### Ranking tab ################## ### Data objects ################## TRENDS_tab <- reactive({ date1 <- min(JSON_cons_har$consultation_date) date2 <- max(JSON_cons_har$consultation_date) if(input$TRENDStype == "residence_area"){ consultation_har_filter(JSON_cons_har, new_attack = input$TRENDSnew_attack, diagn = input$TRENDSdiagn, sex = input$TRENDSsex, minAge = input$TRENDSage[1], maxAge = input$TRENDSage[2] ) %>% select(id_residence_place, consultation_date) %>% group_by(id_residence_place) } else if(input$TRENDStype == "center"){ consultation_har_filter(JSON_cons_har, new_attack = input$TRENDSnew_attack, diagn = input$TRENDSdiagn, sex = input$TRENDSsex, minAge = input$TRENDSage[1], maxAge = input$TRENDSage[2] ) %>% filter(consultation_date >= date1 & consultation_date <= date2) %>% select(id_center, consultation_date) %>% group_by(id_center) %>% dplyr::summarise(count = n(), trend = decompose(x = consultation_date, date1 = date1, date2 = date2)) %>% inner_join(healthcenter_list, by = c("id_center" = "id_center")) } else if(input$TRENDStype == "infection_place"){ consultation_har_filter(JSON_cons_har, new_attack = input$TRENDSnew_attack, diagn = input$TRENDSdiagn, sex = input$TRENDSsex, minAge = input$TRENDSage[1], maxAge = input$TRENDSage[2] ) %>% filter(consultation_date >= date1 & consultation_date <= date2) %>% select(id_infection_place, consultation_date) %>% group_by(id_infection_place) %>% dplyr::summarise(count = n(), trend = decompose(x = consultation_date, date1 = date1, date2 = date2)) %>% inner_join(residencial_area_list, by = c("id_infection_place" = "id")) } }) ################## ### Table ################## output$TRENDS_table <- renderDataTable({ TRENDS_tab() %>% select(name, count, source, trend) %>% plyr::arrange(-count) %>% mutate(source = ifelse(source == "BR", tr("BR"), tr("FG"))) %>% plyr::rename(c("name" = tr("name"), "count" = tr("cases"), "source" = tr("country"))) }, rownames= FALSE)