import ClassSegFeat as Class import subprocess # functions to create the segments and the features # create a segment with its first feature def init_seg(line,feature): line=line.split() seg_id=line[3][1:] chr=line[0] start=line[1] stop=line[2] # add the current feature to the list of features that are on the segment feature_strand=line[10] feature_stranded=feature_strand+feature feat=list() feat.append(feature_stranded) # create the segment Segments[seg_id]=Class.Segment(seg_id,feat,chr,start,stop) # create a feature with the segment its on def init_feature(line): line=line.split() feature_id=line[12].split(';')[0].split("=")[1].replace(".","_").replace(":","_") type=line[6] annot=line[12] chr=line[4] start=line[7] stop=line[8] childs=list() # add the current segment to the list of segments that have the feature seg=line[3][1:] strand=line[10] seg_stranded=strand+seg segments_list=list() segments_list.append(seg_stranded) # if the current feature has a parent, add the current feature in the childs list of its parent if annot.split(";")[1].split("=")[0]=="Parent": # for annotations that look like : ID=LOC_Os01g01010.1:exon_7;Parent=LOC_Os01g01010.1, where the parent is in the field 1 parent=annot.split(";")[1].split("=")[1].replace(".","_").replace(":","_") add_child(parent,feature_id) elif annot.split(";")[2].split("=")[0]=="Parent": # for annotations that look like : ID=LOC_Os01g01010.1;Name=LOC_Os01g01010.1;Parent=LOC_Os01g01010, where the parent is in the field 2 parent=annot.split(";")[2].split("=")[1].replace(".","_").replace(":","_") add_child(parent,feature_id) else: parent="" # create the feature Features[feature_id]=Class.Feature(feature_id,type,chr,start,stop,annot,childs,parent,segments_list) # add a feature to an existing segment def add_feature(seg,new_feature,strand): new_feature_stranded=strand+new_feature if new_feature_stranded not in Segments[seg].features: Segments[seg].features.append(new_feature_stranded) # add a child feature to an existing feature def add_child(feat,new_child): if feat in Features.keys(): # if the parent feature exists if new_child not in Features[feat].childs: Features[feat].childs.append(new_child) # add a segment to an existing feature def add_seg(feat,new_seg,strand): seg_stranded=strand+new_seg if seg_stranded not in Features[feat].segments_list: Features[feat].segments_list.append(seg_stranded) # create a note for the child features that do not have annotation. def set_note(id): # the note contains information on the function of the feature and is used for statistics on hypothetical/putatives features. feat=Features[id] if feat.type=="gene": # if the feature is a gene, the note is the last field of its annotation. feat.note=feat.annot.split(';')[-1] else: # else, the note will be the note of the gene that contains the feature. in my gff, only the genes have an annotation. # we go back to the parent of the feature, and its parent if necessary, etc, until we find the gene. curent=feat.parent annot_found=False while annot_found==False: if Features[curent].type=="gene": # if/once we found the gene, we get its note to transfer it to the child feature note=Features[curent].annot.split(';')[-1] feat.note=note annot_found=True else: # if we didn't find the gene, we go back to the current feature's parent until we find it curent=Features[Features[curent].parent].id # create all the Segment and Feature objects in the dictionnaries Segments and Features def create_seg_feat(intersect_path): global Features global Segments Segments={} Features={} # open the file with the intersect between the segments and the gff file = open(intersect_path, 'r') lines=file.readlines() for line in lines: # get the ids for the dictionnaries' keys feature_id=line.split()[12].split(';')[0].split("=")[1].replace(".","_").replace(":","_") segment_id=line.split()[3][1:] if feature_id not in Features: # if the feature doesn't exist, create it and add the current segment to its seg list init_feature(line) else: # if it exists, add the current segment to the list of segments that have the existing feature strand=line.split()[10] add_seg(feature_id,segment_id,strand) if segment_id not in Segments: # if the segment doesn't exist, create it and add the current feature to its feat list init_seg(line, feature_id) else: # if it exists, add the current feature to the list of features on the existing segment strand=line.split()[10] add_feature(segment_id,feature_id,strand) # for all the features, add the note (information on the function of the feature) for feat_id in Features: set_note(feat_id) file.close() # functions to generate the graph's gff from the segments and features created with create_seg_feat # get the feature's start position on the segment def get_start(seg,feat): s=Segments[seg] f=Features[feat] if s.start>f.start: result=1 else: result=f.start-s.start return result # get the feature's stop position on the segment def get_stop(seg,feat): s=Segments[seg] f=Features[feat] if s.stop<f.stop: result=s.size else: result=f.stop-s.start return result # go through all the segments in Segments and prints the gff, with one line for each segment/feature intersection def graph_gff(file_out): print("generation of the graph's gff") file_out = open(file_out, 'w') for segment in Segments: # get the list of the features on the segment features_seg=Segments[segment].features # go through all these features, and print the gff line for each for feature_stranded in features_seg: strand=feature_stranded[0:1] feature=feature_stranded[1:] segment_stranded=strand+segment type=Features[feature].type start=get_start(segment,feature) stop=get_stop(segment,feature) # get the rank and the total number of ocurrences for the feature rank=str(Features[feature].segments_list.index(segment_stranded)+1) total=str(len(Features[feature].segments_list)) # create the annotation with the rank information annotation=Features[feature].annot+";Rank_occurrence="+rank+";Total_occurrences="+total # write the gff line in the output file line=segment+"\tgraph_gff\t"+type+"\t"+str(start)+"\t"+str(stop)+"\t.\t"+strand+"\t.\t"+annotation+"\n" file_out.write(line) file_out.close() # functions to generate a genome's gff from the graph's gff # get the start position of the features on the linear genome, using their coordinates on the graph and the coordinantes of the segments on the genome def get_start_2(seg_start, seg_genome, feat_id): s_start=seg_genome[seg_start][1] f_start=get_start(seg_start,feat_id) start=int(s_start)+int(f_start) return start # get the stop position of the features on the linear genome, using their coordinates on the graph and the coordinantes of the segments on the genome def get_stop_2(seg_stop, seg_genome, feat_id): s_start=seg_genome[seg_stop][1] f_stop=get_stop(seg_stop,feat_id) stop=int(s_start)+int(f_stop) return stop # get the position of a part of a feature on the complete feature (on the original genome) def get_position(seg_start,seg_stop,feat_start,feature,seg_genome): # start position of the entire feature on the reference start_gene_start=Segments[feat_start].start+get_start(feat_start,feature.id)-1 # start position of the piece of the feature on the reference start_first_seg=Segments[seg_start].start+get_start(seg_start,feature.id)-1 # start and stop position of the feature on azucena, to get the length of the piece of the feature start_azu=get_start_2(seg_start,seg_genome,feature.id) stop_azu=get_stop_2(seg_stop,seg_genome,feature.id) # start position of the piece of the feature on the complete feature start_gene=int(start_first_seg)-int(start_gene_start)+1 # stop position : start+length stop_gene=start_gene+(stop_azu-start_azu) position=";position="+str(start_gene)+"-"+str(stop_gene) #position=";start_position_on_feature="+str(start_gene)+":stop_position_on_feature="+str(stop_gene) return position # get the proportion of a part of the feature on the total length def get_proportion(seg_start,seg_stop,seg_genome,feature): start_azu=get_start_2(seg_start,seg_genome,feature.id) # start position of the feature on azucena stop_azu=get_stop_2(seg_stop,seg_genome,feature.id) # stop position of the feature on azucena proportion=";proportion="+str(stop_azu-start_azu+1)+"/"+str(feature.size) #proportion=";number_bases="+str(stop_azu-start_azu+1)+";total_bases="+str(feature.size) return proportion # returns the gff line to write in the output file def write_line(list_seg,i,feat,seg_start,feat_start,seg_genome): seg_stop=list_seg[i-1][1:] feature=Features[feat] chr=seg_genome[seg_start][0] strand=list_seg[i-1][0:1] # start and stop position of the feature on azucena start_azu=get_start_2(seg_start,seg_genome,feature.id) stop_azu=get_stop_2(seg_stop,seg_genome,feature.id) proportion=get_proportion(seg_start,seg_stop,seg_genome,feature) position=get_position(seg_start,seg_stop,feat_start,feature,seg_genome) annotation=feature.annot+proportion+position out_line=chr+"\tgraph_gff\t"+feature.type+"\t"+str(start_azu)+"\t"+str(stop_azu)+"\t.\t"+strand+"\t.\t"+annotation+"\n" return out_line # writes the gff of azucena using the gff of the graph def genome_gff(pos_seg, gff, out): print("generation of the genome's gff ") # create a dictionnary with the positions of the segments on the genome to transfer on seg_genome={} bed=open(pos_seg,'r') lines=bed.readlines() for line in lines: line=line.split() s_id=line[3][1:] ch=line[0] start=line[1] stop=line[2] seg_genome[s_id]=list([ch,start,stop]) bed.close() gff=open(gff,'r') file_out = open(out, 'w') file_out_alt=open("azucena_chr10_alt.gff",'w') file_out2 = open("segments_manquants.txt", 'w') lines=gff.readlines() diff_list=list() stats=True # get the list of all the features to transfer from the gff list_feature=list() for line in lines: id=(line.split()[8].split(";")[0].split("=")[1].replace(".","_").replace(":","_")) if id not in list_feature: list_feature.append(id) # create objects for stats on how many segments are absent in azucena, their average length, etc if stats==True: seg_first=list() seg_middle=list() seg_last=list() seg_total_abs=list() seg_ok=list() seg_entier=list() seg_total=list() feature_missing_first=list() feature_missing_middle=list() feature_missing_last=list() feature_missing_all=list() feature_missing_total=list() feature_total=list() feature_ok=list() #size_seg_missing=list() # for each feature, get list of the segments where it is and the first and last segment of the feature on the genome for feat in list_feature: list_seg=Features[feat].segments_list size_list=len(list_seg) first_seg="0" for segment in list_seg: if segment[1:] in seg_genome: first_seg=segment[1:] break last_seg="0" for segment in reversed(list_seg): if segment[1:] in seg_genome: last_seg=segment[1:] break segments_missing=list() # stats on how many segments are absent in azucena, their average length, etc # for the segments # segment missing that is at the start of a feature - seg_first # segment missing that is at the end of a feature - seg_last # segment missing that is in the middle of a feature - seg_middle # segment missing that contains the entire feature - seg_entier # total number of genes missing - seg_total_abs # segments not missing - seg_ok # segments missing of not - seg_total if (stats==True): for segment in list_seg: # counts the segments in each category seg_len=Segments[segment[1:]].size if segment[1:] not in seg_genome: # the segment is missing seg_total.append(seg_len) segments_missing.append(Segments[segment[1:]]) if segment==list_seg[0]: # the segment is the first of the feature if segment==list_seg[-1]: # the segment is the last of the feature seg_entier.append(seg_len) # the segment is the first and the last, so it contains the entire feature else: seg_first.append(seg_len) elif segment==list_seg[-1]: # the segment is the last of the feature seg_last.append(seg_len) else: seg_middle.append(seg_len) else: # the segment is present on the genome seg_ok.append(seg_len) # for the features : # the fist segment of the feature is missing - feature_missing_first # the last segment of the feature is missing - feature_missing_last # at least one middle segment of the feature is missing - feature_missing_middle # the entire feature is missing ->feature_missing_all # at least one segment is missing first, last, or middle) - feature_missing_total # no segment is missing, the feature is complete - feature_ok # total number of features, with missing segments or not - feature_total if (stats==True): feature_total.append(feat) if (first_seg=='0') & (last_seg=='0') : # no segment of the feature is in the genome, the feature is missing entirely feature_missing_all.append(feat) elif first_seg != list_seg[0][1:]: # the first segment is missing feature_missing_first.append(feat) elif last_seg!=list_seg[-1][1:]: # the last segment is missing feature_missing_last.append(feat) # go through all the segments, check if some are missing in the middle of the feature elif (len(list_seg)!=1) & (feat not in feature_missing_all): # to access the second to last element for segment in list_seg[1-(len(list_seg)-2)]: if segment not in seg_genome: feature_missing_middle.append(feat) break # go through the segments, to see if one is missing anywhere on the feature for segment in list_seg: if segment[1:] not in seg_genome: if feat not in feature_missing_total: feature_missing_total.append(feat) break # if the feature doesnt have a missing segment, it is complete. ADD THE PATH CHECK !! if feat not in feature_missing_total: feature_ok.append(feat) # outputs each fragment of each feature, with its position on the new genome and its annotation : # loop that goes through all the segments that have the current feature # keeps the first segment present in the genome found, and when it finds a segment absent in the genome, prints the part of the fragment, and resets the first segment present. # continues to go through the segments, keeps the next segment present in the genome, and when it finds a segment absent, prints the second part of the feature. # etc. # at the end of the loop, prints the last part of the fragment. feat_start="empty" # stocks the first segment of the feature seg_start="empty" # stocks the first segment of the current part of the feature #seg_stop="empty" # stocks the last segment of the current part of the feature for i in range(0,size_list): if list_seg[i][1:] in seg_genome: # look for a segment present in the genome if feat_start=="empty": feat_start=list_seg[i][1:] if seg_start=="empty": # if we dont have a start, take the current segment for the start of the part of the feature seg_start=list_seg[i][1:] #else: if we already have a start, keep going though the segments until we find a stop (segment not in azucena) else: if seg_start!="empty": # found a stop. so print the line, reset seg_start, and keep going through the segments to find the next seg_start out_line=write_line(list_seg,i,feat,seg_start,feat_start,seg_genome) file_out.write(out_line) seg_start="empty" #seg_stop="empty" #else: if the current segment is not in azucena but there is no start, keep looking for a start # print the last piece of the feature in the end if list_seg[i][1:] in seg_genome: out_line=write_line(list_seg,i+1,feat,seg_start,feat_start,seg_genome) file_out.write(out_line) # outputs each feature once, from the first to the last segment present on the new genome and its annotation : ADD THE SIZE PARAMETER if (first_seg!='0') & (last_seg!='0'): chr=seg_genome[first_seg][0] strand=list_seg[i-1][0:1] line=chr+" graph_gff "+Features[feat].type+" "+str(get_start_2(first_seg,seg_genome,feat))+" "+str(get_stop_2(last_seg,seg_genome,feat))+" . "+strand+" . "+Features[feat].annot+"\n" file_out_alt.write(line) # outputs the detail of the missing fragments for each feature : # get the list of the segments in a feature that are missing in the genome for segment in list_seg: if segment[1:] not in seg_genome: segments_missing.append(Segments[segment[1:]]) # if there are missing segments, print them if (len(segments_missing)!=0) & (first_seg!='0') & (last_seg!='0'): # get the lengths of the feature, on the original genome or on the new one start2=get_start_2(first_seg,seg_genome,feat) stop2=get_stop_2(last_seg,seg_genome,feat) size_on_genome=int(stop2)-int(start2)+1 size_diff=size_on_genome-Features[feat].size diff_list.append(int(size_diff)) # to have stats on the size of the segments missing line=feat+" : "+str(len(segments_missing))+" variations. length difference (length in the new genome-length in the original genome) : "+str(size_diff)+"\n" # length of the original feature : "+str(Features[feat].size)+", length of the feature on this genome : "+str(size_on_genome)+"\n" file_out2.write(line) # for each segment missing, see where it is on the feature (start, middle, end) for segment in segments_missing: if (segment.id==Features[feat].segments_list[0][1:]) & (segment.id!=Features[feat].segments_list[-1][1:]):#premier et pas dernier line="first segment of the feature is missing.\n" elif (segment.id==Features[feat].segments_list[-1][1:]) & ((segment.id!=Features[feat].segments_list[0][1:])):#dernier et pas premier line="last segment of the feature is missing.\n" elif (segment.id!=Features[feat].segments_list[0][1:]) & (segment.id!=Features[feat].segments_list[-1][1:]):#ni premier ni dernier line="variation in the middle of the feature, of length "+str(segment.size)+"\n" # check if its a substitution of an indel # if its a substitution ou a deletion, print what it is replacing in the original feature #size_seg_missing.append(segment.size) file_out2.write(line) file_out2.write("\n") elif len(segments_missing)!=0: line=feat+": feature entirely absent\n\n" file_out2.write(line) else: line=feat+": no variation.\n\n" file_out2.write(line) #print("difference moyenne : "+str(sum(diff_list)/len(diff_list))) #import matplotlib.pyplot as plt #plt.hist(diff_list, range=(-1000,1000)) #plt.show() #print("segment au millieu taille moyenne : "+str(sum(size_seg_missing)/len(size_seg_missing))) file_out.close() gff.close() file_out2.close() file_out_alt.close() # print stats from statistics import median, mean if stats==True: # prints the stats for the segments #print(len(seg_first),"segments missing at the beginning of a feature, of mean length", round(mean(seg_first),2), "and median length",median(seg_first)) #print(len(seg_middle),"segments missing in the middle of a feature, of mean length", round(mean(seg_middle),2), "and median length",median(seg_middle)) #print(len(seg_last), "segments missing at the end of a feature, of mean length", round(mean(seg_last),2), "and median length",median(seg_last)) #print(len(seg_entier),"segments that have an entiere feature (not in beggining/middle/end) missing, of mean length", round(mean(seg_entier),2), "and median length",median(seg_entier)) #print(len(seg_total),"segments that have a feature piece missing, of mean length", round(mean(seg_total),2), "and median length",median(seg_total)) #print(len(seg_ok),"segments that have a feature found, of mean length", round(mean(seg_ok),2), "and median length", median(seg_ok)) # creates files with the features by category (missing first, middle, end segment, etc) feat_miss_first=open('features_missing_first.txt','w') feat_miss_first.write("features missing the first segment on azucena :\n") for first in feature_missing_first : feat_miss_first.write(Features[first].annot) if Features[first].type!='gene': feat_miss_first.write(';') feat_miss_first.write(Features[first].note) feat_miss_first.write("\n") feat_miss_first.close() feat_miss_middle=open('features_missing_middle.txt','w') feat_miss_middle.write("\nfeatures missing a middle segment on azucena :\n") for middle in feature_missing_middle : feat_miss_middle.write(Features[middle].annot) if Features[middle].type!='gene': feat_miss_middle.write(';') feat_miss_middle.write(Features[middle].note) feat_miss_middle.write("\n") feat_miss_middle.close() feat_miss_last=open('features_missing_last.txt','w') feat_miss_last.write("\nfeatures missing the last segment on azucena :\n") for last in feature_missing_last : feat_miss_last.write(Features[last].annot) if Features[last].type!='gene': feat_miss_last.write(';') feat_miss_last.write(Features[last].note) feat_miss_last.write("\n") feat_miss_last.close() feat_miss=open('features_missing.txt','w') feat_miss.write("\nfeatures missing entirely on azucena :\n") for entier in feature_missing_all : feat_miss.write(Features[entier].annot) if Features[entier].type!='gene': feat_miss.write(';') feat_miss.write(Features[entier].note) feat_miss.write("\n") feat_miss.close() feat_miss_total=open('features_missing_total.txt','w') feat_miss_total.write("\nfeatures missing at least one segment on azucena :\n") for total in feature_missing_total : feat_miss_total.write(Features[total].annot) if Features[total].type!='gene': feat_miss_total.write(';') feat_miss_total.write(Features[total].note) feat_miss_total.write("\n") feat_miss_total.close() feat_all=open('all_features.txt','w') for feat in list_feature: feat_all.write(Features[feat].annot) if Features[feat].type!='gene': feat_all.write(';') feat_all.write(Features[feat].note) feat_all.write("\n") feat_all.close() feat_ok=open('features_ok.txt','w') feat_ok.write("\nfeatures entirely present in azucena :\n") for ok in feature_ok : feat_ok.write(Features[ok].annot) if Features[ok].type!='gene': feat_ok.write(';') feat_ok.write(Features[ok].note) feat_ok.write("\n") feat_ok.close() # prints the stats for the features (hypothetical/putative rate, by category) hyp_put=int(subprocess.getoutput("grep 'hypothetical\|putative' features_missing_first.txt | wc -l",)) total=len(feature_missing_first) print("\nthe first segment is missing for", len(feature_missing_first) ,"features, including",round(100*(hyp_put)/total,2),"% hypothetical or putative.") hyp_put=int(subprocess.getoutput("grep 'hypothetical\|putative' features_missing_middle.txt | wc -l",)) total=len(feature_missing_middle) print("a middle segment is missing for", len(feature_missing_middle) ,"features, including",round(100*(hyp_put)/total,2),"% hypothetical or putative.") hyp_put=int(subprocess.getoutput("grep 'hypothetical\|putative' features_missing_last.txt | wc -l",)) total=len(feature_missing_last) print("the last segment is missing for", len(feature_missing_last) ,"features, including",round(100*(hyp_put)/total,2),"% hypothetical or putative.") hyp_put=int(subprocess.getoutput("grep 'hypothetical\|putative' features_missing.txt | wc -l",)) total=len(feature_missing_all) print(len(feature_missing_all) ,"features are entirely missing, including",round(100*(hyp_put)/total,2),"% hypothetical or putative.") hyp_put=int(subprocess.getoutput("grep 'hypothetical\|putative' features_missing_total.txt | wc -l",)) total=len(feature_missing_total) print("there is at least one segment missing for", len(feature_missing_total) ,"features, including",round(100*(hyp_put)/total,2),"% hypothetical or putative.") hyp_put=int(subprocess.getoutput("grep 'hypothetical\|putative' features_ok.txt | wc -l",)) total=len(feature_ok) print(len(feature_ok) ,"features are entirely present in the new genome, including",round(100*(hyp_put)/total,2),"% hypothetical or putative.") hyp_put=int(subprocess.getoutput("grep 'hypothetical\|putative' all_features.txt | wc -l",)) total=len(list_feature) print("there is", len(list_feature) ,"features in total, including",round(100*(hyp_put)/total,2),"% hypothetical or putative.") command="rm features_missing*.txt && rm all_features.txt && rm features_ok.txt" subprocess.run(command,shell=True)