# -*- coding: UTF-8 -*- # Python """ 04-07-2023 @author: jeremy auclair Test file """ import xarray as xr # from dask.distributed import Client import os import numpy as np import rasterio as rio from typing import List, Tuple, Union import netCDF4 as nc from tqdm import tqdm from parameters.params_samir_class import samir_parameters from config.config import config from time import time # import webbrowser # to open dask dashboard def rasterize_samir_parameters(csv_param_file: str, empty_dataset: xr.Dataset, land_cover_raster: str, chunk_size: dict) -> Tuple[xr.Dataset, dict]: """ Creates a raster `xarray` dataset from the csv parameter file, the land cover raster and an empty dataset that contains the right structure (emptied ndvi dataset for example). For each parameter, the function loops on land cover classes to fill the raster. # Arguments 1. csv_param_file: `str` path to csv paramter file 2. empty_dataset: `xr.Dataset` empty dataset that contains the right structure (emptied ndvi dataset for example). 3. land_cover_raster: `str` path to land cover netcdf raster 4. chunk_size: `dict` chunk_size for dask computation # Returns 1. parameter_dataset: `xr.Dataset` the dataset containing all the rasterized Parameters 2. scale_factor: `dict` dictionnary containing the scale factors for each parameter """ # Load samir params into an object table_param = samir_parameters(csv_param_file) # Set general variables class_count = table_param.table.shape[1] - 2 # remove dtype and default columns # Open land cover raster land_cover = xr.open_dataarray(land_cover_raster, chunks=chunk_size) # Create dataset parameter_dataset = empty_dataset.copy(deep=True) # Create dictionnary containing the scale factors scale_factor = {} # Loop on samir parameters and create for parameter in table_param.table.index[1:]: # Create new variable and set attributes parameter_dataset[parameter] = land_cover.copy(deep=True).astype('f4') parameter_dataset[parameter].attrs['name'] = parameter parameter_dataset[parameter].attrs['description'] = 'cf SAMIR Doc for detail' parameter_dataset[parameter].attrs['scale factor'] = str( table_param.table.loc[table_param.table.index == parameter]['scale_factor'].values[0]) # Assigne value in dictionnary scale_factor[parameter] = 1/int(table_param.table.loc[table_param.table.index == parameter]['scale_factor'].values[0]) # Loop on classes to set parameter values for each class for class_val, class_name in zip(range(1, class_count + 1), table_param.table.columns[2:]): # Parameter values are multiplied by the scale factor in order to store all values as int16 types # These values are then rounded to make sure there isn't any decimal point issues when casting the values to int16 # TODO vr: formule trop longue, trouver un moyen de rendre lisible parameter_dataset[parameter].values = np.where(parameter_dataset[parameter].values == class_val, round(table_param.table.loc[table_param.table.index == parameter][class_name].values[0] * table_param.table.loc[table_param.table.index == parameter]['scale_factor'].values[0]), parameter_dataset[parameter].values).astype('f4') # Return dataset converted to 'int16' data type to reduce memory usage # and scale_factor dictionnary for later conversion return parameter_dataset, scale_factor def setup_time_loop(calculation_variables_t1: List[str], calculation_variables_t2: List[str], empty_dataset: xr.Dataset) -> Tuple[xr.Dataset, xr.Dataset]: """ Creates two temporary `xarray Datasets` that will be used in the SAMIR time loop. `variables_t1` corresponds to the variables for the previous day and `variables_t2` corresponds to the variables for the current day. After each loop, `variables_t1` takes the value of `variables_t2` for the corresponding variables. # Arguments 1. calculation_variables_t1: `List[str]` list of strings containing the variable names for the previous day dataset 2. calculation_variables_t2: `List[str]` list of strings containing the variable names for the current day dataset 3. empty_dataset: `xr.Dataset` empty dataset that contains the right structure # Returns 1. variables_t1: `xr.Dataset` output dataset for previous day 2. variables_t2: `xr.Dataset` output dataset for current day """ # Create new dataset variables_t1 = empty_dataset.copy(deep=True) # Create empty DataArray for each variable for variable in calculation_variables_t1: # Assign new empty DataArray variables_t1[variable] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype='float32')) variables_t1[variable].attrs['name'] = variable # set name in attributes # Create new dataset variables_t2 = empty_dataset.copy(deep=True) # Create empty DataArray for each variable for variable in calculation_variables_t2: # Assign new empty DataArray variables_t2[variable] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype='float32')) variables_t2[variable].attrs['name'] = variable # set name in attributes return variables_t1, variables_t2 def prepare_outputs(empty_dataset: xr.Dataset, additional_outputs: List[str] = None) -> xr.Dataset: """ Creates the `xarray Dataset` containing the outputs of the SAMIR model that will be saved. Additional variables can be saved by adding their names to the `additional_outputs` list. # Arguments 1. empty_dataset: `xr.Dataset` empty dataset that contains the right structure 2. additional_outputs: `List[str]` list of additional variable names to be saved # Returns 1. model_outputs: `xr.Dataset` model outputs to be saved """ # Evaporation and Transpiraion model_outputs = empty_dataset.copy(deep=True) model_outputs['E'] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype='int16')) model_outputs['E'].attrs['units'] = 'mm' model_outputs['E'].attrs['standard_name'] = 'Evaporation' model_outputs['E'].attrs['description'] = 'Accumulated daily evaporation in milimeters' model_outputs['E'].attrs['scale factor'] = '1000' model_outputs['Tr'] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype='int16')) model_outputs['Tr'].attrs['units'] = 'mm' model_outputs['Tr'].attrs['standard_name'] = 'Transpiration' model_outputs['Tr'].attrs['description'] = 'Accumulated daily plant transpiration in milimeters' model_outputs['Tr'].attrs['scale factor'] = '1000' # Soil Water Content model_outputs['SWCe'] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype='int16')) model_outputs['SWCe'].attrs['units'] = 'mm' model_outputs['SWCe'].attrs['standard_name'] = 'Soil Water Content of the evaporative zone' model_outputs['SWCe'].attrs['description'] = 'Soil water content of the evaporative zone in milimeters' model_outputs['SWCe'].attrs['scale factor'] = '1000' model_outputs['SWCr'] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype='int16')) model_outputs['SWCr'].attrs['units'] = 'mm' model_outputs['SWCr'].attrs['standard_name'] = 'Soil Water Content of the root zone' model_outputs['SWCr'].attrs['description'] = 'Soil water content of the root zone in milimeters' model_outputs['SWCr'].attrs['scale factor'] = '1000' # Irrigation model_outputs['Irr'] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype='int16')) model_outputs['Irr'].attrs['units'] = 'mm' model_outputs['Irr'].attrs['standard_name'] = 'Irrigation' model_outputs['Irr'].attrs['description'] = 'Simulated daily irrigation in milimeters' model_outputs['Irr'].attrs['scale factor'] = '1000' # Deep Percolation model_outputs['DP'] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype='int16')) model_outputs['DP'].attrs['units'] = 'mm' model_outputs['DP'].attrs['standard_name'] = 'Deep Percolation' model_outputs['DP'].attrs['description'] = 'Simulated daily Deep Percolation in milimeters' model_outputs['DP'].attrs['scale factor'] = '1000' if additional_outputs: for var in additional_outputs: model_outputs[var] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype='int16')) return model_outputs def xr_maximum(ds: xr.DataArray, value: Union[xr.DataArray, float, int]) -> xr.DataArray: """ Equivalent of `numpy.maximum(ds, value)` for xarray DataArrays # Arguments 1. ds: `xr.DataArray` datarray to compare 2. value: `Union[xr.DataArray, float, int]` value (scalar or dataarray) to compare # Returns 1. output: `xr.DataArray` resulting dataarray with maximum value element-wise """ return xr.where(ds <= value, value, ds, keep_attrs=True) def xr_minimum(ds: xr.DataArray, value: Union[xr.DataArray, float, int]) -> xr.DataArray: """ Equivalent of `numpy.minimum(ds, value)` for xarray DataArrays # Arguments 1. ds: `xr.DataArray` datarray to compare 2. value: `Union[xr.DataArray, float, int]` value (scalar or dataarray) to compare # Returns 1. output: `xr.DataArray` resulting dataarray with minimum value element-wise """ return xr.where(ds >= value, value, ds, keep_attrs=True) def calculate_diff_re(TAW: np.ndarray, Dr: np.ndarray, Zr: np.ndarray, RUE: np.ndarray, De: np.ndarray, Wfc: np.ndarray, Ze: np.ndarray, DiffE: np.ndarray) -> np.ndarray: """ Calculates the diffusion between the top soil layer and the root layer. # Arguments 1. TAW: `np.ndarray` water capacity of root layer 2. Dr: `np.ndarray` depletion of root layer 3. Zr: `np.ndarray` height of root layer 4. RUE: `np.ndarray` total available surface water = (Wfc-Wwp)*Ze 5. De: `np.ndarray` depletion of the evaporative layer 6. Wfc: `np.ndarray` field capacity 7. Ze: `np.ndarray` height of evaporative layer (paramter) 8. DiffE: `np.ndarray` diffusion coefficient between evaporative and root layers (unitless, parameter) # Returns 1. diff_re: `np.ndarray` the diffusion between the top soil layer and the root layer """ # Temporary variables to make calculation easier to read tmp1 = ((TAW - Dr) / Zr - (RUE - De) / Ze) / (Wfc * DiffE) tmp2 = ((TAW * Ze) - (RUE - De - Dr) * Zr) / (Zr + Ze) - Dr # Calculate diffusion according to SAMIR equation diff_re = np.where(tmp1 < 0, np.maximum(tmp1, tmp2), np.minimum(tmp1, tmp2)) # Return zero values where the 'DiffE' parameter is equal to 0 return np.where(DiffE == 0, 0, diff_re) def calculate_diff_dr(TAW: np.ndarray, TDW: np.ndarray, Dr: np.ndarray, Zr: np.ndarray, Dd: np.ndarray, Wfc: np.ndarray, Zsoil: np.ndarray, DiffR: np.ndarray) -> np.ndarray: """ Calculates the diffusion between the root layer and the deep layer. # Arguments 1. TAW: `np.ndarray` water capacity of root layer 2. TDW: `np.ndarray` water capacity of deep layer 3. Dr: `np.ndarray` depletion of root layer 4. Zr: `np.ndarray` height of root layer 5. Dd: `np.ndarray` depletion of deep layer 6. Wfc: `np.ndarray` field capacity 7. Zsoil: `np.ndarray` total height of soil (paramter) 8. DiffR: `np.ndarray` Diffusion coefficient between root and deep layers (unitless, parameter) # Returns 1. Diff_dr: `np.ndarray` the diffusion between the root layer and the deep layer """ # Temporary variables to make calculation easier to read tmp1 = (((TDW - Dd) / (Zsoil - Zr) - (TAW - Dr) / Zr) / Wfc) * DiffR tmp2 = (TDW * Zr - (TAW - Dr - Dd) * (Zsoil - Zr)) / Zsoil - Dd # Calculate diffusion according to SAMIR equation Diff_dr = np.where(tmp1 < 0, np.maximum(tmp1, tmp2), np.minimum(tmp1, tmp2)) # Return zero values where the 'DiffR' parameter is equal to 0 return np.where(DiffR == 0, 0, Diff_dr) def calculate_W(TEW: np.ndarray, Dei: np.ndarray, Dep: np.ndarray, fewi: np.ndarray, fewp: np.ndarray) -> np.ndarray: """ Calculate W, the weighting factor to split the energy available for evaporation depending on the difference in water availability in the two evaporation components, ensuring that the larger and the wetter, the more the evaporation occurs from that component # Arguments 1. TEW: `np.ndarray` water capacity of evaporative layer 2. Dei: `np.ndarray` depletion of the evaporative layer (irrigation part) 3. Dep: `np.ndarray` depletion of the evaporative layer (precipitation part) 4. fewi: `np.ndarray` soil fraction which is wetted by irrigation and exposed to evaporation 5. fewp: `np.ndarray` soil fraction which is wetted by precipitation and exposed to evaporation # Returns 1. W: `np.ndarray` weighting factor W """ # Temporary variables to make calculation easier to read tmp = fewi * (TEW - Dei) # Calculate the weighting factor to split the energy available for evaporation W = 1 / (1 + (fewp * (TEW - Dep) / tmp)) # Return W return np.where(tmp > 0, W, 0) def calculate_Kr(TEW: np.ndarray, De: np.ndarray, REW: np.ndarray) -> np.ndarray: """ calculates of the reduction coefficient for evaporation dependent on the amount of water in the soil using the FAO-56 method. # Arguments 1. TEW: `np.ndarray` water capacity of evaporative layer 2. De: `np.ndarray` depletion of evaporative layer 3. REW: `np.ndarray` fixed readily evaporable water # Returns 1. Kr: `np.ndarray` Kr coefficient """ # Formula for calculating Kr Kr = (TEW - De) / (TEW - REW) # Return Kr return np.maximum(0, np.minimum(Kr, 1)) def update_Dr_from_root(TAW: np.ndarray, Zr: np.ndarray, TAW0: np.ndarray, TDW0: np.ndarray, Dr0: np.ndarray, Dd0: np.ndarray, Zr0: np.ndarray) -> np.ndarray: """ Return the updated depletion for the root layer. # Arguments 1. TAW: `np.ndarray` water capacity of root layer for current day 2. Zr: `np.ndarray` root layer height for current day 3. TAW0: `np.ndarray` water capacity of root layer for previous day 4. TDW0: `np.ndarray` water capacity of deep layer for previous day 5. Dr0: `np.ndarray` depletion of the root layer for previous day 6. Dd0: `np.ndarray` depletion of the deep laye for previous day 7. Zr0: `np.ndarray` root layer height for previous day # Returns 1. output: `np.ndarray` updated depletion for the root layer """ # Temporary variables to make calculation easier to read # tmp1 = np.minimum(Dr0 + Dd0 * (TAW - TAW0) / TDW0, TAW) # tmp2 = np.maximum(Dr0 + Dd0 * (TAW - TAW0) / TDW0, 0) # TODO vr: Updated version from xls tmp1 = np.maximum(Dr0 + Dd0 * (TAW - TAW0)/TDW0, 0) tmp2 = np.maximum(Dr0 + Dr0 * (TAW - TAW0)/TAW0, 0) # Return updated Dr return np.where(Zr > Zr0, tmp1, tmp2) def update_Dd_from_root(TAW: np.ndarray, TDW: np.ndarray, Zr: np.ndarray, TAW0: np.ndarray, TDW0: np.ndarray, Dr0: np.ndarray, Dd0: np.ndarray, Zr0: np.ndarray) -> np.ndarray: """ Return the updated depletion for the deep layer # Arguments 1. TAW: `np.ndarray` water capacity of root layer for current day 2. TDW: `np.ndarray` water capacity of deep layer for current day 3. TAW0: `np.ndarray` water capacity of root layer for previous day 5. TDW0: `np.ndarray` water capacity of deep layer for previous day 6. Dd0: `np.ndarray` depletion of the deep laye for previous day 7. Zr0: `np.ndarray` root layer height for previous day # Returns 1. output: `np.ndarray` updated depletion for the deep layer """ # Temporary variables to make calculation easier to read # tmp1 = np.maximum(Dd0 - Dd0 * (TAW - TAW0) / TDW0, 0) # tmp2 = np.minimum(Dd0 - Dd0 * (TAW - TAW0) / TDW0, TDW) # TODO vr: Updated version from xls tmp1 = np.maximum(Dd0 + Dd0 * (TAW - TAW0)/TDW0, 0) tmp2 = np.maximum(Dd0 + Dr0 * (TAW - TAW0)/TAW0, 0) # Return updated Dd return np.where(Zr > Zr0, tmp1, tmp2) def format_duration(timedelta: float) -> None: """ Print formatted timedelta in human readable format (days, hours, minutes, seconds, microseconds, milliseconds, nanoseconds). # Arguments timedelta: `float` time value in seconds to format # Returns `None` """ if timedelta < 0.9e-6: print(round(timedelta*1e9, 1), 'ns') elif timedelta < 0.9e-3: print(round(timedelta*1e6, 1), 'µs') elif timedelta < 0.9: print(round(timedelta*1e3, 1), 'ms') elif timedelta < 60: print(round(timedelta, 1), 's') elif timedelta < 3.6e3: print(round(timedelta//60), 'm', round(timedelta % 60, 1), 's') elif timedelta < 24*3.6e3: print(round((timedelta/3.6e3)//1), 'h', round((timedelta/3.6e3) % 1*60//1), 'm', round((timedelta/3.6e3) % 1*60 % 1*60, 1), 's') elif timedelta < 48*3.6e3: print(round((timedelta/(24*3.6e3))//1), 'day,', round(((timedelta/(24*3.6e3)) % 1*24)//1), 'h,', round((timedelta/(24*3.6e3)) % 1*24 % 1*60//1), 'm,', round((timedelta/(24*3.6e3)) % 1*24 % 1*60 % 1*60, 1), 's') else: print(round((timedelta/(24*3.6e3))//1), 'days,', round(((timedelta/(24*3.6e3)) % 1*24)//1), 'h,', round((timedelta/(24*3.6e3)) % 1*24 % 1*60//1), 'm,', round((timedelta/(24*3.6e3)) % 1*24 % 1*60 % 1*60, 1), 's') return None # @profile # type: ignore def run_samir(json_config_file: str, csv_param_file: str, ndvi_cube_path: str, Rain_path: str, ET0_path: str, soil_params_path: str, land_cover_path: str, chunk_size: dict, save_path: str, additional_outputs: List[str] = None, additional_outputs_scale: List[float] = None, max_ram_GB: int = 2) -> None: # Test inputs if len(additional_outputs) != len(additional_outputs_scale): print('\nadditional outpus name and scale list length do not match\n') return None # Turn off numpy warings np.seterr(divide='ignore', invalid='ignore') # ============ General parameters ============# # TODO vr: config_params jamais utilisé...? ça viendra config_params = config(json_config_file) # calculation_variables_t2 contains the list of variables used for current day calculations calculation_variables_t2 = ['Diff_rei', 'Diff_rep', 'Diff_dr', 'Dd', 'De', 'Dei', 'Dep', 'DP', 'Dr', 'FCov', 'Irrig', 'Kcb', 'Kei', 'Kep', 'Kri', 'Krp', 'Ks', 'Kti', 'Ktp', 'RUE', 'SWCe', 'SWCr', 'TAW', 'TDW', 'TEW', 'Tei', 'Tep', 'W', 'Zr', 'fewi', 'fewp', 'p_cor'] # calculation_variables_t1 contains the list of variables of the previous day necessary for current day calculations calculation_variables_t1 = ['Dr', 'Dd', 'TAW', 'TDW', 'Zr'] # ============ Manage inputs ============# # NDVI (to have a correct empty dataset structure) ndvi_cube = xr.open_mfdataset(ndvi_cube_path, chunks=chunk_size, parallel=True) # SAMIR Parameters param_dataset, scale_factor = rasterize_samir_parameters( csv_param_file, ndvi_cube.drop_vars(['NDVI', 'time']), land_cover_path, chunk_size=chunk_size) # SAMIR Variables variables_t1, variables_t2 = setup_time_loop( calculation_variables_t1, calculation_variables_t2, ndvi_cube.drop_vars(['NDVI', 'time'])) # ============ Prepare outputs ============# model_outputs = prepare_outputs(ndvi_cube.drop_vars(['NDVI']), additional_outputs=additional_outputs) # Create encoding dictionnary for variable in list(model_outputs.keys()): # Write encoding dict encoding_dict = {} encod = {} encod['dtype'] = 'i2' encoding_dict[variable] = encod # Save empty output model_outputs.to_netcdf(save_path, encoding=encoding_dict) model_outputs.close() # ============ Prepare time iterations ============# dates = ndvi_cube.time.values ndvi_cube.close() # ============ Create aliases for better readability ============# # Variables for current day # var = da.from_array(dataarray, chunks = (5, 5)) Diff_rei = variables_t2.Diff_rei.to_numpy() Diff_rep = variables_t2.Diff_rep.to_numpy() Diff_dr = variables_t2.Diff_dr.to_numpy() Dd = variables_t2.Dd.to_numpy() De = variables_t2.De.to_numpy() Dei = variables_t2.Dei.to_numpy() Dep = variables_t2.Dep.to_numpy() DP = variables_t2.DP.to_numpy() Dr = variables_t2.Dr.to_numpy() FCov = variables_t2.FCov.to_numpy() Irrig = variables_t2.Irrig.to_numpy() Kcb = variables_t2.Kcb.to_numpy() Kei = variables_t2.Kei.to_numpy() Kep = variables_t2.Kep.to_numpy() Kri = variables_t2.Kri.to_numpy() Krp = variables_t2.Krp.to_numpy() Ks = variables_t2.Ks.to_numpy() Kti = variables_t2.Kti.to_numpy() Ktp = variables_t2.Ktp.to_numpy() RUE = variables_t2.RUE.to_numpy() SWCe = variables_t2.SWCe.to_numpy() SWCr = variables_t2.SWCr.to_numpy() TAW = variables_t2.TAW.to_numpy() TDW = variables_t2.TDW.to_numpy() TEW = variables_t2.TEW.to_numpy() Tei = variables_t2.Tei.to_numpy() Tep = variables_t2.Tep.to_numpy() Zr = variables_t2.Zr.to_numpy() W = variables_t2.W.to_numpy() fewi = variables_t2.fewi.to_numpy() fewp = variables_t2.fewp.to_numpy() p_cor = variables_t2.p_cor.to_numpy() # Variables for previous day TAW0 = variables_t1.TAW.to_numpy() TDW0 = variables_t1.TDW.to_numpy() Dr0 = variables_t1.Dr.to_numpy() Dd0 = variables_t1.Dd.to_numpy() Zr0 = variables_t1.Zr.to_numpy() # Parameters # Parameters have an underscore (_) behind their name for recognition DiffE_ = param_dataset.DiffE.to_numpy() DiffR_ = param_dataset.DiffR.to_numpy() FW_ = param_dataset.FW.to_numpy() Fc_stop_ = param_dataset.Fc_stop.to_numpy() FmaxFC_ = param_dataset.FmaxFC.to_numpy() Foffset_ = param_dataset.Foffset.to_numpy() Fslope_ = param_dataset.Fslope.to_numpy() Init_RU_ = param_dataset.Init_RU.to_numpy() Irrig_auto_ = param_dataset.Irrig_auto.to_numpy() # Kcmax_ = param_dataset.Kcmax.to_numpy() # Inutile? KmaxKcb_ = param_dataset.KmaxKcb.to_numpy() Koffset_ = param_dataset.Koffset.to_numpy() Kslope_ = param_dataset.Kslope.to_numpy() Lame_max_ = param_dataset.Lame_max.to_numpy() REW_ = param_dataset.REW.to_numpy() Ze_ = param_dataset.Ze.to_numpy() Zsoil_ = param_dataset.Zsoil.to_numpy() maxZr_ = param_dataset.maxZr.to_numpy() minZr_ = param_dataset.minZr.to_numpy() p_ = param_dataset.p.to_numpy() # scale factors # Scale factors have the following name scheme : s_ + parameter_name s_FW = scale_factor['FW'] s_Fc_stop = scale_factor['Fc_stop'] s_FmaxFC = scale_factor['FmaxFC'] s_Foffset = scale_factor['Foffset'] s_Fslope = scale_factor['Fslope'] s_Init_RU = scale_factor['Init_RU'] # s_Irrig_auto = scale_factor['Irrig_auto'] # s_Kcmax = scale_factor['Kcmax'] # TODO vr: variable jamais utilisée? s_KmaxKcb = scale_factor['KmaxKcb'] s_Koffset = scale_factor['Koffset'] s_Kslope = scale_factor['Kslope'] s_Lame_max = scale_factor['Lame_max'] s_REW = scale_factor['REW'] s_Ze = scale_factor['Ze'] s_DiffE = scale_factor['DiffE'] s_DiffR = scale_factor['DiffR'] s_Zsoil = scale_factor['Zsoil'] s_maxZr = scale_factor['maxZr'] s_minZr = scale_factor['minZr'] s_p = scale_factor['p'] # input data with nc.Dataset(ndvi_cube_path, mode='r') as ds: # Dimensions of ndvi dataset : (time, x, y) NDVI = ds.variables['NDVI'][0, :, :] / 255 with nc.Dataset(soil_params_path, mode='r') as ds: Wfc = ds.variables['Wfc'][:, :] Wwp = ds.variables['Wwp'][:, :] print('soil Wfc and Wwp:', Wfc[0, 0], Wwp[0, 0]) with rio.open(Rain_path, mode='r') as ds: Rain = ds.read(1) / 1000 with rio.open(ET0_path, mode='r') as ds: ET0 = ds.read(1) / 1000 # Create progress bar progress_bar = tqdm(total=len(dates), desc='Running model', unit=' days') # ============ First day initialization ============# # Fraction cover FCov = s_Fslope * Fslope_ * NDVI + s_Foffset * Foffset_ FCov = np.minimum(np.maximum(FCov, 0), s_Fc_stop * Fc_stop_) # Root depth upate # TODO vr: il semblerait que dans le xls, Fcmax soit le Fc max de la simulation, alors que dans python, c'est un parametre Zr = np.maximum(s_minZr * minZr_ + (FCov / (s_FmaxFC * FmaxFC_)) * (s_maxZr * maxZr_ - s_minZr * minZr_), s_Ze * Ze_ + 0.001) # Water capacities TEW = (Wfc - Wwp/2) * s_Ze * Ze_ RUE = (Wfc - Wwp) * s_Ze * Ze_ TAW = (Wfc - Wwp) * Zr TDW = (Wfc - Wwp) * (s_Zsoil * Zsoil_ - Zr) # Zd = Zsoil - Zr # Depletions Dei = RUE * (1 - s_Init_RU * Init_RU_) Dep = RUE * (1 - s_Init_RU * Init_RU_) Dr = TAW * (1 - s_Init_RU * Init_RU_) Dd = TDW * (1 - s_Init_RU * Init_RU_) # p_cor p_cor = s_p * p_ # Irrigation TODO : find correct method for irrigation Irrig = np.minimum(np.maximum(Dr - Rain, 0), s_Lame_max * Lame_max_) * Irrig_auto_ Irrig = np.where(Dr > TAW * p_cor, Irrig, 0) # Kcb Kcb = np.minimum(np.maximum(s_Kslope * Kslope_ * NDVI + s_Koffset * Koffset_, 0), s_KmaxKcb * KmaxKcb_) # Update depletions with Rainfall and/or irrigation # DP DP = - np.minimum(Dd + np.minimum(Dr - Rain - Irrig, 0), 0) # De Dei = np.minimum(np.maximum(Dei - Rain - Irrig / (s_FW * FW_), 0), TEW) Dep = np.minimum(np.maximum(Dep - Rain, 0), TEW) fewi = np.minimum(1 - FCov, (s_FW * FW_)) fewp = 1 - FCov - fewi De = np.nansum((Dei * fewi, Dep * fewp)) / np.nansum([fewi, fewp]) De = np.where(np.isfinite(De), De, Dei * (s_FW * FW_) + Dep * (1 - (s_FW * FW_))) # Dr Dr = np.minimum(np.maximum(Dr - Rain - Irrig, 0), TAW) # Dd Dd = np.minimum(np.maximum(Dd + np.minimum(Dr - Rain - Irrig, 0), 0), TDW) # Diffusion coefficients Diff_rei = calculate_diff_re(TAW, Dr, Zr, RUE, Dei, Wfc, s_Ze*Ze_, s_DiffE*DiffE_) Diff_rep = calculate_diff_re(TAW, Dr, Zr, RUE, Dep, Wfc, s_Ze*Ze_, s_DiffE*DiffE_) Diff_dr = calculate_diff_dr(TAW, TDW, Dr, Zr, Dd, Wfc, s_Zsoil*Zsoil_, s_DiffR*DiffR_) # Weighing factor W W = calculate_W(TEW, Dei, Dep, fewi, fewp) # Soil water content of evaporative layer SWCe = 1 - De/TEW # Soil water content of root layer SWCr = 1 - Dr/TAW # Water Stress coefficient Ks = np.minimum((TAW - Dr) / (TAW * (1 - p_cor)), 1) # Reduction coefficient for evaporation Kri = calculate_Kr(TEW, Dei, s_REW*REW_) Krp = calculate_Kr(TEW, Dep, s_REW*REW_) Kei = np.minimum(W * Kri * (s_KmaxKcb*KmaxKcb_ - Kcb), fewi * s_KmaxKcb*KmaxKcb_) Kep = np.minimum((1 - W) * Krp * (s_KmaxKcb*KmaxKcb_ - Kcb), fewp * s_KmaxKcb*KmaxKcb_) # Prepare coefficients for evapotranspiration Kti = np.minimum(((s_Ze*Ze_ / Zr)**0.6) * (1 - Dei / TEW) / np.maximum(1 - Dr / TAW, 0.001), 1) Ktp = np.minimum(((s_Ze*Ze_ / Zr)**0.6) * (1 - Dep / TEW) / np.maximum(1 - Dr / TAW, 0.001), 1) Tei = Kti * Ks * Kcb * ET0 Tep = Ktp * Ks * Kcb * ET0 # Update depletions Dei = np.where(fewi > 0, np.minimum(np.maximum(Dei + ET0 * Kei / fewi + Tei - Diff_rei, 0), TEW), np.minimum(np.maximum(Dei + Tei - Diff_rei, 0), TEW)) Dep = np.where(fewp > 0, np.minimum(np.maximum(Dep + ET0 * Kep / fewp + Tep - Diff_rep, 0), TEW), np.minimum(np.maximum(Dep + Tep - Diff_rep, 0), TEW)) De = np.nansum((Dei * fewi, Dep * fewp)) / np.nansum([fewi, fewp]) De = np.where(np.isfinite(De), De, Dei * (s_FW * FW_) + Dep * (1 - (s_FW * FW_))) # Evaporation E = np.maximum((Kei + Kep) * ET0, 0) # Transpiration Tr = Kcb * Ks * ET0 # Potential evapotranspiration and evaporative fraction ?? # Update depletions (root and deep zones) at the end of the day Dr = np.minimum(np.maximum(Dr + E + Tr - Diff_dr, 0), TAW) Dd = np.minimum(np.maximum(Dd + Diff_dr, 0), TDW) # Write outputs with nc.Dataset(save_path, mode='r+') as outputs: # Dimensions of output dataset : (x, y, time) # Deep percolation outputs.variables['DP'][:, :, 0] = np.round(DP * 1000) # Soil water content of the evaporative layer outputs.variables['SWCe'][:, :, 0] = np.round(SWCe * 1000) # Soil water content of the root layer outputs.variables['SWCr'][:, :, 0] = np.round(SWCr * 1000) # Evaporation outputs.variables['E'][:, :, 0] = np.round(E * 1000) # Transpiration outputs.variables['Tr'][:, :, 0] = np.round(Tr * 1000) # Irrigation outputs.variables['Irr'][:, :, 0] = np.round(Irrig * 1000) # Additionnal outputs for var, scale in zip(additional_outputs, additional_outputs_scale): outputs.variables[var][:, :, 0] = np.round(eval(var) * scale) # Update previous day values TAW0 = TAW TDW0 = TDW Dr0 = Dr Dd0 = Dd Zr0 = Zr # Update progress bar progress_bar.update() # %% ============ Time loop ============# for i in range(1, len(dates)): # Reset input aliases # input data with nc.Dataset(ndvi_cube_path, mode='r') as ds: # Dimensions of ndvi dataset : (time, x, y) NDVI = ds.variables['NDVI'][i, :, :] / 255 with rio.open(Rain_path, mode='r') as ds: Rain = ds.read(i+1) / 1000 with rio.open(ET0_path, mode='r') as ds: ET0 = ds.read(i+1) / 1000 # ET0_previous = ds.read(i) / 1000 # TODO vr: variable jamais utilisée! # Update variables # Fraction cover FCov = s_Fslope * Fslope_ * NDVI + s_Foffset * Foffset_ FCov = np.minimum(np.maximum(FCov, 0), s_Fc_stop * Fc_stop_) # Root depth upate Zr = np.maximum(s_minZr * minZr_ + (FCov / (s_FmaxFC * FmaxFC_)) * s_maxZr * (maxZr_ - minZr_), s_Ze * Ze_ + 0.001) # Water capacities TAW = (Wfc - Wwp) * Zr TDW = (Wfc - Wwp) * (s_Zsoil * Zsoil_ - Zr) # Zd = Zsoil - Zr # Update depletions from root increase Dr = update_Dr_from_root(TAW, Zr, TAW0, TDW0, Dr0, Dd0, Zr0) Dd = update_Dd_from_root(TAW, TDW, Zr, TAW0, TDW0, Dr0, Dd0, Zr0) # Update param p # TODO: Calcul p_cor différent entre la doc ou l'excel et le code samir parcelle # p_cor = np.minimum(np.maximum(s_p * p_ + 0.04 * (5 - (E + Tr)), 0.1), 0.8) # Calcul p_cor différent entre la doc ou l'excel et le code samir parcelle p_cor = s_p * p_ + 0.04 * (5 - (E + Tr)) # Irrigation TODO : find correct method for irrigation Irrig = np.minimum(np.maximum(Dr - Rain, 0), s_Lame_max * Lame_max_) * Irrig_auto_ Irrig = np.where(Dr > TAW * p_cor, Irrig, 0) # Kcb Kcb = np.minimum(np.maximum(s_Kslope * Kslope_ * NDVI + s_Koffset * Koffset_, 0), s_KmaxKcb * KmaxKcb_) # DP (Deep percolation) DP = - np.minimum(Dd + np.minimum(Dr - Rain - Irrig, 0), 0) # Update depletions with Rainfall and/or irrigation # De Dei = np.minimum(np.maximum(Dei - Rain - Irrig / (s_FW * FW_), 0), TEW) Dep = np.minimum(np.maximum(Dep - Rain, 0), TEW) fewi = np.minimum(1 - FCov, (s_FW * FW_)) fewp = 1 - FCov - fewi De = np.nansum((Dei * fewi, Dep * fewp)) / np.nansum([fewi, fewp]) De = np.where(np.isfinite(De), De, Dei * (s_FW * FW_) + Dep * (1 - (s_FW * FW_))) # Update depletions from rain and irrigation Dr = np.minimum(np.maximum(Dr - Rain - Irrig, 0), TAW) Dd = np.minimum(np.maximum(Dd + np.minimum(Dr - Rain - Irrig, 0), 0), TDW) # Diffusion coefficients Diff_rei = calculate_diff_re(TAW, Dr, Zr, RUE, Dei, Wfc, s_Ze*Ze_, s_DiffE*DiffE_) Diff_rep = calculate_diff_re(TAW, Dr, Zr, RUE, Dep, Wfc, s_Ze*Ze_, s_DiffE*DiffE_) Diff_dr = calculate_diff_dr(TAW, TDW, Dr, Zr, Dd, Wfc, s_Zsoil*Zsoil_, s_DiffR*DiffR_) # Weighing factor W W = calculate_W(TEW, Dei, Dep, fewi, fewp) # Soil water content of evaporative layer SWCe = 1 - De/TEW # Soil water content of root layer SWCr = 1 - Dr/TAW # Water Stress coefficient Ks = np.minimum((TAW - Dr) / (TAW * (1 - p_cor)), 1) # Reduction coefficient for evaporation Kri = calculate_Kr(TEW, Dei, REW_*s_REW) Krp = calculate_Kr(TEW, Dep, REW_*s_REW) Kei = np.minimum(W * Kri * (s_KmaxKcb * KmaxKcb_ - Kcb), fewi * s_KmaxKcb * KmaxKcb_) Kep = np.minimum((1 - W) * Krp * (s_KmaxKcb * KmaxKcb_ - Kcb), fewp * s_KmaxKcb * KmaxKcb_) # Prepare coefficients for evapotranspiration Kti = np.minimum(((s_Ze * Ze_ / Zr)**0.6) * (1 - Dei / TEW) / np.maximum(1 - Dr / TAW, 0.001), 1) Ktp = np.minimum(((s_Ze * Ze_ / Zr)**0.6) * (1 - Dep / TEW) / np.maximum(1 - Dr / TAW, 0.001), 1) Tei = Kti * Ks * Kcb * ET0 Tep = Ktp * Ks * Kcb * ET0 # Update depletions Dei = np.where(fewi > 0, np.minimum(np.maximum(Dei + ET0 * Kei / fewi + Tei - Diff_rei, 0), TEW), np.minimum(np.maximum(Dei + Tei - Diff_rei, 0), TEW)) Dep = np.where(fewp > 0, np.minimum(np.maximum(Dep + ET0 * Kep / fewp + Tep - Diff_rep, 0), TEW), np.minimum(np.maximum(Dep + Tep - Diff_rep, 0), TEW)) De = np.nansum((Dei * fewi, Dep * fewp)) / np.nansum([fewi, fewp]) De = np.where(np.isfinite(De), De, Dei * (s_FW * FW_) + Dep * (1 - (s_FW * FW_))) # Evaporation E = np.maximum((Kei + Kep) * ET0, 0) # Transpiration Tr = Kcb * Ks * ET0 # Potential evapotranspiration and evaporative fraction ?? # Update depletions (root and deep zones) at the end of the day Dr = np.minimum(np.maximum(Dr + E + Tr - Diff_dr, 0), TAW) Dd = np.minimum(np.maximum(Dd + Diff_dr, 0), TDW) # Write outputs with nc.Dataset(save_path, mode='r+') as outputs: # Dimensions of output dataset : (x, y, time) # Deep percolation outputs.variables['DP'][:, :, i] = np.round(DP * 1000) # Soil water content of the evaporative layer outputs.variables['SWCe'][:, :, i] = np.round(SWCe * 1000) # Soil water content of the root layer outputs.variables['SWCr'][:, :, i] = np.round(SWCr * 1000) # Evaporation outputs.variables['E'][:, :, i] = np.round(E * 1000) # Transpiration outputs.variables['Tr'][:, :, i] = np.round(Tr * 1000) # Irrigation outputs.variables['Irr'][:, :, i] = np.round(Irrig * 1000) # Additionnal outputs for var, scale in zip(additional_outputs, additional_outputs_scale): outputs.variables[var][:, :, i] = np.round(eval(var) * scale) # Update previous day values TAW0 = TAW TDW0 = TDW Dr0 = Dr Dd0 = Dd Zr0 = Zr # Update progress bar progress_bar.update() # Close progress bar progress_bar.close() return None # %% MAIN if __name__ == '__main__': data_path = '/mnt/e/DATA/DEV_inputs_test' # data_path = './DEV_inputs_test' size = 10 NDVI_path = data_path + os.sep + 'NDVI_' + str(size) + '.nc' Rain_path = data_path + os.sep + 'Rain_' + str(size) + '.tif' ET0_path = data_path + os.sep + 'ET0_' + str(size) + '.tif' land_cover_path = data_path + os.sep + 'land_cover_' + str(size) + '.nc' # json_config_file = '/home/auclairj/GIT/modspa-pixel/config/config_modspa.json' json_config_file = './config/config_modspa.json' # param_file = '/home/auclairj/GIT/modspa-pixel/parameters/csv_files/params_samir_test.csv' param_file = './parameters/csv_files/params_samir_test.csv' soil_path = data_path + os.sep + 'soil_' + str(size) + '.nc' save_path = data_path + os.sep + 'outputs_' + str(size) + '.nc' if os.path.exists(save_path): os.remove(save_path) # Validation sets xls_NDVI_path = data_path + os.sep + 'xls_NDVI_10.nc' xls_Rain_path = data_path + os.sep + 'xls_Rain_10.tif' val_ET0_path = data_path + os.sep + 'xls_ET0_10.tif' output_save_path = data_path + os.sep + 'pix_outputs_10.nc' additional_outputs = ['Zr', 'Dei', 'Dep', 'Dr', 'Dd', 'Kei', 'Kep', 'Ks', 'W', 'Kcb', 'Kri', 'Krp', 'NDVI', 'fewi', 'fewp', 'TDW', 'TAW', 'FCov', 'Tei', 'Tep', 'Diff_rei', 'Diff_rep', 'Diff_dr', 'Rain', 'p_cor'] additional_outputs_scale = [100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100] chunk_size = {'x': 250, 'y': 250, 'time': -1} t = time() # client = Client() # webbrowser.open('http://127.0.0.1:8787/status', new=2, autoraise=True) # run_samir(json_config_file, param_file, ndvi_path, Rain_path, ET0_path, soil_path, land_cover_path, chunk_size, save_path) run_samir(json_config_file, param_file, xls_NDVI_path, xls_Rain_path, val_ET0_path, soil_path, land_cover_path, chunk_size, output_save_path, additional_outputs=additional_outputs, additional_outputs_scale=additional_outputs_scale) print('') print('Writting Output:', output_save_path) format_duration(time() - t) # client.close()