# -*- coding: UTF-8 -*- # Python """ 04-07-2023 @author: rivallandv, heavily modified by jeremy auclair Download ERA5 daily weather files for modspa """ import glob # for path management import sys # for path management import os # for path exploration from typing import Tuple import geopandas as gpd # to manage shapefiles from psutil import cpu_count # to get number of physical cores available import modspa_pixel.preprocessing.lib_era5_land_pixel as era5land # custom built functions for ERA5-Land data download from modspa_pixel.config.config import config # to load modspa config file def request_ER5_weather(config_file: str, raw_S2_image_ref: str, ndvi_path: str) -> Tuple[str, str]: """ Download ERA5 reanalysis daily weather files, concatenate and calculate ET0 to obtain a netCDF4 dataset for precipitation and ET0 values. Weather data reprojection and conversion can take some time for large spatial windows. Arguments ========= 1. config_file: ``str`` json configuration file 2. raw_S2_image_ref: ``str`` unmodified sentinel-2 image at correct resolution for weather data reprojection 3. ndvi_path: ``str`` path to ndvi cube, used for weather data reprojection Returns ======= 1. weather_file: ``str`` path to netCDF4 file containing weather data """ # Get config file config_params = config(config_file) outpath = config_params.era5_path + os.sep + config_params.run_name # Geometry configuration wgs84_epsg = 'epsg:4326' # WGS84 is the ERA5 epsg # ERA5 product parameters wind_height = 10 # height of ERA5 wind measurements in meters print('REQUEST CONFIGURATION INFORMATIONS:') if config_params.shapefile_path: if os.path.exists(config_params.shapefile_path): print('shapeFile: ', config_params.shapefile_path) else: print('shapeFile not found') else: # print('specify either shapeFile, boxbound or point coordinate in json file') print('specify shapeFile in json file') sys.exit(-1) print('period: ', config_params.start_date, ' - ', config_params.end_date) print('experiment name:', config_params.run_name) if os.path.exists(outpath): print('path for nc files: ', outpath) else: os.mkdir(outpath) print('mkdir path for nc files: ', outpath) print('----------') # Request ERA5-land BoxBound Determination if config_params.shapefile_path: # Load shapefile to access geometrics informations for ERA5-Land request gdf_expe_polygons = gpd.read_file(config_params.shapefile_path) print('Input polygons CRS :', gdf_expe_polygons.crs) expe_epsg = gdf_expe_polygons.crs # verification que les polygones sont tous fermés liste_polygons_validity = gdf_expe_polygons.geometry.is_valid if list(liste_polygons_validity).count(False) > 0: print('some polygons of Shapefile are not valid') polygons_invalid = liste_polygons_validity.loc[liste_polygons_validity == False] print('invalid polygons:', polygons_invalid) for i in polygons_invalid.index: gdf_expe_polygons.geometry[i] # Application d'un buffer de zero m gdf_expe_polygons_clean = gdf_expe_polygons.geometry.buffer(0) gdf_expe_polygons = gdf_expe_polygons_clean # search for the total extent of the whole polygons in lat/lon [xlo/ylo/xhi/yhi] [W S E N] expe_polygons_boxbound = gdf_expe_polygons.geometry.total_bounds expe_polygons_boxbound = list(expe_polygons_boxbound) print('shape extend in ', expe_epsg.srs, ':', expe_polygons_boxbound) if expe_epsg.srs != wgs84_epsg: print('--- convert extend in wgs84 coordinates ---') # idem en wgs84 pour des lat/lon en degree (format utilisé par google earth engine) expe_polygons_boxbound_wgs84 = gdf_expe_polygons.to_crs(wgs84_epsg).geometry.total_bounds # convert to list for earth engine expe_polygons_boxbound_wgs84 = list(expe_polygons_boxbound_wgs84) else: expe_polygons_boxbound_wgs84 = expe_polygons_boxbound # switch coordinates order to agree with ECMWF order: N W S E expe_area = expe_polygons_boxbound_wgs84[3], expe_polygons_boxbound_wgs84[0], expe_polygons_boxbound_wgs84[1], expe_polygons_boxbound_wgs84[2] print('boxbound [N W S E] extend in ', wgs84_epsg) print(expe_area) # determine boxbound for ECMWF request (included shape boxbound) era5_expe_polygons_boxbound_wgs84 = era5land.era5_enclosing_shp_aera(expe_area, 0.1) print('boxbound [N W S E] request extend in ', wgs84_epsg) print(era5_expe_polygons_boxbound_wgs84) print('--start request--') # Get number of available CPUs nb_processes = 4 * min([cpu_count(logical = False), len(os.sched_getaffinity(0)), config_params.max_cpu]) # downloading data demands very little computing power, each processor core can manage multiple downloads # Call daily data era5land.call_era5land_daily_for_MODSPA(config_params.start_date, config_params.end_date, era5_expe_polygons_boxbound_wgs84, output_path = outpath, processes = nb_processes) year = config_params.start_date[0:4] list_era5land_hourly_ncFiles = glob.glob(outpath + os.sep + 'ERA5-land_' + year + '*' + '.nc') for ncfile in list_era5land_hourly_ncFiles: print(ncfile) save_dir = outpath + os.sep + 'ncdailyfiles' if os.path.exists(outpath+os.sep+'ncdailyfiles'): print('path for nc daily files: ', save_dir) else: os.mkdir(outpath+os.sep+'ncdailyfiles') print('mkdir path for nc daily files: ', save_dir) print('----------') # Save daily wheather data into ncfile weather_daily_ncFile = save_dir + os.sep + config_params.start_date + '_' + config_params.end_date + '_' + config_params.run_name + '_era5-land-daily-meteo' # Temporary save directory for daily file merge variable_list = ['2m_dewpoint_temperature_daily_maximum', '2m_dewpoint_temperature_daily_minimum', '2m_temperature_daily_maximum', '2m_temperature_daily_minimum', 'total_precipitation_daily_mean', '10m_u_component_of_wind_daily_mean', '10m_v_component_of_wind_daily_mean', 'surface_solar_radiation_downwards_daily_mean'] # Aggregate monthly files aggregated_files = era5land.concat_monthly_nc_file(list_era5land_hourly_ncFiles, variable_list, save_dir) # Calculate ET0 over the whole time period weather_daily_ncFile = era5land.era5Land_daily_to_yearly_nc(aggregated_files, weather_daily_ncFile, raw_S2_image_ref, ndvi_path, h = wind_height, max_ram = 16) print('\n', weather_daily_ncFile) return weather_daily_ncFile