# -*- coding: UTF-8 -*- # Python """ Functions to call ECMWF Reanalysis with CDS-api - ERA5-land daily request - request a list of daily variables dedicated to the calculus of ET0 and the generation of MODSPA daily forcing files heavily modified from @rivallandv's original file @author: auclairj """ import os # for path exploration and file management import numpy as np # for math on arrays import xarray as xr # to manage nc files import rioxarray # to manage georeferenced images from datetime import datetime # to manage dates from fnmatch import fnmatch # for file name matching import pandas as pd # to manage dataframes import rasterio as rio # to manage geotiff images import geopandas as gpd # to manage shapefile crs projections from rasterio.mask import mask # to mask images from rasterio.enums import Resampling # reprojection algorithms import netCDF4 as nc # to write netcdf4 files from tqdm import tqdm # to follow progress from multiprocessing import Pool # to parallelize reprojection from psutil import virtual_memory # to check available ram from psutil import cpu_count # to get number of physical cores available from modspa_pixel.config.config import config # to import config file from modspa_pixel.source.modspa_samir import calculate_time_slices_to_load # to optimise I/O operations import warnings # to suppress pandas warning # CDS API external library # source: https://pypi.org/project/cdsapi/ import cdsapi # to download cds data # FAO ET0 calculator external library # Notes # source: https://github.com/Evapotranspiration/ETo # documentation: https://eto.readthedocs.io/en/latest/ import eto # to calculate ET0 def era5_enclosing_shp_aera(bbox: list[float], pas: float) -> tuple[float, float, float, float]: """ Find the four coordinates including the boxbound scene to agree with gridsize resolution system projection: WGS84 lat/lon degree Arguments ========= 1. area: ``list[float]`` bounding box of the demanded area list of floats: [lat north, lon west, lat south, lon east] in degree WGS84 2. pas: ``float`` gridsize Returns ======= 1. era5_area: ``tuple[float, float, float, float]`` coordinates list corresponding to N,W,S,E corners of the grid in decimal degree .. note:: gdal coordinates reference upper left corner of pixel, ERA5 coordinates refere to center of grid. To resolve this difference an offset of pas/2 is applied """ lat_max, lon_min, lat_min, lon_max = bbox[3], bbox[0], bbox[1], bbox[2] # North era5_lat_max = round((lat_max // pas + 1) * pas, 2) # West era5_lon_min = round((lon_min // pas) * pas, 2) # South era5_lat_min = round((lat_min // pas) * pas, 2) # Est era5_lon_max = round((lon_max // pas + 1) * pas, 2) era5_area = [era5_lat_max, era5_lon_min, era5_lat_min, era5_lon_max] return era5_area # [N,W,S,E] def split_dates_by_year(start_date: str, end_date: str) -> list[tuple[str, str]] | list: """ Given a start and end date, returns tuples of start and end dates IN THE SAME YEAR. Arguments ========= 1. start_date: ``str`` start date in YYYY-MM-DD format 2. end_date: ``str`` end date in YYYY-MM-DD format Returns ======= 1. dates: ``list[tuple[str, str]] | list`` output tuples of start and end dates """ start = datetime.strptime(start_date, '%Y-%m-%d') end = datetime.strptime(end_date, '%Y-%m-%d') if start.year == end.year: return [(start_date, end_date)] dates = [] current_start = start while current_start.year <= end.year: if current_start.year == end.year: current_end = end else: current_end = datetime(current_start.year, 12, 31) dates.append((current_start.strftime('%Y-%m-%d'), current_end.strftime('%Y-%m-%d'))) current_start = datetime(current_start.year + 1, 1, 1) return dates def call_era5landhourly(args: tuple) -> None: """ Download weather data for the given variable. Arguments are packed in a tuple for multiprocessing. Arguments ========= 1. variable: ``str`` name of ER5-Land weather variable 2. output_path: ``str`` output path to download netcdf file 3. start_date: ``str`` start date in YYYY-MM-DD format (start and end date must be in the same year to reduce data to download) 4. end_date: ``str`` end date in YYYY-MM-DD format (start and end date must be in the same year to reduce data to download) 5. bbox: ``list[float, float, float, float]`` bounding box of area to download data 6. gridsize: ``float`` ``default = 0.1`` gridsize of data to download Returns ======= 1. output_filename: ``str`` output file name """ variable, output_path, start_date, end_date, bbox, gridsize = args # full path name of the output file output_filename = os.path.join(output_path, 'ERA5-land_' + variable + '_' + start_date + '_' + end_date + '.nc') # Get time periods for download start_date = datetime.strptime(start_date, '%Y-%m-%d') end_date = datetime.strptime(end_date, '%Y-%m-%d') # Generate time inputs months = [] current = start_date while current <= end_date: month_str = current.strftime('%m') if month_str not in months: months.append(month_str) # Move to the next month if current.month == 12: current = current.replace(year=current.year + 1, month=1) else: current = current.replace(month=current.month + 1) # Generate the list of days days = [f'{day:02}' for day in range(1, 32)] # Generate time time = [f'{hour:02}:00' for hour in range(0, 24)] # Get modified bbox area = era5_enclosing_shp_aera(bbox, gridsize) # Check if file already exists if os.path.isfile(output_filename): print('\n', output_filename, 'already exist !\n') else: # cds api request client = cdsapi.Client(timeout = 300) try: client.retrieve('reanalysis-era5-single-levels', request = { 'product_type': ['reanalysis'], 'variable': [variable], 'year': [start_date.strftime(format = '%Y')], 'month': months, 'day': days, 'time': time, 'data_format': 'netcdf', 'download_format': 'unarchived', 'area': area, 'grid': [gridsize, gridsize], }, target = output_filename) print('\n', output_filename, ' downloaded !\n') except Exception as e: print('\nRequest failed, error message:\n\n', e, '\n') return output_filename def uz_to_u2(u_z: list[float], h: float) -> list[float]: """ The wind speed measured at heights other than 2 m can be adjusted according to the follow equation Arguments ---------- u_z : TYPE float array measured wind speed z m above the ground surface, ms- 1. h : TYPE float height of the measurement above the ground surface, m. Returns ------- u2 : TYPE float array average daily wind speed in meters per second (ms- 1 ) measured at 2 m above the ground. """ return u_z * 4.87/(np.log(67.8 * h - 5.42)) def ea_calc(T: float) -> float: """ comments Actual vapour pressure (ea) derived from dewpoint temperature ' Arguments ---------- T : Temperature in degree celsius. Returns ------- e_a :the actual Vapour pressure in Kpa """ return 0.6108 * np.exp(17.27 * T / (T + 237.15)) def combine_weather2netcdf(rain_file: str, ET0_tile: str, ndvi_path: str, save_path: str, available_ram: int) -> None: """ Convert the Rain and ET0 geotiffs into a single weather netcdf dataset. Arguments ========= 1. rain_file: ``str`` path to Rain tif 2. ET0_tile: ``str`` path to ET0 tif 3. ndvi_path: ``str`` path to ndvi cube 4. save_path: ``str`` save path of weather netcdf dataset 5. available_ram: ``int`` available ram in GiB for conversion Returns ======= ``None`` """ # Open tif files rain_tif = rio.open(rain_file) ET0_tif = rio.open(ET0_tile) # Open ndvi netcdf to get structure ndvi = xr.open_dataset(ndvi_path) dates = ndvi.time # Get empty dimensions dimensions = ndvi.drop_sel(time = ndvi.time).sizes # create dataset with a time dimension of length 0 # Create empty dataset with same structure weather = ndvi.drop_vars(['NDVI']).copy(deep = True) weather = weather.drop_sel(time = weather.time) # Set dataset attributes weather.attrs['name'] = 'ModSpa Pixel weather dataset' weather.attrs['description'] = 'Weather variables (Rain and ET0) for the ModSpa SAMIR (FAO-56) model at the pixel scale. Variables are scaled to be stored as integers.' weather.attrs['scaling'] = "{'Rain': 1000, 'ET0': 1000}" # Set variable attributes weather['Rain'] = (dimensions, np.zeros(tuple(dimensions[d] for d in list(dimensions)), dtype = np.uint16)) weather['Rain'].attrs['units'] = 'mm' weather['Rain'].attrs['standard_name'] = 'total_precipitation' weather['Rain'].attrs['description'] = 'Accumulated daily precipitation in mm' weather['Rain'].attrs['scale factor'] = '1000' weather['ET0'] = (dimensions, np.zeros(tuple(dimensions[d] for d in list(dimensions)), dtype = np.uint16)) weather['ET0'].attrs['units'] = 'mm' weather['ET0'].attrs['standard_name'] = 'evapotranspiration' weather['ET0'].attrs['description'] = 'Accumulated daily reference evapotranspiration in mm' weather['ET0'].attrs['scale factor'] = '1000' # Create encoding dictionnary for variable in list(weather.keys()): # Write encoding dict encoding_dict = {} encod = {} encod['dtype'] = 'u2' encod['_FillValue'] = 0 # TODO: figure out optimal file chunk size file_chunksize = (1, dimensions['y'], dimensions['x']) encod['chunksizes'] = file_chunksize # TODO: check if compression affects reading speed encod['zlib'] = True encod['complevel'] = 1 encoding_dict[variable] = encod # Save empty output print('\nWriting empty weather dataset') weather.to_netcdf(save_path, encoding = encoding_dict, unlimited_dims = 'time') weather.close() # Get geotiff dimensions (time, x, y) dims = (rain_tif.count, rain_tif.height, rain_tif.width) # Determine the memory requirement of operation nb_bytes = 2 # int16 nb_vars = 1 # one variable written at a time memory_requirement = ((dims[0] * dims[1] * dims[2]) * nb_vars * nb_bytes) / (1024**3) # in GiB # Get the number of time bands that can be loaded at once time_slice, remainder, already_written = calculate_time_slices_to_load(dims[2], dims[1], dims[0], nb_vars, 0, 0, 0, nb_bytes, available_ram) print('\nApproximate memory requirement of conversion:', round(memory_requirement, 3), 'GiB\nAvailable memory:', available_ram, 'GiB\n\nLoading blocks of', time_slice, 'time bands.\n') # Open empty dataset weather = nc.Dataset(save_path, mode = 'r+') # Create progress bar progress_bar = tqdm(total = dims[0], desc='Writing weather data', unit=' bands') # Data variables for i in range(dims[0]): if time_slice == dims[0] and not already_written: # if whole dataset fits in memory and it has not already been loaded weather.variables['Rain'][:,:,:] = rain_tif.read() weather.variables['ET0'][:,:,:] = ET0_tif.read() already_written = True elif i % time_slice == 0 and not already_written: # load a time slice every time i is divisible by the size of the time slice if i + time_slice <= dims[0]: # if the time slice does not gow over the dataset size weather.variables['Rain'][i: i + time_slice, :, :] = rain_tif.read(tuple(k+1 for k in range(i, i + time_slice))) weather.variables['ET0'][i: i + time_slice, :, :] = ET0_tif.read(tuple(k+1 for k in range(i, i + time_slice))) else: # load the remainder when the time slice would go over the dataset size weather.variables['Rain'][i: i + remainder, :, :] = rain_tif.read(tuple(k+1 for k in range(i, i + remainder))) weather.variables['ET0'][i: i + remainder, :, :] = ET0_tif.read(tuple(k+1 for k in range(i, i + remainder))) progress_bar.update() # Write dates in weather dataset weather.variables['time'].units = f'days since {np.datetime_as_string(dates[0], unit = "D")} 00:00:00' # set correct unit weather.variables['time'][:] = np.arange(0, len(dates)) # save dates as integers representing the number of days since the first day weather.sync() # flush data to disk # Close progress bar progress_bar.close() # Close datasets rain_tif.close() ET0_tif.close() weather.close() return None def calculate_ET0_pixel(pixel_dataset: xr.Dataset, lat: float, lon: float, h: float = 10, safran: bool = False) -> np.ndarray: """ Calculate ET0 over the year for a single pixel of the ERA5 weather dataset. Arguments ========= 1. pixel_dataset: ``xr.Dataset`` extracted dataset that contains all information for a single pixel 2. lat: ``float`` latitudinal coordinate of that pixel 3. lon: ``float`` longitudinal coordinate of that pixel 4. h: ``float`` ``default = 10`` height of ERA5 wind measurement in meters 5. safran: ``bool`` ``default = False`` boolean to adapt to a custom SAFRAN weather dataset Returns ======= 1. ET0_values: ``np.ndarray`` numpy array containing the ET0 values for each day """ # TODO: adapt for safran # Conversion of xarray dataset to dataframe for ET0 calculation # Conversion of temparature ET0 = pixel_dataset.t2m.resample(time = '1D').min().to_dataframe().rename(columns = {'t2m' : 'T_min'}) - 273.15 # conversion of temperatures from K to °C ET0['T_max'] = pixel_dataset.t2m.resample(time = '1D').max().to_dataframe()['t2m'].values - 273.15 # conversion of temperatures from K to °C ET0['R_s'] = pixel_dataset.ssrd.resample(time = '1D').sum().to_dataframe()['ssrd'].values / 1e6 # to convert downward total radiation from J/m² to MJ/m² # Calculate relative humidity pixel_dataset['ea'] = ea_calc(pixel_dataset.t2m - 273.15) pixel_dataset['es'] = ea_calc(pixel_dataset.d2m - 273.15) pixel_dataset['rh'] = np.clip(100.*(pixel_dataset.es / pixel_dataset.ea), a_min = 0, a_max = 100) ET0['RH_max'] = pixel_dataset.rh.resample(time = '1D').max().to_dataframe()['rh'].values ET0['RH_min'] = pixel_dataset.rh.resample(time = '1D').min().to_dataframe()['rh'].values if safran: # Add relative humidity ET0['RH_max'] = pixel_dataset.RH_max.to_dataframe()['RH_max'].values ET0['RH_min'] = pixel_dataset.RH_max.to_dataframe()['RH_min'].values # Add wind ET0['U_z'] = pixel_dataset.U_z.to_dataframe()['U_z'].values else: # Conversion of eastward and northward wind values to scalar wind ET0['U_z'] = np.sqrt(pixel_dataset.u10.resample(time = '1D').mean().to_dataframe()['u10'].values**2 + pixel_dataset.v10.resample(time = '1D').mean().to_dataframe()['v10'].values**2) # Start ET0 calculation eto_calc = eto.ETo() warnings.filterwarnings('ignore') # remove pandas warning # ET0 calculation for given pixel (lat, lon) values eto_calc.param_est(ET0, freq = 'D', # daily frequence # Elevation of the met station above mean sea level (m) (only needed if P is not in df). z_msl = 0., lat = lat, lon = lon, TZ_lon = None, z_u = h) # h: height of raw wind speed measurement # Retrieve ET0 values ET0_values = eto_calc.eto_fao(max_ETo = 15, min_ETo = 0, interp = True, maxgap = 10).values # ETo_FAO_mm return ET0_values def convert_interleave_mode(args: tuple[str, str, bool]) -> None: """ Convert Geotiff files obtained from OTB to Band interleave mode for faster band reading. Arguments ========= (packed in args: ``tuple``) 1. input_image: ``str`` input image to convert 2. output_image: ``str`` output image to save 3. remove: ``bool`` ``default = True`` weather to remove input image Returns ======= ``None`` """ input_image, output_image, remove = args # Open the input file in read mode with rio.open(input_image, "r") as src: # Open the output file in write mode with rio.open(output_image, 'w', driver = src.driver, height = src.height, width = src.width, count = src.count, dtype = src.dtypes[0], crs = src.crs, transform = src.transform, interleave = 'BAND',) as dst: # Loop over the blocks or windows of the input file for _, window in src.block_windows(1): # Write the data to the output file dst.write(src.read(window = window), window = window) # Remove unecessary image if remove: os.remove(input_image) return None def era5Land_daily_to_yearly_pixel(weather_files: list[str], variables: list[str], output_file: str, raw_S2_image_ref: str, ndvi_path: str, start_date: str, end_date: str, h: float = 10, max_ram: int = 8, use_OTB: bool = False, weather_overwrite: bool = False, safran: bool = False) -> str: """ Calculate ET0 values from the ERA5 netcdf weather variables. Output netcdf contains the ET0 and precipitation values for each day in the selected time period and reprojected on the same grid as the NDVI values. Arguments ========= 1. weather_file: ``str`` path to netCDF raw weather files 2. variables: ``list[str]`` list of variables downloaded from era5 3. output_file: ``str`` output file name without extension 4. raw_S2_image_ref: ``str`` raw Sentinel 2 image at right resolution for reprojection 5. ndvi_path: ``str`` path to ndvi dataset, used for attributes and coordinates 6. start_date: ``str`` beginning of the time window to download (format: ``YYYY-MM-DD``) 7. end_date: ``str`` end of the time window to download (format: ``YYYY-MM-DD``) 8. h: ``float`` ``default = 10`` height of ERA5 wind measurements in meters 9. max_ram: ``int`` ``default = 8`` max ram (in GiB) for reprojection and conversion. Two subprocesses are spawned for OTB, each receiviving half of requested memory. 10. use_OTB: ``bool`` ``default = False`` boolean to choose to use OTB or not, tests will be added later 11. weather_overwrite: ``bool`` ``default = False`` boolean to choose to overwrite weather netCDF 12. safran: ``bool`` ``default = False`` boolean to adapt to a custom SAFRAN weather dataset Returns ======= 1. output_file_final: ``str`` path to ``netCDF4`` file containing precipitation and ET0 data """ # Test if file exists if os.path.exists(output_file + '.nc') and not weather_overwrite: return output_file + '.nc' # Test if memory requirement is not loo large if np.ceil(virtual_memory().available / (1024**3)) < max_ram: print('\nRequested', max_ram, 'GiB of memory when available memory is approximately', round(virtual_memory().available / (1024**3), 1), 'GiB.\n\nExiting script.\n') return None # Load all weather files in a single dataset raw_weather_ds = xr.Dataset() for var in variables: temp = [] for file in weather_files: if fnmatch(file, '*' + var + '*'): temp.append(file) raw_weather_ds = xr.merge([raw_weather_ds, xr.open_mfdataset(temp).drop_vars(['number', 'expver']).rename({'valid_time': 'time', 'latitude': 'lat', 'longitude': 'lon'})]) # Clip extra dates raw_weather_ds = raw_weather_ds.sel({'time': slice(start_date, end_date)}).sortby(variables = 'time') resampled_weather_ds = raw_weather_ds.resample(time = '1D').sum() # Create ET0 variable (that will be saved) and set attributes resampled_weather_ds = resampled_weather_ds.assign(ET0 = (resampled_weather_ds.sizes, np.zeros(tuple(resampled_weather_ds.sizes[d] for d in list(resampled_weather_ds.sizes)), dtype = np.float32))) if safran: # Loop on y and x coordinates to calculate ET0 per "pixel" # Fast enough for small datasets (low resolution) for y in raw_weather_ds.coords['y'].values: for x in raw_weather_ds.coords['x'].values: # Select whole time period for given (lat, lon) values select_ds = raw_weather_ds.sel({'y' : y, 'x' : x}).drop_vars(['y', 'x']) # TODO: adapt for new ERA5 data # Calculate ET0 values for given pixel ET0_values = calculate_ET0_pixel(select_ds, y, x, h) # Write ET0 values in xarray Dataset resampled_weather_ds['ET0'].loc[{'y' : y, 'x' : x}] = ET0_values # Get necessary data for final dataset final_weather_ds = resampled_weather_ds.drop_vars(names = ['ssrd', 't2m', 'd2m', 'RH_max', 'RH_min', 'U_z']) # remove unwanted variables else: # Loop on lattitude and longitude coordinates to calculate ET0 per "pixel" # Fast enough for small datasets (low resolution) for lat in raw_weather_ds.coords['lat'].values: for lon in raw_weather_ds.coords['lon'].values: # Select whole time period for given (lat, lon) values select_ds = raw_weather_ds.sel({'lat' : lat, 'lon' : lon}).drop_vars(['lat', 'lon']) # Calculate ET0 values for given pixel ET0_values = calculate_ET0_pixel(select_ds, lat, lon, h) # Write ET0 values in xarray Dataset resampled_weather_ds['ET0'].loc[{'lat' : lat, 'lon' : lon}] = ET0_values # Get necessary data for final dataset final_weather_ds = resampled_weather_ds.drop_vars(names = ['ssrd', 'v10', 'u10', 't2m', 'd2m']) # remove unwanted variables # Scale data and rewrite netcdf attributes final_weather_ds['tp'] = final_weather_ds['tp'] * 1000 # conversion from m to mm # Change datatype to reduce memory usage final_weather_ds['tp'] = (final_weather_ds['tp'] * 1000).astype('u2').chunk(chunks = {"time": 1}) final_weather_ds['ET0'] = (final_weather_ds['ET0'] * 1000).astype('u2').chunk(chunks = {"time": 1}) # TODO: fix for safran # Write projection final_weather_ds.rio.write_crs('EPSG:4326', inplace = True) # Set variable attributes final_weather_ds['ET0'].attrs['units'] = 'mm' final_weather_ds['ET0'].attrs['standard_name'] = 'Potential evapotranspiration' final_weather_ds['ET0'].attrs['comment'] = 'Potential evapotranspiration accumulated over the day, calculated with the FAO-56 method (scale factor = 1000)' final_weather_ds['tp'].attrs['units'] = 'mm' final_weather_ds['tp'].attrs['standard_name'] = 'Precipitation' final_weather_ds['tp'].attrs['comment'] = 'Volume of total daily precipitation expressed as water height in milimeters (scale factor = 1000)' # TODO: find how to test OTB installation from python if use_OTB: # Save dataset to geotiff, still in wgs84 (lat, lon) coordinates output_file_rain = output_file + '_rain.tif' output_file_ET0 = output_file + '_ET0.tif' final_weather_ds.tp.rio.to_raster(output_file_rain, dtype = 'uint16') final_weather_ds.ET0.rio.to_raster(output_file_ET0, dtype = 'uint16') # Reprojected image paths output_file_rain_reproj = output_file + '_rain_reproj.tif' output_file_ET0_reproj = output_file + '_ET0_reproj.tif' # Converted image paths output_file_final = output_file + '.nc' # otbcli_SuperImpose commands OTB_command_reproj1 = 'otbcli_Superimpose -inr ' + raw_S2_image_ref + ' -inm ' + output_file_rain + ' -out ' + output_file_rain_reproj + ' uint16 -interpolator linear -ram ' + str(int(max_ram * 1024/2)) OTB_command_reproj2 = 'otbcli_Superimpose -inr ' + raw_S2_image_ref + ' -inm ' + output_file_ET0 + ' -out ' + output_file_ET0_reproj + ' uint16 -interpolator linear -ram ' + str(int(max_ram * 1024/2)) commands_reproj = [OTB_command_reproj1, OTB_command_reproj2] with Pool(2) as p: p.map(os.system, commands_reproj) # Combine to netCDF file combine_weather2netcdf(output_file_rain_reproj, output_file_ET0_reproj, ndvi_path, output_file_final, available_ram = max_ram) # remove old files and rename outputs os.remove(output_file_rain) os.remove(output_file_ET0) os.remove(output_file_rain_reproj) os.remove(output_file_ET0_reproj) else: # Set dataset attributes final_weather_ds.attrs['name'] = 'ModSpa Pixel weather dataset' final_weather_ds.attrs['description'] = 'Weather variables (Rain and ET0) for the ModSpa SAMIR (FAO-56) model at the pixel scale. Variables are scaled to be stored as integers.' final_weather_ds.attrs['scaling'] = "{'Rain': 1000, 'ET0': 1000}" # Set file names output_file_final = output_file + '.nc' # Open reference image ref = rioxarray.open_rasterio(raw_S2_image_ref) # Get metadata target_crs = ref.rio.crs spatial_ref = ref.spatial_ref.load() # Define ressources mem_limit = min([int(np.ceil(len(ref.x) * len(ref.y) * len(final_weather_ds.time) * len(final_weather_ds.data_vars) * np.dtype(np.float32).itemsize / (1024 ** 2)) * 1.1), 0.8 * virtual_memory().available / (1024**2), max_ram * 1024]) nb_threads = min([cpu_count(logical = True), len(os.sched_getaffinity(0))]) # Reproject final_weather_ds = final_weather_ds.rio.reproject(target_crs, transform = ref.rio.transform(), shape = (ref.rio.height, ref.rio.width), resampling = Resampling.bilinear, num_threads = nb_threads, warp_mem_limit = mem_limit) # Rename final_weather_ds = final_weather_ds.rename({'tp': 'Rain'}) # Create encoding dictionnary for variable in list(final_weather_ds.keys()): # Write encoding dict encod = {} encod['dtype'] = 'u2' if '_FillValue' in final_weather_ds[variable].attrs: del final_weather_ds[variable].attrs['_FillValue'] encod['_FillValue'] = 0 # TODO: figure out optimal file chunk size file_chunksize = (1, final_weather_ds.sizes['y'], final_weather_ds.sizes['x']) encod['chunksizes'] = file_chunksize # TODO: check if compression affects reading speed encod['zlib'] = True encod['complevel'] = 1 final_weather_ds[variable].encoding.update(encod) # Rewrite georeferencing final_weather_ds.rio.write_crs(target_crs, inplace = True) final_weather_ds.rio.write_transform(inplace = True) final_weather_ds['spatial_ref'] = spatial_ref final_weather_ds.attrs['crs'] = final_weather_ds.rio.crs.to_string() final_weather_ds = final_weather_ds.set_coords('spatial_ref') # Save empty output print('\nReprojecting weather dataset') final_weather_ds.to_netcdf(output_file_final) final_weather_ds.close() return output_file_final def era5Land_daily_to_yearly_parcel(weather_files: list[str], variables: list[str], output_file: str, start_date: str, end_date: str, h: float = 10) -> str: """ Calculate ET0 values from the ERA5 netcdf weather variables. Output netcdf contains the ET0 and precipitation values for each day in the selected time period. Arguments ========= 1. weather_file: ``list[str]`` path to netCDF raw weather files 2. variables: ``list[str]`` list of variables downloaded from era5 3. output_file: ``str`` output file name without extension 3. start_date: ``str`` beginning of the time window to download (format: ``YYYY-MM-DD``) 4. end_date: ``str`` end of the time window to download (format: ``YYYY-MM-DD``) 5. h: ``float`` ``default = 10`` height of ERA5 wind measurements in meters Returns ======= 1. output_file_rain: ``str`` path to ``Geotiff`` file containing precipitation data 2. output_file_ET0: ``str`` path to ``Geotiff`` file containing ET0 data """ # Load all weather files in a single dataset raw_weather_ds = xr.Dataset() for var in variables: temp = [] for file in weather_files: if fnmatch(file, '*' + var + '*'): temp.append(file) raw_weather_ds = xr.merge([raw_weather_ds, xr.open_mfdataset(temp).drop_vars(['number', 'expver']).rename({'valid_time': 'time', 'latitude': 'lat', 'longitude': 'lon'})]) # Clip extra dates raw_weather_ds = raw_weather_ds.sel({'time': slice(start_date, end_date)}) # Create ET0 variable (that will be saved) and set attributes raw_weather_ds = raw_weather_ds.assign(ET0 = (raw_weather_ds.sizes, np.zeros(tuple(raw_weather_ds.sizes[d] for d in list(raw_weather_ds.sizes)), dtype = 'float64'))) # Loop on lattitude and longitude coordinates to calculate ET0 per "pixel" for lat in raw_weather_ds.coords['lat'].values: for lon in raw_weather_ds.coords['lon'].values: # Select whole time period for given (lat, lon) values select_ds = raw_weather_ds.sel({'lat' : lat, 'lon' : lon}).drop_vars(['lat', 'lon']) # Calculate ET0 values for given pixel ET0_values = calculate_ET0_pixel(select_ds, lat, lon, h) # Write ET0 values in xarray Dataset raw_weather_ds['ET0'].loc[{'lat' : lat, 'lon' : lon}] = ET0_values # Get necessary data for final dataset and rewrite netcdf attributes final_weather_ds = raw_weather_ds.drop_vars(names = ['ssrd', 'v10', 'u10', 't2m_max', 't2m_min']) # remove unwanted variables final_weather_ds['tp'] = final_weather_ds['tp'] * 1000 # conversion from m to mm # Change datatype to reduce memory usage final_weather_ds['tp'] = (final_weather_ds['tp'] * 1000).astype('u2').chunk(chunks = {"time": 1}) final_weather_ds['ET0'] = (final_weather_ds['ET0'] * 1000).astype('u2').chunk(chunks = {"time": 1}) # Write projection final_weather_ds = final_weather_ds.rio.write_crs('EPSG:4326') # Set variable attributes final_weather_ds['ET0'].attrs['units'] = 'mm' final_weather_ds['ET0'].attrs['standard_name'] = 'Potential evapotranspiration' final_weather_ds['ET0'].attrs['comment'] = 'Potential evapotranspiration accumulated over the day, calculated with the FAO-56 method (scale factor = 1000)' final_weather_ds['tp'].attrs['units'] = 'mm' final_weather_ds['tp'].attrs['standard_name'] = 'Precipitation' final_weather_ds['tp'].attrs['comment'] = 'Volume of total daily precipitation expressed as water height in milimeters (scale factor = 1000)' # Save dataset to geotiff, still in wgs84 (lat, lon) coordinates output_file_rain = output_file + '_rain.tif' output_file_ET0 = output_file + '_ET0.tif' final_weather_ds.tp.rio.to_raster(output_file_rain, dtype = 'uint16') final_weather_ds.ET0.rio.to_raster(output_file_ET0, dtype = 'uint16') return output_file_rain, output_file_ET0 def extract_rasterstats(args: tuple) -> list[float]: """ Generate a dataframe for a given raster and a geopandas shapefile object. It iterates over the features of the shapefile geometry (polygons). This information is stored in a list. It returns a list that contains the raster values, a feature ``id`` and the date for the image and every polygon in the shapefile geometry. It also has identification data relative to the shapefile: landcover (``LC``), land cover identifier (``id``) This list is returned to be later agregated in a ``DataFrame``. This function is used to allow multiprocessing for weather extraction. Arguments (packed in args: ``tuple``) ===================================== 1. raster_path: ``str`` path to multiband Geotiff 2. shapefile: ``str`` path to shapefile 3. config_file: ``str`` path to config file Returns ======= 1. raster_stats: ``list[float]`` list containing weather values and feature information for every polygon in the shapefile """ # Open arguments packed in args raster_path, shapefile, config_file = args # Open config file config_params = config(config_file) # Create dataframe where zonal statistics will be stored raster_stats = [] # Get dates dates = pd.to_datetime(pd.date_range(start = config_params.start_date, end = config_params.end_date, freq = 'D')).values # Open ndvi image and shapefile geometry raster_dataset = rio.open(raster_path, mode = 'r') # Get input raster spatial reference and epsg code to reproject shapefile in the same spatial reference target_epsg = raster_dataset.crs # Open shapefile with geopandas and reproject its geometry shapefile = gpd.read_file(shapefile) shapefile['geometry'] = shapefile['geometry'].to_crs(target_epsg) # Get no data value nodata = raster_dataset.nodata # Get the number of bands nbands = raster_dataset.count # Create progress bar progress_bar = tqdm(total = len(shapefile.index), desc='Extracting zonal statistics', unit=' polygons') # Loop on the individual polygons in the shapefile geometry for index, row in shapefile.iterrows(): # Get the feature geometry as a shapely object geom = row.geometry # id number of the current parcel geometry id = index + 1 # Get land cover LC = row.LC # Crop the raster using the bounding box try: masked_raster, _ = mask(raster_dataset, [geom], crop = True) except: print('\nShapefile bounds are not contained in weather dataset bounds.\n\nExiting script.') return None # Mask the raster using the geometry masked_raster, _ = mask(raster_dataset, [geom], crop = True) # Replace the nodata values with nan masked_raster = masked_raster.astype(np.float32) masked_raster[masked_raster == nodata] = np.nan # Calculate the zonal statistics mean = np.nanmean(masked_raster, axis = (1,2)) # Add statistics to output list raster_stats.extend([[dates[i], id, mean[i], LC] for i in range(nbands)]) # Update progress bar progress_bar.update(1) # Close dataset and progress bar raster_dataset.close() progress_bar.close() return raster_stats def extract_weather_dataframe(rain_path: str, ET0_path: str, shapefile: str, config_file: str, save_path: str) -> None: """ Extract a weather dataframe for each variable (Rain, ET0) and merge them in one dataframe. This dataframe is saved as ``csv`` file. Arguments ========= 1. rain_path: ``str`` path to rain Geotiff file 2. ET0_path: ``str`` path to ET0 Geotiff file 3. shapefile: ``str`` path to shapefile 4. config_file: ``str`` path to config file 5. save_path: ``str`` save path for weather dataframe Returns ======= ``None`` """ # Generate arguments for multiprocessing args = [(rain_path, shapefile, config_file), (ET0_path, shapefile, config_file)] print('\nStarting weather data extraction on two cores..\n') # Extract weather values for both weather varialbes with Pool(2) as p: results = p.map(extract_rasterstats, args) # Collect results in a single dataframe weather_dataframe = pd.DataFrame(results[0], columns = ['date', 'id', 'Rain', 'LC']) weather_dataframe['ET0'] = pd.DataFrame(results[1], columns = ['date', 'id', 'ET0', 'LC'])['ET0'] # Reorder columns weather_dataframe = weather_dataframe.reindex(columns = ['date', 'id', 'Rain', 'ET0', 'LC']) # Format datatypes weather_dataframe['Rain'] = np.round(weather_dataframe['Rain']).astype(int) weather_dataframe['ET0'] = np.round(weather_dataframe['ET0']).astype(int) # Change date type weather_dataframe['date'] = pd.to_datetime(weather_dataframe['date']) # Save dataframe to csv weather_dataframe.to_csv(save_path, index = False) return None