from Graph_gff import Segments, Features, get_feature_start_on_segment, get_feature_stop_on_segment global segments_on_target_genome segments_on_target_genome={} # get the start position of the features on the linear genome, using their coordinates on the graph and the coordinantes of the segments on the genome def get_feature_start_on_target_genome(start_seg,feat_id): seg_start_pos=segments_on_target_genome[start_seg][1] feat_start_pos=get_feature_start_on_segment(start_seg,feat_id) return seg_start_pos+feat_start_pos-1 # get the stop position of the features on the linear genome, using their coordinates on the graph and the coordinantes of the segments on the genome def get_feature_stop_on_target_genome(stop_seg,feat_id): seg_start_pos=segments_on_target_genome[stop_seg][1] feat_stop_pos=get_feature_stop_on_segment(stop_seg,feat_id) return seg_start_pos+feat_stop_pos-1 # functions to get the gff with one line per feature def right_size(size,max_diff,feat): if max_diff==0: return True return not ((size>Features[feat].size*max_diff) | (size<Features[feat].size/max_diff)) def create_line_target_gff(first_seg,last_seg,feature_id,size_diff): [chr,strand,feature]=[segments_on_target_genome[first_seg][0],Features[feature_id].strand,Features[feature_id]] var_count=count_variations(feature_id) annotation=f'{feature.annot};Size_diff={size_diff};Nb_variants={var_count}' output_line=f'{chr}\tGrAnnoT\t{feature.type}\t{get_feature_start_on_target_genome(first_seg,feature_id)}\t{get_feature_stop_on_target_genome(last_seg,feature_id)}\t.\t{strand}\t.\t{annotation}\n' return output_line # functions to get the alignment for the transfered genes # create alignment for a feature def segment_aln(type,seg_seq,seg_a,seg_b): match type: case "identity": seq_aln=seg_seq[seg_a[1:]] line_a=seq_aln line_b=seq_aln len_aln=len(seq_aln) line_c=len_aln*"*" case "substitution": seq_aln_a=seg_seq[seg_a[1:]] seq_aln_b=seg_seq[seg_b[1:]] len_a=len(seq_aln_a) len_b=len(seq_aln_b) if len_a>len_b: diff_len=len_a-len_b line_a=seq_aln_a line_b=seq_aln_b+diff_len*"-" line_c=len_a*" " else: diff_len=len_b-len_a line_a=seq_aln_a+diff_len*"-" line_b=seq_aln_b line_c=len_b*" " case "insertion": seq_aln_b=seg_seq[seg_b[1:]] len_b=len(seq_aln_b) line_a=len_b*"-" line_b=seq_aln_b line_c=len_b*" " case "deletion": seq_aln_a=seg_seq[seg_a[1:]] len_a=len(seq_aln_a) line_a=seq_aln_a line_b=len_a*"-" line_c=len_a*" " case "end_deletion": seq_aln_a="" for segment in seg_a: seq_aln_a+=seg_seq[segment[1:]] len_a=len(seq_aln_a) line_a=seq_aln_a line_b=len_a*"-" line_c=len_a*" " return [line_a,line_b,line_c] # check the orientation of the segment later def parse_aln_lines(line_a,line_b,line_c,feature_id): if (len(line_a)!=len(line_b)) | (len(line_b)!=len(line_c)): print("line length differ in alignment") len_to_parse=len(line_a) len_parsed=0 aln_line="" nb_res_a=0 nb_res_b=0 while len_parsed<len_to_parse: len_header=len(feature_id)+11 headers=[feature_id+"_source ",feature_id+"_target ",len_header*" "] add_a=line_a[len_parsed:len_parsed+60] add_b=line_b[len_parsed:len_parsed+60] add_c=line_c[len_parsed:len_parsed+60] nb_res_a+=len(add_a)-add_a.count("-") nb_res_b+=len(add_b)-add_b.count("-") aln_line+=f'{headers[0]}{add_a} {nb_res_a}\n' aln_line+=f'{headers[1]}{add_b} {nb_res_b}\n' aln_line+=f'{headers[2]}{add_c}\n\n' len_parsed+=60 aln_line+="\n" return aln_line def create_line_aln(feature_path_source_genome,feature_path_target_genome,seg_seq,feature_id): line_a="" line_b="" line_c="" [i,j]=[0,0] while (i<len(feature_path_source_genome)) & (j<len(feature_path_target_genome)): if feature_path_source_genome[i] != feature_path_target_genome[j]: # if there is a difference between the two paths if feature_path_target_genome[j] not in feature_path_source_genome: # if the segment in target genome is absent in source genome if feature_path_source_genome[i] not in feature_path_target_genome: # if the segment in source genome is absent is target genome # substitution [add_a,add_b,add_c]=segment_aln("substitution",seg_seq,feature_path_source_genome[i],feature_path_target_genome[j]) line_a+=add_a;line_b+=add_b;line_c+=add_c i+=1;j+=1 else: # target genome segment not in source_genome, but source_genome segment in target genome : insertion or continue substitution [add_a,add_b,add_c]=segment_aln("insertion",seg_seq,"",feature_path_target_genome[j]) line_a+=add_a;line_b+=add_b;line_c+=add_c j+=1 elif feature_path_source_genome[i] not in feature_path_target_genome: # source_genome segment not in target genome, but target genome segment in source_genome : deletion or continue substitution [add_a,add_b,add_c]=segment_aln("deletion",seg_seq,feature_path_source_genome[i],"") line_a+=add_a;line_b+=add_b;line_c+=add_c i+=1 else : # if both segments are present in the other genome but not at the same position. weird case never found yet [add_a,add_b,add_c]=segment_aln("substitution",seg_seq,feature_path_source_genome[i],feature_path_target_genome[j]) line_a+=add_a;line_b+=add_b;line_c+=add_c i+=1;j+=1 else: # segment present in both, no variation. print the running indel if there is one [add_a,add_b,add_c]=segment_aln("identity",seg_seq,feature_path_source_genome[i],feature_path_target_genome[j]) line_a+=add_a;line_b+=add_b;line_c+=add_c i+=1;j+=1 if i<=len(feature_path_source_genome)-1: # if we didn't reach the length of the segment list for the first genome, the end is missing for the second genome [add_a,add_b,add_c]=segment_aln("end_deletion",seg_seq,feature_path_source_genome[i:],"") line_a+=add_a;line_b+=add_b;line_c+=add_c return parse_aln_lines(line_a,line_b,line_c,feature_id) # functions to output the stats on the transfer def stats_feature_missing_segment(feature_missing_segments,first_seg,last_seg,list_seg,feature_id): # [feature_missing_first,feature_missing_middle,feature_missing_last,feature_missing_all,feature_missing_total,feature_total,feature_ok] feature_missing_segments[5].append(feature_id) if first_seg=='' : # no segment of the feature is in the genome, the feature is missing entirely feature_missing_segments[3].append(feature_id) elif first_seg != list_seg[0][1:]: # the first segment is missing feature_missing_segments[0].append(feature_id) elif last_seg!=list_seg[-1][1:]: # the last segment is missing feature_missing_segments[2].append(feature_id) # go through all the segments, check if some are missing in the middle of the feature elif (len(list_seg)!=1) & (feature_id not in feature_missing_segments[3]): # to access the second to last element for segment in list_seg[1-(len(list_seg)-2)]: if segment[1:] not in segments_on_target_genome: feature_missing_segments[1].append(feature_id) break # go through the segments, to see if one is missing anywhere on the feature for segment in list_seg: if segment[1:] not in segments_on_target_genome: if feature_id not in feature_missing_segments[4]: feature_missing_segments[4].append(feature_id) break # if the feature doesnt have a missing segment, it is complete. ADD THE PATH CHECK FOR INSERTIONS !! if feature_id not in feature_missing_segments[4]: feature_missing_segments[6].append(feature_id) def get_annot_features(list_features): list_annot_features=[] for feature in list_features: list_annot_features.append(Features[feature].note) return list_annot_features def count_hypput_total(list_annot_first): total=len(list_annot_first) count_hypput=0 for annot in list_annot_first: if ("hypothetical" in annot) | ("putative" in annot): count_hypput+=1 return [count_hypput,total] # print stats on the transfer : number of feature that have segments in different positions missing. def stats_features(feature_missing_segments): # [feature_missing_first,feature_missing_middle,feature_missing_last,feature_missing_all,feature_missing_total,feature_total,feature_ok] list_annot_first=get_annot_features(feature_missing_segments[0]) [hyp_put,total]=count_hypput_total(list_annot_first) print("\nthe first segment is missing for", total,"features, including",round(100*(hyp_put)/total,2),"% hypothetical or putative.") list_annot_middle=get_annot_features(feature_missing_segments[1]) [hyp_put,total]=count_hypput_total(list_annot_middle) print("a middle segment is missing for", total,"features, including",round(100*(hyp_put)/total,2),"% hypothetical or putative.") list_annot_last=get_annot_features(feature_missing_segments[2]) [hyp_put,total]=count_hypput_total(list_annot_last) print("the last segment is missing for", total,"features, including",round(100*(hyp_put)/total,2),"% hypothetical or putative.") list_annot_all=get_annot_features(feature_missing_segments[3]) [hyp_put,total]=count_hypput_total(list_annot_all) print(total,"features are entirely missing, including",round(100*(hyp_put)/total,2),"% hypothetical or putative.") list_annot_total=get_annot_features(feature_missing_segments[4]) [hyp_put,total]=count_hypput_total(list_annot_total) print("there is at least one segment missing for", total,"features, including",round(100*(hyp_put)/total,2),"% hypothetical or putative.") list_annot_ok=get_annot_features(feature_missing_segments[6]) [hyp_put,total]=count_hypput_total(list_annot_ok) print(total ,"features are entirely present in the new genome, including",round(100*(hyp_put)/total,2),"% hypothetical or putative.") list_annot_features=get_annot_features(feature_missing_segments[5]) [hyp_put,total]=count_hypput_total(list_annot_features) print("there is", total,"features in total, including",round(100*(hyp_put)/total,2),"% hypothetical or putative.") # functions to generate the different gffs def get_segments_positions_on_genome(pos_seg): bed=open(pos_seg,'r') lines=bed.readlines() # read line by line ? bed.close() seg_count=0 for line in lines: line=line.split() file_name='.'.join(pos_seg.split('/')[-1].split('.')[0:-1]) [seg,chrom,start,stop,strand,index]=[line[3][1:],line[0],int(line[1])+1,int(line[2]),line[3][0:1],seg_count] # +1 in the start to convert the bed 0-based coordinate to a 1-based system # if seg in segments_on_target_genome: # # seg=seg+"_bis" ??? # print("seg already present on target genome") # print(strand,seg,segments_on_target_genome[seg][3]) segments_on_target_genome[seg]=[chrom,start,stop,strand,index,file_name] seg_count+=1 def get_segments_sequence(segments_file,segments_list): file_segments=open(segments_file,'r') lines_segments=file_segments.readlines() file_segments.close() seg_seq={} for line in lines_segments: line=line.split() seg_id='s'+line[1] if seg_id in segments_list: seg_seq[seg_id]=line[2] return seg_seq def get_paths(walks_file,target_genome): file_walks=open(walks_file,'r') lines_walks=file_walks.readlines() file_walks.close() paths={} for line in lines_walks: line=line.split() if target_genome in line[3]: # get the walk of the genome path=line[6].split(',')[1:] list_segments=[] for segment in path: if segment[0:1]=='>': list_segments.append('>s'+segment[1:]) elif segment[0:1]=='<': list_segments.append('<s'+segment[1:]) paths[line[3]]=list_segments return paths def get_first_seg(list_seg): # get the first segment of the list that is in the target genome first_seg_found='' for segment in list_seg: if segment[1:] in segments_on_target_genome: first_seg_found=segment break return first_seg_found # functions to get the detail of the variations in the features def compare_strand(list_1,list_2,list_1_unstrand,list_2_unstrand): # get the list of segments in common seg_common=[] for segment in list_1_unstrand: if segment in list_2_unstrand: seg_common.append(segment) # for each segment in common, check if the strand is the same. check index in list unstranded to get the segment in list stranded same_strand_count=0 for segment in seg_common: index_1=list_1_unstrand.index(segment) index_2=list_2_unstrand.index(segment) if list_1[index_1]==list_2[index_2]: same_strand_count+=1 return [seg_common,same_strand_count] def find_feature_target_path(first_seg,last_seg,target_genome_paths): feature="not_found" path_first_seg=segments_on_target_genome[first_seg[1:]][5] path_last_seg=segments_on_target_genome[last_seg[1:]][5] if path_first_seg==path_last_seg: for path in target_genome_paths: if path in path_first_seg: return path return feature def add_target_genome_path(feature_id,target_genome_paths): feature=Features[feature_id] list_seg=feature.segments_list_source first_seg=get_first_seg(list_seg) last_seg=get_first_seg(reversed(list_seg)) feature_path=[] if first_seg!='': path=find_feature_target_path(first_seg,last_seg,target_genome_paths) if path=="frag": print(f'feature {feature_id} fragmented') elif path!="not_found": feature_path=get_feature_path(target_genome_paths[path],first_seg,last_seg) feature.segments_list_target=feature_path def get_feature_path(target_genome_path,first_seg,last_seg): # find the path in target genome first_seg_index=segments_on_target_genome[first_seg[1:]][4] last_seg_index=segments_on_target_genome[last_seg[1:]][4] first_index=min(first_seg_index,last_seg_index) last_index=max(first_seg_index,last_seg_index) feature_path_target_genome=target_genome_path[first_index:last_index+1] return feature_path_target_genome def count_variations(feature_id): feature=Features[feature_id] target_list=feature.segments_list_target target_dict=dict.fromkeys(target_list,"") if len(target_list)!=0: source_list=feature.segments_list_source source_dict=dict.fromkeys(source_list,"") # convert list into dict to search segments in dict quicker. var_count=0 for segment in source_dict: if segment not in target_dict: var_count+=1 for segment in target_dict: if segment not in source_dict: var_count+=1 # this counts the substitutions twice, as insertion+deletion. return var_count def convert_strand(strand): match strand: case "+": return ">" case "-": return "<" case ">": return "+" case "<": return "-" case default: return "" def get_sequence_list_seg(list_seg,i,feature,seg_seq): del_sequence="" for k in range(i,len(list_seg)): if k==len(list_seg)-1: del_sequence+=get_segment_sequence(seg_seq,list_seg[k])[0:feature.pos_stop] else: del_sequence+=get_segment_sequence(seg_seq,list_seg[k]) return del_sequence def get_segment_sequence(seg_seq,segment): if (segment[0]==">") | (segment[0]=="+"): return seg_seq[segment[1:]] else: return reverse_complement(seg_seq[segment[1:]]) def reverse_complement(sequence): sequence_rc="" for char in sequence: sequence_rc+=complement(char) return sequence_rc[::-1] def complement(nucl): match nucl: case "A": return "T" case "C": return "G" case "G": return "C" case "T": return "A" return nucl class Variation: def __init__(self,feature_id,feature_type,chr,start_new,stop_new,inversion,size_diff,size_new): self.feature_id=feature_id self.feature_type=feature_type self.chr=chr self.start_new=start_new self.stop_new=stop_new self.inversion=inversion self.size_diff=size_diff self.size_new=size_new self.type='' self.last_seg_in_target='' self.seg_ref=list() self.seg_alt=list() # add fct to write line. #def __str__(self): # return f"id={self.id}, position on the original genome={self.chr}:{self.start}-{self.stop}, size={self.size}, features={self.features}" def create_var(feature_id,first_seg,last_seg): feature=Features[feature_id] start_new_genome=get_feature_start_on_target_genome(first_seg,feature_id)-1 stop_new_genome=get_feature_stop_on_target_genome(last_seg,feature_id) size_new_genome=stop_new_genome-start_new_genome size_diff=str(size_new_genome-feature.size) # get feature paths on the original genome and on the target genome feature_path_target_genome=feature.segments_list_target feature_path_source_genome=feature.segments_list_source [feature_path_source_genome,feature_path_target_genome,inversion]=detect_feature_inversion(feature_path_source_genome,feature_path_target_genome) variation=Variation(feature_id,feature.type,feature.chr,start_new_genome,stop_new_genome,inversion,size_diff,size_new_genome) return(variation,feature_path_source_genome,feature_path_target_genome) def reset_var(variation): variation.type='' # make type enumerate variation.size_var=0 variation.start_var='' variation.start_var_index=0 variation.ref='' variation.alt='' def get_old_new_pos_substitution(feat_start,variation,feature_path_target_genome,feat): pos_old=str(int(Segments[variation.start_var].start)-int(feat_start)) start_feat=get_feature_start_on_target_genome(feature_path_target_genome[0][1:],feat) start_var=segments_on_target_genome[variation.start_on_target][1] pos_new=str(start_var-start_feat) return [pos_old,pos_new] # pos_old and pos_new are the base before the change def get_old_new_pos_insertion(variation,feat_start,feature_path_target_genome,feat): pos_old=str(int(Segments[variation.start_var].start)-int(feat_start)) start_feat=get_feature_start_on_target_genome(feature_path_target_genome[0][1:],feat) start_var=segments_on_target_genome[variation.start_var][1]-len(variation.alt) pos_new=str(start_var-start_feat) return [pos_old,pos_new] # pos_old and pos_new are the base before the change def get_old_new_pos_deletion(variation,feat_start,feature_path_target_genome,feat): i=variation.start_var_index if i==0: pos_old=int(Segments[variation.start_var].start)-int(feat_start)+Features[feat].pos_start-1 else: pos_old=int(Segments[variation.start_var].start)-int(feat_start) if pos_old<0: pos_old=0 if variation.last_seg_in_target=="": # deletion of the beggining of the feature, so no segment placed in the new genome yet. pos_new=0 else: start_feat=get_feature_start_on_target_genome(feature_path_target_genome[0][1:],feat) start_var=segments_on_target_genome[variation.last_seg_in_target][2]+1 pos_new=str(start_var-start_feat) return [pos_old,pos_new] # pos_old and pos_new are the base before the change def init_new_var(variation,type,feature_path_source_genome,feature_path_target_genome,i,j,seg_seq,feature): variation.type=type variation.start_var=feature_path_source_genome[i][1:] variation.start_var_index=i if type=="substitution": variation.start_on_target=feature_path_target_genome[j][1:] variation.ref=get_segment_sequence(seg_seq,feature_path_source_genome[i]) variation.alt=get_segment_sequence(seg_seq,feature_path_target_genome[j]) variation.seg_ref.append(feature_path_source_genome[i]) variation.seg_alt.append(feature_path_target_genome[j]) elif type=="insertion": variation.ref="-" variation.alt=get_segment_sequence(seg_seq,feature_path_target_genome[j]) variation.seg_alt.append(feature_path_target_genome[j]) elif type=="deletion": if i==0: # if the deletion is at the start of the feature, the deletion doesnt always start at the start at the first segment : #use pos_start, position of the feature on its first segment variation.ref=get_segment_sequence(seg_seq,feature_path_source_genome[i])[feature.pos_start-1:] variation.seg_ref.append(feature_path_source_genome[i]) else: # else, the deletion will always start at the start of the first segment. variation.ref=get_segment_sequence(seg_seq,feature_path_source_genome[i]) variation.seg_ref.append(feature_path_source_genome[i]) variation.alt="-" def continue_var(variation,seg_seq,feature_path_source_genome,feature_path_target_genome,i,j,genome_to_continue): if variation.type=="substitution": if genome_to_continue==0: # genome_to_continue allows to choose if the substitution continues for the original or the target genome, or both. variation.ref+=get_segment_sequence(seg_seq,feature_path_source_genome[i]) variation.alt+=get_segment_sequence(seg_seq,feature_path_target_genome[j]) variation.seg_ref.append(feature_path_source_genome[i]) variation.seg_alt.append(feature_path_target_genome[j]) elif genome_to_continue==1: # deletion variation.ref+=get_segment_sequence(seg_seq,feature_path_source_genome[i]) variation.seg_ref.append(feature_path_source_genome[i]) elif genome_to_continue==2: # insertion variation.alt+=get_segment_sequence(seg_seq,feature_path_target_genome[j]) variation.seg_alt.append(feature_path_target_genome[j]) elif variation.type=="insertion": variation.alt+=get_segment_sequence(seg_seq,feature_path_target_genome[j]) variation.seg_alt.append(feature_path_target_genome[j]) elif variation.type=="deletion": variation.ref+=get_segment_sequence(seg_seq,feature_path_source_genome[i]) variation.seg_ref.append(feature_path_source_genome[i]) def get_common_segments(list1,list2): list_output=[] for elem in list1: if elem in list2: list_output.append(elem) return list_output def detect_segment_order_inversion(list_1,list_2): if (len(list_1)==1) | (len(list_2)==1): return False [cpt,i]=[0,0] list_1_common=get_common_segments(list_1,list_2) list_2_common=get_common_segments(list_2,list_1) list_2_common_reversed=list(reversed(list_2_common)) while i<len(list_1_common): if list_2_common_reversed[i]==list_1_common[i]: cpt+=1 i+=1 return (cpt>len(list_1_common)*0.9) # if more than 90% of the segments are on the same position when the lists are reversed, there is an inversion. def detect_orient_inversion(list_1,list_2): list_1_unstrand=[segment_stranded[1:] for segment_stranded in list_1] list_2_unstrand=[segment_stranded[1:] for segment_stranded in list_2] [seg_common,same_strand_count]=compare_strand(list_1,list_2,list_1_unstrand,list_2_unstrand) if same_strand_count>=len(seg_common)*0.9: # if more than 90% of segments shared have the same strand, no inversion strand_inversion=False else: strand_inversion=True return [strand_inversion,list_1_unstrand,list_2_unstrand] # takes two lists of segments for two genes, check if the first list is an inversion of the second one (if the segments in common are on the opposite strand) def detect_feature_inversion(list_1,list_2): # check if we have an inversion of the orientation of the segments [strand_inversion,list_1_unstrand,list_2_unstrand]=detect_orient_inversion(list_1,list_2) # check if we have an inversion of the order of the segments segment_order_inversion=detect_segment_order_inversion(list_1_unstrand,list_2_unstrand) # if there we have both inversions, the gene is in an inverted region. reverse the second list for the comparison. if segment_order_inversion & strand_inversion: inversion=1 list_2=invert_segment_list(list_2) else : inversion=0 return [list_1,list_2,str(inversion)] def invert_segment_list(seg_list): list_inverted=list() for seg in seg_list: if seg[0]==">": inv_seg="<"+seg[1:] elif seg[0]=="<": inv_seg=">"+seg[1:] else: inv_seg=seg list_inverted.append(inv_seg) return list(reversed(list_inverted))