two parameters, the mean and the variance, i.e., each value have the same level of certainty. If many measure can be assessed under the normality assumption, this is usually not the case in epidemiology with strictly positives rates and count values that 1) does not fit the normal distribution and 2) does not provide with the same degree of certainty since variances likely differ between district due to different population size, i.e., some district have very sparse data (with high variance) while other have adequate data (with lower variance).\n\n# dataset statistics\nm_cases <- mean(district$incidence)\nsd_cases <- sd(district$incidence)\n\nhist(district$incidence, probability = TRUE, ylim = c(0, 0.4), xlim = c(-5, 16), xlab = \"Number of cases\", ylab = \"Probability\", main = \"Histogram of observed incidence compared\\nto Normal and Poisson distributions\")\ncurve(dnorm(x, m_cases, sd_cases),col = \"blue\", lwd = 1, add = TRUE)\npoints(0:max(district$incidence), dpois(0:max(district$incidence), m_cases),type = 'b', pch = 20, col = \"red\", ylim = c(0, 0.6), lty = 2)\n\nlegend(\"topright\", legend = c(\"Normal distribution\", \"Poisson distribution\", \"Observed distribution\"), col = c(\"blue\", \"red\", \"black\"),pch = c(NA, 20, NA), lty = c(1, 2, 1))\n\n\n\n\nIn this tutorial, we used the Poisson distribution in our statistical tests.\n\n\n\n\n7.2.2 Test for spatial autocorrelation (Moran’s I test)\n\n7.2.2.1 The global Moran’s I test\nA popular test for spatial autocorrelation is the Moran’s test. This test tells us whether nearby units tend to exhibit similar incidences. It ranges from -1 to +1. A value of -1 denote that units with low rates are located near other units with high rates, while a Moran’s I value of +1 indicates a concentration of spatial units exhibiting similar rates.\n\n\n\n\n\n\nMoran’s I test\n\n\n\nThe Moran’s statistics is:\n\\[I = \\frac{N}{\\sum_{i=1}^N\\sum_{j=1}^Nw_{ij}}\\frac{\\sum_{i=1}^N\\sum_{j=1}^Nw_{ij}(Y_i-\\bar{Y})(Y_j - \\bar{Y})}{\\sum_{i=1}^N(Y_i-\\bar{Y})^2}\\] with:\n\n\\(N\\): the number of polygons,\n\\(w_{ij}\\): is a matrix of spatial weight with zeroes on the diagonal (i.e., \\(w_{ii}=0\\)). For example, if polygons are neighbors, the weight takes the value \\(1\\) otherwise it takes the value \\(0\\).\n\\(Y_i\\): the variable of interest,\n\\(\\bar{Y}\\): the mean value of \\(Y\\).\n\nUnder the Moran’s test, the statistics hypotheses are:\n\nH0: the distribution of cases is spatially independent, i.e., \\(I=0\\).\nH1: the distribution of cases is spatially autocorrelated, i.e., \\(I\\ne0\\).\n\n\n\nWe will compute the Moran’s statistics using spdep(R. Bivand et al. 2015) and Dcluster(Gómez-Rubio et al. 2015) packages. spdep package provides a collection of functions to analyze spatial correlations of polygons and works with sp objects. In this example, we use poly2nb() and nb2listw(). These functions respectively detect the neighboring polygons and assign weight corresponding to \\(1/\\#\\ of\\ neighbors\\). Dcluster package provides a set of functions for the detection of spatial clusters of disease using count data.\n\nlibrary(spdep) # Functions for creating spatial weight, spatial analysis\nlibrary(DCluster) # Package with functions for spatial cluster analysis\n\nqueen_nb <- poly2nb(district) # Neighbors according to queen case\nq_listw <- nb2listw(queen_nb, style = 'W') # row-standardized weights\n\n# Moran's I test\nm_test <- moranI.test(cases ~ offset(log(expected)), \n data = district,\n model = 'poisson',\n R = 499,\n listw = q_listw,\n n = length(district$cases), # number of regions\n S0 = Szero(q_listw)) # Global sum of weights\nprint(m_test)\n\nMoran's I test of spatial autocorrelation \n\n Type of boots.: parametric \n Model used when sampling: Poisson \n Number of simulations: 499 \n Statistic: 0.1566449 \n p-value : 0.01 \n\nplot(m_test)\n\n\n\n\nThe Moran’s statistics is here \\(I =\\) 0.16. When comparing its value to the H0 distribution (built under 499 simulations), the probability of observing such a I value under the null hypothesis, i.e. the distribution of cases is spatially independent, is \\(p_{value} =\\) 0.01. We therefore reject H0 with error risk of \\(\\alpha = 5\\%\\). The distribution of cases is therefore autocorrelated across districts in Cambodia.\n\n\n7.2.2.2 The Local Moran’s I LISA test\nThe global Moran’s test provides us a global statistical value informing whether autocorrelation occurs over the territory but does not inform on where does these correlations occurs, i.e., what is the locations of the clusters. To identify such cluster, we can decompose the Moran’s I statistic to extract local information of the level of correlation of each district and its neighbors. This is called the Local Moran’s I LISA statistic. Because the Local Moran’s I LISA statistic test each district for autocorrelation independently, concern is raised about multiple testing limitations that increase the Type I error (\\(\\alpha\\)) of the statistical tests. The use of local test should therefore be study in light of explore and describes clusters once the global test detected autocorrelation.\n\n\n\n\n\n\nStatistical test\n\n\n\nFor each district \\(i\\), the Local Moran’s I statistics is:\n\\[I_i = \\frac{(Y_i-\\bar{Y})}{\\sum_{i=1}^N(Y_i-\\bar{Y})^2}\\sum_{j=1}^Nw_{ij}(Y_j - \\bar{Y}) \\text{ with } I = \\sum_{i=1}^NI_i/N\\]\n\n\nThe localmoran()function from the package spdep treats the variable of interest as if it was normally distributed. In some cases, this assumption could be reasonable for incidence rate, especially when the areal units of analysis have sufficiently large population count suggesting that the values have similar level of variances. Unfortunately, the local Moran’s test has not been implemented for Poisson distribution (population not large enough in some districts) in spdep package. However, Bivand et al. (R. S. Bivand et al. 2008) provided some code to manual perform the analysis using Poisson distribution and was further implemented in the course “Spatial Epidemiologyâ€.\n\n# Step 1 - Create the standardized deviation of observed from expected\nsd_lm <- (district$cases - district$expected) / sqrt(district$expected)\n\n# Step 2 - Create a spatially lagged version of standardized deviation of neighbors\nwsd_lm <- lag.listw(q_listw, sd_lm)\n\n# Step 3 - the local Moran's I is the product of step 1 and step 2\ndistrict$I_lm <- sd_lm * wsd_lm\n\n# Step 4 - setup parameters for simulation of the null distribution\n\n# Specify number of simulations to run\nnsim <- 499\n\n# Specify dimensions of result based on number of regions\nN <- length(district$expected)\n\n# Create a matrix of zeros to hold results, with a row for each county, and a column for each simulation\nsims <- matrix(0, ncol = nsim, nrow = N)\n\n# Step 5 - Start a for-loop to iterate over simulation columns\nfor(i in 1:nsim){\n y <- rpois(N, lambda = district$expected) # generate a random event count, given expected\n sd_lmi <- (y - district$expected) / sqrt(district$expected) # standardized local measure\n wsd_lmi <- lag.listw(q_listw, sd_lmi) # standardized spatially lagged measure\n sims[, i] <- sd_lmi * wsd_lmi # this is the I(i) statistic under this iteration of null\n}\n\n# Step 6 - For each county, test where the observed value ranks with respect to the null simulations\nxrank <- apply(cbind(district$I_lm, sims), 1, function(x) rank(x)[1])\n\n# Step 7 - Calculate the difference between observed rank and total possible (nsim)\ndiff <- nsim - xrank\ndiff <- ifelse(diff > 0, diff, 0)\n\n# Step 8 - Assuming a uniform distribution of ranks, calculate p-value for observed\n# given the null distribution generate from simulations\ndistrict$pval_lm <- punif((diff + 1) / (nsim + 1))\n\nFor each district, we obtain a p-value based on permutations process\nA conventional way of plotting these results is to classify the districts into 5 classes based on local Moran’s I output. The classification of cluster that are significantly autocorrelated to their neighbors is performed based on a comparison of the scaled incidence in the district compared to the scaled weighted averaged incidence of it neighboring districts (computed with lag.listw()):\n\nDistricts that have higher-than-average rates in both index regions and their neighbors and showing statistically significant positive values for the local \\(I_i\\) statistic are defined as High-High (hotspot of the disease)\nDistricts that have lower-than-average rates in both index regions and their neighbors and showing statistically significant positive values for the local \\(I_i\\) statistic are defined as Low-Low (cold spot of the disease).\nDistricts that have higher-than-average rates in the index regions and lower-than-average rates in their neighbors, and showing statistically significant negative values for the local \\(I_i\\) statistic are defined as High-Low(outlier with high incidence in an area with low incidence).\nDistricts that have lower-than-average rates in the index regions and higher-than-average rates in their neighbors, and showing statistically significant negative values for the local \\(I_i\\) statistic are defined as Low-High (outlier of low incidence in area with high incidence).\nDistricts with non-significant values for the \\(I_i\\) statistic are defined as Non-significant.\n\n\n# create lagged local raw_rate - in other words the average of the queen neighbors value\n# values are scaled (centered and reduced) to be compared to average\ndistrict$lag_std <- scale(lag.listw(q_listw, var = district$incidence))\ndistrict$incidence_std <- scale(district$incidence)\n\n# extract pvalues\n# district$lm_pv <- lm_test[,5]\n\n# Classify local moran's outputs\ndistrict$lm_class <- NA\ndistrict$lm_class[district$incidence_std >=0 & district$lag_std >=0] <- 'High-High'\ndistrict$lm_class[district$incidence_std <=0 & district$lag_std <=0] <- 'Low-Low'\ndistrict$lm_class[district$incidence_std <=0 & district$lag_std >=0] <- 'Low-High'\ndistrict$lm_class[district$incidence_std >=0 & district$lag_std <=0] <- 'High-Low'\ndistrict$lm_class[district$pval_lm >= 0.05] <- 'Non-significant'\n\ndistrict$lm_class <- factor(district$lm_class, levels=c(\"High-High\", \"Low-Low\", \"High-Low\", \"Low-High\", \"Non-significant\") )\n\n# create map\nmf_map(x = district,\n var = \"lm_class\",\n type = \"typo\",\n cex = 2,\n col_na = \"white\",\n #val_order = c(\"High-High\", \"Low-Low\", \"High-Low\", \"Low-High\", \"Non-significant\") ,\n pal = c(\"#6D0026\" , \"blue\", \"white\") , # \"#FF755F\",\"#7FABD3\" ,\n leg_title = \"Clusters\")\n\nmf_layout(title = \"Cluster using Local Moran's I statistic\")\n\n\n\n\n\n\n\n7.2.3 Spatial scan statistics\nWhile Moran’s indices focus on testing for autocorrelation between neighboring polygons (under the null assumption of spatial independence), the spatial scan statistic aims at identifying an abnormal higher risk in a given region compared to the risk outside of this region (under the null assumption of homogeneous distribution). The conception of a cluster is therefore different between the two methods.\nThe function kulldorff from the package SpatialEpi (Kim and Wakefield 2010) is a simple tool to implement spatial-only scan statistics.\n\n\n\n\n\n\nKulldorf test\n\n\n\nUnder the kulldorff test, the statistics hypotheses are:\n\nH0: the risk is constant over the area, i.e., there is a spatial homogeneity of the incidence.\nH1: a particular window have higher incidence than the rest of the area , i.e., there is a spatial heterogeneity of incidence.\n\n\n\nBriefly, the kulldorff scan statistics scan the area for clusters using several steps:\n\nIt create a circular window of observation by defining a single location and an associated radius of the windows varying from 0 to a large number that depends on population distribution (largest radius could include 50% of the population).\nIt aggregates the count of events and the population at risk (or an expected count of events) inside and outside the window of observation.\nFinally, it computes the likelihood ratio and test whether the risk is equal inside versus outside the windows (H0) or greater inside the observed window (H1). The H0 distribution is estimated by simulating the distribution of counts under the null hypothesis (homogeneous risk).\nThese 3 steps are repeated for each location and each possible windows-radii.\n\nWhile we test the significance of a large number of observation windows, one can raise concern about multiple testing and Type I error. This approach however suggest that we are not interest in a set of signifiant cluster but only in a most-likely cluster. This a priori restriction eliminate concern for multpile comparison since the test is simplified to a statistically significance of one single most-likely cluster.\nBecause we tested all-possible locations and window-radius, we can also choose to look at secondary clusters. In this case, you should keep in mind that increasing the number of secondary cluster you select, increases the risk for Type I error.\n\nlibrary(\"SpatialEpi\")\n\nThe use of R spatial object is not implements in kulldorff() function. It uses instead matrix of xy coordinates that represents the centroids of the districts. A given district is included into the observed circular window if its centroids fall into the circle.\n\ndistrict_xy <- st_centroid(district) %>% \n st_coordinates()\n\nhead(district_xy)\n\n X Y\n1 330823.3 1464560\n2 749758.3 1541787\n3 468384.0 1277007\n4 494548.2 1215261\n5 459644.2 1194615\n6 360528.3 1516339\n\n\nWe can then call kulldorff function (you are strongly encouraged to call ?kulldorff to properly call the function). The alpha.level threshold filter for the secondary clusters that will be retained. The most-likely cluster will be saved whatever its significance.\n\nkd_Wfever <- kulldorff(district_xy, \n cases = district$cases,\n population = district$T_POP,\n expected.cases = district$expected,\n pop.upper.bound = 0.5, # include maximum 50% of the population in a windows\n n.simulations = 499,\n alpha.level = 0.2)\n\n\n\n\nThe function plot the histogram of the distribution of log-likelihood ratio simulated under the null hypothesis that is estimated based on Monte Carlo simulations. The observed value of the most significant cluster identified from all possible scans is compared to the distribution to determine significance. All outputs are saved into an R object, here called kd_Wfever. Unfortunately, the package did not develop any summary and visualization of the results but we can explore the output object.\n\nnames(kd_Wfever)\n\n[1] \"most.likely.cluster\" \"secondary.clusters\" \"type\" \n[4] \"log.lkhd\" \"simulated.log.lkhd\" \n\n\nFirst, we can focus on the most likely cluster and explore its characteristics.\n\n# We can see which districts (r number) belong to this cluster\nkd_Wfever$most.likely.cluster$location.IDs.included\n\n [1] 48 93 66 180 133 29 194 118 50 144 31 141 3 117 22 43 142\n\n# standardized incidence ratio\nkd_Wfever$most.likely.cluster$SMR\n\n[1] 2.303106\n\n# number of observed and expected cases in this cluster\nkd_Wfever$most.likely.cluster$number.of.cases\n\n[1] 122\n\nkd_Wfever$most.likely.cluster$expected.cases\n\n[1] 52.97195\n\n\n17 districts belong to the cluster and its number of cases is 2.3 times higher than the expected number of cases.\nSimilarly, we could study the secondary clusters. Results are saved in a list.\n\n# We can see which districts (r number) belong to this cluster\nlength(kd_Wfever$secondary.clusters)\n\n[1] 1\n\n# retrieve data for all secondary clusters into a table\ndf_secondary_clusters <- data.frame(SMR = sapply(kd_Wfever$secondary.clusters, '[[', 5), \n number.of.cases = sapply(kd_Wfever$secondary.clusters, '[[', 3),\n expected.cases = sapply(kd_Wfever$secondary.clusters, '[[', 4),\n p.value = sapply(kd_Wfever$secondary.clusters, '[[', 8))\n\nprint(df_secondary_clusters)\n\n SMR number.of.cases expected.cases p.value\n1 3.767698 16 4.246625 0.016\n\n\nWe only have one secondary cluster composed of one district.\n\n# create empty column to store cluster informations\ndistrict$k_cluster <- NA\n\n# save cluster information from kulldorff outputs\ndistrict$k_cluster[kd_Wfever$most.likely.cluster$location.IDs.included] <- 'Most likely cluster'\n\nfor(i in 1:length(kd_Wfever$secondary.clusters)){\ndistrict$k_cluster[kd_Wfever$secondary.clusters[[i]]$location.IDs.included] <- paste(\n 'Secondary cluster', i, sep = '')\n}\n\n#district$k_cluster[is.na(district$k_cluster)] <- \"No cluster\"\n\n\n# create map\nmf_map(x = district,\n var = \"k_cluster\",\n type = \"typo\",\n cex = 2,\n col_na = \"white\",\n pal = mf_get_pal(palette = \"Reds\", n = 3)[1:2],\n leg_title = \"Clusters\")\n\nmf_layout(title = \"Cluster using kulldorf scan statistic\")\n\n\n\n\n\n\n\n\n\n\nTo go further …\n\n\n\nIn this example, the expected number of cases was defined using the population count but note that standardization over other variables as age could also be implemented with the strata parameter in the kulldorff() function.\nIn addition, this cluster analysis was performed solely using the spatial scan but you should keep in mind that this method of cluster detection can be implemented for spatio-temporal data as well where the cluster definition is an abnormal number of cases in a delimited spatial area and during a given period of time. The windows of observation are therefore defined for a different center, radius and time-period. You should look at the function scan_ep_poisson() function in the package scanstatistic (Allévius 2018) for this analysis.\n\n\n\n\n\n\nAllévius, Benjamin. 2018. “Scanstatistics: Space-Time Anomaly Detection Using Scan Statistics.†Journal of Open Source Software 3 (25): 515.\n\n\nBivand, Roger S, Edzer J Pebesma, Virgilio Gómez-Rubio, and Edzer Jan Pebesma. 2008. Applied Spatial Data Analysis with r. Vol. 747248717. Springer.\n\n\nBivand, Roger, Micah Altman, Luc Anselin, Renato Assunção, Olaf Berke, Andrew Bernat, and Guillaume Blanchet. 2015. “Package ‘Spdep’.†The Comprehensive R Archive Network.\n\n\nGómez-Rubio, Virgilio, Juan Ferrándiz-Ferragud, Antonio López-QuıÌlez, et al. 2015. “Package ‘DCluster’.â€\n\n\nKim, Albert Y, and Jon Wakefield. 2010. “R Data and Methods for Spatial Epidemiology: The SpatialEpi Package.†Dept of Statistics, University of Washington." }, { "objectID": "01-introduction.html", -- GitLab