# -*- coding: UTF-8 -*- # Python """ Functions to call ECMWF Reanalysis with CDS-api - ERA5-land daily request - request a list of daily variables dedicated to the calculus of ET0 and the generation of MODSPA daily forcing files heavily modified from @rivallandv's original file @author: auclairj """ import os # for path exploration and file management from typing import List, Tuple # to declare variables import numpy as np # for math on arrays import xarray as xr # to manage nc files from datetime import datetime # to manage dates from p_tqdm import p_map # for multiprocessing with progress bars from dateutil.rrule import rrule, MONTHLY from fnmatch import fnmatch # for file name matching import rasterio as rio # to manage geotiff images import netCDF4 as nc # to write netcdf4 files from tqdm import tqdm # to follow progress from multiprocessing import Pool # to parallelize reprojection from psutil import virtual_memory # to check available ram from modspa_pixel.source.modspa_samir import calculate_time_slices_to_load # to optimise I/O operations import re # for string comparison import warnings # to suppress pandas warning # CDS API external library # source: https://pypi.org/project/cdsapi/ import cdsapi # to download cds data import requests # to request data # FAO ET0 calculator external library # Notes # source: https://github.com/Evapotranspiration/ETo # documentation: https://eto.readthedocs.io/en/latest/ import eto # to calculate ET0 def era5_enclosing_shp_aera(area: List[float], pas: float) -> Tuple[float, float, float, float]: """ Find the four coordinates including the boxbound scene to agree with gridsize resolution system projection: WGS84 lat/lon degree Arguments ========= 1. area: ``List[float]`` bounding box of the demanded area list of floats: [lat north, lon west, lat south, lon east] in degree WGS84 2. pas: ``float`` gridsize Returns ======= 1. era5_area: ``Tuple[float, float, float, float]`` coordinates list corresponding to N,W,S,E corners of the grid in decimal degree .. note:: gdal coordinates reference upper left corner of pixel, ERA5 coordinates refere to center of grid. To resolve this difference an offset of pas/2 is apply """ lat_max, lon_min, lat_min, lon_max = area # North era5_lat_max = round((lat_max//pas+1)*pas, 2) # West era5_lon_min = round((lon_min//pas)*pas, 2) # South era5_lat_min = round((lat_min//pas)*pas, 2) # Est era5_lon_max = round((lon_max//pas+1)*pas, 2) era5_area = era5_lat_max, era5_lon_min, era5_lat_min, era5_lon_max return era5_area # [N,W,S,E] def call_era5land_daily(args: Tuple[str, str, str, str, List[int], str]) -> None: """ Query of one month of daily ERA5-land data of a selected variable according to a selected statistic Documentation: `cds_climate <https://datastore.copernicus-climate.eu/documents/app-c3s-daily-era5-statistics/C3S_Application-Documentation_ERA5-daily-statistics-v2.pdf>`_ Arguments ========= (packed in args: ``tuple``) 1. year: ``str`` year at YYYY format. 2. month: ``str`` month at MM format. 3. variable: ``str`` user-selectable variable cf. Appendix A Table 3 for list of input variables availables. 4. statistic: ``str`` daily statistic choosed, 3 possibility daily_mean or daily_minimum or daily_maximum. 5. area: ``List[int]`` bounding box of the demanded area area = [lat_max, lon_min, lat_min, lon_max] 6. output_path: ``str`` path for output file. Returns ======= ``None`` """ year, month, variable, statistic, area, output_path = args # set name of output file for each month (statistic, variable, year, month) output_filename = \ output_path+os.sep +\ "ERA5-land_"+year+"_"+month+"_"+variable+"_"+statistic+".nc" if os.path.isfile(output_filename): print(output_filename, ' already exist') else: try: c = cdsapi.Client(timeout=300) result = c.service("tool.toolbox.orchestrator.workflow", params={ "realm": "c3s", "project": "app-c3s-daily-era5-statistics", "version": "master", "kwargs": { "dataset": "reanalysis-era5-land", "product_type": "reanalysis", "variable": variable, "statistic": statistic, "year": year, "month": month, "time_zone": "UTC+00:0", "frequency": "1-hourly", "grid": "0.1/0.1", "area": {"lat": [area[2], area[0]], "lon": [area[1], area[3]]} }, "workflow_name": "application" }) location = result[0]['location'] res = requests.get(location, stream=True) print("Writing data to " + output_filename) with open(output_filename, 'wb') as fh: for r in res.iter_content(chunk_size=1024): fh.write(r) fh.close() except: print('!! request', variable, ' failed !! -> year', year, 'month', month) return None def call_era5land_daily_for_MODSPA(start_date: str, end_date: str, area: List[float], output_path: str, processes: int = 9) -> None: """ request ERA5-land daily variables needed for ET0 calculus and MODSPA forcing `reanalysis_era5 <https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview>`_ Information on requested variables ---------------------------------- called land surface variables : * **2m_temperature** * **2m_dewpoint_temperature** * **surface_solar_radiation_downward** * **surface_net_solar_radiation** * **surface_pressure** * **mean_sea_level_pressure** * **potential_evaporation** * **evaporation** * **total_evaporation** * **total_precipitation** * **snowfall** * **10m_u_component_of_wind** * **10m_v_component_of_wind** Arguments ========= 1. start_date: ``str`` start date in YYYY-MM-DD format 2. end_date: ``str`` end date in YYYY-MM-DD format 3. area: ``List[float]`` bounding box of the demanded area area = [lat_max, lon_min, lat_min, lon_max] 4. output_path: ``str`` output file name, ``.nc`` extension 5. processes: ``int`` ``default = 9`` number of logical processors on which to run the download command. can be higher than your actual number of processor cores, download operations have a low CPU demand. Returns ======= ``None`` """ # list of first day of each month date into period strt_dt = datetime.strptime(start_date, '%Y-%m-%d').replace(day=1) end_dt = datetime.strptime(end_date, '%Y-%m-%d').replace(day=1) periods = [dt for dt in rrule( freq=MONTHLY, dtstart=strt_dt, until=end_dt, bymonthday=1)] dico = { '2m_temperature': ['daily_minimum', 'daily_maximum'], '10m_u_component_of_wind': ['daily_mean'], '10m_v_component_of_wind': ['daily_mean'], 'total_precipitation': ['daily_mean'], 'surface_solar_radiation_downwards': ['daily_mean'], '2m_dewpoint_temperature': ['daily_minimum', 'daily_maximum'] } args = [] # loop on variable to upload for variable in dico.keys(): # loop on statistic associated to variable to upload for statistic in dico[variable]: # loop on year and month for dt in periods: year = str(dt.year) month = '0'+str(dt.month) month = month[-2:] # Requete ERA5-land args.append((year, month, variable, statistic, area, output_path)) # Start pool p_map(call_era5land_daily, args, **{"num_cpus": processes}) return None def filename_to_datetime(filename: str) -> datetime.date: """ filename_to_datetime returns a ``datetime.date`` object for the date of the given file name. Arguments ========= 1. filename: ``str`` name or path of the product Returns ======= 1. date: ``datetime.date`` datetime.date object, date of the product """ # Search for a date pattern (yyyy_mm_dd) in the product name or path match = re.search('\d{4}_\d{2}', filename) format = '%Y_%m' datetime_object = datetime.strptime(match[0], format) return datetime_object.date() def concat_monthly_nc_file(list_era5land_monthly_files: List[str], list_variables: List[str], output_path: str) -> List[str]: """ Concatenate monthly netcdf datasets into a single file for each given variable. Arguments ========= 1. list_era5land_monthly_files: ``List[str]`` list of daily files per month 2. list_variables: ``List[str]`` names of the required variables as written in the filename 3. output_path: ``List[str]`` path to which save the aggregated files Returns ======= 1. list_era5land_files: ``List[str]`` the list of paths to the aggregated files """ if not os.path.exists(output_path): os.mkdir(output_path) list_era5land_monthly_files.sort() list_era5land_files = [] # concatenate all dates into a single file for each variable for variable in list_variables: curr_var_list = [] dates = [] for file in list_era5land_monthly_files: # find specific variable if fnmatch(file, '*' + variable + '*'): curr_var_list.append(file) dates.append(filename_to_datetime(file)) curr_datasets = [] for file in curr_var_list: # open all months for the given variable curr_datasets.append(xr.open_dataset(file)) # Create file name try: concatenated_file = output_path + os.sep + 'era5-land_' + dates[0].strftime('%m-%Y') + '_' + dates[-1].strftime('%m-%Y') + '_' + variable + '.nc' except: print(variable) # Concatenate monthly datasets concatenated_dataset = xr.concat(curr_datasets, dim = 'time') # Save datasets concatenated_dataset.to_netcdf(path = concatenated_file, mode = 'w',) # Add filename to output list list_era5land_files.append(concatenated_file) return list_era5land_files def uz_to_u2(u_z: List[float], h: float) -> List[float]: """ The wind speed measured at heights other than 2 m can be adjusted according to the follow equation Arguments ---------- u_z : TYPE float array measured wind speed z m above the ground surface, ms- 1. h : TYPE float height of the measurement above the ground surface, m. Returns ------- u2 : TYPE float array average daily wind speed in meters per second (ms- 1 ) measured at 2 m above the ground. """ u2 = u_z*4.87/(np.log(67.8*h - 5.42)) return u2 def ea_calc(T: float) -> float: """ comments Actual vapour pressure (ea) derived from dewpoint temperature ' Arguments ---------- T : Temperature in degree celsius. Returns ------- e_a :the actual Vapour pressure in Kpa """ e_a = 0.6108*np.exp(17.27*T/(T+237.15)) return e_a def load_variable(file_name: str) -> xr.Dataset: """ Loads an ERA5 meteorological variable into a xarray dataset according to the modspa architecture. Arguments ========= 1. file_name: ``str`` netcdf file to load Returns ======= 1. variable: ``xr.Dataset`` output xarray dataset """ # Rename temperature variables according to the statistic (max or min) if fnmatch(file_name, '*era5-land*2m_temperature_daily_maximum*'): # maximum temperature variable = xr.open_dataset(file_name).rename({'t2m': 't2m_max'}).drop_vars('realization') # netcdfs from ERA5 carry an unecessary 'realization' coordinate, so it is dropped elif fnmatch(file_name, '*era5-land*2m_temperature_daily_minimum*'): # minimum temperature variable = xr.open_dataset(file_name).rename({'t2m': 't2m_min'}).drop_vars('realization') elif fnmatch(file_name, '*era5-land*2m_dewpoint_temperature_daily_maximum*'): # maximum dewpoint temperature variable = xr.open_dataset(file_name).rename({'d2m': 'd2m_max'}).drop_vars('realization') elif fnmatch(file_name, '*era5-land*2m_dewpoint_temperature_daily_minimum*'): # minimum temperature variable = xr.open_dataset(file_name).rename({'d2m': 'd2m_min'}).drop_vars('realization') # Other variables can be loaded without modification else: variable = xr.open_dataset(file_name).drop_vars('realization') return variable def combine_weather2netcdf(rain_file: str, ET0_tile: str, ndvi_path: str, save_path: str, available_ram: int) -> None: """ Convert the Rain and ET0 geotiffs into a single weather netcdf dataset. Arguments ========= 1. rain_file: ``str`` path to Rain tif 2. ET0_tile: ``str`` path to ET0 tif 3. ndvi_path: ``str`` path to ndvi cube 4. save_path: ``str`` save path of weather netcdf dataset 5. available_ram: ``int`` available ram in GiB for conversion Returns ======= ``None`` """ # Open tif files rain_tif = rio.open(rain_file) ET0_tif = rio.open(ET0_tile) # Open ndvi netcdf to get structure ndvi = xr.open_dataset(ndvi_path) # Create empty dataset with same structure weather = ndvi.drop_vars(['ndvi']).copy(deep = True) weather['Rain'] = (ndvi.dims, np.zeros(tuple(ndvi.dims[d] for d in list(ndvi.dims)), dtype = np.uint16)) weather['Rain'].attrs['units'] = 'mm' weather['Rain'].attrs['standard_name'] = 'total_precipitation' weather['Rain'].attrs['description'] = 'Accumulated daily precipitation in mm' weather['Rain'].attrs['scale factor'] = '1000' weather['ET0'] = (ndvi.dims, np.zeros(tuple(ndvi.dims[d] for d in list(ndvi.dims)), dtype = np.uint16)) weather['ET0'].attrs['units'] = 'mm' weather['ET0'].attrs['standard_name'] = 'Transpiration' weather['ET0'].attrs['description'] = 'Accumulated daily reference evapotranspiration in mm' weather['ET0'].attrs['scale factor'] = '1000' # Create encoding dictionnary for variable in list(weather.keys()): # Write encoding dict encoding_dict = {} encod = {} encod['dtype'] = 'u2' # encod['zlib'] = True # encod['complevel'] = 4 encoding_dict[variable] = encod # Save empty output print('\nWriting empty weather dataset...') weather.to_netcdf(save_path, encoding=encoding_dict) weather.close() # Get geotiff dimensions (time, x, y) dims = (rain_tif.count, rain_tif.height, rain_tif.width) # Determine the memory requirement of operation nb_bits = 2 # int16 nb_vars = 1 # one variable written at a time memory_requirement = ((dims[0] * dims[1] * dims[2]) * nb_vars * nb_bits) / (1024**3) # in GiB security_factor = 0.8 # it is difficult to estimate true memory usage with compression algorithms, apply a security factor to prevent memory overload # Get the number of time bands that can be loaded at once time_slice, remainder, already_loaded = calculate_time_slices_to_load(memory_requirement, dims[0], security_factor, available_ram) print('\nApproximate memory requirement of conversion:', round(memory_requirement, 3), 'GiB\nAvailable memory:', available_ram, 'GiB\n\nLoading', time_slice, 'time slices at a time.\n' ) # Open empty dataset weather = nc.Dataset(save_path, mode = 'r+') # Create progress bar progress_bar = tqdm(total = dims[0], desc='Writing weather data', unit=' bands') # Data variables for i in range(dims[0]): if time_slice == dims[0] and not already_loaded: # if whole dataset fits in memory and it has not already been loaded weather.variables['Rain'][:,:,:] = rain_tif.read() weather.variables['ET0'][:,:,:] = ET0_tif.read() already_loaded = True elif i % time_slice == 0: # load a time slice every time i is divisible by the size of the time slice if i + time_slice <= dims[0]: # if the time slice does not gow over the dataset size weather.variables['Rain'][i: i + time_slice, :, :] = rain_tif.read(tuple(k+1 for k in range(i, i + time_slice))) weather.variables['ET0'][i: i + time_slice, :, :] = ET0_tif.read(tuple(k+1 for k in range(i, i + time_slice))) else: # load the remainder when the time slice would go over the dataset size weather.variables['Rain'][i: i + remainder, :, :] = rain_tif.read(tuple(k+1 for k in range(i, i + remainder))) weather.variables['ET0'][i: i + remainder, :, :] = ET0_tif.read(tuple(k+1 for k in range(i, i + remainder))) progress_bar.update() progress_bar.close() rain_tif.close() ET0_tif.close() weather.close() return None def calculate_ET0_pixel(pixel_dataset: xr.Dataset, lat: float, lon: float, h: float = 10) -> np.ndarray: """ Calculate ET0 over the year for a single pixel of the ERA5 weather dataset. Arguments ========= 1. pixel_dataset: ``xr.Dataset`` extracted dataset that contains all information for a single pixel 2. lat: ``float`` latitudinal coordinate of that pixel 3. lon: ``float`` longitudinal coordinate of that pixel 4. h: ``float`` ``default = 10`` height of ERA5 wind measurement in meters Returns ======= 1. ET0_values: ``np.ndarray`` numpy array containing the ET0 values for each day """ # Conversion of xarray dataset to dataframe for ET0 calculation ET0 = pixel_dataset.d2m_max.to_dataframe().rename(columns = {'d2m_max' : 'Dew_Point_T_max'}) - 273.15 # conversion of temperatures from K to °C ET0['Dew_Point_T_min'] = pixel_dataset.d2m_min.to_dataframe()['d2m_min'].values - 273.15 # conversion of temperatures from K to °C ET0['T_min'] = pixel_dataset.t2m_min.to_dataframe()['t2m_min'].values - 273.15 # conversion of temperatures from K to °C ET0['T_max'] = pixel_dataset.t2m_max.to_dataframe()['t2m_max'].values - 273.15 # conversion of temperatures from K to °C ET0['Rain'] = pixel_dataset.tp.to_dataframe()['tp'].values*1000 # conversion of total precipitation from meters to milimeters # Conversion of easward and northward wind values to scalar wind ET0['U_z'] = np.sqrt(pixel_dataset.u10.to_dataframe()['u10'].values**2 + pixel_dataset.v10.to_dataframe()['v10'].values**2) ET0['RH_max'] = 100 * ea_calc(ET0['Dew_Point_T_min']) / ea_calc(ET0['T_min']) # calculation of relative humidity from dew point temperature and temperature ET0['RH_min'] = 100 * ea_calc(ET0['Dew_Point_T_max']) / ea_calc(ET0['T_max']) # calculation of relative humidity from dew point temperature and temperature ET0['R_s'] = pixel_dataset.ssrd.to_dataframe()['ssrd'].values/1e6 # to convert downward total radiation from J/m² to MJ/m² ET0.drop(columns = ['Dew_Point_T_max', 'Dew_Point_T_min'], inplace = True) # drop unecessary columns # Start ET0 calculation eto_calc = eto.ETo() warnings.filterwarnings('ignore') # remove pandas warning # ET0 calculation for given pixel (lat, lon) values eto_calc.param_est(ET0, freq = 'D', # daily frequence # Elevation of the met station above mean sea level (m) (only needed if P is not in df). z_msl = 0., lat = lat, lon = lon, TZ_lon = None, z_u = h) # h: height of raw wind speed measurement # Retrieve ET0 values ET0_values = eto_calc.eto_fao(max_ETo=15, min_ETo=0, interp=True, maxgap=10).values # ETo_FAO_mm return ET0_values def convert_interleave_mode(args: Tuple[str, str, bool]) -> None: """ Convert Geotiff files obtained from OTB to Band interleave mode for faster band reading. Arguments ========= (packed in args: ``tuple``) 1. input_image: ``str`` input image to convert 2. output_image: ``str`` output image to save 3. remove: ``bool`` ``default = True`` weather to remove input image Returns ======= ``None`` """ input_image, output_image, remove = args # Open the input file in read mode with rio.open(input_image, "r") as src: # Open the output file in write mode with rio.open(output_image, 'w', driver = src.driver, height = src.height, width = src.width, count = src.count, dtype = src.dtypes[0], crs = src.crs, transform = src.transform, interleave = 'BAND',) as dst: # Loop over the blocks or windows of the input file for _, window in src.block_windows(1): # Write the data to the output file dst.write(src.read(window = window), window = window) # Remove unecessary image if remove: os.remove(input_image) return None def era5Land_daily_to_yearly_nc(list_era5land_files: List[str], output_file: str, raw_S2_image_ref: str, ndvi_path: str, h: float = 10, max_ram: int = 8, remove: bool = True) -> str: """ Calculate ET0 values from the ERA5 netcdf weather variables. Output netcdf contains the ET0 and precipitation values for each day in the selected time period and reprojected (reprojection run on two processors) on the same grid as the NDVI values. Arguments ========= 1. list_era5land_files: ``List[str]`` list of netcdf files containing the necessary variables 2. output_file: ``str`` output file name without extension 3. raw_S2_image_ref: ``str`` raw Sentinel 2 image at right resolution for reprojection 4. ndvi_path: ``str`` path to ndvi dataset, used for attributes and coordinates 5. h: ``float`` ``default = 10`` height of ERA5 wind measurements in meters 6. max_ram: ``int`` ``default = 8`` max ram (in GiB) for reprojection and conversion. Two subprocesses are spawned for OTB, each receiviving half of requested memory. 7. remove: ``bool`` ``default = True`` weather to remove temporary files Returns ======= 1. output_file_rain: ``str`` path to file containing precipitation data 2. output_file_ET0: ``str`` path to file containing ET0 data """ # Test if memory requirement is not loo large if np.ceil(virtual_memory().available / (1024**3)) < max_ram: print('\nRequested', max_ram, 'GiB of memory when available memory is approximately', round(virtual_memory().available / (1024**3), 1), 'GiB.\n\nExiting script.\n') return None # Load all monthly files into a single xarray dataset that contains all dates (daily frequency) raw_weather_ds = None for file in list_era5land_files: if not raw_weather_ds: raw_weather_ds = load_variable(file) else: temp = load_variable(file) raw_weather_ds = xr.merge([temp, raw_weather_ds]) del temp # Create ET0 variable (that will be saved) and set attributes raw_weather_ds = raw_weather_ds.assign(ET0 = (raw_weather_ds.dims, np.zeros(tuple(raw_weather_ds.dims[d] for d in list(raw_weather_ds.dims)), dtype = 'float64'))) # Loop on lattitude and longitude coordinates to calculate ET0 per "pixel" for lat in raw_weather_ds.coords['lat'].values: for lon in raw_weather_ds.coords['lon'].values: # Select whole time period for given (lat, lon) values select_ds = raw_weather_ds.sel({'lat' : lat, 'lon' : lon}).drop_vars(['lat', 'lon']) # Calculate ET0 values for given pixel ET0_values = calculate_ET0_pixel(select_ds, lat, lon, h) # Write ET0 values in xarray Dataset raw_weather_ds['ET0'].loc[{'lat' : lat, 'lon' : lon}] = ET0_values # Get necessary data for final dataset and rewrite netcdf attributes final_weather_ds = raw_weather_ds.drop_vars(names = ['ssrd', 'v10', 'u10', 't2m_max', 't2m_min', 'd2m_max', 'd2m_min']) # remove unwanted variables final_weather_ds['tp'] = final_weather_ds['tp'] * 1000 # conversion from m to mm # final_weather_ds.to_netcdf(output_file + '.nc', encoding = {"tp": {"dtype": "u2"}, "ET0": {"dtype": "u2"}}) # return output_file + '.nc' # Change datatype to reduce memory usage final_weather_ds['tp'] = (final_weather_ds['tp'] * 100).astype('i2').chunk(chunks={"time": 1}) final_weather_ds['ET0'] = (final_weather_ds['ET0'] * 1000).astype('i2').chunk(chunks={"time": 1}) # Write projection final_weather_ds = final_weather_ds.rio.write_crs('EPSG:4326') # Set variable attributes final_weather_ds['ET0'].attrs['units'] = 'mm' final_weather_ds['ET0'].attrs['standard_name'] = 'Potential evapotranspiration' final_weather_ds['ET0'].attrs['comment'] = 'Potential evapotranspiration accumulated over the day, calculated with the FAO-56 method (scale factor = 1000)' final_weather_ds['tp'].attrs['units'] = 'mm' final_weather_ds['tp'].attrs['standard_name'] = 'Precipitation' final_weather_ds['tp'].attrs['comment'] = 'Volume of total daily precipitation expressed as water height in milimeters (scale factor = 100)' # Save dataset to geotiff, still in wgs84 (lat, lon) coordinates output_file_rain = output_file + '_rain.tif' output_file_ET0 = output_file + '_ET0.tif' final_weather_ds.tp.rio.to_raster(output_file_rain, dtype = 'uint16') #, tiled = True, blockxsize = final_weather_ds.dims['lon'], blockysize = final_weather_ds.dims['lat']) final_weather_ds.ET0.rio.to_raster(output_file_ET0, dtype = 'uint16') #, tiled = True, blockxsize = final_weather_ds.dims['lon'], blockysize = final_weather_ds.dims['lat']) # Reprojected image paths output_file_rain_reproj = output_file + '_rain_reproj.tif' output_file_ET0_reproj = output_file + '_ET0_reproj.tif' # Converted image paths output_file_final = output_file + '.nc' # otbcli_SuperImpose commands OTB_command_reproj1 = 'otbcli_Superimpose -inr ' + raw_S2_image_ref + ' -inm ' + output_file_rain + ' -out ' + output_file_rain_reproj + ' uint16 -interpolator nn -ram ' + str(int(max_ram * 1024/2)) OTB_command_reproj2 = 'otbcli_Superimpose -inr ' + raw_S2_image_ref + ' -inm ' + output_file_ET0 + ' -out ' + output_file_ET0_reproj + ' uint16 -interpolator nn -ram ' + str(int(max_ram * 1024/2)) commands_reproj = [OTB_command_reproj1, OTB_command_reproj2] with Pool(2) as p: p.map(os.system, commands_reproj) # Combine to netCDF file combine_weather2netcdf(output_file_rain_reproj, output_file_ET0_reproj, ndvi_path, output_file_final, available_ram = max_ram) # remove old files and rename outputs os.remove(output_file_rain) os.remove(output_file_ET0) os.remove(output_file_rain_reproj) os.remove(output_file_ET0_reproj) return output_file_final