# created by Nina Marthe 2023 - nina.marthe@ird.fr # licensed under MIT import os import subprocess from .Graph_gff import * from .Functions_output import * from .argparser import * #from inference import * from pathlib import Path def main(): args=arg() read_args(args) # intersect is in the output directory intersect=Path(args.outdir.joinpath("intersect")).resolve() gfa=args.graph load_intersect(intersect.as_posix(),args.verbose) segments=args.segment_coordinates_path.joinpath("segments.txt") # outputs the gff and gaf of the graph if args.graph_gff or args.graph_gaf: print("\n") if args.graph_gff: out_graph_gff=args.outdir.joinpath(gfa.stem).as_posix()+".gff" # what if there is several suffixes and the last one isn't '.gfa' ? graph_gff(out_graph_gff,args.verbose) if args.graph_gaf: seg_size=get_segments_length(segments,False) out_graph_gaf=args.outdir.joinpath(gfa.stem).as_posix()+".gaf" graph_gaf(out_graph_gaf,seg_size,args.verbose) # if a transfer on a target genome is asked # what about pav ?? if args.annotation or args.variation or args.alignment: if args.verbose: print('\n') # get the target genomes if there is none specified if len(args.target)==0: walk_path=args.segment_coordinates_path.joinpath("walks.txt") total_lines = len(["" for line in open(walk_path,"r")]) with open(walk_path,'r') as walks: for line in tqdm(walks,desc="Fetching all the genomes in the graph for the transfer",total=total_lines,unit=" line",disable=not args.verbose): genome_name=line.split()[1] if (args.source_genome not in genome_name) and (genome_name not in args.target) and ("MINIGRAPH" not in genome_name): args.target.append(genome_name) if args.verbose: print(f" Genomes found : {args.target}") # get haplotypes for each target genome if args.haplotype: target_list=[] for genome in args.target: bed_files=list(args.segment_coordinates_path.glob(f"*{genome}*.bed")) for haplotype in bed_files: haplotype_split=haplotype.name.split("#") target_list.append(haplotype_split[0]+"#"+haplotype_split[1]) args.target=target_list # if a pav matrix is asked, create dictionnary to store the features, and for each feature the value for all the target genomes. pav_dict={} if args.pav_matrix: pav_line=len(args.target)*[1] pav_dict["gene_id"]=list(args.target) for feat in Features.keys(): if Features[feat].type=='gene': pav_dict[feat]=pav_line.copy() # build a dictionnary with the segment sizes to compute the coverage and id if not args.graph_gaf: seg_size=get_segments_length(segments,args.verbose) genome_index=0 for target_genome in args.target: print(f'\n{target_genome} transfer :') # create directory to store output files genome_dir=Path(args.outdir.joinpath(target_genome)).resolve() genome_dir.mkdir(exist_ok=True) # get list of files in seg_coord segment_coord_files=list(args.segment_coordinates_path.glob(f"*{target_genome}*.bed")) # create dictionnaries with paths and segments positions. print(f' Loading the walks for the genome {target_genome}') walks_path=args.segment_coordinates_path.joinpath("walks.txt").as_posix() target_genome_paths=get_paths(walks_path,target_genome,args.haplotype) if not args.verbose: print(" Loading the segments coordinates") for file in segment_coord_files: genome_name=get_genome_name(args.target,file.name) if genome_name==target_genome : if args.verbose: print(f' Loading the segments coordinates for the path {file.stem}') get_segments_positions_on_genome(file.as_posix()) # create output files names out_target_gff=genome_dir.joinpath(f'{target_genome}.gff') out_target_var=genome_dir.joinpath(f'{target_genome}_var.txt') out_target_aln=genome_dir.joinpath(f'{target_genome}_aln.txt') list_feat_absent=[] # do the annotation transfer (or var/aln) transfer_on_target(segments,out_target_gff,out_target_var,out_target_aln,target_genome,target_genome_paths,list_feat_absent,seg_size,args) # if pav matrix is asked, add the information of this transfer on the matrix if args.pav_matrix: for feat in list_feat_absent: pav_dict[feat][genome_index]=0 genome_index+=1 # print the pav matrix if args.pav_matrix: print('\nGeneration of the presence-absence matrix for the transfered genes') pav_output='' for line in pav_dict: pav_output+=line for field in pav_dict[line]: pav_output+="\t"+str(field) pav_output+="\n" out_pav=args.outdir.joinpath("PAV_matrix.txt") with open(out_pav,'w') as file_out_pav: file_out_pav.write(pav_output)