from Graph_gff import Segments, Features, write_line from Functions import * # outputs the gff line of the target genome for a feature occurence (a feature can be transfered at several positions) def generate_target_gff(feature_id,seg_size,args,reason_features_not_transfered,match): feature=Features[feature_id] max_diff=args.max_difference # get list of the segments where it is and the first and last segment of the feature on the new genome [first_seg,last_seg,walk,copy_id,feature_target_path]=get_featurePath_ends(match) inversion=detect_feature_inversion(feature.segments_list_source,feature_target_path) if first_seg!='': # feature present on the target genome if inversion: size_on_new_genome=get_feature_start_on_target_genome_inv(last_seg,feature_id,walk,copy_id)-get_feature_stop_on_target_genome_inv(first_seg,feature_id,walk,copy_id)+1 else: size_on_new_genome=get_feature_stop_on_target_genome(last_seg,feature_id,walk,copy_id)-get_feature_start_on_target_genome(first_seg,feature_id,walk,copy_id)+1 size_diff=abs(size_on_new_genome-feature.size) [cov,id]=get_id_cov(feature_id,seg_size,feature_target_path) if (cov*100<args.coverage) or (id*100<args.identity): reason_features_not_transfered[2]+=1 match.append(False) # store the information that this gene copy didnt pass the filters return "no" if right_size(size_on_new_genome,max_diff,feature_id): line_gff=create_line_target_gff(first_seg,last_seg,feature_id,size_diff,inversion,walk,cov,id,copy_id) # transfer the gene write_line(line_gff,output_target_gff,False) # transfer all the gene's childs transfer_childs(feature_id,feature_target_path,walk,copy_id,inversion,seg_size) match.append(True) # store the information that this gene copy was transfered return size_diff else: reason_features_not_transfered[0]+=1 match.append(False) # store the information that this gene copy didnt pass the filters return "no" else : reason_features_not_transfered[1]+=1 match.append(False) # store the information that this gene copy didnt pass the filters return "no" def transfer_childs(feature_id,feature_target_path,walk,copy_id,inversion,seg_size): childs_list=get_child_list(feature_id) for child_id in childs_list: child=Features[child_id] # look for the first and last seg of the child in its parent path [child_first_seg,child_last_seg]=['',''] for seg in child.segments_list_source: # get first seg in the parent path if seg in feature_target_path: # parent path child_first_seg=seg break elif invert_seg(seg) in feature_target_path: child_first_seg=invert_seg(seg) break if child_first_seg!='': # check that the child feature is not absent in this occurence of the parent feature for seg in reversed(child.segments_list_source): # get last seg in the parent path if seg in feature_target_path: # parent path child_last_seg=seg break elif invert_seg(seg) in feature_target_path: child_last_seg=invert_seg(seg) break if inversion: # calculate the child feature size child_size_on_new_genome=get_feature_start_on_target_genome_inv(child_last_seg,child_id,walk,copy_id)-get_feature_stop_on_target_genome_inv(child_first_seg,child_id,walk,copy_id)+1 else: child_size_on_new_genome=get_feature_stop_on_target_genome(child_last_seg,child_id,walk,copy_id)-get_feature_start_on_target_genome(child_first_seg,child_id,walk,copy_id)+1 child_size_diff=abs(child_size_on_new_genome-child.size) for match in child.segments_list_target: # look for the right occurence of the child feature if (match[0]==walk) and (match[1]==copy_id): seg_list=match[2] [cov,id]=get_id_cov(child_id,seg_size,seg_list) # transfer the child feature: line_gff=create_line_target_gff(child_first_seg,child_last_seg,child_id,child_size_diff,inversion,walk,cov,id,copy_id) write_line(line_gff,output_target_gff,False) # handles all the transfer, variation, alignment (stats?), on the target genome. def transfer_on_target(segments_file, out_target_gff, out_var,out_aln,target_genome,target_genome_paths,list_feat_absent,seg_size,args): print(f'generation of {target_genome} output') stats=False list_feature_to_transfer= Features.keys() segments_list={} for feat in list_feature_to_transfer: if Features[feat].type=="gene": add_target_genome_paths(feat,target_genome_paths) if args.annotation: print(f' generation of {target_genome} gff') file_out=open(out_target_gff,'w') global output_target_gff output_target_gff=[0,"",file_out] reason_features_not_transfered=[0,0,0] # bad_size, absent_features, low_cov_id diff_size_transfered_features=[0,0] # [count,sum], to get the average for feat in list_feature_to_transfer: feature=Features[feat] if feature.parent=="": # usually a gene for match in feature.segments_list_target: transfer_stat=generate_target_gff(feat,seg_size,args,reason_features_not_transfered,match) # the childs are handled in this function if transfer_stat=="no": list_feat_absent.append(feat) else: diff_size_transfered_features[0]+=1 diff_size_transfered_features[1]+=transfer_stat write_line("",output_target_gff,True) file_out.close() if args.variation or args.alignment : # append dict of segments for which we may need the sequence for feat in list_feature_to_transfer: list_seg=Features[feat].segments_list_source feature_target_path=Features[feat].segments_list_target[0][1] for segment in list_seg: segments_list[segment[1:]]='' for segment in feature_target_path: segments_list[segment[1:]]='' if args.variation: print(f' generation of {target_genome} genes variation details') seg_seq=get_segments_sequence(segments_file,segments_list) file_out_var = open(out_var, 'w') global output_variations output_variations=[0,"",file_out_var] for feat in list_feature_to_transfer: # for each feature, get list of the segments where it is and the first and last segment of the feature on the new genome list_seg=Features[feat].segments_list_source [first_seg,last_seg,walk,copy_id,feature_target_path]=get_featurePath_ends(Features[feat].segments_list_target[0]) print_variations(first_seg,last_seg,feat,seg_seq,walk,copy_id) write_line("",output_variations,True) file_out_var.close() if args.alignment: print(f' generation of {args.source_genome} genes alignment with {target_genome} genes') if not args.variation: seg_seq=get_segments_sequence(segments_file,segments_list) file_aln=open(out_aln,'w') global output_target_aln output_target_aln=[0,"",file_aln] write_line("Sequence alignment generated from feature path comparison in pangenome graph. Made with GrAnnoT v1.\n\n",output_target_aln,False) for feat in list_feature_to_transfer: list_seg=Features[feat].segments_list_source [first_seg,last_seg,walk,copy_id,feature_target_path]=get_featurePath_ends(Features[feat].segments_list_target[0]) print_alignment(first_seg,feat,seg_seq) write_line("",output_target_aln,True) file_aln.close() if stats: # create objects for stats on how many segments are absent in target genome, their average length, etc feature_missing_segments=[[],[],[],[],[],[],[]] # [feature_missing_first,feature_missing_middle,feature_missing_last,feature_missing_all,feature_missing_total,feature_total,feature_ok] # the fist segment of the feature is missing - feature_missing_first # the last segment of the feature is missing - feature_missing_last # at least one middle segment of the feature is missing - feature_missing_middle # the entire feature is missing - feature_missing_all # at least one segment is missing first, last, or middle) - feature_missing_total # no segment is missing, the feature is complete - feature_ok # total number of features, with missing segments or not - feature_total # for each feature, get list of the segments where it is and the first and last segment of the feature on the new genome list_seg=Features[feat].segments_list_source [first_seg,last_seg,walk,copy_id,feature_target_path]=get_featurePath_ends(Features[feat].segments_list_target[0]) for feat in list_feature_to_transfer: stats_feature_missing_segment(feature_missing_segments,first_seg,last_seg,list_seg,feat,walk) if args.annotation: bad_size_features=reason_features_not_transfered[0];absent_features=reason_features_not_transfered[1];low_cov_id=reason_features_not_transfered[2] print(len(Features)-(bad_size_features+absent_features+low_cov_id),"out of",len(Features),"features are transfered.") print(bad_size_features,"out of",len(Features), "features are not transfered because they are too big or too small compared to the original genome.") print(absent_features,"out of",len(Features),"features are not transfered because they are absent in the new genome.") print(low_cov_id,"out of",len(Features),"features are not transfered because their coverage or sequence identity is below threshold.") print("average length difference of the transfered genes : ",diff_size_transfered_features[1]/diff_size_transfered_features[0]) stats_features(feature_missing_segments) segments_on_target_genome.clear() # empty dict # gives the first and last segments of a walk (list) def get_featurePath_ends(walk_info): # walk_info = [walk_name,copy_id,[list_seg]] walk_name=walk_info[0] if walk_name!='': seg_list=walk_info[2] copy_id=walk_info[1] [first_seg,last_seg]=[seg_list[0],seg_list[-1]] else: [first_seg,last_seg,walk_name,copy_id,seg_list]=['','','','',[]] return [first_seg,last_seg,walk_name,copy_id,seg_list] # get the alignment between the features on the source genome and the features on the target genome def print_alignment(first_seg,feat,seg_seq): if first_seg!='': # if the feature is not completly absent feature=Features[feat] feature_path_target_genome=feature.segments_list_target[0][1] feature_path_source_genome=feature.segments_list_source inversion=detect_feature_inversion(feature_path_source_genome,feature_path_target_genome) if inversion: feature_path_target_genome=invert_segment_list(feature_path_target_genome) line_aln=create_line_aln(feature_path_source_genome,feature_path_target_genome,seg_seq,feat) write_line(line_aln,output_target_aln,False) # functions to get the detail of the variations in the features # handle the variations analysis between the feature on the source genome and the feature on the target genome def print_variations(first_seg,last_seg,feat,seg_seq,walk,copy_id): if first_seg!='': # if the feature is not completly absent # add the else, output absent features [variation,feature_path_source_genome,feature_path_target_genome]=create_var(feat,first_seg,last_seg,walk,copy_id) # removes the strands in the segment lists feature=Features[feat] feat_start=feature.start # loop to go through both paths with i and j [i,j,var_count]=[0,0,0] # detect and print variations ignoring the strands start_feat_seg_target=feature_path_target_genome[0] while (i<len(feature_path_source_genome)) and (j<len(feature_path_target_genome)): if feature_path_source_genome[i] != feature_path_target_genome[j]: # if there is a difference between the two paths if feature_path_target_genome[j] not in feature_path_source_genome: # if the segment in target genome is absent in source genome if feature_path_source_genome[i] not in feature_path_target_genome: # if the segment in source genome is absent is target genome # if both segments are absent in the other genome, its a substitution variation.last_seg_in_target=feature_path_target_genome[j] if (variation.type=='insertion') or (variation.type=='deletion'): # print the current variation before treating the substitution print_current_var(variation,feat_start,start_feat_seg_target,feat,walk,copy_id) reset_var(variation) var_count+=1 if variation.type=='substitution': continue_var(variation,seg_seq,feature_path_source_genome,feature_path_target_genome,i,j,0) else: # initiate substitution init_new_var(variation,"substitution",feature_path_source_genome,feature_path_target_genome,i,j,seg_seq,feature) i+=1;j+=1 else: # target genome segment not in source_genome, but source_genome segment in target genome : insertion or continue substitution if variation.type=='deletion': # print the current variation before treating the insertion print_current_var(variation,feat_start,start_feat_seg_target,feat,walk,copy_id) reset_var(variation) var_count+=1 variation.last_seg_in_target=feature_path_target_genome[j] if variation.type=='insertion': continue_var(variation,seg_seq,feature_path_source_genome,feature_path_target_genome,i,j,0) elif variation.type=="substitution": while feature_path_target_genome[j]!=feature_path_source_genome[i]: continue_var(variation,seg_seq,feature_path_source_genome,feature_path_target_genome,i,j,2) j+=1 print_current_var(variation,feat_start,start_feat_seg_target,feat,walk,copy_id) reset_var(variation) var_count+=1 j-=1 else: # intiate insertion init_new_var(variation,"insertion",feature_path_source_genome,feature_path_target_genome,i,j,seg_seq,feature) j+=1 elif feature_path_source_genome[i] not in feature_path_target_genome: # source_genome segment not in target genome, but target genome segment in source_genome : deletion or continue substitution if variation.type=='insertion': # print the current variation before treating the deletion print_current_var(variation,feat_start,start_feat_seg_target,feat,walk,copy_id) reset_var(variation) var_count+=1 if variation.type=='deletion': continue_var(variation,seg_seq,feature_path_source_genome,feature_path_target_genome,i,j,0) elif variation.type=="substitution": while feature_path_target_genome[j]!=feature_path_source_genome[i]: continue_var(variation,seg_seq,feature_path_source_genome,feature_path_target_genome,i,j,1) i+=1 print_current_var(variation,feat_start,start_feat_seg_target,feat,walk,copy_id) reset_var(variation) var_count+=1 i-=1 else: # intiate deletion init_new_var(variation,"deletion",feature_path_source_genome,feature_path_target_genome,i,j,seg_seq,feature) i+=1 else : # if both segments are present in the other genome but not at the same position. weird case never found yet # can be a substitution. check later if its not an inversion variation.last_seg_in_target=feature_path_target_genome[j] if (variation.type=='insertion') or (variation.type=='deletion'): # print the current variation before treating the substitution print_current_var(variation,feat_start,start_feat_seg_target,feat,walk,copy_id) reset_var(variation) var_count+=1 if variation.type=='substitution': continue_var(variation,seg_seq,feature_path_source_genome,feature_path_target_genome,i,j,0) else: # initiate substitution init_new_var(variation,"substitution",feature_path_source_genome,feature_path_target_genome,i,j,seg_seq,feature) i+=1;j+=1 else: # segment present in both, no variation. print the running indel if there is one if variation.type!='': # print the current variation if there is one print_current_var(variation,feat_start,start_feat_seg_target,feat,walk,copy_id) var_count+=1 reset_var(variation) variation.last_seg_in_target=feature_path_target_genome[j] i+=1;j+=1 if (variation.type!=''): # if there was a current variation when we reached the end, print it print_current_var(variation,feat_start,start_feat_seg_target,feat,walk,copy_id) var_count+=1 reset_var(variation) if i<=len(feature_path_source_genome)-1: # if we didn't reach the length of the segment list for the first genome, the end is missing for the second genome print_last_deletion(variation,feature_path_source_genome,i,feat_start,feature,seg_seq) var_count+=1 reset_var(variation) if var_count==0: # if no variation was encountered print_novar(variation) # print a variation def print_current_var(variation,feat_start,start_feat_seg_target,feat,walk,copy_id): warning='' if variation.type=='insertion': [pos_old,pos_new]=get_old_new_pos_insertion(variation,feat_start,start_feat_seg_target,feat,walk,copy_id) line=f'{variation.feature_id}\t{variation.feature_type}\t{variation.chr}\t{variation.start_new}\t{variation.stop_new}\t{variation.size_new}\t{print_inversion(variation.inversion)}\t{variation.size_diff}\tinsertion\t-\t{variation.alt}\t{len(variation.alt)}\t{pos_old}\t{pos_new}{warning}\n' write_line(line,output_variations,False) elif variation.type=='deletion': [pos_old,pos_new]=get_old_new_pos_deletion(variation,feat_start,start_feat_seg_target,feat,walk,copy_id) line=f'{variation.feature_id}\t{variation.feature_type}\t{variation.chr}\t{variation.start_new}\t{variation.stop_new}\t{variation.size_new}\t{print_inversion(variation.inversion)}\t{variation.size_diff}\tdeletion\t{variation.ref}\t-\t{len(variation.ref)}\t{pos_old}\t{pos_new}{warning}\n' write_line(line,output_variations,False) elif variation.type=='substitution': warning=detect_small_inversion(variation) [pos_old,pos_new]=get_old_new_pos_substitution(feat_start,variation,start_feat_seg_target,feat,walk,copy_id) size_subs=f'{len(variation.ref)}/{len(variation.alt)}' line=f'{variation.feature_id}\t{variation.feature_type}\t{variation.chr}\t{variation.start_new}\t{variation.stop_new}\t{variation.size_new}\t{print_inversion(variation.inversion)}\t{variation.size_diff}\tsubstitution\t{variation.ref}\t{variation.alt}\t{size_subs}\t{pos_old}\t{pos_new}{warning}\n' # print the substitutions of different size as deletion+insertion. #if len(variation.ref) == len(variation.alt): # if the substituion is between two segment of the same size, print it # size_subs=len(variation.ref) # line=f'{variation.feature_id}\t{variation.feature_type}\t{variation.chr}\t{variation.start_new}\t{variation.stop_new}\t{variation.size_new}\t{inversion}\t{variation.size_diff}\tsubstitution\t{variation.ref}\t{variation.alt}\t{size_subs}\t{pos_old}\t{pos_new}{warning}\n' #else : # # if the segments of the substitution have a different size, print deletion then insertion at the same position. # line=f'{variation.feature_id}\t{variation.feature_type}\t{variation.chr}\t{variation.start_new}\t{variation.stop_new}\t{variation.size_new}\t{inversion}\t{variation.size_diff}\tdeletion\t{variation.ref}\t-\t{len(variation.ref)}\t{pos_old}\t{pos_new}{warning}\n' # line+=f'{variation.feature_id}\t{variation.feature_type}\t{variation.chr}\t{variation.start_new}\t{variation.stop_new}\t{variation.size_new}\t{inversion}\t{variation.size_diff}\tinsertion\t-\t{variation.alt}\t{len(variation.alt)}\t{pos_old}\t{pos_new}{warning}\n' write_line(line,output_variations,False) # check if a substitution could be an inversion inside a feature def detect_small_inversion(variation): [list_ref_common,list_alt_common]=[list(),list()] list_ref_unstrand=[segment_stranded[1:] for segment_stranded in variation.seg_ref] list_alt_unstrand=[segment_stranded[1:] for segment_stranded in variation.seg_alt] for seg in variation.seg_ref: if seg[1:] in list_alt_unstrand: list_ref_common.append(seg) for seg in variation.seg_alt: if seg[1:] in list_ref_unstrand: list_alt_common.append(seg) if (len(list_ref_common)>len(list_ref_unstrand)*0.5) and (len(list_alt_common)>len(list_alt_unstrand)*0.5): return f'\t# Suspected inversion within this substitution.' else: return '' # print a deletion at the end of a feature def print_last_deletion(variation,feature_path_source_genome,i,feat_start,feature,seg_seq): seg_del=search_segment(feature_path_source_genome[i]) pos_old=int(Segments[seg_del].start)-int(feat_start)+1 del_sequence=get_sequence_list_seg(feature_path_source_genome,i,feature,seg_seq) length=len(del_sequence) pos_new=str(int(variation.size_new)+1) # the deletion is at the end of the feature on the new genome if variation.inversion: inversion='1' else: inversion='0' line=f'{variation.feature_id}\t{variation.feature_type}\t{variation.chr}\t{variation.start_new}\t{variation.stop_new}\t{variation.size_new}\t{inversion}\t{variation.size_diff}\tdeletion\t{del_sequence}\t-\t{length}\t{pos_old}\t{pos_new}\n' write_line(line,output_variations,False) # print a feature with no variation def print_novar(variation): line=f'{variation.feature_id}\t{variation.feature_type}\t{variation.chr}\t{variation.start_new}\t{variation.stop_new}\t{variation.size_new}\t{print_inversion(variation.inversion)}\t{variation.size_diff}\tno_var\t-\t-\t-\t-\t-\n' write_line(line,output_variations,False) # get a digit for the inversion (convert bool in int) def print_inversion(bool): if bool==True: return '1' else: return '0' # not used. # get all the segments from a list that are not on the target genome def get_list_segments_missing(list_seg,segments_on_target_genome): segments_missing=[] for segment in list_seg: if segment not in segments_on_target_genome: segments_missing.append(Segments[segment]) return segments_missing # for two segments on the target genome, find a walk that has both def find_common_walk(seg1,seg2): for walk in segments_on_target_genome[seg1]: if walk in segments_on_target_genome[seg2]: return walk return False