{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Build a validation ndvi and weather dataset" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import xarray as xr\n", "import os\n", "import pandas as pd\n", "import numpy as np\n", "\n", "data_path = '/mnt/e/DATA/DEV_inputs_test'\n", "\n", "size = 10\n", "\n", "# Original sets\n", "ndvi_path = data_path + os.sep + 'ndvi_' + str(size) + '.nc'\n", "rain_path = data_path + os.sep + 'rain_' + str(size) + '.tif'\n", "ET0_path = data_path + os.sep + 'ET0_' + str(size) + '.tif'\n", "\n", "# Validation sets\n", "val_ndvi_path = data_path + os.sep + 'val_ndvi_' + str(size) + '.nc'\n", "rain_path = data_path + os.sep + 'val_rain_' + str(size) + '.tif'\n", "val_ET0_path = data_path + os.sep + 'val_ET0_' + str(size) + '.tif'\n", "\n", "val_outputs = data_path + os.sep + 'val_outputs_' + str(size) + '.nc'\n", "\n", "# Modspa excel file\n", "modspa_excel_path = '/mnt/d/Documents/IRD/ModSpa/ModSpa_Excel/SAMIRpixel_Reference_Simonneaux2012.xls'" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/tmp/ipykernel_2594/1284543500.py:89: SerializationWarning: saving variable rain with floating point data as an integer dtype without any _FillValue to use for NaNs\n", " outputs_val.to_netcdf(val_outputs, encoding = encoding_dict)\n" ] } ], "source": [ "modspa_excel = pd.read_excel(modspa_excel_path, sheet_name = 0)\n", "\n", "# Get input data\n", "val_data = modspa_excel[modspa_excel.columns[1:4]]\n", "val_data = val_data.iloc[10:, :]\n", "val_data.columns = ['ET0', 'rain', 'ndvi']\n", "val_data = val_data.astype('float64')\n", "# val_data\n", "\n", "# Get output data\n", "val_results = modspa_excel[modspa_excel.columns[[6, 7, 15, 17, 18, 23, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55]]]\n", "val_results = val_results.iloc[10:, :]\n", "val_results.columns = ['FCov', 'Kcb', 'Zr', 'TAW', 'TDW', 'Irr', 'DP', 'diff_rei', 'diff_rep', 'diff_dr', 'Dei', 'Dep', 'Dr', 'Dd', 'SWCe', 'SWCr', 'fewi', 'fewp', 'Kri', 'Krp', 'W', 'Kei', 'Kep', 'E', 'Ks', 'Tr', 'Tei', 'Tep', 'p_cor']\n", "val_results = val_results.astype('float64')\n", "# val_results\n", "\n", "# Dates\n", "dates = pd.date_range(start = '2006-02-06', end = '2006-11-29', freq = 'D')\n", "\n", "# Open empty dataset to get structure and reindex with correct dates\n", "empty_dataset = xr.open_dataset(ndvi_path)\n", "empty_dataset = empty_dataset.reindex(time = dates)\n", "\n", "# Transpose dimensions\n", "empty_dataset = empty_dataset.transpose('time', 'y', 'x')\n", "\n", "# Get the numpy array for 'ndvi'\n", "zero_values = empty_dataset['ndvi'].values\n", "\n", "# Transpose the numpy array for 'ndvi'\n", "zero_values = zero_values.transpose([0,2,1])\n", "empty_dataset['ndvi'] = empty_dataset.ndvi.transpose('time', 'y', 'x')\n", "\n", "# Assign the transposed numpy array back to 'ndvi'\n", "empty_dataset.ndvi.values = zero_values\n", "\n", "# Drop ndvi to get empty dataset\n", "empty_dataset = empty_dataset.drop_vars('ndvi')\n", "\n", "# Datasets\n", "ndvi_val = empty_dataset.copy(deep = True)\n", "rain_val = empty_dataset.copy(deep = True)\n", "ET0_val = empty_dataset.copy(deep = True)\n", "outputs_val = empty_dataset.copy(deep = True)\n", "\n", "# Inputs\n", "ndvi_val['ndvi'] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype = 'uint8'))\n", "rain_val['tp'] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype = 'uint16'))\n", "ET0_val['ET0'] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype = 'uint16'))\n", "\n", "# Outputs\n", "for var in val_results.columns:\n", " outputs_val[var] = (empty_dataset.dims, np.zeros(tuple(empty_dataset.dims[d] for d in list(empty_dataset.dims)), dtype = 'int16'))\n", "\n", "for x in ndvi_val.coords['x'].values:\n", " for y in ndvi_val.coords['y'].values:\n", " # Inputs\n", " ndvi_val['ndvi'].loc[{'x' : x, 'y' : y}] = np.round(val_data['ndvi'].values * 255)\n", " rain_val['tp'].loc[{'x' : x, 'y' : y}] = np.round(val_data['rain'].values * 1000)\n", " ET0_val['ET0'].loc[{'x' : x, 'y' : y}] = np.round(val_data['ET0'].values * 1000)\n", "\n", " # Outputs\n", " for var in list(outputs_val.keys()):\n", " outputs_val[var].loc[{'x' : x, 'y' : y}] = np.round(val_results[var].values * 100)\n", "\n", "# Add precip\n", "outputs_val['rain'] = rain_val['tp'].copy(deep = True) / 10\n", "\n", "# Reorganize dimension order\n", "ndvi_val = ndvi_val.transpose('time', 'y', 'x')\n", "rain_val = rain_val.transpose('time', 'y', 'x')\n", "ET0_val = ET0_val.transpose('time', 'y', 'x')\n", "\n", "# Save datasets\n", "# Inputs\n", "ndvi_val.to_netcdf(val_ndvi_path, encoding = {\"ndvi\": {\"dtype\": \"u1\", \"_FillValue\": 0}})\n", "rain_val.tp.rio.to_raster(rain_path, dtype = 'uint16')\n", "ET0_val.ET0.rio.to_raster(val_ET0_path, dtype = 'uint16')\n", "\n", "# Create encoding dictionnary\n", "for variable in list(outputs_val.keys()):\n", " # Write encoding dict\n", " encoding_dict = {}\n", " encod = {}\n", " encod['dtype'] = 'i2'\n", " encoding_dict[variable] = encod\n", "\n", "# Outputs\n", "outputs_val.to_netcdf(val_outputs, encoding = encoding_dict)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Compare `modspa-pixel` and `modspa-excel` outputs" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Difference on sum : {'E': 0.417, 'Tr': 10.561, 'SWCe': -6.31, 'SWCr': -8.219, 'Irr': 0.0, 'DP': -75.81}\n", "Difference on mean : {'E': 0.001, 'Tr': 0.036, 'SWCe': -0.021, 'SWCr': -0.028, 'Irr': 0.0, 'DP': -0.255}\n" ] } ], "source": [ "import os\n", "import xarray as xr\n", "import matplotlib.pyplot as plt\n", "from matplotlib import rcParams\n", "import matplotlib.dates as mdates\n", "\n", "# Settings for plots\n", "plt.style.use('default')\n", "rcParams['mathtext.fontset'] = 'stix'\n", "rcParams['font.family'] = 'STIXGeneral'\n", "rcParams.update({'font.size': 18})\n", "# Date format\n", "date_plot_format = mdates.WeekdayLocator(interval=6)\n", "date_format = mdates.DateFormatter('%Y-%m')\n", "\n", "def plot_time_series(ds1: xr.Dataset, var: str, ds2:xr.Dataset = None, label1: str = 'Dataset1', label2: str = 'Dataset2', scale_factor1: float = 1000, scale_factor2: float = 1000, unit: str = 'mm', title: str = 'variable comparison') -> None:\n", " \"\"\"\n", " Plot times series of a uniform modspa dataset.\n", " Select first pixel (upper left corner) and plot\n", " its value over time.\n", "\n", " ## Arguments\n", " 1. ds1: `xr.Dataset`\n", " first dataset to plot\n", " 2. var: `str`\n", " name of variable to plot\n", " 3. ds2: `xr.Dataset` `default = None`\n", " second dataset to plot, optional\n", " 4. label1: `str` `default = 'Dataset1'`\n", " label for first dataset\n", " 5. label2: `str` `default = 'Dataset2'`\n", " label for second dataset, optional\n", " 6. scale_factor1: `float` `default = 1000`\n", " scale factor for first dataset to\n", " divide the time series in order to\n", " plot the correct variable values\n", " 7. scale_factor2: `float` `default = 1000`\n", " scale factor for second dataset to\n", " divide the time series in order to\n", " plot the correct variable values\n", " 8. unit: `str` `default = 'mm'`\n", " unit of value\n", " 9. title: `str` `default = 'variable comparison'`\n", " title of plot\n", "\n", " ## Returns\n", " `None`\n", " \"\"\"\n", " \n", " plt.figure(figsize = (14,7))\n", " plt.grid(color='silver', linestyle='--', axis = 'both', linewidth=1)\n", " plt.gca().xaxis.set_major_formatter(date_format)\n", " plt.gca().xaxis.set_major_locator(date_plot_format)\n", " (ds1.isel(x = 0, y = 0)[var] / scale_factor1).plot(label = label1, color = 'b', alpha = 0.8)\n", " if ds2:\n", " (ds2.isel(x = 0, y = 0)[var] / scale_factor2).plot(label = label2, color = 'r', alpha = 0.8)\n", " plt.title(var + ' ' + title)\n", " plt.ylabel(var + ' [' + unit + ']')\n", " plt.legend()\n", " \n", " return None\n", "\n", "\n", "data_path = '/mnt/e/DATA/DEV_inputs_test'\n", "\n", "size = 10\n", "\n", "# Inputs\n", "rain_path = data_path + os.sep + 'val_rain_' + str(size) + '.tif'\n", "ET0_path = data_path + os.sep + 'val_ET0_' + str(size) + '.tif'\n", "\n", "# Modspa-pixel output\n", "outputs_path = data_path + os.sep + 'val_outputs_pixel_' + str(size) + '.nc'\n", "\n", "# Excel output\n", "val_outputs_path = data_path + os.sep + 'val_outputs_' + str(size) + '.nc'\n", "\n", "# Open datasets\n", "outputs = xr.open_dataset(outputs_path)\n", "val_outputs = xr.open_dataset(val_outputs_path)\n", "rain = xr.open_dataset(rain_path).rename({'band_data': 'rain', 'band': 'time'})\n", "rain['time'] = outputs.time.values\n", "ET0 = xr.open_dataset(ET0_path).rename({'band_data': 'ET0', 'band': 'time'})\n", "ET0['time'] = outputs.time.values\n", "\n", "# outputs = xr.where(outputs < 0, 0, outputs)\n", "\n", "# Compute differences\n", "variables = list(outputs.keys())\n", "diff = outputs.drop_vars(variables).copy(deep = True)\n", "for var in variables:\n", " diff[var] = (val_outputs[var].copy(deep = True)*10 - outputs[var].copy(deep = True)) / 1000\n", "\n", "# Get values\n", "differences_sum = {}\n", "differences_mean = {}\n", "for var in variables[:6]:\n", " differences_sum[var] = round(float(diff[var].sum(dim = 'time').mean().values), 3)\n", " differences_mean[var] = round(float(diff[var].mean(dim = 'time').mean().values), 3)\n", "\n", "print('Difference on sum :', differences_sum)\n", "print('Difference on mean :', differences_mean)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABJ8AAAKyCAYAAAB7b3+jAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xT5f4H8M9J0qR7lxZKKZRVWqBsZAoyBcdVrwJO1Cv6k4vrOnDjHle8igsXV8SLCiqICiJ7y957FCh7lO428/n9cUxoSFpy2qYnp/28Xy9eiTnr2+TDIX77nOdIQggBIiIiIiIiIiIiP9CpXQAREREREREREdVdbD4REREREREREZHfsPlERERERERERER+w+YTERERERERERH5DZtPRERERERERETkN2w+ERERERERERGR37D5REREREREREREfsPmExERERERERER+Q2bT0REREQKHTx4UO0SiIiIiDSDzSciIiKqk5577jlERETgueeeq/a+7HY7li9fjscffxwtW7ZEr169qrSfvLw8fPvtt7jtttuqXRMFljlz5iA2NhZDhgyBxWJRuxwiIqKAIgkhhNpFEBERkad3330Xr732GnJzc70ulyQJkZGRiI6ORqNGjdC1a1f06NED1113HUJDQ2u52sATHh6O4uJihIeHo7CwsFr7WrJkCebMmYMpU6agoKAAiYmJOHXqlM/bv/nmm5g9ezY2bNgAu90OAOBXsLrlmmuuwW+//QYA2LBhAzp37qxyRURERIGDzSciIqIA9+uvv+Laa691/ff111+PG2+8EVarFfn5+di7dy/WrFmD7du3AwCio6Nx991344UXXkB0dLRKVavv8ccfx+TJkzF27Fi89dZbNbLPf/7zn/joo48UN5/KyspgNpsxePBgrFu3DgCbT3XNzJkzcd9996Fz586YO3cuTCaT2iUREREFDDafiIiINCA6Ohr5+fkAgL1796JVq1Ye66xduxZPPPEEVqxYAQBISUnBtGnTcOWVV9ZqrXXZhAkT8NJLLyluPjk9/fTTePPNNwGw+URERET1B+d8IiIi0oCoqCjXc6PR6HWd7t27Y+nSpXjssccAADk5Obj66quxfPnyWqmRLo+jYYiIiKg+YvOJiIhIAyRJ8mk9nU6HiRMn4h//+AcAoLS0FH/7299w/vx5f5ZHRERERFQhNp+IiIjqoPfeew+NGjUCAFy4cAEvvfSSyhWpZ+/evWqXQPXIuXPnKrxJABERUX3F5hMREVEdFBYWhieffNL139OmTYPNZnP9t81mw88//4zrrrsOCxcuhNVqxVNPPYX4+HikpKRg7dq1le7/zz//hMlkgiRJrj9BQUF44okn3NZ7+OGHodPpIEkS9Ho93n33Xbfl2dnZeOyxx5CVlYXWrVsjKioKXbt2xeeff+71uL7WffLkSfznP/9Bly5dkJ6eXuHPsWrVKowaNQrt2rVDamoqYmNjMXToUCxdurTSn99p2bJlGDp0KGJjYxEREYE+ffpg5syZPm1bkdzcXDzzzDPo3r07UlJSEBUVhV69euHLL7+Ew+Go0j6tVis+++wz9OnTB+np6WjSpAk6duyIt99+GwUFBRVut3TpUowaNQpt27ZFs2bNEBcXhz59+uDjjz+GxWLxus3p06fxzjvvoG3btsjJyYHNZsN7772Hjh07IjQ0FM2aNcPHH3/sts3//vc/9OnTB5GRkUhISMDDDz/sdf9FRUX46quv0KdPH6xYsQIWiwVvvvkmMjIyEBISgiZNmuCxxx5zzY92qfz8fLz77rvo1q0b2rVrh+joaLRq1QpPP/00ioqKvG6zdu1a3H///XjjjTcAAF9//TWaN2+OyMhITJ48GQBQXFyM//3vfxg+fDgaNmyIbdu2eezHbrfj888/R5cuXdCyZUuEh4e7/u488sgjXo9tt9sxdepUDB06FO3atUNSUhKSkpJw/fXXu+6s522befPmYeTIka4RkPv378ett96K+Ph4REVF4dZbb+VoSCIiql2CiIiIAl5qaqoAIACI7Oxsn7bJzs52bQNArFixQpw/f16MGzdOxMfHu16fO3euGDFihDAYDK7XHnzwwcvu//Tp06J169aubWbOnOl1vS+//FIAENOnT3d7/ddffxUhISGiU6dO4sSJE0IIIU6cOCE6d+4sAIjx48e71lVS90cffSSGDx/u9ro3zz//vAAg7rnnHlFSUiKEEGLdunUiKipK6PV68euvv3ps8+KLLwoAIjExUfz3v/8VOp1OBAUFCaPR6PZejxs3zusxndtXVNOWLVtE8+bNxYwZM4TD4RBCCLF27VqRlJQkAIgbb7xR2Gw2r9tW5Pjx46JTp07iuuuuE4cPHxZCCGGxWMTAgQMFANGsWTNx7Ngxt23MZrO4++67hdFoFF999ZXrmLt37xY9e/YUAET79u3FkSNHXNscOXJEXHvttW7v+/bt28VVV10ldDqdSElJcXufZsyYIQoKCsSwYcNEaGioSE1NFXq93rX84Ycfdu07JydH3HDDDSI4ONi1/McffxSdO3cWISEhokmTJkKn07mWZWRkiHPnzrn9TNnZ2aJJkyYiKipKrF27VgghRFlZmbj77rsFANG7d2+39/bVV18VGRkZrn0+9dRT4uOPP3b7+TIyMsSiRYvETTfd5JbNJUuWeHwOY8aMESEhIWLZsmWu137++WcRGRnp9rOW/9y6du0qmjRpIlatWuV6/ffffxeNGjUSAMTIkSNFaWmpa9k333wj2rdv76pjxIgRYt68eSIiIkIkJyeLkJAQ17J+/fpVFBkiIqIax+YTERGRBlSl+SSEcDUtAIj//ve/wmKxCLPZLL777jvX64MGDRL/+c9/RFlZmXjsscdEbGxshY2kS/3yyy+u/UycONHrOh988IHIyspye83hcLhqmzBhgtuyefPmCQAiKChIXLhwQQghqlT36NGjK2z07Nq1y7Vs6dKlbsueeuopAUB07drVYztn8ygsLEy0adNG/Pbbb8JqtQqbzSZmzpwpYmJiXPv96quvKtzeW01nz54VSUlJ4qOPPvJYNmnSJNd2X375pcfyily4cEGkp6eL/v37ezStZs+eXWGz7N577xUAxGuvveaxz+LiYldTpk2bNqKwsFAIITdyCgoKxKOPPurab5cuXcTrr7/uagSdO3dOtGrVSgAQ7dq1E1dddZX46KOPhNlsFkLITcbu3bsLACIkJEQUFxcLIYSw2+2ipKREPP300659p6amis8//1xYLBYhhBCHDx92NcacjZnybrnlFq9Nl8LCQlfT67fffnN7PScnx7WsX79+4vbbbxfFxcVi6tSpIjExUTz22GOu9b/66qsKm08nT54UkiSJ66+/3uP9/PTTTz2aT8XFxa4mUvnGk9OuXbtcjbg77rjDbZnZbHb93WrTpo3o2rWr2LBhgxBCiNLSUnHttde66ty0aZPHvomIiPyBzSciIiINqGrzKSsry7XdW2+95Xp9//79bqMjqqNdu3YCgMjMzPS6vHv37uKzzz5ze620tNQ1UuXSxseBAwdcta1fv95tmZK6nSObvDV65s+f7zaCprwvvvjC1WC6VPnm0YoVKzyWOxtnAERKSoqwWq0Vbn+psWPHiqCgIJGfn++x7ODBg67t+vbtW+nPXd5DDz0kAIh169Z5LCspKRHJycmuUT1OK1euFABEcHCwyMvL87rfP/74w1XPCy+84Lbs999/dy2bMmWKx7bvvvuua/knn3zisfynn35yLb+08VL+uN6acOfPn3eNQJIkSRw4cMC1rEePHq6m16UaN24sAIh///vfHsuc71FqaqrbKKNLLVq0qMLm05o1awQA0a1bN4/tysrKxIsvvuj22iuvvCIAiB49elR4vGeeecZ1vMWLF7st69WrlwAgWrRo4ZGnTZs2Vfr+ExER+QPnfCIiIqrDQkJCXM/LzxdkMBhczwcNGlStYzjnq9m5cyeWL1/utmznzp3YvXs3br31VrfXg4OD8eWXX+Luu+/G448/7rZMr9e7npeUlLgtU1K3Tlfx15wBAwZg/PjxePzxxzF8+HCvx7/02Jfq2bOnx2tDhw51vZ6Tk4M///yz0n04Wa1WTJ06FUIIdOvWDenp6W5/hg0bhri4OMTFxVU6R1N5xcXF+Oyzz9CgQQN07drVY3lISAg2bNiAxYsX4/XXX3e9/umnnwIA0tLSEBUV5XXfAwcORJMmTQAAX3zxhdsyk8nket6sWTOPbVu0aOF67m0+rvLLjx075rYsKCjI9TwtLc1j29jYWIwdOxYAIITA/PnzXcsmTpyI2267DZMmTfLYrrLP3Jm5Pn36IDg42GO5U2V5a9myJfR6PdatW4dXXnkFQgjXMpPJhAkTJrit/9lnnwEAOnbsWOE+7733XtfzS+dIc9acnJyMyMhIt2WtW7d2PT937lyF+yciIqpJbD4RERHVYWfPnnU9j4+P97pO+WZPVdx6662Ii4sDANcEzE5ffPEF7rjjDoSFhXlsN3r0aEyZMsXVxLhw4QLef/99jBkzxrVOZRNsV6duvV6PN954A//+979dzZIDBw5g/PjxeO+99wDArUHgTUXNhuuvv971fOvWrT7Vs3nzZhQVFSExMRF79uzx+ufcuXM4d+4cNm/e7NM+ly5dirKyMq8NIKekpCT079/f7WdZsWIFALlxURFJklxNthMnTuDw4cM+1QQAERERPi8vLS31eb9OV199tet5+Tsd9ujRA9988w369esHQG74zZgxAyNGjMCZM2cA+C9vcXFxribtCy+8gJ49e2LTpk1e1z1y5AhycnIAVP4ZpKWlISkpCQCwevVqn2sJDQ11PS9/EwIiIiJ/YvOJiIiojrLb7Th16pTrvzMyMvxynODgYNx3330AgB9//NHV8LJYLPjmm2/wwAMPVLr9gQMHMGbMGIwePRqZmZmukTe1ZdmyZbjuuuvw73//G3fddVeFdx7zVWZmput5RXddu5Sz2VBcXFytY5eXnZ0NQG4UKeHMTEV3s3MqP/KofM5q0uUagN60atXK9dxb8yovLw+vvvoqBg0ahNLSUkydOhUNGjSoVp2+eOutt3D33XcDkO8W2bVrVzzwwAPIy8tzW6/8e+nrZ+Cv95+IiKimsPlERERUR61Zs8bVzIiKikK3bt38dqwHH3wQer0eFosFU6ZMAQDMnj0brVu3Rtu2bb1uY7PZ8MQTT6B9+/a46qqr8PPPP2PgwIGKmyVVdebMGQwfPhx33HEHXn75ZXz66ado06ZNtfcbGxvrel7RZWuXMpvNAOTGSGFhYbVrAC42vo4fP65oO+coqMtdklV+hJLRaFRYnf+Uv8wsJibGbdm0adPQvHlzXLhwAQsWLMBdd91V6aV0NUmv12PKlCmYPn06GjRoAIfDgU8//RTt2rXDypUrXeuVH4Xm62cQSO8/ERGRN2w+ERER1VEzZsxwPR89erTbfEk1LSUlBX/7298AyHMGORwOfPHFFxWOehJC4Oabb8Y777yDZ599FiNHjvRbbd6cP38ePXr0wNy5c/Htt9+iQ4cONbbv8pcylZ9fpzLlmyRLliypdF2LxVLhJVve9pmTk4ODBw/6VAcA12WQ+/btczXFvCm/zLlNICg/b1P5xud7772HO++8E507d8bEiRPd5o+qTaNGjcL+/fvxzDPPwGQy4dixYxg6dCgOHDgAQP675LRt27ZK9+X8DFJTU/1XMBERUQ1g84mIiKgO2rVrl2v+pdjYWDz77LN+P+ZDDz0EQL7c67PPPsPWrVtx8803e113zpw5mD17NgDgpptu8nttl3r11Vdx6NAhNGjQAL169arRfTsnyY6MjPR53+3atXM9f+eddypd97nnnsOJEycuu8/yDbX//Oc/la778MMPw263AwCuuuoqAPKcSMuWLatwG+c8T1lZWRXOJ6YGZxPHYDBg4MCBAORRbuPHjwcA3HjjjbVe059//uk2KXhkZCRee+01rF69GhERESguLsbXX38NQJ6Hy3mJ7Pr16yudYN75GQwYMMB/xRMREdUANp+IiIjqmJycHPz973+H1WqF0WjEd999h4SEBL8ft2/fvsjKygIgNzPuvPNOtzuflbdo0SLX80sneT506JDrudVqrXI9lc0XVP74l6ru8RcvXgxAfg/K322wMo0bN0aXLl0AyBN+v/32217Xmzp1Kv744w8MGzbssvvs3r07mjZtCgD45JNP8OOPP3pdb/z48UhLS3NNqD127FjXpV/OSyi9Wbp0KYCLTcdAMW/ePADyCKOGDRsCAFauXOkaJXRp3srKylzNPH/lDYCr2Vpep06dcPvttwNwvzmA8z0tKyvD9OnTve4vOzsbhw8fhl6vd93hj4iIKFCx+URERKQB5ecBco5Q8ebHH3/EFVdcgd27dyMhIQFz587FoEGDPNYrPxGzr5Ni+2LcuHEA5P+Jv//++ytcr/wdt9544w3X//Tv3LkTL730kmvZ5s2bIYTA0aNHFddd/j27dB4l5/HPnDnjdoe+X375Bd98843b8YuKilxz75Sfj8rbJWmHDh3C9OnT0a1bN6+jzS5cuOB6Xv7yMACYMGGC6/lTTz2FO++8E6tWrcKRI0ewYsUKjB49GmPGjMHkyZMrvNNeec47+gFyw+WWW27BvffeiwULFmDr1q34+eefcfXVV2P16tWuzw2QJ6Z31j5jxgz8+eefHvueOXMmDh8+jIEDB2L06NFuy8pPmu7t7nFlZWWu594+w6KiItfzyppBR44c8XgtLy8PH3zwARITEzFx4kTX6+Xz9sknn7gaPWfPnsU//vEPV5PUeSfB8nfvc2auOnkDgN9//93r5ZLO9+OKK65wvfaPf/zDdVe+l19+2WNScuDiCLkXX3wRLVu2dFtW2eWS5d/fys4lRERENUoQERFRQNu9e7cA4Prz0ksvif3794tdu3aJ9evXix9++EE8//zzIiMjQwAQJpNJPPzww+Ls2bNe91dWViaefvpp1/569eolCgsLa6TWkpISERMTIwYPHlzpemvWrBE6nc5VQ0REhEhOThaNGzcWO3bsEPHx8QKAMBgMIj4+XkydOlVR3QUFBaJ9+/audb/44gu35W+//bbbe5qYmChiY2NF3759xerVq12vh4eHi7i4OLF3714hhBCLFy8WJpNJABBjx44V586dc+1z9erVokWLFmLQoEHiwoULHjUdPnxYpKamuvY9bdo0j3UmTJjgVlf5P8HBwWLGjBmX+wg8PP/88xXus0OHDuL06dMe2zgcDvHYY48JAKJhw4Zi8eLFrmXz5s0TMTExYsiQISI/P99tO5vNJv7xj3+49j9hwoRK67n11luFxWJxLbPb7eK5555zLR8xYoSw2Wyu5UuWLHEti42NFR988IEoLS0VQghx5MgR0adPH5GUlCS2bdvmdsz8/HyRlJTk2tZoNIomTZqI8PBw8f3334ubbrrJLQv33HOPcDgcYs6cOa7XY2JixMGDB72+x5f+3HfffbewWq2u5WvWrBEAROPGjcXChQuFw+EQQgjxyy+/CJPJJAYNGuT2cwohxIULF0T//v1dWT9w4IAQQgiLxSLeeecdodPpxPjx4137crJarSIhIUEAEM2aNfNYvmLFCledI0eO9PrzEBER1TQ2n4iIiALUjBkzxPDhw0VUVFSFzQOTySQSEhJEp06dxOjRo8XUqVM9GgLlrVu3ToSGhnrsJygoSHTo0KFG6n766afdmhWV/Xxt27YVwcHBomnTpuLxxx8Xubm5Qgghvv76axEdHS1SUlLEhx9+qKjuvn37CqPR6LFugwYNxJ49e4QQcrNgwoQJokmTJiIkJERkZWWJSZMmuRoADz74oAgNDRUdOnQQS5Yscdt/dna2ePHFF8UVV1whkpKSRGpqqsjMzBTXXnut+PHHH73+rEOHDhWSJHnUFBcXJ/7880+3df/44w9x9dVXi7i4OBEUFCRSUlLEvffe62qAVcX8+fPFkCFDRHR0tDCZTKJt27birbfeEmVlZZVut3z5cvH3v/9dJCUliUaNGomMjAwxbNgwr02wOXPmiIiICI+fMTY2VixbtkwsW7ZMxMXFeSwPDQ0Vn376qTh58qTXzzgsLEx89tlnQgj35tO3334r7rzzTpGUlCTS0tJEenq6eOqpp1wZutTmzZtF//79RXh4uGjQoIEYNWqU2LVrlxBCiC1btoi0tDQRFRUlxo4dK0pKSlwN0PJ/JEkSjRo1Evv27XPtd/z48V5/7vDwcPH1118LIS42n8ovi4+PF2lpaeKVV15xa8CVZ7fbxdSpU0X//v1FbGysSEtLExkZGeKOO+4Q69at81h/9uzZomfPnm7HuvLKK8X06dOFEEK8+eabomHDhq5lOp1OjBw5UuzevbvSHBAREVWXJMRlLlAnIiIiIgoAS5cuRf/+/QHIdwV0XppGREREgY1zPhERERERERERkd+w+URERERERERERH7D5hMREREREREREfkNm09EREREpAnFxcVenxMREVFgY/OJiIiIiAKezWbDTz/95PrvGTNmwGq1qlgRERER+Yp3uyMiIiKigDZ37lzccsstHqOdQkJCkJWVhTVr1qhUGREREfmCzSc/cjgcOHHiBCIiIiBJktrlEBERERERERHVCCEECgsL0ahRI+h0lV9YZ6ilmuqlEydOICUlRe0yiIiIiIiIiIj8IicnB40bN650HTaf/CgiIgKA/EFERka6Xi8sLMTWrVuRlZXlWoeoIswLKcG8kBLMCynBvJASzAspwbyQEsxL4CgoKEBKSopPnwMvu/OjgoICREVFIT8/36355HA4YDabYTKZLjs0jYh5ISWYF1KCeSElmBdSgnkhJZgXUoJ5CRwV9Ty84cgnFeh0OoSEhKhdBmkE80JKMC+kBPNCSjAvpATzQkowL6QE86JNbBOqoLS0FLt370ZpaanapZAGMC+kBPNCSjAvpATzQkowL6QE80JKMC/axOaTCmw2G86cOQObzaZ2KaQBzAspwbyQEswLKcG8kBLMCynBvJASzIs2sflERERERERERER+w+YTERERERERERH5DZtPRERERERERETkN2w+qcBoNCI1NRVGo1HtUkgDmBdSgnkhJZgXUoJ5ISWYF1KCeSElmBdtkoQQQu0i6qqCggJERUUhPz8fkZGRapdDRERERERERFQjlPQ8OPJJBTabDbm5uZydn3zCvJASzAspwbyQEswLKcG8kBLMCynBvGiTQe0C6qPS0lJs374dnTp1QkREhNrlUIBjXkgJ5oWUYF5ICeaFlGBeSImq5kUIAavVCofD4cfqKNAUFxdj586dyMzMRFhYmNrlaJ5Op0NQUBAkSfLrcdh8IiIiIiIiIs2w2+04d+4cCgsLYbVa1S6HapnD4UBERAROnToFnY4Xc9WEoKAgREREID4+Hnq93i/HYPOJiIiIiIiINMFutyMnJwdmsxlRUVEIDw+HXq/3+6gNChx2ux1lZWUIDg72W6OkvhBCwG63o6ioCHl5eSgtLUVKSopf3lc2n4iIiIiIiEgTzp07B7PZjCZNmiAkJETtckgFdrsdDoeDzacaFB4ejqioKBw9ehTnzp1DYmJijR+DY9RUoNPpEBwczCGC5BPmhZRgXkgJ5oWUYF5ICeaFlPA1L0IIFBYWIioqio2neo4j3WpeSEgIIiMjUVhYCCFEje9fEv7YKwFQdttBIiIiIiIiqpjFYsHBgweRkpKC8PBwtcshqnOKioqQk5OD5s2bw2g0XnZ9JT0P/iqCiIiIiIiIAp7zrna81IrIP5x/t/xxB0k2n1RQVFSE1atXo6ioSO1SSAOYF1KCeSElmBdSgnkhJZgXUkJpXnjJVf3mnCDbbrerXUqd48+/W2w+qUAIAavV6pfrKKnuYV5ICeaFlGBeSAnmhZRgXkgJ5oWUYla0h80nIiIiIiIiIiLyGzafiIiIiIiIiIjIb9h8IiIiopqRlwfk56tdBREREdUDu3btwvvvv48BAwbg9ddfV7sc2Gw2rFq1Ci+++CKysrKwfPlytUsKKGw+qSA0NBQdOnRAaGio2qWQBjAvpATzQkrUaF5WrQKGDQNuugk4fbr6+6OAw/MLKcG8kBLMS+155pln0LBhQ0iS5POf0aNHq122G51Oh2XLluG///0vxo8fj8WLF8NisahdFj777DN88sknePnll7Ft2za/3DFOy9h8UoFer0dUVBRvEUo+YV5ICeaFlKixvCxcCPzrX4DFIo9+ev55gF+46hyeX0gJ5oWUYF5qz+uvv46cnBz07dvX9drvv/+OzZs3u/5s3LgRS5YswaRJk9CwYUMVq/VOkiRcc801ePfddzF48GC1y3F58MEHMW3aNERHR6tdSkBi80kFZrMZBw4cgNlsVrsU0gDmhZRgXkiJGsnLnDnAM88ANhvQty8QEgJs2gRMm1ZzhVJA4PmFlGBeSAnmpXYZDAb06NHD9d9DhgxBhw4dXH86deqEfv36Ydy4cfj8889VrNQ7h8OBsrIyOBwOxMTEqF2OG0mSEBUVpXYZAYnNJxVYLBYcP348IIYGUuBjXkgJ5oWUqFZecnOBV14BXn5ZHuV0ww3AO+8ATzwhL//kE2D37potmFTF8wspwbyQEsxL7QsODvZpvcGDB6N79+5+rkYZIQSsViuEEGqXQgqw+URERES+s9mA6dPlZtPPP8uv3XmnPPpJpwOuvRa46ip5veeeA0pL1a2XiIiIqiwoKAj/93//p3YZVAew+URERES+OXECuOce4N13geJioE0bYMoU4KGHAEmS15Ek4NlngYQE4MgRYMYMdWsmIiKiKnnzzTexdOlS13/v3bsXLVu2dJuM/IorrgAAtGvXzvVau3btPPZltVrx7rvvon///ujfvz8yMjJw6623YreXUdL5+fl46qmnMHz4cGRkZKBJkyZ44oknUFJSUq2f57fffkNkZKSrzpiYGPz3v/91Lf/5558RGxsLSZLQrFkzlJWVuZb9+uuvGDRoEIYMGYLmzZujc+fOmDVrlk/Hzc7ORvPmzV3HnTBhgmvZwIEDERYW5lrmzbfffovrrrsOffv2RWJiIoYNG4atW7d6rLdu3ToMGjQIV111FdLS0irdpxrYfCIiIqLLW7YMuO02YNcuIDJSHtU0dSrQvr3nulFRwNix8vPp0+WJyImIiGqBEPKg27r0R42ry44fP45PP/3U7bXWrVtj3759uOuuuwAAUVFRWL16NQBg6dKlCAoKwuzZs7F9+3a37QoLC9GvXz/k5OTgjz/+wJIlS/Dtt9/i22+/RZcuXdzWP336NK644gp06tQJv/32G3bt2oX77rsP77zzDgYPHgyr1Vrln2n48OFYv349TCYTAODFF1/E3Xff7Vp+/fXX48svv0RiYiK2bdvmujRx4sSJuPbaa3H//fdj/vz52L17NxISEnDTTTdh0aJFlz1us2bNcODAAXTp0sVj2cKFCzFnzpwKt3300Ucxc+ZMzJw5E8uXL8fixYuxcuVK9OjRAxs2bHCtd+zYMQwePBj3338/Fi9ejEOHDmHSpEk+vze1waB2AfVRUFAQGjVqhKCgILVLIQ1gXkgJ5oWU8CkvQgAffQR89ZX83+3bA6+/DiQlVb7zIUPkeZ9OnwZ+/RW48cYaq5vUwfMLKcG8kBI1mZeyMqBPnxooKoCsWCHfz8Nf+vXr5/bf58+fx86dO73OqSRJEj7++GOsXLkSBw8exPfff49Ro0bh5ZdfxlNPPYXrr7/eY5u77roLZWVl+M9//uN6LSsrC+3atcP27dvx/fffu0ZLjRkzBunp6RgxYoRr3SeffBJvv/02Vq1ahe+//x633norgoKCqjSqp3Xr1rj77rsxefJkrFq1Co888ojb8i1btuCBBx5ARESE67U33ngDAJCZmQkAMBqNuO+++zB//nx89dVXGDBgwGWPK0kS2rRp49YwckpLS/O6zaxZs/DJJ5/gyJEjroZZZmYmRo4cic8//xzjx4/HwoULAQDz5s1Dfn4+hg0b5tp+3LhxmD59+mVrqy0c+aSC4OBgtGzZ0udJ3qh+Y15ICeaFlPApL3PmXGw83X478Nlnl288AUBQkLw+AHz9tTwpOWkazy+kBPNCSjAv6lq6dKnbn+3bt2Pbtm2Ijo72un5oaCi++OILSJKExx9/HAsWLMDq1avxwgsveKy7bt06zJo1Cw899JDHskmTJmHUqFG48847AQC7du3CnDlzcM0117itZzKZ0KlTJwDAnDlzoNPpEBwcDJ2uau2Mhx9+GJIkYc6cOTh37pzrdSEE/ve//+Hee+91W79Ro0YIDQ1FaGio67W4uDgAwKlTp3w+bkX1VtREe+ONN9C1a1ckJia6ve68U+GiRYtclyI6J+u/9O6EI0eO9Lk+f+PIJxXY7XaUlJQgNDQUer1e7XIowDEvpATzQkpcNi/Z2cC//y0//+c/gdGjlR3gb38DPv8cOHYMWLQIGDSouiWTinh+ISWYF1KiJvMSHCyPFKpL1OjJtW3bFjfffHOFy/v164cxY8bg008/xTXXXINNmzZ5HbnmnBepTZs2XvdRftTV/PnzAQAffPABpk2b5rbuuXPnkJqaCiEEhBBwOBxVbj6lp6fjqquuwqJFi/D111/jscceAyA34dLT05GSkuK2/p9//omSkhLEx8cDAC5cuOCq1WazVamGy8nNzcWGDRvQoEEDj5FppaWlSE1NBQCcPXsWqampuPHGG/H000/j0UcfxaFDh/DKK68gMjISDz/8sF/qqwo2n1RQUlKCTZs2oVOnTm7D+Yi8YV5ICeaFlKg0LxaLPHF4WRnQvbt8R7tKFBbK/amoKOD99/+afzwkBBg5Uh4t9dVXwMCBFycmJ83h+YWUYF5IiZrMiyT59xK1+qRz586VLn/77bfx888/49SpU9i1a5frsrTy9u7dCwCIiYm57PEOHjwIAPj3v/+NQZX8wqp8s7KqHnzwQSxatAhffPGFq/n01Vdf4b777vNY1znqaceOHZg0aRJ0Oh1at24NAF4vTawJhw4dghACAwYMwP/+97/Lrt+wYUPMmjUL119/PSZNmoQffvgB7733XqUNxNrGy+6IiIjI0/vvA/v2ATExwMsvA5X8dlEI4NVXgZ07gdWr5QFTLiNGyL+y3bsXWLvW/3UTERFRjbj//vs9Rt2Ud/DgQdfIn3/+8584f/68xzqFhYUA5AmxL8d56Zi3/dS06667DsnJydi9ezdWrFiBoqIirFmzBsOHD/dYt6ioCHfffTf+/ve/Y9y4cZg8eTI6duzo1/qq8l4MGDAAW7duxVVXXYUTJ07glltuwa233ural9rYfCIiIiJ3y5cD338vP3/pJeCveQ0qMmuWfFWdk9tcmlFRFycbnzq1ZuskIiKiWrF06VK3/zabzRg9ejR+++039OzZE2fOnPGYvBsAEhISAFy8pM6bM2fOuK27atWqCtc9e/YsTp48qbB6TwaDAWPGjAEgz5M0c+ZM3HLLLTAY3C8Os1qtGDRoEL755hvMmjXLNTG6vznfiw0bNlTaPNq2bZvbfzdv3hyLFi3CDz/8gKSkJHz77bd47rnn/Fqrr9h8IiIioovOnJEbTgBw221Az55ui4UAyt/l+MAB4J135OfOm7WsW3fJPm+9VR45tX69PAKKiIiINGPfvn1466233F577rnnMGDAAHTr1g1ffvklTCYTvvnmG8ydO9dtvZ5/fY/45JNPcPToUY99Hz16FG+//TYAoHv37gCAKVOm4NChQx7rWq1WjB49usbmkbvvvvsQFBSEH374AR9//LHHROMA8PPPP+PPP/9EZmam27xVVbnczjlHVUFBgdvreXl5Hvtt0aIF4uLicP78ebe7BJY3ZcoUV1PwnXfecTXxAOCmm27C4sWLodPpMG/ePMW1+gObTyqQJAl6vb5Kt4ak+od5ISWYF1LCIy8OB/DCC0B+PpCeDowdCwCYNw948klg1CjgyivlftT11wP/+hfw+OPy9FA9e8qbAsDGjZfc3C4p6eJk4998U3s/INUonl9ICeaFlGBeap/Dx7vQCiHw0EMPoX///q7XVqxYgZ9++gmvvPIKAHkC7xdffBGAfKlefn6+a93bbrsN0dHRKCgowIABA7B8+XK3/fztb3/Dv/71LwDA1VdfjcaNG6OkpARDhgzBmjVrXOtmZ2fj2muvRVZWFho0aOB63TkqyG63K30L0LBhQ9xwww0oLS1FTEwMmjVr5rFO9l9zCTjvKufknMvK26ikimpKTk4GAHz//feuyxD379+Pl19+GUaj0fXfgPx3wtkMe/bZZ/Hee+/BbDYDAMrKyvDOO+/gzTffdI3estls+Prrr92O16ZNG8TExCAyMtKn98PvBPlNfn6+ACDy8/PVLoWIiOjyvvxSiM6dhejdW4gjR4QQQqxeLb9U2Z8hQ4TIzRXCZhPiyivl13buvGTfu3bJC7p1E+L06Vr/0YiISPtKS0vFrl27RGlpqdqlaN6YMWMEAAFA7Nixw+s6Bw8eFCNGjBAAxMaNG4UQQpw4cUKkpKSIL774wm1dq9UqwsLCBABxzTXXuH1Gs2bNEgaDwXW8yMhIER4eLoxGo/jtt9/c9rNw4UJhMplc6yYmJopGjRoJSZLE4MGDhcVica1bUlIiWrZsKQCIG264oUrvw9KlSwUAMXPmTK/LFy9e7KrlxRdfFJs2bRKTJ08WN9xwgwAgwsPDxbJly8T8+fOFEELs3btX6HQ6AUC8//77bvvasmWL0Ov1AoAwGo2iUaNGIiQkRCxbtsz13qWmpoq5c+cKIYQoLCwUWVlZruOHhoaKpk2bCpPJJGJiYsSmTZtc+37jjTdERESEWLFiheu1GTNmCEmSxOzZs31+P5T+HVPS82DzyY/YfCIiIs1Yv16Irl3lBtEvvwghhDCbhfjb3+SXnn5aiBUrhMjOFuLsWXn1774TYuJEIfbuvbibRx+V15861csxxoyRF17yZYyIiMgXbD5V36pVq8Rbb70lIiMjXU2N4OBg0bFjR9G3b1/Rt29f0bVrV9GwYUPX8ri4OOFwOMSvv/7q2i4pKUls3brVtd+hQ4e61ncuP/LXL7KEEGLlypVi4MCBIjw8XISHh4thw4a5GlqXWrdunRg2bJiIiooSRqNRtGvXTvznP/8RVqvVtc7HH38s4uPj3Y7ZokULV+PGVw6HQ9xwww1u+77UW2+9JRo2bChCQkLEFVdcIaZPny7sdrsYPny4CA8PF4MGDRJ79+4Vd999twgJCXHVo9PpRMeOHcXJkydd+/rxxx9FRkaGCA0NFb179xZ//vmnEEKIIUOGiJ9++smjjry8PPHYY4+JJk2aCIPBIBo2bCjuuecet/dWCLn5BEBIkiRat24tunbtKrp37+5qivnKn80nSQg/3RuQUFBQgKioKOTn57sNdSsuLsauXbuQkZGBsLAwFSskLWBeSAnmhZQoLi7G/iVLkLFsGYxLlsgvDh0KvPIKIEn4/HPg00+B+Hjgxx8BXyL17bfAxInAFVcAH354ycIVK4BHH5V3NHeubzukgMHzCynBvJASvualrKwM2dnZaNasGYKDg2uxQgokdrsdZWVlCA4OrrH5n0im9O9YRT0PbzjnkwocDgdKSkp8vs6W6jfmhZRgXkgJ/RdfIO3JJ6F33qpu6FDgmWcAScLx48B//yu//NhjvveJunWTHzdvdp+YHADQqxfQtClQXAz8/HNN/AhUi3h+ISWYF1KCeSGlmBXtYfOJiIioPjpwAEFTp0Ky22Hv1g2YPh149VUgNBRCAP/+tzyReNeuF+cK90VaGhAbC5jNwPbtlyzU6eQ76AHyECl+cSQiIiKqF9h8IiIiqo8WLEBJCbA3sRtOPv1voFUrAMCuXcBTTwErVwIGg/xcyc2HJAno0kV+vmGDlxWGDweCg4GTJwEvt1EmIiIiorrHoHYBREREVMuEQNlvC5GTo8Pkohuw6YZQtGkDhIbKl8s5PfigfJWcUl27An/8AaxfD/x1B+CLjEagY0dgzRp5hRYtqvOTEBEREZEGcOSTCkJCQpCZmYmQkBC1SyENYF5ICeaFfHLgAEp2H4FVMmJv4gBIkg5798qNJ71eHpz0/ffAnXdWbfddu8qP27cDpaWVrLB+fdUOQKrg+YWUYF5ICeaFlNDpdAgODoZOx3aGlnDkkwoMBgPi4+PVLoM0gnkhJZgX8snChSgoALaF98T//SsKQ4cCa9cC587J8zslJVVv98nJQMOG8pV1W7YAPXpcsoLzuryNGwG7Xe54UcDj+YWUYF5ICeaFlJAkCUFBQWqXQQqxVagCi8WCo0ePwmKxqF0KaQDzQkowL3RZQsDymzzf09rwq9Cy5TGEh1tw9dXAHXdUv/EEyPM+de4sPy9/GZ9LejoQESHf9W7PnuofkGoFzy+kBPNCSjAvpITD4YDZbOYd7zSmXjSffvzxRwwZMgQ9e/ZE165dkZ6ejieffBJFRUUe6woh8Nlnn6Fbt27o3bs32rVrh9tuuw3Z2dk1Vo/ZbEZ2djbMZnON7ZPqLuaFlGBe6LIOHEDxnqOwSkYUduyFkpKDfslLhw7y45YtXhbqdBe7U7z0TjN4fiElmBdSgnkhJYQQsFgsEEKoXQopUOebTw899BDGjBmD119/HatXr8b69esxd+5czJ49G3379kXpJZNR3H333fjXv/6Fjz76CCtXrsSGDRtgt9vRpUsXbPe4ZzQREZHGLFjguuSuxwCj3w7jbD7t2AF4/UU2530iIiIiqjfqdPNpzZo1+OCDD/DPf/4TnZ2/YQWQlpaG1157DZs3b8bnn3/uev3dd9/F1KlTMX78eHT960uxyWTCp59+CofDgb///e8cCkpERNolBKzzFqKkGFgbMQhXXmn326FSU4HoaLnx5PXKOmfzacuWCrpTRERERFRX1Onm04oVKwAAsbGxHsvatm0LANi9ezcAoKSkBK+//jokScLo0aPd1o2KisJNN92Effv24csvv/Rv0URERP6yZg2Kdx+FRTKiqGMfNG7sv+HqknSZS++aNQNiYwGzWR4eRURERER1Vp1uPkVERAAA5s2b57Hs2LFjAIBmzZoBAGbNmoXz58+jZcuWSE5O9lj/yiuvBAB89dVX1a7LeTcHg4E3G6TLY15ICeaFvDpzBnj+eeChh1BQCGyM6Ic+Q0L9npdKm0+SdPGudxs2+OX4VLN4fiElmBdSgnkhJSRJgsFggCRJapdCCtTp5tPQoUOh1+sxf/58vP/++67XhRB477330KBBA9x7770AgNWrVwMAMjIyvO7LOVJq3bp1yM/Pr1ZdISEhyMzMREhISLX2Q/UD80JKMC90qcXPL8GO9Jtw5NN5OH1Wwjzj3zA1aTwGDPB/XpzNp61bAa83pOG8T5rC8wspwbyQEswLKaHT6RASEgKdrk63M+qcOv1pNWvWDC+99BIA4JFHHsH999+PEydO4K677sL58+exatUqxMXFAQB27twJAF5HPQFAo0aNXM93VPPyAN4akpRgXkgJ5oXKs5odCPlkInTmUmx1tMfY8K/xeeJzSGwZiaZN/Z+X1q0BkwnIzweOHPGygrP5tH07cMkNQCjw8PxCSjAvpATzQkoIIeBwOHi3O42p8+Man332WVitVrz00kv47LPP8MUXX2DEiBFYvXq1W6c0NzcXwMVL9S4VGRnpen7mzBmv65jNZrfbgxYUFAAACgsL3YYEms1m7Ny5Ex06dPDarXXWUFJSArvdfTLY4OBgBAUFwWKxeNyKVK/XIzQ0FEIIFBUVeew3LCwMOp0OpaWlsNlsbstMJhOMRiOsVivKysrclul0OoSFhbl+lkuFhoZCr9ejrKwMVqvVbZnRaITJZILNZvO4s6AkSQgPDwcAFBUVeZw8QkJCYDAYYDabPSZ6DwoKQnBwMOx2O0pKSjxqcr6HxcXFHv+IVfYeGgwGhISEwOFwoLi42GO/4eHhkCTJ62dT2Xvo/GwA7+9hZZ+N1WrF9u3bkZWVBb1e77as/Gfj7T10fjZK38Pyn42399D52dT0e+j8bCp7D6uTb2859PU9rCzf1XkPvX02l3sPKztH2Gw2bNu2De3atUNQUJDbMp4jLqpL54jK3sMd03YgqvQU7MZQFL/zLtIPhCD8mAUjR9pQWGiH3W7H1q1b0bZtWxiN7ne+q4lzhBAWtG4NbNmix5o1FsTH29zfw8hIhCQkQDp9GmWrVsHRvTvPEZe8hzV9jqjO9wghBDZv3ozMzEyYTCa3ZTxHyLR2jvDn9wghBDZt2oQ2bdp4jGbh9whZXTtHVOd7hMPhwKZNm5Cenu7KulP599D5Xtjt8r9hkiRBp9O5mhGXcn53vvTndB5XkiSvTYzq7Ne5bVX266xJ6X7V+lnV2q8QAiUlJQgODvb4/+nqvoeX+2zqyntY0X7L78uXc4S3f5MqUuebTwDw4osvYtOmTfjll1/gcDjw7bffIiYmBu+9957rf86cJ/xLv3w7lf+S5e0kDgBvvPGGa6RVeVu3bnX9owQAMTExAACLxYJdu3Z5rO+cX2rPnj0eH2Z6ejoSExNx9uxZHDhwwG1ZTEwM2rdvD7vdjk2bNnnst0ePHjAajTh48CDOnz/vtiwtLQ0pKSnIy8vzqCk8PNx1t8DNmzd7hLdLly4ICwvDkSNHcOrUKbdlKSkpSEtLQ1FREbZu3eq2zGg0okePHgCA7du3e/zDmZWVhejoaBw/fhw5OTluy5KSktC6dWuUlZV5/KySJKFv374A5Pfw0n8cMzIykJCQgNOnT+PQoUNuy+Li4tC2bVvYbDav72GvXr1gMBhw4MABXLhwwW1ZixYtkJycjNzcXOy55NZOERER6NSpEwB43W+3bt0QEhKCw4cPezQ3k5KSAMi5u/QzDw4ORvfu3QEA27Zt8/hS06FDB0RFRSEnJwfHjx93W9aoUSO0bNkSJSUlHjXp9Xr07t0bALBr1y6PL0SZmZmIj4/HqVOnkJ2d7bYsPj4emZmZsFqtXn/WPn36QJIk7Nu3z+MS1latWqFhw4Y4d+4c9u3b57YsKioKHTp0cH2ZvdQVV1wBk8mEQ4cO4dy5c27LmjVrhiZNmiAvL881ytEpNDTUdXfLLVu2eJxgO3XqhIiICOTk5ODEiRNuy5KTk9GiRQsUFRVhyyWT2gQFBaFnz54A5NGSl37RateuHWJjY3Hy5EkcuWRISIMGDdCmTRuYzWavP2tl54jU1FQAQF5ensffG54jZHXtHJGamoqmTZuioKAA27dvd1t25svfEQWgsNsApLbahUbNLp4jNm2S/84B8i9VLt1vTZ0joqPLUFzcEPPn5yI5+bD7OWLzZqQmJiLu0CGcnDsXJ4OCeI74i7/OEdX5HtGuXTsA8ryZl342PEfItHaO8Of3iKysLABAdna2R775PUJW184R1fke4fz3aO/evZWeI06fPo2IiAiUlZXB4XC4NfAqa1CXlpZW2KC2Wq0VNlcdDkelDWpnHeU5GyI2m63C5qqzeXIpZ71ms7nCBrXdbq+0ye9tv2FhYZAkCWazucIGdXXeQ4vF4nH+qO576Gwke2uuOv+f/dL3AfDtPfT22ZRv8lf1PbTZbIo/G2dztbL3sKbzXVkOy6/ryzmiot6IN5Ko42PViouLcfvtt0On02HChAl48MEHsXLlSgDA1VdfjTlz5sBgMKBdu3bYsWMHnn76abz++use+zGbzQgODgYA/Pjjj7jxxhu9rnPpyKeUlBQcO3bMbeQURz7J+BvLizjyScbfWMo48knGc8RFVRnVUJJvRU7mTQi1FSL4y4/R4JoMj/fQ3yOfLBYLli+34skng5GUJPD996Ue76Hhl19gfOcd2Dt0gPn993mOuOQ9DKRRDRz5JKsr5wiAI5/K4zlCpoWRT6dOnULTpk0RHBwckCNOOPLJ//vlyCf/7besrAxHjx5Fs2bNXKMMy7v0HFFQUIDGjRsjPz/frefhTZ1uPjkcDgwYMABnz57Fxo0bYTKZ4HA48Nprr+HFF1+EEAKvv/46nn76aQwaNAgLFy7EuHHjMGnSJI99nT9/HvHx8QCAlStXolevXpc9fkFBAaKiojw+iMLCQmzatMn1mxCiyjAvpATzQk5r3l6OqJcegzk8Dh1OzIOk9/xlR23kpbgY6N9fnnB87lygQYNLVjh0CLjlFnlyqGXLAN7pKGDx/EJKMC+khK95KSsrQ3Z2Npo1a+YaGED1j7Nh62xMUs1R+nesop6HN3V6wvGffvoJS5cuxQMPPOD6DZ1Op8Pzzz+PV155BQBcjSbnXe5OnjzpdV/O1yVJqvCOeERERIGicMbvAICyvkO8Np5qS1gY0LKl/PySq6ZkTZsCkZGA2Qzs3VubpREREZECQggMHToUzZo187iM1J8KCwvx66+/YuzYsUhJSam141bm5MmTmDZtGkaMGIHrr79e7XI0oU43n1atWgUAaOn81lvOE088gbi4OJw6dQq5ubno378/AHidgwm4eDe8rKws15xNVRUeHo4+ffq4htISVYZ5ISWYFwKA3GMlSNy7DACQev/QCterrbx06CA/XjKliUynA/6aG8Z7d4oCBc8vpATzQkowL7VnyZIleOCBB2A0GiFJEiRJQmZmJnr06IHMzEw0adIEw4YNw4cffugxr9q5c+cwf/58HD582PX/2v5WUlKCiRMn4s0338THH3+MY8eOQafTITw83OsUNrVhz549+PDDD/H8889jxowZHu8TeVenm0/O6xO93Z3OaDQiLS0NgHxd9JAhQxATE4M9e/bg7NmzHusvX74cADBq1Khq1+W8xrL8HfCIKsK8kBLMCwHAjg+XIshhRklcEzQa0KbC9WorL5U2n3xagQIBzy+kBPNCSjAvtad///6YPHkyRo4c6Xpt06ZNWLNmDXbu3Im1a9eiWbNmGDduHFq3bo0FCxa41ktISMD//d//YciQIRg8eHCt1BsaGooJEybggw8+cL3mbJqplZf09HS89tprePjhh1U5vlbV6ebT0KHyb3t///13j2UWiwWHDh1Cz549ERkZiZCQEDz66KNwOBz4+uuv3dYtKirCjBkz0KBBA9x3333VrqukpARbtmzxOsEl0aWYF1KCeSEAsPw8DwDgGHI1UMkXs9rKi3Ng0/798hxQFa6wZQtQd6ei1DyeX0gJ5oWUYF5qX9OmTV3Py99EomHDhvjoo49w/fXX4/Tp07jhhhvcpqb5+OOP8fvvvyMqKqo2y3W7+sg555O3ibZrU3WviKpv6nTzadiwYbjrrrvw7bff4sMPP3TN8m42mzFu3DjY7XZ8/PHHrvXHjx+PIUOG4JVXXsHGjRsByHcaGzt2LEpKSvC///2vRgJmt9uRn5+v+l8W0gbmhZRgXuj84UI0PLoWANDyn0MqXbe28tKgAdCokTzp+LZtXlbIyACCgoDcXODYMb/WQlXH8wspwbyQEsxL7bvcJWs333wzAPlui7/88kttlKQIs6I9dbr5BABfffUVpk6diu+++w7NmzdH79690atXL0iShK1btyLL+dtWyLeM/fXXXzFhwgSMGTMGffv2Rffu3WE2m7F27VoMHDhQxZ+EiIjo8g7/ugMSHCiOaYyYrCZql+PSsaP86PXKOqNRbkBVuAIRERHVpgblbk+bm5vrsdzhcNRmOVQH1PnmEwDccccdWLlyJQ4dOoSVK1diw4YNmDx5Mpo08fxSbjAY8Mgjj2Djxo1Yvnw5Nm3ahO+++w5t27ZVoXIiIiJl8lZuBwCYW7VXuRJ3l53WiZOOExERBYzDhw+7nqenpwMAzp8/j8mTJ6N379745ptvXMv/85//ICoqyjUPU1hYGN59910sXrzY9XpYWJjrjvPl/fHHH7jpppswYMAAJCYmol+/fliyZEm167/qqqvc5obq3LmzW8PMudxgMOCjjz5yvX727Fk8+eST6N27N3r37o3GjRvj3nvv9dqA82b8+PEICQnxmJNq5syZaNGihev1CRMmeGx78uRJjB07FsOGDUPz5s3RsmVLvP7667DZbG7rmc1mvPDCC7jiiitwxRVXICwsrMJ9BhKD2gUQERFRzZG2y80nU9d2Klfiztl82rEDsFrlq+w8Vvj6a458IiKi6hECKCtTu4qaFRxc6RyONc1sNrsaMhkZGRg2bBj++OMP/O9//8N3330Hi8WCf/zjH671H330Udx8883o3r07Tpw4gXvuuQePPfYYAGDChAmYMmUKFi5ciMTERLfjvPfee5g5cyZ+++03REdH4/jx4+jZsycGDhyIn3/+Gddcc02Vf4bFixdj9OjRmDp1KqKjo13T6pRfnpWVhdtuuw1jx44FII/w6tq1K+Lj47Fy5UoEBwdj6dKluOqqq3DgwAEsW7bsssd988030bt3b1x77bVur9988824+eab0adPH6xcudJju71792Lo0KGYOnUq+vbtC4fDgfvvvx/PPvsstm7diu+//9617jPPPIPly5djxYoVCA4OxokTJzBkSOVTLQQCNp9UEBwcjFatWiE4OFjtUkgDmBdSgnmp32wWB6KPyc2nRoMv33yqzbw0bQpERQH5+cDevYDHgGLnyKfDh4G8PCA62u81kTI8v5ASzAspUaN5KSsD+vSp/n4CyYoVQEiI3w9jtVqxevVqPPnkk9i6dSs6duyI2bNnw2g0YvDgwRg8eDDy8vIwZ84cj20bN26MKVOmYOjQofjuu+/w2muvQZIkfPzxx5g9e7ZH42nDhg14/PHHsXHjRkT/9W9+cnKyq+Hy2GOPYfjw4V7vaCdJEkwm02Xvdvfqq69i+vTpyMvLw86dO5GZmelaVlRUhNOnT+P//u//XK9Nnz4dR44cQffu3V1Z7NevHzIzM7F8+XIcPHgQzZs3v+z7mOGcSsCLtLQ0j+aTw+HAqFGj8Le//Q19+/YFIM/JNWHCBHzxxReYMWMGxo0bh969ewMAvvvuO9x2222uGhs1aoR33nkHa9asuWxtaqoXl90FmqCgIDRs2BBBHr/2JfLEvJASzEv9dnjZEQTbiuAwmNCwb8vLrl+beZEk95vaeYiKApo1k597nZWc1MbzCynBvJASzIu6+vTpg969e6Nt27Z45JFH0KhRI0yZMgV//vmnx1Q1ld2Aa8iQIRg9ejTOnTuHZ555Bs888wweeOABt6aP09tvv42GDRu6zcEMAD169AAA7N+/H7t37/Z6HJ1OB6PReNlJ0xs3boybbroJADBlyhS3ZTNnzsR1112HiIgI12sNGzYEAMTHx7utGxcXBwA4depUpccrX19FvDXMfv/9d2zevNljpFdycrLr/S/f8LNYLJg1axbOnTvnem3QoEEedQcajnxSgdVqxblz5xAfH88TLF0W80JKMC/126kF2xELID8lE7og/WXXr+28dOgALF8ObN4M3H67lxWysoDsbLk79ddv/ihw8PxCSjAvpESN5iU4WB4pVJf4eQThihp8v9599138/vvv+Pjjj9GzZ0+8//77HusIIbBgwQIIIdCvXz+3ZVarFampqQCACxcueD2Gw+GAzWaDwWC4bANq7Nix+O677/D111/jjTfegNFoBCDfmGzixIlu6950003IyclBo0aNXK+tWbMGOTk5AOAx91JNmT9/PgDg2Wef9ZgXKzg4GKmpqbBara7X7rrrLkycOBE9evTA5MmTMWDAAOh0Ovzzn//0S301hc0nFZSVlWHfvn0IDw/nP8Z0WcwLKcG81G9l6+QRQ1I73+Z7qu28lJ90XAgv01e0awfMng3s2eP3Wkg5nl9ICeaFlKjRvEhSrVyiRt7FxMRg0qRJuOWWW5CdnY3CwkJERUW5rXP+/Hnk5eWhZ8+eWLp0qeJjCCFgNpuh11/+F229e/dG+/btsW3bNsyaNQsjRozAoUOHUFhYiC5dunis37hxY5jNZkydOhXz5s3D4MGDERcXh0OHDkEIobhWXxw8eBAAMG3aNLRsefmR66+99hoOHDiAn3/+GQMHDsStt96K//znP253KAxEvOyOiIiojgjeL8/3FN0nsCYbd2rTBjAa5XmfjhzxssJfv+nEX79hJCIiIu1Zu3YtIiMjceLECfzrX//yWG6xWADITaja4JzX6bPPPgMATJ061W3C9PJ+//13tGrVCseOHcOMGTPwf//3fwgNDfVrfUrfD5PJhFmzZmHSpEmIiIjA9OnT0bZtWyxevNifZVYbm09ERER1QO7RIsTkHQIANLmmvcrVeBcUdHGica/zPjnnlTh1CvjrixgRERFpx/Lly7Fs2TIsXboUQUFB+PLLL7Fw4UK3dWJjY6HT6XDw4EGcPn26wn1tq6E5IG+//XZERkZiyZIl2L9/P3744QfcdtttHuvNmTMHw4cPR58+ffDyyy/X2qjNhIQEAMCqVasqXOfw4cMoLCx0/bckSRg3bhz279+P22+/HWfPnsV1112HM2fO+L3eqmLziYiIqA44Mm8XJAiURDVCeJNYtcupUPlL7zzExAChofI1eceO1WJVREREVF1FRUX4xz/+gU8//RQdO3bEM888AwAYM2YMiouLXesFBwcjKysLNpsNEyZM8LqvBQsWYNq0aTVSV3h4OO644w4IIXDPPfegW7duHpcCAsAzzzwDh8OBv//9726vK73crvw8VAUFBW7L8vLyPPbZvXt3AMDEiRO9znNVWFiIe++9FyaTCQDwxBNPuJYlJiZi2rRpGDVqFIqLi2t0/q6axuaTCvR6PaKiony6RpWIeSElmJf668Iy+beDZS19v+ROjbxU2nySpIujn3jpXcDh+YWUYF5ICeal9pWWlnp9fjnOia/LT4Dt9Nhjj+H6669Hp06dAMjNnLZt2yI7OxtPP/2027r33XcfAGDy5MkYP348ioqKAAB2ux1Tp07F6NGj8fjjj7vWt5QbEW232xVn5cEHHwQArFy50nXsS2VnZwOAW6PMbrfjwIEDHjWU/2+73e72elJSkqs+56TmdrsdkyZNwo4dOwDAtU8AGDVqFMLDw3Hy5EkMGTIEu3btci3bvn07+vfvjxEjRrgmS585c6ZbjQDQs2dPAEBkZGTlb4SK2HxSQWhoKDp06OD3a0epbmBeSAnmpR77a2i6qavvl9ypkRfnXOjHjgHlRo9f5Gw+eZ0UitTE8wspwbyQEsxL7dtS7rdAy5Yt82kbu93uap5s3rzZbdk333yDb775Bi+++KLrNaPR6Br99OGHH+Kbb75xLRszZgwGDx4MAHjrrbcQHx+PZs2aITIyEg888ACmTJmCxMRE1/rLly93Pd+zZw9CQ0MVNaAyMjLQr18/ZGZmuho1l3JOQP7qq69iyZIlWL58OcaMGYPYWHlE+axZszB79mzX6CTnKKMDBw7AbDa7/dw33HADAODll19GUlISIiIisGDBAtx///0AgG+//RZ33HEHzGYzEhIS8PHHH0OSJKxfvx6ZmZlo3LgxEhMT0b59e7Rv3x5jxoxx7f/UqVMYM2aMq2lYWFiIb775Bl27dkX//v19fk9qG5tPKhBCwOFw+G22fKpbmBdSgnmpn+w2gahj8pfBpEG+j3xSIy8REcBfUxvg8GEvK3DkU8Di+YWUYF5ICeal9kycOBFpaWn4448/XK9de+216NixY6UTVj/77LNISUlxzcP0ySefICMjA/v378e9996LO++8E6WlpRgxYoRrmy1btrgmHBdC4I477sCtt94KQB7tNmfOHLz88sto0aIFHA4HioqKcM0112D9+vUYMmQIAPlOiJ06dXJrvvTs2RN/+9vfFOdl3LhxeOyxxypc/uWXX6Jfv344cuQIbr/9dkyfPh0vv/wyJk6ciNjYWMybNw/79+/Hvn370Lx5c1cz7dSpU0hNTcWrr77q2tenn36K2267DXFxcZAkCY888gh++uknxMTE4IknnkB2djamTZvmupTujjvuwO+//44rr7wSYWFhyM3NRdOmTfHVV19hypQpHrVOnz4djRo1Qrdu3dCrVy906dIFCxYsgMFgUPSe1CZJ8G+43xQUFCAqKgr5+fluw98KCwuxadMmdOrUCRERESpWSFrAvJASzEv9dHDxEZivvQkOgxEZZ5ZBZ/Jtgky18vLgg8C6dcCLLwLXXnvJwrlzgRdeADp3Bj79tNZqosvj+YWUYF5ICV/zUlZWhuzsbDRr1gzBwcG1WCEFErvdjpKSEsWjn+jylP4dq6jn4Q1HPhEREWnc8V/loe8Fjdr43HhSU9Om8qPXkU8pKfIjRz4RERER1RlsPhEREWmc5Xd5mHxQ3x4qV+IbZ/Ppr3k93aWmyo9nzgAKJkAlIiIiosDF5hMREZGGndmfj6QjawEAafcPUrka31Q68ikyUv4DcPQTERERUR3B5hMREZGG7f5kKXSwo7BhK8R1SlW7HJ84m0/HjgFe7tTMSceJiIiI6hg2n1QQFhaGK664AmFhYWqXQhrAvJASzEv9Y527AACgGzRQ8bZq5SUhAQgNBRyOCvpLzubT0aO1WhdVjucXUoJ5ISWYF1JCp9MhLCwMOh3bGVrCT0sFOp0OJpOJf1nIJ8wLKcG81C8nd+ehYc46AECLB5Q3n9TKiyRd5tI7jnwKSDy/kBLMCynBvJASkiRBp9NBkiS1SyEF+LdbBaWlpdi5cydKOZEq+YB5ISWYl/pl7+QlkOBAYaPWiMlqonh7NfPiU/PpyJFaqoZ8wfMLKcG8kBLMCynhcDhQWloKh8OhdimkAJtPKrDZbDh37hxsNpvapZAGMC+kBPNSv9h//+uSu8FVm2hczbw0ayY/em0+paTIjxz5FFB4fiElmBdSgnkhJYQQsNlsEEKoXQopwOYTERGRBp3cdQFJxzZAQtUuuVObTyOfcnOB4uJaqoiIiIiI/IXNJyIiIg1yXnJXkNwGMe0aq12OYuWbTx6/uAwLA2Jj5eecdJyIiC7BES9E/uHPv1tsPhEREWmQY8EiAIBuiPZGPQHylXV6PVBSApw962UF3vGOiIgu4ZyQ3G63q1wJUd3k/Lvlj8n/2XxSgclkQrNmzWAymdQuhTSAeSElmJf6ofCcGfE5mwEATW/vU+X9qJkXgwFo/NeArUovvWPzKWDw/EJKMC+khK95CQoKQlBQEIqKimqpMgpEkiTBaDTybnd+UFhY6Pp7VtPYfFKB0WhEkyZNYDQa1S6FNIB5ISWYl/ph74ytMAgLyiISkNCtWZX3o3ZenJOOZ2d7WchJxwOO2nkhbWFeSAlf8yJJEiIiIpCfn88749VjOp0OJpPJL6Nz6rPS0lIUFBQgIiLCL409Q43vkS7LZrMhLy8P0dHRMBj4EVDlmBdSgnmpHy78vhahAErbdgOq8eVA7bxUOul4aqr8yJFPAUPtvJC2MC+khJK8xMfHo7S0FEePHkVkZCQiIiKg1+s5CqYecd7tzmAw8HOvJiEE7HY7CgsLUVBQAJPJhPj4eL8ci/8SqKC0tBQ7d+5Ep06dEBERoXY5FOCYF1KCeakfjJvXAgAiB3Wv1n7UzkulzSfnyKejR+UZyfnlUnVq54W0hXkhJZTkRa/XIyUlBefOnUNhYSHy8vJqp0gKGA6HAxaLBUajkaOfakhQUBCio6MRHx8PvV7vl2Ow+URERKQhJ3fnIT53LyQAzUZWr/mktkovu2vSRJ4YqqAAOHECSE6u1dqIiChw6fV6JCYmokGDBrBarXA4HGqXRLWouLgYO3fuRGZmJsLCwtQuR/N0Oh2CgoL8PoqMzSciIiINOfT9esRAoLBBc4SnxqldTrU4r6w7dw4oKgLCw8stNJmAjAxg2zZg40Y2n4iIyINz4mmqX6xWK4QQMBqNCA4OVrsc8hHHqBEREWlI8WL5kjt7F22PegLkZlNCgvzc66V3nTvLj5s21VZJREREROQHbD6pQKfTITQ0lNenkk+YF1KCeanbHHaBiF1y8yl+ePWbT4GQl0rnferUSX5k8ykgBEJeSDuYF1KCeSElmBdtkoQQQu0i6qqCggJERUUhPz8fkZGRapdDREQat39xDqzX3gChN6D18SUwRISoXVK1vfEG8OOPwD33AA8+eMnCkhKgXz/A4QB+/RVISlKjRCIiIiLyQknPg61CIiIijTj2ozzqqSC1fZ1oPAEX5306etTLwtBQoE0b+TlHPxERERFpFptPKigqKsLKlStRVFSkdimkAcwLKcG81G3WVesAAPqeNTPfUyDkJSVFfvTafAIuzvu0cWOt1EMVC4S8kHYwL6QE80JKMC/axOaTCoQQsNvt4BWP5AvmhZRgXuouc6kDcdnrAQDJN9ZM8ykQ8lJ+5JPXMjjvU8AIhLyQdjAvpATzQkowL9rE5hMREZEGZC88iBBbIezGUDQa0EbtcmpMo0aATgeUlQFnz3pZoUMHeYWcHODMmdouj4iIiIhqAJtPREREGnBm8Q4AQGFKBiSDXuVqao7BADRuLD/3euldeDjQqpX8nKOfiIiIiDSJzSciIiINMG+Um09Su7YqV1LzLjvvEy+9IyIiItI0Np9UEBoaik6dOiE0NFTtUkgDmBdSgnmpu0IOys2nqF4113wKlLxUesc7gJOOB4hAyQtpA/NCSjAvpATzok0GtQuoj/R6PSIiItQugzSCeSElmJe66cLxEsTkHQIANBlWc82nQMlLkybyY4XNp44dAUkCjhwBzp8H4uJqrTa6KFDyQtrAvJASzAspwbxoE0c+qaCsrAz79+9HWVmZ2qWQBjAvpATzUjcd/n03JAiURiQivGl8je03UPLibD4dOVLBCpGRQIsW8vMtW2qjJPIiUPJC2sC8kBLMCynBvGgTm08qsFqtOHHiBKxWq9qlkAYwL6QE81I35a2QL7krbV6z8z0FSl6cl90dOwbY7RWs1K6d/LhrV63URJ4CJS+kDcwLKcG8kBLMizax+URERBTg7Nvk5lNQx7o32TgAJCQARqPceDpxooKV2rSRH3fvrrW6iIiIiKhmsPlEREQUwIQAIo7IzaeE/nWz+aTTXbz0LiengpUyMuTH3bvlN4WIiIiINIPNJyIiogB2fPMZRJSdBSQdUgalq12O31x23qe0NHl4VGEhcPx4rdVFRERERNXH5pMKjEYjkpOTYTQa1S6FNIB5ISWYl7rn+Hx51FNBgxYIigyp0X0HUl6c8z5VeMe7oKCLk45z3idVBFJeKPAxL6QE80JKMC/axOaTCkwmE1q0aAGTyaR2KaQBzAspwbzUPUV/ys0na3rNX3IXSHlJSZEfKxz5BLhfeke1LpDyQoGPeSElmBdSgnnRJjafVGC325Gfnw97hbf0IbqIeSElmJe6R79bbj6Fdqv55lMg5eWyI5+Ai80njnxSRSDlhQIf80JKMC+kBPOiTWw+qaCkpARbtmxBSUmJ2qWQBjAvpATzUrdYSu2IOSU3WhoNqvnmUyDlxTnn0+nTgNlcwUrpf815tWcP4HDUSl10USDlhQIf80JKMC+kBPOiTWw+ERERBaijSw4iyF4GW1Aokq5oqnY5fhUdDUREyDeyO3asgpWck44XF1eyEhEREREFGjafiIiIApDDLrD/pekAgIImbSHp6/Y/2ZLkwx3vDAagdWv5OS+9IyIiItKMuv1NloiISKP+uPMbpO74FZB0SH52tNrl1Apn86nSeZ/atJEfOek4ERERkWaw+aQCSZIQFBQESZLULoU0gHkhJZiXumHlmyuRMnsSAMD28L/QbEQ3vxwn0PLC5lNgC7S8UGBjXkgJ5oWUYF60SRJCCLWLqKsKCgoQFRWF/Px8REZGql0OERFpwM5fDsFy22iY7CUoGnQjus16Wr4mrR6YOxd44QWgSxdg8uQKVjp4EBgxAggNBZYuBXT8PRoRERGRGpT0PPiNjYiIKEDsX3IMRXeNhclegsKWndFlxpP1pvEEAElJ8uPp05Ws1LQpEBwMlJRUMjkUEREREQUSNp9UUFxcjLVr16K4uFjtUkgDmBdSgnnRroMrT+LczQ8gwnwWJYlpyJr/NnRGg1+PGWh5Kd98qnBctl5/cdJxXnpXqwItLxTYmBdSgnkhJZgXbWLzSQUOhwNlZWVwOBxql0IawLyQEsyLNh1edwanbvw/RJWeQml8E2Qs+wTBiVF+P26g5SUhQR7oZbEAFy5UsqJz3ife8a5WBVpeKLAxL6QE80JKMC/axOYTERGRimwWB47+7SHEFB9DaWwyWi+ZjNCUOLXLUkVQEBAbKz+v9NK7jAz5cedOv9dERERERNXH5hMREZGKDi8+hPj8A7AFhaDlwskIT2ugdkmqSkyUHyttPrVvLz/u3i0PkyIiIiKigMbmExERkYpOL5FH7xQ0zkRk64YqV6M+nyYdT06Wh0jZbMCePbVSFxERERFVHZtPKggJCUG7du0QEhKidimkAcwLKcG8aE/Zhr8uHXNeSlaLAjEvzubTqVOVrCRJQLt28vOtW/1eE8kCMS8UuJgXUoJ5ISWYF21i80kFBoMBsbGxMBj8excjqhuYF1KCedEe4wG5+RTZs22tHzsQ8+LTZXcAkJUlP27f7td66KJAzAsFLuaFlGBeSAnmRZvYfFKB2WzG4cOHYTab1S6FNIB5ISWYF20puWBG7Ln9AIDGQzJr/fiBmBefRj4B7iOfhPBrTSQLxLxQ4GJeSAnmhZRgXrSJzScVWCwWHDlyBBZOkko+YF5ICeZFWw7P3wsJDpSFxiE2vfYnGg/EvPg88ikjA9DrgfPngZMn/V4XBWZeKHAxL6QE80JKMC/axOYTERGRSs4v2wEAKG6aKc9jRK7m09mzgN1eyYomE9C6tfx82za/10VEREREVcfmExERkUosW+T5nvTta/+Su0AVFycPaHI4gHPnLrOyc94nNp+IiIiIAhqbT0RERCoJyd4FAIjtw+aTk06n4NI757xPnHSciIiIKKCx+aQCg8GABg0acHZ+8gnzQkowL9qRe7gA0YU5AIAmQzNUqSFQ8+JsPl120nHnyKe9e4HSUr/WRIGbFwpMzAspwbyQEsyLNvHTUkFISAjatGmjdhmkEcwLKcG8aMeRuTthAlAUnYLQpEhVagjUvPjcfEpMBBo0AM6cAXbvBjp18ntt9Vmg5oUCE/NCSjAvpATzok0c+aQCh8OB0tJSOBwOtUshDWBeSAnmRTvyV8vzPZU1V++Su0DNi8+X3QFA+/by49atfquHZIGaFwpMzAspwbyQEsyLNrH5pILi4mKsW7cOxcXFapdCGsC8kBLMi3Y4dsjzPZk6qdd8CtS8JCXJj4qaT5z3ye8CNS8UmJgXUoJ5ISWYF21i84mIiKiWCYdA5NEdAICEfpxs/FJVHvkkhN9qIiIiIqKqY/OJiIiolp3YfBqh5lwInR4pA1urXU7AcY58uuycTwDQujVgNAL5+cDRo36ti4iIiIiqhs0nIiKiWnZsnnyJWEFCCwSFm1SuJvA4Rz5duABYLJdZOSgIyPxr9BjnfSIiIiIKSGw+ERER1bLCOUsAAPZOXVSuJDBFRgLBwfJzny6969BBftyyxU8VEREREVF1SEJwggR/KSgoQFRUFPLz8xEZqc5ttImIKLAUnC5FdotBCHKUIeKnr5EyJEPtkgLSTTcBR44AkycDXS7Xo1u5EnjkEaBJE+Cnn2qjPCIiIqJ6T0nPgyOfiIiIatGOT1YgyFGGkuhkpAxuo3Y5Act56Z1P8z45Jx0/ehTIzfVbTURERERUNWw+qaCkpASbNm1CSUmJ2qWQBjAvpATzEvhKZs8HAFj6DwEkSd1aAjgvzknHfbrsLjISSEuTn3PeJ78J5LxQ4GFeSAnmhZRgXrSJzScV2O12FBYWwm63q10KaQDzQkowL4Ht/OFCJB5YDQBI+78hKlcT2HlR1HwCLs77xOaT3wRyXijwMC+kBPNCSjAv2sTmExERkUKrvzuKP384pni7XR8tgV5YUZSQhqRezf1QWd2h6LI7gJOOExEREQUwg9oFEBERacmF4yUwjhkNh6RH0VW/ITzW6PO2ll//AAA4Bqs/6inQVbn5tGcPUFZ28XZ5RERERKQ6jnwiIiJS4OiCvQi1FyDcdgHHVh72ebtTu3KRdHQdAKDlg4P9VF3dUf6yO5/uy9uwIZCQANhswK5dfq2NiIiIiJRh80kFwcHBSE9PRzB/K0s+YF5ICebF/3JX73Y9P7/2gM/b7floESQ4kJ+cgbgOKf4oTbFAzkvDhoBOBxQXA2fO+LCBJAFZWfJzXnrnF4GcFwo8zAspwbyQEsyLNrH5pIKgoCAkJiYiKChI7VJIA5gXUoJ58T/b9ovNp9IdvjefHPPlS+4MVwfOqKdAzovJBLRqJT/fvt3HjTjvk18Fcl4o8DAvpATzQkowL9rE5pMKLBYLjh8/DovFonYppAHMCynBvPhfyOGLzSfpoG/Np6MbziDp5GZIAFqPC5zmU6DnpV07+dHn5pNz5NO2bYDD4Zea6rNAzwsFFuaFlGBeSAnmRZvYfFKB2WzGgQMHYDab1S6FNIB5ISWYF/+6cLwEMQVHXP8dfvKAT/MRHfhYHvV0oVlHRLZo4K/yFAv0vChuPrVqBYSEAEVFwKFDfqurvgr0vFBgYV5ICeaFlGBetInNJyIiIh8d/WMPJAhYQ6IgAYgoO4PcwwWVbiMEoFsoN5+Crw2cUU9a0Lat/LhnD2C1+rCBXn9xox07/FYXERERESnD5hMREZGPLqzZAwAobN4BxZHy7diOLz/oWn5k03nMbv4YFjy/3PXawaU5aHB+FyDpkD52QO0WrHEpKUBkJGCxAPv2+bhRerr86PMGRERERORvbD4RERH5yLZ9FwDA0K4NypJbAADyN16c92nfGz+g1anlSHjvWexbegIAcPgzedRTXqtuCG0cW8sVa5skVeHSu9at5cc9e/xSExEREREpx+aTCvR6PWJiYqDX69UuhTSAeSElmBf/Cv1rsvHonhmQWsrNJ/OuiyOfgtatAgAYHaU4cu/LMJc6YFo6HwAQfmPgXXKnhby0by8/Kpr3CQD27+ek4zVMC3mhwMG8kBLMCynBvGiTQe0C6qPQ0FC0d36bJroM5oWUYF78J/9EMaIKjgIAGg9MR9npfGAOYDgij3w6vj0XDc7tggTAEWRC8qkNmHfVv9Gq4BAc+iC0fqC/itV7p4W8KB751LQpYDIBpaXAsWNAkyb+Kq3e0UJeKHAwL6QE80JKMC/axJFPKhBCwGazQfhyiySq95gXUoJ58Z8jC/ZCgkBpRCLCm8SiQU955FPkmQNw2AUOfbMaAJDfqA3w0EMAgFbbZgIACjJ7whQfoU7hldBCXjIy5MvvTpwAcnN92ECnA1rInw327vVrbfWNFvJCgYN5ISWYF1KCedEmNp9UUFRUhFWrVqGoqEjtUkgDmBdSgnnxnwur5EvuSlLbAACSrmgKodMj2FaEE1vPomyRfMkdevVC5oSbUdyqk2vbqFuG1Hq9vtBCXsLDgWbN5OeK531i86lGaSEvFDiYF1KCeSElmBdtYvOJiIjIB7btcvPJ0E5uPulMQSiKTQUAHFu4B3H71wAAkkf0AnQ6tJ7+IkRIGKwRsWj9jz7qFF1HVHnScd7xjoiIiCggsPlERETkg9DD8p3uonu0cb1mafLXHe++moVgWxGsIVFoPDgTABDZJhmtt/+AdtumwxARUvsF1yG84x0RERGRtrH5REREdBnlJxtPGXyx+WRIl5tPKUdWAACK2veEpL/4T6uhYQJ0DeJrsdK6yTmn6K5dgN3uwwYtWshzP+XmAufP+7U2IiIiIrq8etd8cjgcWLRoEZ544gnce++9ePnll1FQUKB2WUREFMCOLpDnDiqJSEJ4Sozr9ciOzd3Wi7y6V63WVV80bQqEhck3sDt40IcNgoOBVPmSSM77RERERKQ+g9oF1Kb58+fj0UcfhRAC7777LoYOHQpJktzWEULg888/xxdffAGj0Yj8/Hy0b98er776Kpo5ZzytprCwMPTo0QMGQ716+6mKmBdSgnnxj1MzliMZQGnztm6vJ/VugdPO/5AktLijR22XVi1ayYtOJ9/1bv16+Uq6Vq182KhVKyA7W24+9ezp9xrrA63khQID80JKMC+kBPOiTfVm5NOLL76IoUOHIjMzE5s3b8bVV1/t0XgCgLvvvhv/+te/8NFHH2HlypXYsGED7HY7unTpgu0+TzZROZ1OB6PRCJ2u3rz9VA3MCynBvNS84gsWxK6aAwBoMHqY27LYzIawBcnzOeWntENIUlSt11cdWsqL8/c/hw/7uAEnHa9xWsoLqY95ISWYF1KCedGmevFpPfXUU3j55ZcxZMgQfPfddwgODva63rvvvoupU6di/Pjx6Nq1KwDAZDLh008/hcPhwN///ndYLJZq11NaWoodO3agtLS02vuiuo95ISWYl5q3+Z1FCLEWoCyiAVrd7X5ZnaTXoSQxDQCg66O9S+60lJemTeVHxc0nXnZXY7SUF1If80JKMC+kBPOiTXW++fTTTz/h7bffRnR0NKZNmwa9Xu91vZKSErz++uuQJAmjR492WxYVFYWbbroJ+/btw5dfflntmmw2G86fPw+bzVbtfVHdx7yQEsxLzRICMH/3EwDAdu0NkAye/4Y0mjAGlt4D0PHVm2q7vGrTUl6czacjR3zcwHltXk4OUFLij5LqHS3lhdTHvJASzAspwbxoU51uPlksFjz00EMAgMceewwJCQkVrjtr1iycP38eLVu2RHJyssfyK6+8EgDw1Vdf+aVWIiIKPHvnHULDU5sBSYc246/3uk6TUb3QYf5bMDaIrt3i6hln8+nYMcCn75oxMUCDBnIHcf9+f5ZGRERERJdRp5tP06ZNw/HjxwHIczlVZvXq1QCAjIwMr8vbtpUnmV23bh3y8/NrsEoiIgpUR96bBQDIb98HEc0bqFxN/ZaQAISEAHa73IDyCS+9IyIiIgoIdbr59PPPPwMAGjVqhN9++w0jR47EgAED0LZtW4wcORIrVqxwrbtz504A8DrqybkPpx07dvixaiIiCgQFZ82IX/srAKDBg9q7pK6ukSQgNVV+rvjSuz17/FITEREREfmmTt+bcPny5QDka0KbN2+OMWPGQJIkbNmyBaNGjcKVV16JDz74AGPHjkVubi4AICIiwuu+IiMjXc/PnDnjdR2z2Qyz2ez674KCAgBAYWGh2531hBBIS0tDUFAQCgsLPfbjrKGkpAR2u91tWXBwMIKCgmCxWNyOBQB6vR6hoaEQQqCoqMhjv2FhYdDpdCgtLfW4PtZkMsFoNMJqtaKsrMxtmU6nQ1hYmOtnuVRoaCj0ej3KyspgtVrdlhmNRphMJthsNo8J4SRJQnh4OACgqKgIQgi35SEhITAYDDCbzR4TvQcFBSE4OBh2ux0lXubycL6HxcXFcDgcbssqew8NBgNCQkLgcDhQXFzssd/w8HBIkuT1s6nsPXR+NoD397Cyz0aSJKSlpUGv13tsW/6z8fYeOj8bpe9h+c/G23vo/Gxq+j10fjaVvYfVybe3HPr6HlaW7+q8h94+m8u9h5WdI3Q6HdLS0qDT6TzywnPERb6cI9a9Ph+NrIUoiU5E42syUVhYGJDniMrew8vl22AwIC0tzetxA/EckZISij179DhwwIZOndx/Vm/51jdtCpPDAcfWrdA7HDxHoHrfI4KCgpCWlgYhhEde6uM5QivfI6pzjqjO9wiTyYS0tDTY7XaPmvk9QlbXzhHV+R7hzIvNZvPIC88Rsrp2jqjO9wiTyYRmzZrBarV6/Lw8R8hq6xzhLW8VqbPNp+LiYtflcW+88QYGDhzoWtahQwf89NNPaNu2LR555BEMHjzY9WEajUav+zOZTG779uaNN97ASy+95PH61q1bXYEDgAYNGqBNmzYoLS3Fpk2bPNZ3zi+1Z88ejw8zPT0diYmJOHv2LA4cOOC2LCYmBu3bt4fdbve63x49esBoNOLgwYM4f/6827K0tDSkpKQgLy8Pu3btclsWHh6Ozp07AwA2b97s8RemS5cuCAsLw5EjR3Dq1Cm3ZSkpKUhLS0NRURG2bt3qtsxoNKJHjx4AgO3bt3v8pcjKykJ0dDSOHz+OnJwct2VJSUlo3bo1ysrKPH5WSZLQt29fAPJ7eOnJIyMjAwkJCTh9+jQOHTrktiwuLg5t27aFzWbz+h726tULBoMBBw4cwIULF9yWtWjRAsnJycjNzcWeS37LHhERgU6dOgGA1/1269YNISEhOHz4sEdzMzU1FU2bNkVubi62b9/utiw4OBjdu3cHAGzbts3jhNWhQwdERUUhJyfHdQmqU6NGjdCyZUuUlJR41KTX69G7d28AwK5duzxOdpmZmYiPj8epU6eQnZ3ttiw+Ph6ZmZmwWq1ef9Y+ffpAkiTs27fP4xLWVq1aoWHDhjh37hz2XXJ79KioKHTo0AFCCK/7veKKK2AymXDo0CGcO3fObVmzZs3QpEkT5OXluUY5OoWGhrrubrllyxaPE2ynTp0QERGBnJwcnDhxwm1ZcnIyWrRogaKiImzZssVtWVBQEHr27AlAHi156T9w7dq1Q2xsLE6ePIkjlwzjcJ4jzGZzlc4RKSkpOH78OM8R1ThHxMcnwDHzBzgcDpzofgWKt24BENjniIKCgiqdI1JSUnDgwAFNnCPi4rIARGP3bs9/P72dIwxWK9oXF0Ps3AlTfj5MMTE8R1Tze0RKSgp27NhR788RWvweUdVzRHW+R6SkpGD9+vX8HlGPzhHV+R6RkpKC5cuX8xxRj84RQNW/RyQmJuLPP//0+Fl5jpDV1jmiot6IN5K49G93HXH8+HE0btwYgPwXpV27dh7r9OzZE2vWrMFzzz2H2bNnY8eOHXj66afx+uuve6xrNpsRHBwMAPjxxx9x4403el3n0pFPKSkpOHbsmNvIKQAoKytDZGSkx0kQCMzfRvA3ljI1fhuh0+lQUlKC8PBwr8sC8bcR/I2ler+N0Ov1KC4uRlhYmNdlPEfILneO2P3rURhuHwGh0yFh7QyEpMQBCMxzRHV+Y+kcgRsSEuJ1WaCdI1auDMHzzxvQtq0DH3zgvm1F+Q655RZIp09D+uQT6Lp3r/fniOp8jzAajSgoKHB9Hyqvvp0jtPQ9Qs2RT3l5eTAajdDp3Gf64PcIWV07R1Tne4TRaEReXh4MBgMMBvfxETxHyOraOaI63yMMBgMuXLiAoKAgj7zwHCGrrXNEQUEBGjdujPz8fI+ex6XqbPMpNzcXcXHy/yzs3bsXrZzzPpTz4IMP4pNPPsF1112HkpISLFy4EOPGjcOkSZM81j1//jzi4+MBACtXrkSvXr0uW0NBQQGioqI8PojCwkJs2rTJ1eUkqgzzQkowLzVjbv+30XTdDBR0uQpXLHtb7XL8Rmt52b8fGDUKiIwEFi2S54G6rGeeAf74A3jwQeCee/xeY12mtbyQupgXUoJ5ISWYl8BRUc/Dmzo74XhsbCyio6MBwGPIYvl1AKC0tNR1l7uTJ096Xdf5uiRJFd4Rj4iItO/88TIkbpwLAGg01nOUK6mnSRO54VRQAFTwT7unv+5WC94shIiIiEg1dbb5BMB1DeTeCm6x7JwQPCkpCf379wcAj2uQnZzXbmZlZSEmJqamSyUiompwOIBvntyGT7M+Rs6+0stvUIlNb/2BEHsRzHHJaPL3bjVUIdUEkwlo2FB+7vMd78o3n+rmYG8iIiKigFenm08jRowAACxatMjr8qNHjwIA+vbtiyFDhiAmJgZ79uzB2bNnPdZ13jlv1KhRfqqWiIiqwmwGpoyYj6yPx6DPgSk48tWSKu/L4QB0s34CAOhuugHQ1el/JjWpaVP58fBhHzdITwcMBiA3F6hgdDMRERER+Ved/lY9cuRItGzZEj/88IPH5XSFhYVYsGABGjdujFGjRiEkJASPPvooHA4Hvv76a7d1i4qKMGPGDDRo0AD33XdftevS6XQIDw/3mHyRyBvmhZSob3kpKACmDfkGPec+C72QJ3+0nfT8BYKvNn23Dw1zd0DS65H+5HU1VWbA0mJeFDefjEagdWv5+SV38SFltJgXUg/zQkowL6QE86JNdfrTMhqNmD59OoxGI26++WbXiCaHw4EnnngCBoMBP/zwg2v2+fHjx2PIkCF45ZVXsHHjRgCA1WrF2LFjUVJSgv/97381csldWFgYOnfu7DouUWWYF1KiPuWlpFhgVr/30XP9e9DrAOmvefzs53ydDMjTqY/lUU9FXfvD1DC2RuoMZFrMS2qq/OjzZXcA4LzjLZtP1aLFvJB6mBdSgnkhJZgXbTJcfhVt69KlCzZu3IhXX30VvXr1QmJiIiwWCzIzM7F161Y0df4KFfLtIH/99Vd8+OGHGDNmDMLCwlBUVIRWrVph7dq1aOucN4KIiFQlBPDDbbPQde80GAxA1PMPI3u/DZHffATk5VVpn7knzUjeKk803vjhm2qwWqpJikc+AZx0nIiIiEhldb75BABpaWmYMmWKT+saDAY88sgjeOSRR/xWT2FhITZv3oyOHTvy1pB0WcwLKVFf8vLzG7vQYeG/IUlAyBP/ROLjd+DY87MBALr8qo182v31esQ4SmCJboCG13apwWoDlxbz4mw+nTgBWCzyVXWX5Rz5tHevgo3oUlrMC6mHeSElmBdSgnnRpjp92V0gE7zjDinAvJASdT0vGxfnI/7tJ2EQVugH9EPKs3cBAExJ8mXR+sK8Ku234Df5xhLm7n0BSaqRWrVAa3mJjQXCw+XJ4Y8d83GjRo2AmBjAapUbUFRlWssLqYt5ISWYF1KCedEeNp+IiEgzzpxyIOeu5xBrPQVdkxS0/GaCq1EUmiw3n4zFykc+WcwCMTtWAgAa3NS3xuqlmidJF+d98vnSO0m6eOkd530iIiIiqnVsPhERkWYsGfcjWuWugSHUhLQf3oYUEe5aFt44GgBgKsuD0l+G7Zq1F5HmM3AYQ5B6U/245E7LqjTvk/PSO877RERERFTr2HwiIiJN2L+lGE3nfwYACB3/EIyZLd2WRzaJBgCY7CUovmBRtO/TM+VL7ooyu0MXzPmAAp2z+ZSdrWAjjnwiIiIiUg2bTyoIDQ1Fly5dEBoaqnYppAHMCylRl/Oy6ZGvEWG/ANG4ide70QUnRAA6+Z+1gqN5Pu9XCMC4dgUAIHx4/brkTqt5adFCflQ0fVNmppyPkyfl2cpJMa3mhdTBvJASzAspwbxoE5tPKtDr9QgLC4Ner1e7FNIA5oWUqKt52fT7GaRv+AaSBDR4ZRxg8HKzVklCWXA0AKDwqO/zPh1efxaJF3ZDkiS0uKt3DVWsDVrNS3q6/Hj4MFBW5uNGYWFAVpb8fPVqf5RV52k1L6QO5oWUYF5ICeZFm9h8UkFZWRn27t2LMp+/MVN9xryQEnUxLw4HcOipTxEkzLBlZCHh5n4VrmsJkycdLzmR5/P+s7+WRz0VNGmL4Eax1SlVc7Sal4QEIC5Ozsb+/Qo27NFDfmTzqUq0mhdSB/NCSjAvpATzok1sPqnAarXi1KlTsFqtapdCGsC8kBJ1MS8rpx5EmwO/QKcDUt992HV3O29sEXLzqeyU7yOf7Evk+Z4M/ftUr1AN0nJenKOfdu9WsFGvXvLj+vWABn9mtWk5L1T7mBdSgnkhJZgXbWLziYiIAlr+u19CggOWXlchsnf7StcVkdEAAOtp35pPuSfKkHhkHQCg6Z31a74nrXM2n/bsUbBRy5ZAbCxQWgps2eKPsoiIiIjICzafiIgoYJ3JMSMlWx6Z1OTFuy+/QYw88sl+Ps+n/e+fvh4GYUFZdEPEdWte1TJJBW3ayI+Kmk863cVL79asqfGaiIiIiMg7Np+IiChg7frvWhhFGayxSYi+Iv2y6+vi5OaT47xvI59KtuyTH9M7VXo5HwUe58ingwcBi0XBhs5L7zjvExEREVGtYfNJBUajESkpKTAajWqXQhrAvJASdS0vxb8uAQBYe/XzqTkUlBAtP8nP82n/9kNHAACGFk2VF1cHaDkviYlAVBRgtwMHDijYsHt3OUsHDgBnzvitvrpIy3mh2se8kBLMCynBvGgTm08qMJlMSEtLg8lkUrsU0gDmhZSoS3kpzLOjwV75krvkO/r7tI0pMRoAoC/I82n9oBOHAQDhbVOVllcnaDkvklTFS++iooDMTPk5L71TRMt5odrHvJASzAspwbxoE5tPKrDZbMjLy4PNZlO7FNIA5oWUqEt52TZ1M8Js+bCHR6Hh0A4+bRPSSL7sLqjo8pfdOewCUbmHAQAJXZpWsUpt03peqjTpOAD07Ck/8tI7RbSeF6pdzAspwbyQEsyLNrH5pILS0lJs3boVpaWlapdCGsC8kBJ1KS95s+RL7kq7Xgno9T5tE5YcDQAwlV6++XR613kY7SWApENCx8ZVrlPLtJ6Xajef1q6Vr9sjn2g9L1S7mBdSgnkhJZgXbWLziYiIAo65TCB221IAQIMR/XzeLjJVHvkUYimApcxR6bqn18nzPRVHN4IumHMGaJHzsrv9+wFFv/zMyAAiI4GiImDbNr/URkREREQXsflEREQBZ8fM3Ygyn4bDFILUW67webuw5GhIACQ4kJ9TUOm6hdsPAwDMSU2rXiipqlEjIDwcsFqBQ4cUbKjTAb17y88XLfJLbURERER0EZtPREQUcE5/vxQAUNy+JyST76OSdEYDLKZwAEDh0covvTPvk0c+oWn9nGy8LpCkalx6N3iw/LhgAeCofJQcEREREVUPm08qkCQJRqMRkg+3DSdiXkiJupAXhwMIWy/P9xR9o293uSvPHCJfeldyIq/S9aSjhwEAIa3rb/OpLuSlSne8A4Du3eVL786fBzZsqPG66qK6kBeqPcwLKcG8kBLMizax+aSC8PBw9OjRA+Hh4WqXQhrAvJASdSEvexcdQ0JRNqDXo/kdvRRvbw2Xm0+lJyof+RR65jAAIKZjU8XHqCvqQl6cI59271a4YVAQMGCA/PyPP2q0prqqLuSFag/zQkowL6QE86JNbD4REVFAOT5zNQCgMC0LhpgIxds7IqMBAObTeRWuU5RrQWTxSQBAYvemio9BgcPZfNq7V577SZEhQ+THxYursDERERER+YrNJxUUFRVhzZo1KCoqUrsU0gDmhZSoC3mxr1wDADD2Uz7qCQAQHQ0AsJ7Lq3CVE2tzIEHAZgpHWOOYqh2nDqgLeUlJAWJiAIsF2LFD4cadOgHx8UBBAfDnn36pry6pC3mh2sO8kBLMCynBvGgTm08qEELAYrFACKF2KaQBzAspofW8XDhtQWLOegBA6sgeVdqHLjYaAOA4V/Fldxc2HwYAFMenyrNW11Nazwsg37iua1f5+fr1Vdh40CD5+fz5NVpXXVQX8kK1h3khJZgXUoJ50SY2n4iIKGDs+W4LjI4yWCPjEdu9ZZX2oY//ayTThYqbT8W75Dvd2Ro3rdIxKLB06yY/rl1bhY2dl94tWwaUldVYTURERER0EZtPREQUMPLmyvM9lXbsWeURScZEufmkK8ircB3HocMAgKAW9fdOd3WJs/m0YwdQUqJw48xMoFEjoLQUWLGixmsjIiIiIjafiIgoQDgcQOgWufkUd03VLrkDgOCkaACAoajikU9BJ+SRT+Htmlb5OBQ4GjUCkpMBux3YtEnhxpIEDB4sP1+2rMZrIyIiIiI2n1QREhKCrKwshISEqF0KaQDzQkpoOS/7V55GQtEhSDodmo3sXuX9hCbLI59Mxd6bTw67QGTuYQBAfKf6PfJJy3m5VPe/IrNuXRU2zsyUH48erbF66qK6lBfyP+aFlGBeSAnmRZvYfFKBwWBAdHQ0DAaD2qWQBjAvpISW83L0O3nUU2HTtjDERlZ5PxFN5OZTcFkeHHbPiShP786FyV4MSDo06JxS5ePUBVrOy6Wcl95VqfmUnCw/njhRY/XURXUpL+R/zAspwbyQEsyLNrH5pAKz2YxDhw7BbDarXQppAPNCSmg5L7YVawAAhj49q7WfyCbR8n6EBYVnSj2Wn1kvX3JXHNUQumBjtY6ldVrOy6W6dJEfDxwAzp9XuHGjRvJjXh5QXFyTZdUpdSkv5H/MCynBvJASzIs2sfmkAovFgpycHFgsFrVLIQ1gXkgJrealINeGxCPyrcqajKxe8ykoMgQOg9xUKjia57E8f9thAIA5qX5fcgdoNy/eREcDrVvLz9evV7hxeDgQ+ddou+PHa7KsOqUu5YX8j3khJZgXUoJ50SY2n4iISHW7Z2xHsL0YtvBoxPdOr97OJAnm4GgAQNGxPI/Flr2H5dWaNq3ecSjgVGvep8aN5UdeekdERERU49h8IiIi1eUt2ggAKM7sBuiq/0+TJSwaAFB6wnPScSlHvuwuOL1ptY9DgaVrV/lx7VpAeE73VTnnvE8c+URERERU49h8IiIi1UnbtwEAQnt0qJH92SPkScfLTuV5LAs5IzeforN42V1d06EDEBQEnD4N5OQo3Ng57xObT0REREQ1js0nFQQFBSEpKQlBQUFql0IawLyQElrMS2mxA3En5OZTo6Hta2SfIlpuPlnPuI98Kr5gQVSRfFlVYjc2n7SYl8qEhADt2snPt2xRuDFHPl1WXcsL+RfzQkowL6QE86JNvDehCoKDg9HaOSsq0WUwL6SEFvNycGE2QuxFcJhCEN+jZc3sNCYaAGA/5958OrHuGCQ4YDOFITw1rmaOpWFazMvlpKcDmzYB+/cr3NDZfOKcTxWqi3kh/2FeSAnmhZRgXrSJI59UYLfbUVxcDLvdrnYppAHMCymhxbycWbAVAFCU2haSQV8j+9THySOfxIU8t9dzNx0GABTHpQKSVCPH0jIt5uVynN9F9+5VuGH5kU+KJ4yqH+piXsh/mBdSgnkhJZgXbWLzSQUlJSXYsGEDSkpK1C6FNIB5ISW0mBfLern5pOuYVWP7NCX91Xw6f97t9eKdhwEA9pSmNXYsLdNiXi6nVSv5cd8+hT2kpCR5snuLBbgkNySri3kh/2FeSAnmhZRgXrSJzSciIlKNwwGEH5Lne0oYUDPzPQFAQtemAICw4/vhcJQ7XrY82bihBed7qquaNgUMBqCoCDh5UsGGBgOQmCg/57xPRERERDWKzSciIlLNsW25iC3JgSRJSBnWrsb2m3xVa0gSEGU+jeM7L877ZDghN5/CM5vW2LEosAQFAWlp8nPF8z7xjndEREREfsHmExERqSbnN3nUU1FiGgwxETW2X31kGIrj5dFNxxfsBgA47AKRuYcBAPGdOfKpLquReZ+IiIiIqMaw+aQSiRPdkgLMCymhpbwUrpabT7aMmpvvycnSvA0AoGCt3Hw6vecCgm1FkCQJDTqn1PjxtEpLefFVy79umrhvn8INece7y6qLeSH/YV5ICeaFlGBetMegdgH1UUREBPr27at2GaQRzAspobW8GHdtAQBE9Kq5+Z6cTFltgD9/B3bLzacz6w4jCEBxZEPoQkw1fjwt0lpefOUc+VTl5hNHPnlVV/NC/sG8kBLMCynBvGgTRz4REZEqCs5ZEH9WbgylXFPzI58S+sojnyKO7YbDAeRvk+d7KmvYtMaPRYHFOfLpxAmgsFDBhpzziYiIiMgv2HxSQXFxMTZu3Iji4mK1SyENYF5ICS3l5cCve2AQVljDYxCV2bjG9588IB2SJCHKfBonduTCsu8wAEBK5XxPTlrKixKRkUDDhvJzRZOON/4rh2fOABZLjdeldXU1L+QfzAspwbyQEsyLNrH5pAKHw4GioiI4yt//m6gCzAspoaW85C7ZCgAoaZEF+OG6fX1EKIrjmwAAji/aA+moPPIpuDWbT05ayotSVZr3KSYGCA4GhABOnfJLXVpWl/NCNY95ISWYF1KCedEmNp+IiEgVjs1y88nYpebne3KyNM8AIE86HnxGbj5Fd2jqt+NR4KjSvE+SxEvviIiIiPyAzSciIqp1ljIH4o5sAgA0Gt7Rb8cxdZDnfbJv3oboIrmZkNiNI5/qg1at5EfFk447L73jHe+IiIiIakyt3O0uLS2txveZkpKCZcuW1fh+iYjI//bPP4QQWwHsxhAk9W/jt+Mk9ElH0WQg+fhaSHDAbgxFeNN4vx2PAoez+XTwIGCzAQZfv/Fw5BMRERFRjauV5tPhw4dr4zCaERwcjIyMDAQHB6tdCmkA80JKaCUvp+dtQhKAorT2kIL8909R8oB07JMk6IUNAFAcn+qX+aW0Sit5qYqGDYGwMKC4GDhyBGje3McNk5Plx2PH/FabVtXlvFDNY15ICeaFlGBetKlWLruLiYnBnj174HA4auTPnj17EBISUhul+0VQUBASEhIQFBSkdimkAcwLKaGVvNjWbQQAGLp19utx9BGhKIq/eJmdrXFTvx5Pa7SSl6rQ6S6Oftq7V8GGzuYTL7vzUJfzQjWPeSElmBdSgnnRplppPrVr1w6tnN8Aa0CrVq2QmJhYY/urbRaLBTk5ObDwNs7kA+aFlNBCXmxWgejszQCApGGd/H48a/OLl/UZmnO+p/K0kJfqqFbziZfdeajreaGaxbyQEswLKcG8aFOtNJ8kP1ziIISo8X3WFrPZjEOHDsFsNqtdCmkA80JKaCEvBxYeRrglF8JgRPKgDL8fzznpOACEt2XzqTwt5KU62vz10W/apGCj+L/mBCsslCeLIpe6nheqWcwLKcG8kBLMizbVSvNp/PjxmtgnERH536m5ciegoGl76IKNfj9eQt+Lzaf4zk39fjwKHD17ylN87d4NnD7t40blL+svK/NLXURERET1Ta00n4YMGVKt7R9//PEa3ycREanD+qc835Ouq/8vuQOA5KtaQ4RHABGRaNClSa0ckwJDbCyQlSU/9/kGuUFBFyelLy31S11ERERE9U2tNJ+qY//+/ZgyZYraZRARUQ1w2AUiD8ojnxpc7d/Jxp30EaHIWDMFGWu+hC7EVCvHpMBx5ZXy49KlPm4gSRdHP3HkExEREVGNUK35JITApEmT0LNnT8TGxsJgMECv13v8SU9PR35+vlpl+oXBYEBcXBwMBv/dXpzqDuaFlAj0vBxaloMI8zk4DEakDm9Xa8eV0poBzZrV2vG0ItDzUhOczaeNG4GCAh83ct66mSOf3NSHvFDNYV5ICeaFlGBetEm1T2vcuHH45JNPfJo43B8TlqspJCQEbdu2VbsM0gjmhZQI9Lyc+HUT4gEUpLStlfmeqHKBnpea0KQJkJYGHDoErFoFXH21Dxtx5JNX9SEvVHOYF1KCeSElmBdtUq35NG3aNKSnp+OVV15Beno6wsLCPNax2WzYuHEjbr/9dhUq9B+HwwGbzQaDwQCdLuCvfCSVMS+kRKDnxbxGvuRO16V25nuiygV6XmpKv35y82nZMh+bT86RT2w+uakveaGawbyQEswLKcG8aJNqn5TBYMAHH3yAG2+8ERkZGUhNTfX407x5c9xyyy249dZb1SrTL4qLi7FmzRoUFxerXQppAPNCSgRyXhx2gYj98mTj8YPZfAoEgZyXmtSvn/y4ejVgsfiwgXPkEy+7c1Nf8kI1g3khJZgXUoJ50SbVmk99+/ZFVFSUT+t+/PHHfq6GiIj87fim04gsPQ2h06Ppde3VLofqkfR0ICEBKCkBNmzwYQM2n4iIiIhqlGrNp6effhqzZs3yad3evXv7uRoiIvK343/sAAAUJraEITxY5WqoPtHpFN71jpfdEREREdUo1eZ86tatG5YuXYqJEyeia9euXtexWCzYuHEjtm3bVsvVERFRTSv+cwciAdjSOUEk1b5+/YAffpCbT+PHyw2pCnHkExEREVGNUq35dOLECSxYsACLFy9WqwQiIqpF+t3yyKfwK9h8otrXuTMQHg7k5gJbtwIdO1aysnPkE5tPRERERDVCEkIINQ48cOBALF68GDqdDrGxsV7vdudwOHD27FmYzWbY7XYVqqyegoICREVFIT8/H5GRka7XhRCw2+3Q6/WQJEnFCkkLmBdSIlDzYi62YU/SlQhymJGw9AckdG2qdkmEwM2Lv7z4IvDbb8DIkcDjj1ey4r//DXz/PXDPPcCDD9ZafYGuvuWFqod5ISWYF1KCeQkcFfU8vFFtzqfVq1fj9ttvx6lTp3DmzBlkZ2d7/Dly5AjOnj2LpKQktcr0C0mSYDAY+BeFfMK8kBKBmpfshQcR5DDDaopAfKcmapdDfwnUvPjLwIHy46JFgMNRyYqc88mr+pYXqh7mhZRgXkgJ5kWbVGs+xcTE4NFHH0V8fHyl64WFheGFF16opapqR0lJCbZt24aSkhK1SyENYF5IiUDNy5nFf0023iQTkl61f3roEoGaF3/p3h0ICwPOngW2b69kRc755FV9ywtVD/NCSjAvpATzok2q/R/A9ddfj3379vm0bufOnf1cTe2y2+24cOGCJi8lpNrHvJASgZoXy0b5//R17TnfUyAJ1Lz4i9F48a53ixZVsiKbT17Vt7xQ9TAvpATzQkowL9qkWvNpwoQJ+O6772Cz2S677h133FELFRERkb+EHJRHPsX2ZfOJ1DVggPy4cGEll945m0+87I6IiIioRqh2t7uPPvoIdrsdffr0QZs2bSpc78iRIz6PkCIiosBz/nAhYgoOAwCaXJ2pbjFU7/XoAYSGAmfOADt3Au3aeVmJd7sjIiIiqlGqNZ8WLlyIP//8E0IIrF27ttJ1OZEYEZF2HZm3C8EAiqOTEZoco3Y5VM8ZjUDfvsDvv8ujn9h8IiIiIvI/1ZpPw4YNQ25uLq6//nqEOIe3X8Jms2HLli2YO3duLVfnXyaTCS1atIDJZFK7FNIA5oWUCMS85K3cgSQA5ha85C7QBGJeasOAAXLzadEi4JFHAI/fcfGyO6/qa16oapgXUoJ5ISWYF21Srfk0fPhwNGvWDLfeeutl123dunUtVFR7jEYjkpOT1S6DNIJ5ISUCMS9iuzzfk6kzm0+BJhDzUht69pT7S6dOAVu2AB07XrKCc+QTm09u6mteqGqYF1KCeSElmBdtUm3C8Q4dOuDqq6/2ad0HHnjAz9XULqvVitOnT8NqtapdCmkA80JKBFpeHHaBqBz5TncNBni7vonUFGh5qS0mEzBokPz8vfe8TDzOu915VV/zQlXDvJASzAspwbxok2rNJwCIifFt7o9PPvnEz5XUrrKyMuzZswdl/I0q+YB5ISUCLS85a08g1JIHhz4IKQNaqV0OXSLQ8lKbHnwQCAuTJx2fPfuShWw+eVWf80LKMS+kBPNCSjAv2qTaZXcAcObMGcyePRt79uxBQUEBHJf86lEIgQMHDuDgwYMqVUhERJWx24EzR0qRu+MEEtLj0KBVtNvy479vRzSAgqRW0AUb1SiRyKv4eOCBB4CJE4EPPwSuugqIjv5rIed8IiIiIqpRqjWffvnlF4wcORJlZWUQQlS6Lu92R0QUWE7uzMWWv01AzJm9iLSdhwTgqCkW4QfmIDQ22LVeycpNiAaArA7qFEpUiVtuAX75Bdi3D/jgA+D55/9a4JzzyWaT/xhU/V0dERERkeap9m3q0UcfhdVqxfDhw5Geno6wsDCPdWw2GzZv3ox58+apUCEREVVk/we/I/XEagB/3SlMAKHmXOyfsRlZD/QAAAgBhOzaCACIGdhZrVKJKqTXA+PHA/fcA/z8M3D99UD79rjYfALkS+8iIlSrkYiIiKguUK35dPLkSbz33nt48MEHK11PCIFmzZrVUlW1Q6/XIyIiAnq9Xu1SSAOYF1KitvJi3SLfwa7gmtvQ7dN7seKm95Dw5xzkzlsL/NV8OrXjHGIKjwCShGY3dPBrPVQ1PL/IzabrrgPmzAG+++6v5lNQEKDTyTORs/nkwryQEswLKcG8kBLMizapNuF4eno6evXqddn1JEnC6tWra6Gi2hMaGopOnTohNDRU7VJIA5gXUqK28hKWLTefYq7pBV10JCIHdQcABG1e61rn8E+bAAAFia0Q3CDSr/VQ1fD8IrvqKvnx8OG/XpAkzvvkBfNCSjAvpATzQkowL9qkWvPp3nvvxe7du31ad9KkSX6uhoiIfHV23wVEFp0AIKHJ0AwAQPNR3SABiD2/H2f3nAcAFC+XL7mzd+AldxTYUlLkx2PH5MtFAVy89I7NJyIiIqJqU6359MADD+CXX37B0aNHK13v+PHj+PTTT2upqtpRWFiIZcuWobCwUO1SSAOYF1KiNvJydK486qkwrilCEsIBAJGpMbiQ2BoAcHC6PPopeLc88il6AJtPgYrnF1nDhvJVdiUlwIULf73oHPlUWqpaXYGGeSElmBdSgnkhJZgXbVJtziedTodu3bqhbdu2iI+P97qOxWLBmTNnYLfba7k6IiKqSP7qnQgBYG7Z1u11R5fuwG97UbJkLU7uvAKx+dnyfE83dlSnUCIfGY1AUhJw4gSQkwPExoKX3RERERHVINWaT88//zxef/11CCFQVFRU6bqSJNVSVUREdDnSTnnkU0iXTLfXE669AvbfvkbErrU48uMGRAIoaNASoUmc74kCX+PGF5tPWVm4eNkdRz4RERERVZtqzafJkycjOTkZjzzyCNLT0xEWFuaxjsPhwKFDhzBu3DgVKiQioks5bA5EHd8JAEga6D7yqflNHbBnrBFhZedw6usfEAnAlsVL7kgbUlKAdesA12wAvOyOiIiIqMao1nwqKyvDzJkz0a9fv0rX69+/P3766afaKYqIiCp1dFUOgq2FcOiNSL6yhdsyQ6gReWmdELv/TySd5HxPpC3/z955h8dRXm/7nq3qkmVZrpJ7rxjjAsYF0zuEEiAhAUL4EfKFGtIgpJOEEAiEAKEFAqH3jjHYBowxxr33XmSrSyttne+Pd0erspJ2pK3Sua9L14x22quZo3dnnjnneRubjgOS+SQIgiAIghBFEmY4Pm3atIjL6d59990Ytya+ZGZmMnXq1LDZXoLQHIkXwQyxjpeDH6usp8p+o7A4Wr6/sJ0wrWFeA4Z8S/yekhnpX0IY4tPevcEPxPOpBRIvghkkXgQzSLwIZpB4SU0SJj7dcccdvPjiixGte/bZZ8e4NfHFYrGQnp6OxZKw0y+kEBIvghliHS+ur5Xfkz5mXNjlRRdPb5ivLBxORt/cmLRDiA7Sv4RoLD7pOqHMJxGfGpB4Ecwg8SKYQeJFMIPES2qSsLK7AQMGAPDggw8yceLEVtfbtWsXCxYsiFez4kJdXR27du1i0KBBpBtvVgWhFSReBDPEOl7sm5X4lDU9vPjUb9YwDmfkk+YqwzdhctSPL0QX6V9CDBgAmgY1NVBZCXni+dQCiRfBDBIvghkkXgQzSLykJgkTn04++WT2NuS2dy98Ph8lJSUNApwgtIXEi2CGWMaLq8JDjyNbACg6I7z4pFk0fKedjeWtZym+9rSot0GILtK/hHA4oLAQDh9W2U95UnbXAokXwQwSL4IZJF4EM0i8pCYJE5/OOOMMHn30UQoLC1tVK30+H4cPH8bv98e5dYIgCEJzdn24Gavuw53eg57j+ra63tRnfgyuqyErK46tE4TOU1QUEp/Gi+G4IAiCIAhC1EiY+HTWWWcxatQobrzxxjbXO3ToEGPHjo1TqwRBEITWOLpwHQVAzaBxqj6pNSwWEZ6ElKSoCJYvD5qOZ0vZnSAIgiAIQrRImPg0b948+vTp0+56ffr04eabb45DiwRBEITW2PHFQbS33gDAOjF8yZ0gpDpNRrybLJlPgiAIgiAI0SIu9vAlJSUtPktPT2fKlCkRbX/HHXdEtM9UweFwMHDgQBwOR6KbIqQAEi+CGWIRL0vv+5Lys66gZ8V2fOk5jL759KjtW0gs0r80xbCO2LsXEM+nFki8CGaQeBHMIPEimEHiJTWJi/j07W9/OyX2GS+cTieDBg3C6XQmuilCCiDxIpgh2vGy4Pv/JfuOn5DuraK6aAyDvniOHuP6R2XfQuKR/qUpTTKfDM8nEZ8akHgRzCDxIphB4kUwg8RLahIX8UnX9ZTYZ7zw+XyUlZXh8/kS3RQhBZB4EcwQzXg5tPowfV/+Bxo6VfMu5LhVj5MzsnWjcSH1kP6lKUbmU1UV1AbE86k5Ei+CGSReBDNIvAhmkHhJTeIiPu3bty+q+6uqqqK0tDSq+4wndXV1rF27ljq5oRUiQOJFMEM042XrYwsBKC+awPS3foklTVKbuxrSvzQlPR169VLzhyql7K45Ei+CGSReBDNIvAhmkHhJTeJiOL59+3ZGjhxJ//6dL9XQdZ3NmzeTZqTDd4Bly5Zx/PHH8/HHHzNnzpxOt0kQBKEr4pv/KQDWU+YluCWCED+KiuDIEThQns5QkMwnQRAEQRCEKBC30e62bt3K1q1bo7a/QYMGdWg7j8fDVVddhd/vD7vc6/Xy97//nRdffJGMjAzKy8uZNWsWv//97ykoKOhEiwVBEFKHI1srKNy3AoDhP5yb4NYIQvwYMABWrIC9R2S0O0EQBEEQhGgRF/Fp586dUd+nzdaxpv/ud79rVQTzer2cccYZbNy4kcWLFzN06FCqqqo455xzmDJlCkuWLKFfv36dabYgCEJKsOnfi+lJgKo+IxgzXvo9ofvQYDreWHzSddC0xDVKEARBEAQhxYmL+DRw4MB4HKZdVq1axdKlS5kxYwaLFy9usfzWW29lwYIFPPvsswwdOhSAnJwcnnzySUaOHMkVV1zBp59+2ul2WCwW0tLSsFjiYrklpDgSL4IZohUv9R8sBECbK1lPXRnpX1piiE+7S4KeT4EA+HxgtyeuUUmCxItgBokXwQwSL4IZJF5SE01P5WHjTODz+Zg1axZPP/001157LYsWLeLTTz9t8Hzat28fQ4YMIS0tjSNHjrQYtvHkk09mwYIFvPfee5xxxhkRHbOqqorc3FwqKyvJycmJ9p8kCIIQE8r2udg36mRsuoeC+S9QePywRDdJEOLG5s1wxRXQM8fLh1Uz1IeffALyPS4IgiAIgtAEM5pHt5EK//znP3PeeecxfPjwsMuffvppvF4vM2bMaCE8AcyePRuA//znP7FspiAIQsJZ/9gSbLqHuvwBFM4YmujmCEJc6d1bTUur7OgWq/pFRrwTBEEQBEHoFN1CfNqwYQPvvfcet912W6vrLFmyBIAxY8aEXT5u3DgA5s+f3+n21NTUsGTJEmpqajq9L6HrI/EimCEa8VL7jiov9s0+SXxuujjSv7QkPT00H3AGfxHxCZB4Ecwh8SKYQeJFMIPES2oSt9HuEoXf7+e6667j4Ycfxmq1trre+vXrAejfv3/Y5YbReHl5Ofv37w+7ntvtxu12N/xeVVUFQHV1NVqjBzi3243X68Xv91NdXd1iP9nZ2QC4XK4Wo/KlpaVht9vxeDxNjgVgtVrJyMhA1/Ww/4iZmZlYLBbq6urw+XxNljmdThwOB16vl/pmN9kWi4XMzMyGv6U5GRkZWK1W6uvr8Xq9TZY5HA6cTic+n4+6ZiMGaZpGVlYWoDqQ5hWg6enp2Gw23G43Ho+nyTK73U5aWhp+vx+Xy9WiTcY5rK2tJRAINFnW1jm02Wykp6cTCASora1tsd+srCw0TQt7bdo6h8a1gfDnsK1r4/V68Xq9+Hy+Fts2vjbhzqFxbcyew8bXJtw5NK5NtM+hcW3aOoedie9wcRjpOWwrvjtzDsNdm/bOYVt9hM/nw+v14vF4WsRLJOewpsxH4ZbPQIdeF01t2If0EYpk7CPaOoftxbff78fr9eJ2u1ss6659hNtdRyCgroXb6sAZCGANnteu0Ed05j5C1/WGc9/8PEgfoehqfURn7iOMeHG5XK1em1TsI7r6fUSinjWMeKmtre3QOZQ+IvX6iM7cR7QVL9JHKOLVR4SLt9bo8uLTfffdx6xZs5g4cWKb65WVlQGhE92cxvWLJSUlYcWnu+++m9/+9rctPl+9enVDwAH06NEDAI/Hw4YNG1qsb5T4bdq0qcXFHDVqFL179+bIkSNs27atybIePXowYcIE/H4/K1asaLHfGTNm4HA42L59O6WlpU2WDRkyhKKiIioqKlq0KSsri2OPPRaAlStXtviHmTJlCpmZmezevZtDhw41WVZUVMSQIUOoqalh9erVTZY5HA5mzFB+GmvXrm3xTzFx4kTy8vLYv38/e/fubbKsT58+jBw5kvr6+hZ/q6ZpzJo1C1DnsHnnMWbMGHr16sXhw4fZsWNHk2U9e/Zk3Lhx+Hy+sOfwhBNOwGazsW3bNsrLy5ssGzZsGP3796esrIxNmzY1WZadnc3kyZMBwu536tSppKens2vXLkpKSlr8raA6lebXPC0tjWnTpgGwZs2aFh3WpEmTyM3NZe/evezfv7/Jsn79+jF8+HBcLleLNlmtVmbOnAmozMHmnd3YsWMpKCjg0KFDLUazLCgoYOzYsXi93rB/64knnoimaWzZsoXKysomy0aMGEHfvn05evQoW7ZsabIsNzeXSZMmoet62P1Onz4dp9PJjh07OHr0aJNlgwcPpri4mIqKigah2SAjI4PjjjsOUIMSNO9gJ0+eTHZ2Nnv37uXAgQNNlvXv359hw4ZRU1PDqlWrmiyz2+0cf/zxAKxbt67FF9z48ePJz8/n4MGD7N69u8mywsJCRo8ejdvtDvu3ttVHGAM8VFRUtPi/iaSPWPPkcvJ8NdRk5HEkt469wfWkj1AkYx8xcOBABg0aRFVVFWvXrm2yrL0+YsSIEYD6Xmu+3+7cR/j9E6mvt1Juc5NXV0dm8EayK/QRnbmPGD9+PKB8MptfG+kjFF2tj+jMfYRx771z584W8Z3qfURjutp9RKKeNYzvo82bN0sf0U36iM7cRxQXFwO0OA8gfYRBvPqIcOJVa3Rpw/GtW7dy6aWX8uWXXzbxcZozZ04Lw3GbzYbf7+fJJ5/kqquuarGvHTt2NIyA99lnnzX8szQmXOZTUVER+/btayJeud1u1q9fz6RJk8I69Cfj2wh5Y6lIVObT2rVrmThxYovsvWR9GyFvLBOb+bRmzRrGjx+PvdnoXJGcww9P+AMDV79FxcnnMf65mxqWSR+hSMY+orOZT6tXr2bcuHE4HI4my7pzH3HeeelUVGh8XHgZuSXbsD70EMyY0SX6iM5mPq1cuZKxY8e28MeUPkLR1fqIzmY+rVixgtGjR5PeuJ6V1O8jGtPV7iMS9awRCARYsWIFo0aNaoh1A+kjFF2tj+jMfYQh3oWLF+kjFPHqI6qqqhgwYEBEhuMJy3w6fPgwixcvZsaMGQwYMCDq+9d1nWuvvZYHH3wwrIF4c9LT06mpqWlxwQ0af948wA2cTmfYY2VnZ4fNqLJYLK1mWrV1HFCB2PxBwUDTtDb32/wGoDF2u73FA2tj2tpvWloaaWlpYZfZbLY2tzX+ccLR2nkF1Um0td/GGWfNaescdubadOYchrs2xhdIe39rdzmHnYnvzsRhW/HdmXPY1rXpyDk04sVut7e6bWvnsLbSR68NC0GD4qvPCLuO9BGKZOojDDpyDo14cTgcrW6baucwGn1EdjZUVQFpWVgtlgbPp67QRxh05D6icRlua8eVPkLRVfoIg46cQyNe0tPTWz1uqvYRrdHd+wiDjjxrGPGSkZHR6r6lj1B0lT7CoCPnMJJ4kT5CEes+wkwuU8IMx2fOnMm3v/1tLrvsspjs/6GHHmL8+PGccMIJEa1vlDa1ZlrW+PPexlA4HSQjI4NJkya1eTEFwUDiRTBDZ+Jl7ZNfk+GrwpvVg/7nTI5B64RkQ/qX8Bj3lV5bcKbZW8zuisSLYAaJF8EMEi+CGSReUpOEiU91dXVomsaPf/zjdtdtXpcaCa+88gr//Oc/0TStxc+iRYsAmDt3LpqmMWfOnIZR7g4ePBh2f8bneXl5rZqSR4rVaiU3N7dNA3RBMJB4EczQmXipeG0BAHXT5qJZu8VgqN0e6V/CY7x49FiCMzLaHSDxIphD4kUwg8SLYAaJl9QkYU8X9913H7169eKiiy5qd92zzjrL9P6Li4sZOXJk2B8jVa6oqIiRI0dSXFzM3LlzAcIagENoNDzDI6ozuN1utm3b1qJ+VRDCIfEimKGj8VJX7aNg7acA9P3uybFompCESP8SHiPzyW0Jzoj4BEi8COaQeBHMIPEimEHiJTVJmPh08cUX8+KLL/Kzn/2Mw4cPh10nEAiwZMmSFq77kfDMM8+wadOmsD9Tp05tss4zzzzDxRdfjNVqZenSpS0MxAAWL14MEJUyQY/Hw/79+1sYfwlCOCReBDN0NF7WPbOCDG8lnow8ii84NkatE5IN6V/C00J8krI7QOJFMIfEi2AGiRfBDBIvqUnCxKdTTjmFiy66iMcff5x+/fphtVpb/Njtdk488cRWTcCjSf/+/fne975HWVkZb775ZpNle/bsYf78+YwZM4YLL7ww5m0RBEGIN2UvfwyAa+pcNJukMAvdG6Pszq0FZ0R8EgRBEARB6BQJE5+uuOIKjh49SlVVFbqut/kTL+69914mT57MzTffzM6dOwFlNH7NNdeQl5fH888/j82WsAECBUEQYoKnzk/+alVyV3i5lNwJgpH5VK9J5pMgCIIgCEI0SJiScvnll/P73/+ep59+mqKiorDrBAIBvvnmm5iNiNecvLw8Fi1axL333ssFF1xAbm4uFRUVTJ06lccff5yBAwfGpR2CIAjxZN0zK8j0lONNy2HUxVJyJwgN4hNiOC4IgiAIghANEiY+ORwObrjhBmbOnNnmeoMHD+bRRx+N6rEXLlzY6rKsrCzuuusu7rrrrqgeszF2u51+/fpht9tjdgyh6yDxIpihI/FS9vIC+gHVU+ZicUh2Z3dC+pfwGOKTS5fMp8ZIvAhmkHgRzCDxIphB4iU1SehTxi233EJdXR1VVVUUFBS0OlTi/Pnz49yy2JKWlsbw4cMT3QwhRZB4EcxgNl783gA5KxcC0Ovb82LUKiFZkf4lPA3iU0Aynxoj8SKYQeJFMIPEi2AGiZfUJCGeTwsXLuSyyy6jV69eZGVl0a9fP5xOJ/379+faa6/liy++SESz4obf76e6uhq/35/opggpgMSLYAaz8bLp1fVk1R/F58hg2LenxLh1QrIh/Ut4DMPx2oBRfyfiE0i8COaQeBHMIPEimEHiJTWJq/jk8Xi47LLLmDdvHi+99BKlpaUNpuKBQICDBw/y5JNPMmvWLK677jrqu+jNnsvlYsWKFbhcrkQ3RUgBJF4EM5iNl0PPK6PxqvEzsaY7Ytk0IQmR/iU8UnYXHokXwQwSL4IZJF4EM0i8pCZxK7vTdZ2zzz6bBQsWNIxg169fP8aOHUtBQQE1NTUcOnSIVatW4fV6efzxxzly5AivvfZavJooCILQrdADOulfLQQg97w5CW2LICQThvhU4wumQIn4JAiCIAiC0Cnilvn0t7/9jY8//hhd1zn99NNZtmwZ+/bt48MPP+S5557jzTff5KuvvuLo0aM8+uij9OrVizfffJO//OUv8WqiIAhCt2L7gl3kVe8hYLUz4qoTEt0cQUgaDPGp2ieZT4IgCIIgCNEgLuJTXV0dd999N5qm8Ze//IX33nuPKVPCe4tkZ2dz7bXXsnr1aoYOHcrdd99NZWVlPJopCILQrdj7jCq5qxh+HM78zAS3RhCSB8PzqSHzqYvaAAiCIAiCIMSLuIhPL730EhUVFdx222389Kc/jWib3r178/bbb1NXV8err74a4xbGF03TsFqtaJqW6KYIKYDEi2AGM/Fi/WwhAOlnzI1pm4TkRfqX8BiZT1VeyXxqjMSLYAaJF8EMEi+CGSReUhNNNwyYYsjVV1/Nhx9+yO7du7HZzNlMXXvttVRVVfHiiy/GqHWxo6qqitzcXCorK8nJyUl0cwRBEBrYv7KEyplngqZRtO4Dsgf1THSTBCFp2LIFLr8cBmcd4eWaM8Biga++ArnJFQRBEARBaMCM5hGXzKfly5dzxRVXmBaeAC6++GJWr14dg1YJgiB0X7Y/sRCAiqLxIjwJQjOMzKdKT3AmEACvN3ENEgRBEARBSHHiIj6VlJQwbdq0Dm07YcIEDh8+HOUWJZba2lq+/vpramtrE90UIQWQeBHMEGm8+BYsBMA6T0ruujPSv4SnsfjUkB4uvk8SL4IpJF4EM0i8CGaQeElN4iI+lZeX069fvw5t26tXL2pqaqLcosQSCARwuVwEAoFEN0VIASReBDNEEi81R+oo3PsNAEOvnh2vpglJiPQv4THEJz9WdJtd/dKe79P778Mtt0BVVWwbl0AkXgQzSLwIZpB4Ecwg8ZKaxEV88nq9ZGZ2bCQlq9WKxRKXZgqCIHQLds/fgkX3U5dZQMHk4kQ3RxCSDkN8AvDbgyPetSU+7dsHv/89LF4M774b28YJgiAIgiCkIOZNmDrIu+++S15enunt1q1bh8/ni36DBEEQuillX2ykJ+AqHp3opghCUmKxgMMBHg/4HenY66pbL7vTdbjnHrUywNKlcNll8WusIAiCIAhCChA38emOO+7gjjvuiNfhBEEQhFbwrN4IgGWsiE+C0BppaUHxydZO5tPChfDFF2okPF2Hb75RGzoccWurIAiCIAhCshO3ejZd1zv809VIT09n7NixpDfO6xeEVpB4EcwQSbyk7VTiU+60UfFqlpCkSP/SOsYp8bUlPtXVwd/+pua//33Iz1cZUmvXxqWN8UbiRTCDxItgBokXwQwSL6lJ3DKfrr32WqZMmYLDxJtAn8/H1q1beeCBB2LYsvhjs9koKChIdDOEFEHiRTBDe/FSc6SOvIpdABSdKplP3R3pX1rHuJ/1OIKeleXlLVd64gk4fBj69oVrroFDh5Tx+NKlcOyx8WtsnJB4Ecwg8SKYQeJFMIPES2oSF/Fp+PDhPProox3efu/evVFsTeLxeDwcOnSIPn36mBLjhO6JxItghvbiZffHW9EIUJ/Zk9xhvRLQQiGZkP6ldQzxqWrgBHrtXQmffw5nnRVaobQUnn1Wzd92m6rTmz5diU9ffQU33BD/RscYiRfBDBIvghkkXgQzSLykJnEpu7v++us7tf1FF10UpZYkB263m507d+J2uxPdFCEFkHgRzNBevJR+rkruasVsXED6l7YwxKfD4+apmc8/b2o6/uGH4PPB2LEwa5b6bNo0Nd24ESor49fYOCHxIphB4kUwg8SLYAaJl9QkLuLTTTfd1KntL7jggug0RBAEoZvjXRM0Gx8j4pMgtEVa0OrpaK/Rqqyurg6+/DK0wjvvqOk55yizcYCCAhg6VBmPL1sW3wYLgiAIgiAkMXEzHBcEQRAST4PZ+HQRnwShLQzxqd6twUknqV8++URNt22DLVvAZoNTTmm64fTparp0aXwaKgiCIAiCkAKI+CQIgtBNqDlaT175TgCKTpGR7gShLYyyu7o6YF6w9G7RIvB44L331O8nngi5uU03bCw+dcERewVBEARBEDqCiE8JwHDnt9niNtigkMJIvAhmaCteds/foszGM/LFbFwApH9piybi07hx0KsXuFyq9O7999XCM89sueExx4DdrkbB27Mnbu2lrg6efBIuvBA+/jgmh5B4Ecwg8SKYQeJFMIPES2oiVysBpKenM3bs2EQ3Q0gRJF4EM7QVL6VfbKIAcBWPDnnUCN0a6V9axxCf6usBi0WV3r34IvzjH3DkCOTkwAkntNwwLU0JUMuWqeyngQOj37jycjh0CKxWVfq3YgU89pgagQ9g/nw4+eSoH1biRTCDxItgBokXwQwSL6mJiE8JIBAI4PV6sdvtWCySfCa0jcSLYIa24sWzWvk9aWPF70lQSP/SOk0yn0CV3r34Yiib6bTToLXhnadOVeLTihVw6aXRa5TXC08/DU88oeab43CossCGRkcXiRfBDBIvghkkXgQzSLykJnKlEkBtbS1Lly6ltrY20U0RUgCJF8EMbcWLYTaeJ2bjQhDpX1rHMBxv0HEmTYL8/NAK4UruDEaOVNOdO6PXoDVr4Ior4JFHlPCUnw89e0JeHgwYALffDnfcodatr4/ecRsh8SKYQeJFMIPEi2AGiZfURDKfBEEQugE1pW56lO8AYMApIj4JQns0KbsDVXo3dy68+ioUFysfqNYYPFhNd+8Gn0+VxnUUXVdeTo88ouZ79IBbb1WZV83LZz//XE1jlPkkCIIgCILQUUR8EgRB6Abs/ljMxgXBDC3K7kBlHm3dClde2bZvWu/eagd1dbBvHwwa1LFG1NfD734HH32kfj/rLLjllpYj7LXZaEEQBEEQhMQj4pMgCEI34OiiDfQCXMWjxGxcECIgrI5TXKyykNpD01T204YNqvSuI+JTSYnKcNq4URmL//zncMEFHWi0IAiCIAhC4hHPJ0EQhG6Ad/lqAGyTJya4JYKQGnRaxzEEp476Pv3yl0p4ysuDhx9uX3iCMEZVgiAIgiAIyYFkPiWArKwsTjzxRDTJPhAiQOJFMEO4eNF1yNqxBoCCkyYkqmlCEiL9S+t0WscxfJ86Ij6tWQOrVoHdDk89BUVFkW3Xwqgquki8CGaQeBHMIPEimEHiJTUR8SkBaJom/yhCxEi8CGYIFy/7V5aQU3cINAvFZ4xNUMuEZET6l9bptI4zZIiadkR8eu45NT3jjMiFJwg12uOBQECZpEcRiRfBDBIvghkkXgQzSLykJlJ2lwBcLherVq3C5XIluilCCiDxIpghXLzse1eV3FX2Ho4jLyNRTROSEOlfWieqmU+BQOTbHTgAn36q5q+4wtwxDfEJYlJ6J/EimEHiRTCDxItgBomX1ETEpwTg9/uprKzE7/cnuilCCiDxIpghXLzUfKlK7vxjxe9JaIr0L63Tac+n/v1V2ZzbDYcORb7d//6nxKoZM2DoUHPHdDhCAwrEQHySeBHMIPEimEHiRTCDxEtqIuKTIAhCF8exQWU+Zc8U8UkQIsUQn3w+9WMaq1WNjgeRl95VV8Obb6p5s1lPoIQnGfFOEARBEIQkRMQnQRCELkzN0Xryj24GoOgsMRsXhEhpXMHWYd8ns6bjr7+uRKOhQ2HatI4dU0a8EwRBEAQhCRHxSRAEoQuz490NWHQ/dVm9yB/TJ9HNEYSUwW4P+XVHdcS7+nrYu7flun4/vPCCmr/iilD5nFliPOKdIAiCIAhCRxDxKQGkpaUxYsQI0oy3k4LQBhIvghmax0vZp8rvyTV0QscfZoUui/QvraNpUTYdN/jFL+DCC2HFiqbrLl8OJSWQlwenn96hw7lcsPdoOl4fMcl8kngRzCDxIphB4kUwg8RLaiLiUwKw2+307dsXu92e6KYIKYDEi2CG5vESWKn8nhzHid+T0BLpX9qm00lEjcUnXYdNm+Czz9T86683XXf+fDU96SRlHG6S+nr4yU9g5eZ0jh4hJuKTxItgBokXwQwSL4IZJF5SExGfEoDX6+XgwYN4vd5EN0VIASReBDM0jpeAXydvtxKfep8ifk9CS6R/aZtOe3cPHKhq96qroawM/vvf0LKFC0M79vng00/V/Mknmz6M1wu33w6rVoHbkq4M0mMgPkm8CGaQeBHMIPEimEHiJTUR8SkB1NfXs2XLFurFj0GIAIkXwQyN42X3Z3tI81YRsDooPmVkopsmJCHSv7RNp8UnhwP69VPzX3wRym7KyVE7XbxY/f7NN1BZqUrujj3W1CECAbjzTliyRP3u0dII6J1pdOtIvAhmkHgRzCDxIphB4iU1EfFJEAShi3LwA5X1VDFgLBanpCULglk6LT4BDBmipv/8p1KKpk6Fiy9Wn73/vpp+/LGannQSWK0R73r3brjpJrW5zQaXXKIynwIBxHBcCMumTfDSS7B6NXg8iW6NIAiC0J2wJboBgiAIQmyo+2oNeQATpOROEDpCpw3HAQYNUhlOZWXq9+9+F/r2hSeegC+/hNJS0yV3ZWXw73/Da68pPctqhT/9CbKy4Jt/BMWnGGQ+CamL369C7vHHVcyASsybMAFuuQVGjEhs+wRBEISuj2Q+CYIgdFGc29cDkHv8uAS3RBBSk04bjkPIdBxg6FCYPl0JUqNGKUXgL3+BioqIS+727YNLL4VXXlEiwqxZ8MILKmkqPR3qLSI+CQqfD2prYdcu+OEPlWAZCCjBqUcPlfm0fDm8+GKiWyoIgiB0ByTzKQFYrVZyc3OxmkitF7ovEi+CGYx4cVf56FG6HYD+p4xJcKuEZEX6l7aJatkdqKwnTVPzp5+uaqA++UT9PnduuyV3LpfKUikvV7v9+c9h8uSm7XVr6egxEp8kXpKb6mo1mOLHH8OyZS1F08xM+MUvVOjpuvK/f+ABFU+xQOJFMIPEi2AGiZfURMSnBJCRkcGkSZMS3QwhRZB4EcxgxMumV9ahEaA+vQf5owoT3SwhSZH+pW2iUnY3bBgUFkJ2Npx2WujzU0+Ff/xDqQDQbsldIAB33QU7dkBBATz0EPTq1XSd9HTwWNJilvkk8ZKc6Do8/DA884zKdgrHsceq+DH87zUNiorUfEVFbNol8SKYQeJFMIPES2oi4lMC0HUdXdfRNA3NeAMqCK0g8SKYwYiXI59toCdQWzQ6lGkhCM2Q/qVtopL55HTCG2+oeXsj4//CQpgyBb7+GnJz1XwbPPGEsoay2+Gee1oKT0Z73ZZ0AjrodfVE+4pKvCQnzz8PTz6p5ocMgXnzVCJdnz4q/Ox2sIQx2sjLU9NYiU8SL4IZJF4EM0i8pCbi+ZQAampq+Oyzz6ipqUl0U4QUQOJFMIMRL3XfrANAGz0qwS0SkhnpX9omKp5PoJydHY6Wnxuj3p13Xpsld0uWwKOPqvmf/xzGjw+/nuH5BOCviX7mk8RL8rFoEdx3n5q/8UY1kt111ykD8ZwcJT6FE54g9uKTxItgBokXwQwSL6mJZD4JgiB0QdJ2bwEgZ9roBLdEEFKXqJTdtcVJJ8E774RPYwpSVQW/+52av+gipVO1htOpPJ8AfDV1cpPXxdm4EX71K1V2d+GF8J3vmNveEJ+qqpT3vVinCIIgCLFEMp8EQRC6GJ4aP/llOwDof7KIT4LQUaKW+dQWffq0+dR/zz1w9CgMHAg339z2riwW0NNUowMxyHwSkoeyMhUP9fVqAMXbbzdfYZ2TE9qmsjL6bRQEQRCExoj4JAiC0MWoXnkUix7AnZZHzzG9E90cQUhZouL51Ak+/RTef1+JSr/9rcpsag8tXaVr+WtFfOqqGObzR48qj6c//xlsHUhzs1qVDz7ErvROEARBEAxEfBIEQehieNYcAKBazMYFoVOYEZ8WL4Zf/xqiZT9RXg5/+pOav/JKGDcusu20DNVo3RXLdK0ooOvse/RdDr+9LNEtSTn+9z/48ktlI/bnP0NWVsf3FWvfJ0EQBEEwEDuABJCZmcn06dOxNx71RhBaQeJFMENmZiYFJVWggTZaSu6EtpH+pW0iFZ/8fvjjH6G0FIYOhe99r/PHfuABJUANHQo//GHk2zWITzFI14pavPh87Lz2T9S99Ba63UHe9o9w9uyEgtKN2LAB/vlPNX/bbSrzqTPk5cGePbERn6R/Ecwg8SKYQeIlNZHMpwRgsVhwOp1YWht+RBAaIfEimMFisZC2czMAudNkpDuhbaR/aZtIDceXLlXCE8C77yoD6M7gcsFHH6n5X/4y/EB5rWHJjF2tYFTipa6Oo1feQv3LbwGgeT1seOjTKLWwa+NyKYNxn0951V9wQef3GcvMJ+lfBDNIvAhmkHhJTeRqJYC6ujrWr19PXaJMJISUQuJFMEP54Uqyj2wFHfrNk8wnoW2kf2mbSA3H3347NL9jB2zd2rnjfv45uN0wYABMmGBuW2tWo0YHAp1rSDM6HS+VldR+5zpK31mCByebehwPQPUrH0axlV2Xf/4T9u6F3r3hjjuiU1UdS/FJ+hfBDBIvghkkXlITEZ8SgM/n4+jRo/h8vkQ3RUgBJF4EM+z5ZCvWgI96Zw49x/ZJdHOEJEf6l7aJpOyuqgoWLVLzw4ap6fvvd+64H3+spqecYl5gsGWpdK1AAKVgRZFOxYvHg/uGWzi4YAOV5PLS3IeZ/PxPAei5YxlHNpdFta1djU2b4JVX1Pxdd6mR6qJBLMUn6V8EM0i8CGaQeElNRHwSBEHoQpQtUSkXVf1HolnEbFwQOkMk4tOHH4LXCyNGwPXXq88++KDjSUcul8p8AiU+mcWe3Uh8SpY3wrqO/tvfcXj+air9WTw+9TFufXoCg04sorLfGDQ9wPp/fJzoViYtgYAyFg8E4NRTYerU6O1bDMcFQRCEeCHikyAIQhfCt3YLAIGRIxPcEkFIfdIjqGAzSu7OOQeOP15lpBw5AsuXd+yYn30GHg8UF8Pw4ea3T8uw4NWc6AHarxeMF//+N2XPf0BVjZV/DforP3t0CPn5apHj3NMB8L/3Yae9sroqb74J69ZBRgbcfHN09y3ikyAIghAvRHwSBEHoQjh3KLPxzCkjEtwSQUh9DMNxCF/BtmOHGn3MaoXTTwe7PZSt1NHSu/nz1bQjJXegBLN6S3ryZD69/z71Dz5GSQk81fcXnP7rqQwdGlo8+ienoFk0+h5ZzaaFhwAl3N16K6xalZgmJxMVFfDgg2r+//4PevWK7v5FfBIEQRDihYhPCcDpdDJ48GCcTmeimyKkABIvQqTUVXroUbYDzaIx4OQxiW6OkAJI/9I2jcWncElERtbTiSdCjx5q/swz1XTBAvOJR7W1sGSJmu9IyR0o8ckdI/HJdLzs3UvgD39i/354J/9K9HPP56KLmq6SMbAXtSMmA7DxHx9x773w1++tp9fL/+KNfx2IavtTkX/+U/mKDRsGl14a/f3HUnyS/kUwg8SLYAaJl9TElugGdEccDgfFxcWJboaQIki8CJGy/fU1WHUfrqxCxhw7MNHNEVIA6V/axmIBh0OVwdXVhQQmAL8f3ntPzZ9zTujzCROgXz84cAAWL1YePZGyeLE61qBBNMkOMkOD+KQTdfHJVLz4/XDnnZTsrmO17Vg+Gf1jnv91+GyuvEtPw/Pbb8hb9Ab9vvyG39R8AcDaT/YDf4zeH5BirF0Lb7yh5n/+c5Vh1ym2b1fmUZs3qxrRM88kr/8MwB4T8Un6F8EMEi+CGSReUhPJfEoA4s4vmEHiRYiUox98DUDF0In4A/4Et0ZIBaR/aZ/Gvk+NWbsWSkuVx9Pxx4c+1zRVggewcKG5Y3W25A5Uez1aWkwyn0zFyxNPULd8Hfsrs3ik3+/4ze8sDVk2zRly7TysDit9PHs4tv4L+vdXnxeUbqaqKmrNTykMk3GAs8+GSZNMbOz3w759ynzM7VaK5r/+BZdfDitXKlf7jz+GW26h39WnM7Z2GS6XWi2aSP/SEpcLHnkEPvoo0S1JPiReBDNIvKQmIj4lgLq6OtavX09dMngxCEmPxIsQKZYVy0GH8qH9JF6EiJD+pX1aG/HuC5Wcw4wZyuupMVOmqOnGjZEfp7YWvvxSzXe05A6ald1F2XA84nhZtw798cc5fAj+0+fnHHd2b6ZNa311S49c8r93Lr16Wyi+4VxyX3wMux36ePawfUMYs61uwCuvqASl7Gz4yU8i2GDDBvjDH+DKK1Ud6PnnwxlnwAknwMyZ8OSTSpSaPRsefhiuuALy87HWVjKz6l0AKiuj+zdI/9KUffvg+9+Hxx+HO+5QiWhCCIkXwQwSL6mJlN0JgiB0AVyldeQfWAdAxqxBiW2MIHQh2hOfTjih5TbGYJN79ypRKTOz/eN88w14vTBgAAwZ0rn2HrWkq9HuEnFT7vHAr39NVXmAT+ynsbL36bx2Y/ub9fr7L+DeYG2ZrqPn5KKVVnLgi50cM31U7NudRJSVqUQlgB/9iIaRAVtl1Sq44YamrvgOB/h8KoUqEICePeFnP4O5c1Va3XHHwdChaL/7HQXWCkD5PkXb0FxQfPUV/OIXNGTyBQJw773w0EMdz3IUBEFINUR8EgRB6AJse3UVNt1PdVYfskbkJLo5gtBlCCc+lZTAli3qoXHGjJbb5OZC795w+LBa75hj2j/O16pqlqlTO9fetLRg5pOPxIhPL7yAf9cetlT04ukBP+Oaa6CwMILtLI2S8TUN78DhaKXLqV6xFehe4tP990NNDYweDd/6Vjsrb94MN96ohKfjjoOLLoIRI2ioXXS5oLoaCgpapugF6yDzLRWAjHgXK+bPh1/9SglO48bBzTfD9dfDsmWqNHfu3ES3UBAEIT5I2Z0gCEIXoOyj5QDUjDpGXqMKQhTp2VNNV68OfWaMSDduXFMT8sYY2U+bN0d2nGXL1LSz4lNGBri12BiOt0tlJTz5JEePwnO5N9BjYA5XXNGxXTnGDAPAv2lrFBuY/GzZoozsNU1lyljaulPftQt+/GOVXnfMMXDffTBvHhQVqQ0tFsjKgr59WwpP0CA+5VIBiPgUC/bsgd//XglPZ58N//43TJwI3/mOWn7ffdH32hIEQUhWRHxKABaLhYyMDCxt3lEIgkLiRYgE20olPqXNnCzxIkSM9C/tc955avrqqyqJBNouuTMYFUzWiUR8Ki1V/i+aFvKL6ijp6eCxxMZwvN14eeIJPOU1rHYN54vcM7n1VlX91RHypg4HIH3/NvzdaPyEZ55R01NOgTFj2lixtFSV2pWXq2C77z6V9maGoPiU468Aoi8+dff+xeOBX/5S9RuTJ8Ovfx36f/j+91WJ44ED8OyzCW1m0tDd40Uwh8RLaiJXKwFkZmZy3HHHkRmJCYTQ7ZF4Edqj9nANPQ4rZ+MRlx8v8SJEjPQv7TNrlkokqa6Gt95SvkxffaWWtSU+GZlPmzY1/by6WmW3NMYouRsxglZHhIuUWBqOtxkv+/fDSy9RVgr/K7iRKVMtnHhix4/Vc+owLBbo59rG7t0d308qceBAaBS0732vjRW9XuXfdPgwFBfDgw+qDCezBIMtPVCLVfdFXXzq7v3Lgw+q///cXOUF3/gZOSMjZCT/5JPK56u7093jRTCHxEtqIuKTIAhCirP9lZVoeoCqnCJ6jeud6OYIQpfCYqGhdOx//4MVK1QmQ35+SGAKh7Fsx46mZTV33qlGvF+0KPRZtEruQCW/1BviUzzL7h56CF+9j89901mXNZ1rrunc7izDhuBM08jxl7Hzm+7xZP7cc6o8a9q0tmOL++5TJuOZmWq+tdrP9sjKAosFqw2y/JVSdhdFFi+G559X87/5TXjfs9NPh2HDlEZsCNCCIAhdGRGfEkBNTQ2ff/45NTU1iW6KkAJIvAjtUfGxKrmrGztF4kUwhcRLZJx9tspeOHAA/vY39dkJJ7Ttx9O7t9rG7w8NqV5WFvKLevRR0HX1Y2RSRUN8MjyfdB10V3TFp1bjZf16+OgjSss0/lfwEyZMgGOP7eTB0tPxFA4A4OjSbQ0fL1kCf/2rSv7pSlRUwBtvqPk2s57eegteeknN/+EPMHBgxw9qsUBODlYrZPkroi4+ddf+Zd8+uOsuNX/55bSaAahpof+T9evj07ZkprvGi9AxJF5SExGfEoCu6/j9fnRdT3RThBRA4kVoD9sqJT5lzZki8SKYQuIlMtLS1CBiADt3qmlbJXegHiybm44vXKgyW0CV3n32Gezdq6qnbDaYNKnzbTXK7gB81dEVn8LGi67Dvffi98N72lnsSRvB1VdHadyD4cr3qW6tEp9qa9WoYS+9pDJLImXNGrjwQvj00yi0KUa8/LIasG7UKDVoXVg2bYI//1nNX3dd66qGGfLysFkh2xd98ak79i91dfDTn6ry2nHjlB98W4wdq6br1sW+bclOd4wXoeNIvKQmIj4JgiCkMNX7q8grUQYygy7qpFOxIAitcumloQHDLBZVGtUezU3HFyxQ01691PSxx0LlNhMmKOGoszgcynAcwFcTh7K7Dz+ENWsoqUnnf3k/YsSI9oW5SMmcoEa8s+xQI969+ioEKioZ7lrNrl2R7SMQgL/8RY069skn0WlXtKmvhxdfVPNXXtmKcOf1qvotj0cZkXW2rtEgLw+rFbJjkPnU3dB1+OMfYetWVZb717+2b7g/bpyabtoEPl/s2ygIgpBIRHwSBEFIYXa8tBzQqcgbTK9RPRPdHEHosuTnw5lnqvmJEyE7u/1tGmc+VVaGhKa//EVlU23cqMyGoY1sF5NoGg0qlr82uobjLairgwcewB+A/9quotxeGL2sJ6BguhKfCsq3cfgw/O/ZAL/YfT137r6Guq8jSxVZuDAk/rnd0WlXtHn3XVV2168fzJvXykpPPQXbtil/p1//uu2aTzPk5WG1JU588vmUKBjJqJDJzvPPwwcfqEvz5z+H93lqzoABqi/xeELluYIgCF0VEZ8EQRBSmIp3PgfAfcz0BLdEELo+N9wA558PN90U2fqG+LRliyr5CgTUiHYTJsC3vqWWHT6sppFkUkVMUHwK1MY48+m//4WSEg7ofXk9/QoGDoSTTore7tPGDcPhgP7u7dx3b4Chuz6m2K0yPbUN7ZvkBALwyCOh3xsbvycLuq5K7gAuuwys1jArbdsGTzyh5n/6084PidiYYOZTvA3HPR71d59/Ptx+u/qzUpkVK+D++9X8zTfD5MmRbWexwJgxal58nwRB6OqI+JQAMjIymDx5MhkZGYluipACSLwIrRHwBcharcSngguU94fEi2AGiRdz5OfDHXeEfFrao7g4OPpcPTzzjPrMEGe++91QSU5GRugBNBpoGUp8irbheJN4OXQInn6agA7/tNyI1+Lkqquil5ADwIABWDPTsOseNr6/i28debRBd7Ht3017Vh8ffaRGGyz07OP/7fsZBQfXRrFx0WHtWqUtOZ1w1llhVvD74Xe/U9M5c+CUU6LbgNzchrI7t1vFarRorX9ZtAjOOUdlAB46pD4rL4/eceNNSQn8/OdK7DzjDPj2t81tL75PCvk+Eswg8ZKaiPiUAKxWK9nZ2VjDvt4ShKZIvAitsfOd9aTXleG2ZzHyMvWaVeJFMIPES2yxWFSmEyjPIQiVVRUUwAUXqPkpU5TheLSIlfjUJF7+9S9wu9nZYzILmEe/fmro+KhiseArHgrApSUP0t+/u6GUqUf1njYFC79fjSgIcKv7TxxXvYDxW16NcgM7zyuvqOlpp0FOTpgVnnsONmxQtVk//3n0ahoN8vLUoHd6BUBUs5+a9y9+Pzz4INx6K5SWQp8+8MMfqnWTMSstEjwelbVVVqb+13/1K/OXyBCfunvmk3wfCWaQeElNRHxKAPX19WzdupX6aL5eErosEi9Caxx8UQ33VD7qeBwZ6slV4kUwg8RL7DFK7wCGDIHBg0O/33CD+rn11uge05qpDMeJsvjUEC87dsAHHxDQ4R7vzaBpXHlldAU0A/to5fs0qeYz8vPBNncWdjv08expEPTC8e67aiTB6dpXHKcvA8DiTa44r6yEjz9W80YZZhN27ICHH1bzN9+sFMtok5eHBhRYK4Doik+N+5eyMvjRj+Dpp9Wyyy+H11+HSy5Rv/v9oZEgU4l77lGiUU6Omk9LM78PQ3zasQNcrui2L5WQ7yPBDBIvqYmITwnA6/Vy4MABvF5vopsipAASL0Jr2JYo8Snz9NBw2xIvghkkXmKPMeIdtPRDysiAq66C/v2je0xLZnDYPHc97dammcCIF+255yAQYFffGSyvHU1BAZx7btQO04T86cPRNLBaoMeQfLj1VpwO6Ok9xJ5t4dNlfD54/HHQ9AC32h/AGhTFtCRLr3nnHZU5M3JkmLJLn08Zi3u9MHOmqlOLBcE6xh5aBRBd8cmIl9paLz/6EXzzjYr5u++GW25Ro0c2Hg0u1bqh995TApqmwR/+0PH/44ICZU6u62rUu+6KfB8JZpB4SU1EfBIEQUhBjqw+QM7R7ehYGHFVlMY1FwQh6jTOfGp1JLMoY8sOlt35A1F/ordVV2N791104JHaKwH4znfaH1K+o+QcM4xBA2HQILBddw3064eWlYFGgLK1+8Nu8957cOAAnKzPZ6B7c0MZlMWbPMPd6Tq8GqwCvOiiMKVaTzyhlIicHGU0Fu1yO4Og+JRLBRBd8cngqafsDQP1Pf10U9uqxnGTZNpgm1RVwX33qflrr4Xjj+/c/saNU9PuXnonCELXRsQnQRCEFGT7fz4D4OiASfQYGM4oRBCEZGD4cPVgetppMGxYfI5piE+BAFAX3dK7XgsXgsfDwbzRfFI1hZwcuPDCqB6iKaNHk96vB85Rg5VJlqbhHzAQgNqNLevu/H6l21h1LzfwEBYNfENV+pnmSx51Y/ly5QOWkaFiowkbNoRGt/v5z2NTbmeQmwtAjr8CiL74tGNHJs8/bwfgl79sWnYKanQ/Q1dLpQSGRx5RJumDB6vsxc4ivk+CIHQHYlCdLwiCIESb0k/XEKiqode5M0DT8C5QJXfa7BPb2VIQhERitcIDD8T3mGmZVnyanUDAq8SnoMDQaerq6PXppwA8o18JmsbllysBJWZkZsKbbyqFIpgmYx9cBN9sJLBrd4vVP/gA9u+H8z2v0c9+AHr2xHXRlbDgl1iTKPPJyHo666xm58/jgbvuUsrhqaeqn1gSzHxK013YAh4qKqKXwlZfD089NRBdV3/n3Lkt19E0VX7n8YA7eS5Pm2zaFDKK/9nPVPs7i4hPgiB0ByTzKQE4HA769++PI1Y56kKXQuJFqNlRwuHzf8jRy3/CN3NvpWLtXnrs/AaAQd+d1WRdiRfBDBIvXZO0NHBb0qOe+ZQ2fz7pHg81Of15tWIeDgdcfHHUdt86GRmQnt7wa9ZYlflkP7gXvz+0WiCgEoacARdX649jsQDXXYe1Zx4AFn9yZD6VlkJQw2uZNfb227BzJ+TnK2Uj1mRlgcWC1QpZ/sqGzCdd73wZ3FNPpVNenk2vXhq33db6ekb3kwqZT4EA/PnPanraaWqkymgwerQS4g4eVCPndUfk+0gwg8RLaiLiUwJwOp0MGzYMp9OZ6KYIKYDEi7Dhd6+Az4cOpH+9mP0zL8ES8FGZU0zRzIFN1pV4Ecwg8dI1ycgAj5aGHk3xyePB/uKLpDmdzO/zPXTNwrx50UuqMkP2mCI0DQrrd3PwYOjzjz5SpWwXup6lt6Mciovh3HOxZ6qHE6vPE03/9Q7z5puqPHDCBFWW2YDHEyq3u+aa+JxciwXy8rBZIdtfQUWF8jO67jo4+WQ4dKhju92yBV5+2YbTmcZdd1nIaaM63Hh2TAXPp7ffhnXr1P/YTTdFb7+ZmaGSxO6a/STfR4IZJF5SExGfEoDf76eyshJ/49d1gtAKEi/dm0C9B+e7rwGw/ZTrKckdjuZTr4frp85q4UEr8SKYQeKla5Ke3ijzKVrDUD/2GPqBA9Rn5vDQnrOBGHs9tYFl8EAcDujj2cPuYOWdkfWU4yvjisB/sVqAG24Amw17lno4cQTq8fkS02aDQABeU106F13UbOFbb0FJCfTqpfyt4kVeHlabEp9274Yf/hBWrACXS9lPdYRHHgFd15k1q55p09ruX4yytWQXnyorQyW0112nLlM06e6ld/J9JJhB4iU1EfEpAbhcLlatWoXL5Up0U4QUQOKle7Phvg+xuyqoSuvNyc9+n+PWP82+U66mrNdIRvy85ZOfxItgBomXrkl6OtRb0gnoRCfzac0aePppAoEALw3+DpX1dgYPhkmTOr/rDlFUhNMBeb6j7NuiYnfpUlWtdknV4/TKqlNP8iedBNAgPtl0T8IFjiVLVDZRTk6z0Q89HnjySTV/1VWxGz4wHLm5DWV3W7fCtm2hReXl5ne3fj0sXgy6HmDatPb7l1Qpu3voISVADR0Kl14a/f337aumHTnnXQH5PhLMIPGSmojhuCAIQrKi69Q99QKZQNVpF5OeZQWsnPrGj4AfJbhxgiAkK1H1fKqrazDA9p1yCs98cxbQMPBcYsjJQc/Lg+oKKtbuBUbyyivQ27OX8/yvqqynn/ykoYFG2Z1d9+B2qxKnRGEYjZ9zDjSpFnnzTZX1VFgI558f30bl5WG1QranAoD+/VXF4pdfdkwIefhhNT3tNB99+rTvIp4KZXcbNsDrr6v5n/0MbDF4gkqF8yAIgtAZJPNJEAQhBux94HV23/NSp/ax//01ZO7fjE9zMP7O86PTMEEQujwZGeDWoiQ+Pfgg7N0LhYWsO+Nm9u7NwG6Hs8+OSlM7jF5UDED9lj0cPgyffw7fOvIw+bl+OP54OPbYhnU1p0MNlhdwJ/TB/uBB1U6Ab32r0QKPB556Ss1///vxzXoCyMvD6YQBWRWMGaPKF0ePVovMml+vXKmy0KxW+P73I0tlSnbRxTAZ13U480yYPDk2x0n28yAIgtBZRHwSBEGIMjU7Sqj95R+p++1fcR2o6PB+9tzzIgAHJpxO39F50WmcIAhdnvR08FjSOi8+rVwJLwVF9Lvu4vWPewAwZ46vTQPpeOAcrgZb0Hfv4Y03oG/dDub5PsLp1ODHP262shOLBhb8eOoS5w/yxhtKwJg6VWUWNfD224nLegLIy8OiwQ3fqeDpp6GgAHqoS20q80nXQ1lP558PfftG5u6e7J5Pb7yhMp8yM+HGG2N3HOM8JHv5oSAIQkcR8SkBaJqG3W5HS1i+upBKSLykHtuf/pyADgEdSjeWdGgftTtLyF2+AIB+t3w74u0kXgQzSLx0TQzPJ72zhuNGndG551IxchoLFtjQNI3zzku8wWvO2CIAMkt38+qrcErZi+T1AGbPhhEjmq7scKAF73jd1YlROHbtCp3OJllPgQA895ya/+5345/1BJCXB4ClsqKhlDI/X03NiE9ff62Myh0ONVhfpP1LMns+VVXBP/+p5q+/Hnr2jN2xjDLMZBXhYo18HwlmkHhJTcTzKQFkZWVx/PHHJ7oZQoog8ZJ61H74OXnB+eqdR4ERbawdnk3/Xkx6wM/hwgnM+Vbk20u8CGaQeOmaRMXzyetVrtEA557LY4+B12vl2GOzmDEjak3tMOmjBmK1Kp8n95Eq5tS+S3Yf4LLLWq7scDSIKt5aD5Aet3a6XKqM7bnnwOdTptKzZzdaYckS2LNHpdWcd17c2tWE3Fw1raho+MjIfDJTdvf222p63nkqiQsi61+SudzsjTeUADVkCFx8cWyPlewZYLFGvo8EM0i8pCYiPgmCIESRQL2HnE3LGn537Tnaof24vl5POhCYMjVxpr6CIKQk6elBz6fOjHb39ddQUwM9e7I7dwKvvKI+vummBBqNNyY44l1fz25mVbxFYU49lhHDwxvyWK1gsQJ+fLXtG2BHiz174P/+T1XUAcyaBbfd1sys+n//U9MLLlBmXYkgmPlEZWXDR2bL7jyekFZ5xhnmDp+soovfDy+q6ne+8x0VRrEkmUU4QRCEaCBldwmgtraWr776itra2kQ3RUgBJF5Si52vLMfiDZW5eA50THxybF0PQM70Maa2k3gRzCDx0jXJyIhC5tMnn6jp3Ln840ELfj9Mn+4lEEiSeCkqwuGETH8VZ5b9V5XcffvbrSpjfpuqaVKZT/HhmWeU8NSvH/z97+qnX79GK2zbBsuWgcUCl14at3a1wBCfGmU+GWV3lZWqMrA9li+H2lrlFzVunPos0v7FKDdLtrK7Tz+Fw4eVEHf66bE/XrKKcPFCvo8EM0i8pCYiPiWAQCBAfX09gUi+zYVuj8RLanHkNTWUkY56APIdMi8+ecpryS7dCcCA08aa2lbiRTCDxEvXxDAc13UI1HZAfPL7YeFCADb2PYnFi5U+8n//506eeElPh16FAPRPK8VRkNumQhCwqbQSnys+T/Z+vxIvAO68U2U9tcDIepo7V9XjJYow4pPxUSDQJCGqVRpplVgsxraR9S+G6OKOX1JaRBiX51vfio8VV7KKcPFCvo8EM0i8pCYiPgmCIEQLXcexTIlP+/tPU58dNS8+7flwI+g6VRl96DM2hu6mgiB0SdLSlOE4gK+mA4bjK1dCRQV6bi5/+vBYAC66CAYOjGz0snhReFwxvXtDv77AhReGnt7D4LerZfEqu/vmGyXa5OaGrwSkrAw++EDNX3FFXNrUKobSVFfXoABZrSErqPZK7wKBBq2SuXPNHz7HV4YzUJdUosv69bBmjSqRvOii+BwzWUU4QRCEaCHikyAIQpQo+2YnaeUH8GkOnOcr0wtruXnxqXSxKrmrHTg2ObxVBEFIKex28FqD4lN1BzKfFqiRNrcPmMPGLVYyM+Haa6PZwuhgG1xMz3ywOSztKgQBW3zFp8aZQGG9gl59VdVXjR0L48fHpU2tkpkZamQY36f2TMeDWiU5Oa0IbeHwelWc/fjHXP7Mafx8z/VJVW72/PNqeuqpqpQwHiTzqH+CIAjRQMQnQRCEKLHrWZX1dLhoCr0mq2HAHVXmxSfvKiU+WSeYK7kTBEGAoO1RuhKfTJfdBQIN9WLzA/MANcqXIUQkFWOCnninnAK9e7e5qm5XT/b+utgrHIFASHyaNy/MCh4PvPyymr/iisQ7uGta2BHvDN+n9jKfjL91zpxmZurh0HV491046yz42c9g6VIs6PR370ga0aWkBObPV/PhBk/sFJs3q7/76adbLBLDcUEQujoy2l0CSE9PZ/z48aSnx2+oXyF1kXhJHTyffE4aYJk1k5whBVQB6bVH1c22iYeL9B3rAOhx4jjTbZB4Ecwg8dKF6aj4tHYtHD2KnpnFK7uPA0J+RUkXL+eco1SxqVPbXbVBfHLFPvNp1SqVLZSdDVOmhFnhww/VCoWFcNJJMW9PROTlqTY1Ep8iGfGukVbZouSuRbxUVcHdd4eUnYICmD0b7ZFXsenepBFd3nhDeXYdcwyMHh2lnZaXw7/+pXau6yrra/p0GDmyYZXunvmUdP2LkNRIvKQmXT7zye/3c//99zNp0iTS09PJyclhzpw5vPvuu2HX93q9/OUvf2Hy5MnMnDmTsWPHcv3113O0A74trWGz2cjPz8fW7ushQZB4SRU8pdXk7FwFwMArZtJjuMrTt/g91JVUR7yf6p1HSa8uQcfCoNNHmW6HxItgBomXroslIw2AgMuk+BQsuTs0chaVLjs5OaHRy5IuXqxWmD27QWhrC92hyu4C9bFXOIKnkNmzQz4+oYboISfrb387glShOBHGdDySsruNG1WmUEYGTJvWdFmTeFm1Sv298+er6/ajH8E778D116NpKPGpPvHGwboO77+v5i+4IEo7XbZMeZK9/ro6QKEyyufhh5usZohP3dXzKen6FyGpkXhJTbq0+KTrOpdeeik333wz69evx+12U11dzaJFizj77LN58MEHm6zv9Xo544wzeOCBB3j55Zf5/PPP+fLLL9mwYQNTpkzhwIEDUWmX2+1m165duLvrt4tgComX1GD7i19DIEBp9mCGntiPjDwH9bZsAMq3Ri5e7/1wg9ombzC5fTNMt0PiRTCDxEsXJijI6C4ThuM+n8rKAb5MV/Vixx8fGr0spePFEZ/Mp8aZQGFL7r75BrZuVa7w558f07aYIoz4FEnZnSG0zZzZckS4hnjZswduvlmpVMXF8NRTcPXVSnhzOBoSg/31iU/52bgR9u5V3vVz5kRhh1u2wG23QXU1jBgBjz0Gjzyi/qk+/1y5mgcxhMrumvmU0v2LEHckXlKTLi0+PfbYY6xfv56FCxdSV1dHTU0N7777LkOGDAHgpz/9Kfv3729Y/9Zbb2XBggX89a9/ZejQoQDk5OTw5JNPsm/fPq6I0mgkHo+H3bt340mW/GIhqZF4SQ3KP10FQN3YKWiaqrKry1LZT9U7IxefKj5XJXf1Qzvm9yTxIphB4qXrYskMZgPVmch8WrwYSkshP59XD50AwAknhBancrzozvhkPq1b13omEBDKejrnHOXQnSy0kfnUmvik6yGhLVz1oMfjYffOnWi/+50SX8aMgeeeC3l1QVPxKQ5+XO1hDEA4e7a6hp2ipARuuglcLlV/+fTTqpavuFhdf1CleEEM8S4QUGV/3Y1U7l+E+CPxkpp0afHp4Ycf5v3332f27NnYbDYyMjI488wzeeutt7Db7bjdbt4P5tbu27ePRx55hOzsbC5qNmLK0KFDmTNnDgsXLmxYXxAEoTHaurUAZE4PjVrkzVHik2tP5OJTYJ0yG3cca97vSRAEwcCaHXxyrnMplSASXnsNgOqTzmPzdhuaBjNmxKiBcUYLPtnr7tg+qBiZQLNmtcwEYs8e+OwzNR91J+tO0kbmU2tld9u3qywhh0NlyIWj8JNPsK5YoTK9/vCHliWSViuaVT2OxPratEcg0JD4x+mnd3JntbVw441KgBoyBO65p2kN5rXXqt+XL1dleTSNF3meFgShK9JlxafNmzdz6qmnMmjQoBbLxo4dy5SgA2RpaSkATz/9NF6vlxkzZuAMvh1rzOzZswH4z3/+E7M2C4KQmgTqPWTv3wRA39MmNHzu76HEp/p9kYlPuj9A1h5Vdlc4R0a6EwShEwTFBN3nV1kn7XHgACxdCsDnBecDyuvJ0CRSHmdQfKqPXYmGxxPyCwpbcvfCC0oIPPFElf2STDQXnz7/nOGfPIpF97ea+WSMcjd9evgsIW37dvoHBU1uuSX836xpYFOiTDz8uNpi+XKV+JeT00nR1eOB229X5ZX5+XD//cp9vjF9+igfKFDZT7ou4pMgCF2eLis+DRkyhLvuuqvV5cXBL8CBAwcCsGTJEgDGNE4FbsS4oNvmfGOEDkEQhCD7FmzG4vdS6+jBoBP6N3yu9VLik+9QZOLT0VX7cLir8WkOBs0bGpO2CoLQPbBnOnBZsgkEUE/U7fH662o6fToLNql+rHHJXaqjpakXi7HMrvngg9Agdiee2GjBli3w17+qkc4ALr88Zm3oMI3Fp3//G266id5vPcYo14p2xaewQpvXi/MPf0Dz+fDPmNGme7dREpnozCej5O7kk8MYxUeKzwe/+AV89ZXK8rr/fujXL/y6V1+tzKXWrYN167BaQ/5qIj4JgtAV6bLik91uJ6ONYu1Dhw7hdDo55ZRTAFi/XpW69O/fP+z6/YJfHOXl5U18ojqCzWajsLBQ3PmFiJB4SX4OfaxK7iqLx2Oxag2f2/oo8Uk/Epn4dOAj5fdUVjiKtKyOXW+JF8EMEi9dl/R0qLT1RA/Q9nBloB6Y33wTAO85FxpVQMyc2XS1VI4XS4wzn3Qdnn1WzTcMYldSAlddpcSml15SisLxxyv/n2TDEJ++/lqJT4DVBj18R6iqammCvWcPbNumBq5rIrQZvPEG1h07sOTn4//lL2kwdgpHUOkJ1CXOONjjCZVMdrjkLhCAu+6CRYtUDd3f/97U36o5PXuGjMHWqe//7mw6nsr9ixB/JF5Sk255terr61m1ahVXXnklPXv2BKAseGOW3TwtNkhOI1PIkpKSsCKV2+1u4rhfVVUFQHV1NVqjL12bzcbo0aMJBAJUh0mFN9rgcrnwN3McTEtLw2634/F4Wrj7W61WMjIy0HWdmpqaFvvNzMzEYrFQV1eHz+drsszpdOJwOPB6vdTXNx0Zx2KxkJmZ2fC3NCcjIwOr1Up9fT3eZt+WDocDp9OJz+ejrpnpqaZpZGVlAVBTU4PezJMiPT0dm82G2+1uYSZnt9tJS0vD7/fjcrlatMk4h7W1tQQCTYfubesc2mw20tPTCQQC1NbWtthvVlYWmqaFvTZtnUPj2kD4c9jWtXE4HIwePRqfz9di28bXJtw5NK6N2XPY+NqEO4fGtYn2OTSuTVvnsDPxHS4OIz2HbcW3e9lqsnTwjxnVcI00TcPZX4lPlJa0uHbh4rv881UU6uAZPgqg1XPYXh8xevRoPB5Pi2NKHxGiq/URrZ3DSOJ79OjRDaPBNkb6CEU0+ojOnMNw8d3eOczOziYjAyqtPfD5d+Lauxf/iBFNzmHja2NdtAjn0aOQn8/K7Fm4XDq5uX769q1rUrGXmZnJ6NGjqauraxEvyd5H+KwW7Dr46lxUV1dHvY/46isL27alkZEBF15oJRAI4H3oIWyrV4PViu/EE/GdfTYZs2cnZx+Rl4ff+DstFvTCQjh4iFy/ypo7fNhNbm4oDt9/34auO5kyxUJmpp/q6kbnsK6O9EcfxWaxkHnzzdTm5bX6HejxePDbbKCD16WuTSL6iEWLrNTWptO7t8bIkXVUV5vsI9LT4U9/wv/++2Cx4P7Nb/CPGgXV1W3Gd9qwYdgXLyawfj211dXYbOnU1WmUldWRk0NM+whIvmeN0aNHU11d3SJe5D5Ckaz3EYl61hg5ciS1tbUt/l65j1DEq48IF2+t0S3Fp9dffx2Hw8Hdd9/d8JlxMR0t3CEVjX2gwl0ggLvvvpvf/va3LT5fvXp1Q8AB9OrVi8GDBxMIBFixYkWL9Q1/qU2bNrW4mKNGjaJ3794cOXKEbdu2NVnWo0cPJkyYgN/vD7vfGTNm4HA42L59e4PXlcGQIUMoKiqioqKCDRs2NFmWlZXFscceC8DKlStb/MNMmTKFzMxMdu/ezaFDh5osKyoqYsiQIdTU1LB69eomyxwOBzOCRfVr165t8U8xceJE8vLy2L9/P3v37m2yrE+fPowcOZL6+voWf6umacyaNQtQ57B55zFmzBh69erF4cOH2bFjR5NlPXv2ZNy4cfh8vrDn8IQTTsBms7Ft2zbKm+WhDxs2jP79+1NWVsamTZuaLMvOzmby5MkAYfc7depU0tPT2bVrFyUlJU2WFRcX06dPH1wuF+uCb8YM0tLSmBZ8a7ZmzZoWHdakSZPIzc1l7969LTL2+vXrx/Dhw3G5XC3aZLVamRl85b1hw4YWnd3YsWMpKCjg0KFD7Ny5s8mygoICxo4di9frDfu3nnjiiWiaxpYtW6isrGyybMSIEfTt25ejR4+yZcuWJstyc3OZNGkSuq6H3e/06dNxOp3s2LGDo0ebZhoNHjyY4uJiKioqGrIcDTIyMjjuuOMAWLVqVYsOdvLkyWRnZ7N3714OHDjQZFn//v0ZNmwY6VvXEAgEqCjKbGib3W4ne6ASn7TSQy3aPH78ePLz8zl48CC7d+8GwLdW7ad+SB9ACdpm+4iRI0eSm5tLaWkp27dvb7JM+ghFV+sjBg4cyKBBg6iqqmLt2rVNlrXXR0ycOBGn08n+/fulj4hhH1FTU8OqVauaLLPb7RwfdGlet25di5vgcH2EQWFhYYNo2FofkZ4OR8nD7fawa8UKjgSHLgt3HzHsiSfIqa2l6owz+OIrG7quM3DgPlatanrcadOmoes627Zta3hpZ5DsfcSR6koGBAK4yspYsWJF1PuIf/5zGLW1OcybV0NWVl88tXW43n4bW20tW2+8keqxysfvBF3HBsnXRwwYQK3Xi99uZ8e115K3Zg2F27fTy6a+CzZuPITDsathu9dfH4nHk8dJJ6W16CN6v/8+/fftI2v4cOpPP73dPsLrdhMIBKg6cpQVKyoT0kc899wQdL0/p52msWuXyT4iLY3jFiyAN97AVV/PjmuuocLphOAx2uojhvbsyQDAv3YtK1asoK5uPLW1dlat2khVlS+mfQQk17PGMcccg9vtlvuIFLuPSNSzhiFUNv9uBbmPMIhXH9GaNhIOTW/+393Fqa2tZeLEiTz66KPMa1Sknp2dTU1NDY8++ig//OEPW2y3efNmRo1S2QjffPNNwz93Y8JlPhUVFbFv374mmVNut5v169czadIkLJaWlY/J+jYCJKshEW8jvF4va9euZeLEiVit1ibLkvltRHfJanDvrWTfxDMJoNFj9bvk9E5vOIelK0qpPeNbeO3pDNn7XthzaFwb3R9g18AzsXndaK88y+gzR3XobYTP52PNmjWMHz8eezPTCukjQnSlPqIzbyz9fj+rV69m3LhxLV6+SB+hSNU3ls88A6W/+CsXB16k4NbL8F53XZNzaFwbrbSU9KDxsfull7ns1qHs369z1111zJnT9Pzrus7KlSsZO3Zsi8FZkr2P2Hj7Uzgee5xNI8/ilMW3RbWP2LpV4wc/SEfT4OWXPQwZkk5g4UL0W25B79GDutdeazDzSeY+onb7dgJpaZCTg+2//8Xx+OO86jmPv6bdxX33eZg0Sf0vHzmicdFF6WiaxkcfWcjLa3QOq6pIv+wytJoa3L/8JV/36sXo0aNJbzbKXeM+ouKs73D0ix08dez9/Pq9iXHvI9xuOPvsDHw+C88+qzFwoIk+IhDAed99ON55BzSNup/9DN9ppzXZts34rqnBec456JpGzTvvcMn3e3L4sMbDD9czdqyeFFkNkZxDg87cRxgv5UeNGtXCOkXuIxSJ7iOS6VnDEO/CxYvcRyji1UdUVVUxYMAAKisrm2ge4eh2mU8//vGPuf3225sIT6DU7W3btoUNNKDJ57179w67jtPpDDtSXnZ2dthyPovF0mqZH9CmZ5XD4Wg1S0vTtDb32/wGoDF2u73FA2tj2tpvWloaaWlpYZfZbLY2tzX+ccLR2nkF1Um0td/GGWfNaescdubadOYchrs2xhdIe39rdzmHnYnvzsRha/G95Z01WIGyniMYN6ywyTL/MI1awO6tI023Yc9p2Tbj2hxeuhObz43XmsaYeao8piPn0IgXu93e6rbSR4RItvgG832EQUfOoREvDoej1W1T7RwmWx8BnTuHbcV3W+cwPR2q7L2gXiOttpa0Zus1XJuvv1bCyIgR7Kgfyv79kJamcfLJGTQ/VUa8OJ3OVo+brH1Eel4Ofg2sPn+T/UQjvt94Q53CU0+FIUPUSbPMn68+POsssnNzW2ybjH1E5tBGA1306wcWCz0tFQDU1DjIzlb/y++9p/60SZOUbRE0OodPPw0uFwwfjv+UU2DVKtLT01s9rsPhwJ6ZARpY/YEm68Wrj1i9Wtme9e4NI0eCpkV4DgMB+POf4Z131An5zW9IP/PMVrcNG9/Z2VBYiFZSQvb+/aSn98ZiAbs9k8YhHYs+ApLrWcPoXzIyMlrdt9xHKJLpPsIg3ucwkniR+whFrPsIM7lMXdZwPBx/+MMfGD58eNjMJmOUu4MHD4bd1vg8Ly+vVVNyQRC6H1WfrQHAM2J8i2U5fTLwWtWXSPnWtk3HDy7crNYrHIHd2a26ZkEQYkBGhjIcb3e0O6PEYtw4PvxQzc6eTQvhKdWxpKmHF80b3WHEjhyh4bx95zvBD10uZToNnXCvTjDBMs0euiqvbFz9Y4xyd9JJzbY5ehSef17N33BDaOi2dtCCZvCJGuJt8WI1PfHEtn3RW/DYY2Bktf32t9CG8NQmo0er6aZNGM+H3dFwXBCErk+3ecJ5/PHHqays5Je//GXY5XPnzgVoUYNsYNRuzpkzJybtEwQhRVmvfLgypk9osUizaLgylO9T1Y62xaea5ap23zd0VJQbKAhCd8QY7S6g07b4tEYJ6IFxE/joI/VRs6qhLoEtQwkcFm90R1R7/XXw+2HixEYDmy1eDPX1MGBASFhINYLiU05AqU6G+FRRAStXqvngrXOIl15SNWwTJrQyBF54DGEwEeKTrsPnn6v5oIVPZKxYAU88oebvvBPOOKPjjTACZ8OGhtHuEqTDCYIgxJRuIT699NJLLFu2jHvuuSfs8rfffpuLL74Yq9XK0qVLW9RwAiwOvha57LLLYtpWQRBSB3+dh9wDGwHod1rLzCcAT04vAGp3ty0+aZuV+JQ2ScQnQRA6T1oaVBiZT83MwRvwemGj6sPWahMoLYWcHAj683YprBkqpSSamU8+nxKfAC65pNGCDz5Q09NPN5lKk0Tk5wOQ5VWqkxFCX32lqs2GD4e+fRutr+vw8cdq/tJLTf3dlgRmPm3eDCUlSqydMiXCjaqq4I471Ik491w455zONcIQKDduxJHYJDBBEISY0uXFp/fff58333yThx9+uMUyl8vF73//ew4fPkz//v353ve+R1lZGW+++WaT9fbs2cP8+fMZM2YMFwZNOTtDdnY2s2fPbrO+UhAMJF6Slz3zN2Pxe3E58ig+fkDYdXw9VOZT/b42xCddJ2u/KrsrmNk58UniRTCDxEvXJT0dqqz5obK7ZkakAGzdqp5yc3J4e1URAPPmQWtWIqkcL0bmk9UXvcynxYtV2V2PHo2ygCor4csv1Xwqp5AFM5+cgTocgfqGzKevvlLT6dObrb99O+zZAw5HQ9ZTpPFiZD5ZfPFXXIySu+nToRVrnqboOvzhD0qxKi6G227rfCOCAxqxezdZmjL+7Y7iUyr3L0L8kXhJTbq04fhnn33Gt771LTweDy+++GKL5X6/n6ysrAY/p3vvvZdVq1Zx8803M3nyZAYPHkxNTQ3XXHMNeXl5PP/889hsXfqUCYJggsML1pIDVA6cgMUa/i2vVqDEJ+/B1sWnsvUHsbur8Ws2Bs8ZHIumCoLQzUhPhypbUHwKBJQoEhQUGgiW3PnHjueTT1Uflsp6SVvYMlXmUzQFjldeUdPzz28kXCxYoOrwRoyAwSncn2dkgMOBzeoh219OeXlfdB2WLlWLgyOvhzCynmbMUNuawJoeFAb9Hvx+aDawb0xp7PcUEa+/rkyvbDb4059M/61hyc9XbueHDzOgdjMwWTyfBEHoknTZzKctW7Zw9tlnU1dXh9/vD/sDcMkllzS4zufl5bFo0SKuueYaLrjgAmbPns0JJ5zAoEGD+Prrr5kwoaWnS0dwuVysWLEi7LCdgtAciZfkxbNcGfVaJ4xrdR1rbyU+BUpaF58OfKJK7sp7DiM9p/XRSyJB4kUwg8RL1yUjA/yajWpLnvogXOldUHzanjGBqiooKIDJk1vfZyrHiz0zmF3jj474tHs3LFumqssakuJ1Hd56S82nqtG4gaZBXh5WG+T4yikrg127VMKPwwHHHNNs/QUL1LTRaNKRxouR+WTXPXHN+CkpgU2b1J86c2YEG+zYAffeq+Z//ONQxlI0CPo+9a9U3rPdMfMplfsXIf5IvKQmXTaNZ8SIEVRWVpreLisri7vuuou77rorBq1S+P1+qqurGwQwQWgLiZfkJX2HGoggf1br4pOjnxKftLLWxaeqZZvIAzyDO38jK/EimEHipetiJGSUa/noVKCVlsLQoU1XCo50t6BEedademrbA5SlcrwY4pPd745Kds2rr6rpzJmNvI+++grWrVPqTEdHPksm8vOx7ishx1PO1vJQyd2kSdBk1O4dO2DnTlWv2ci1O9J4MTKf7LoHrzd+Iy0aRuPjxjVYXLWOxwO/+pUyVJ8+HS6/PLqNGT0aPv2UvhUbGw7X3Ujl/kWIPxIvqUmXzXwSBEGIJdV7K8isOgBA0amtj2aUXqTEJ3tF6+JTYKPKfHJOGBnFFgqC0J3Jy1MZHeW2Avw+Wo54d/QoHDxIAI1XN40Fum7JHYA9Ow0Am+7B3Unbp/p6ePttNX/xxcEPdR0eeUTNX3SRSiNLdfLzsdkgx1eGy9XUH6kJRsnd9OkQrCYwgyXNgUZ0ro0ZTJXcPfCA8kjLz4ff/rZtlbYjBE3He5d1X/FJEISuj4hPgiAIHWDfRyo1viKnmB7FrZsdZg9WDyDOmtbFp4y9ymw8/3gZ6U4QhOhgsykBqsqaj89PS/EpmPVUWTCUCm8mBQWhEd+7Ikbmk0N3d/rBfv58qK6Gfv0aCTFffqmynpxO+N73OneAZCEvD4sFeqDcxr/+Wn3cwu8pTMmdKRwONA0cAXfcvI7q61XZJDRJ1grP55/DCy+o+d/8Bnr2jH6DguJTXvUe0v01Ij4JgtAlEfFJEAShA5R/ocSnusFtP63lDVPiU1p9JQF3y7vq6p1HSastRcdC8bzh0W+oIAjdloICqLT1xBcu8ykoPu3JVX6WY8aoTKmuiiUtJHB09sH+o4/U9LzzggkwjbOeLr44NuJEIsjPRwN6O5T4pOvKs35446+qXbvUSHc2WwQqTis4nWgWsOneuIkuK1ao7KI+fVpWozahqkplOoEqtTv++Ng0KC8P+vZF02BQ/SYxHBcEoUsi4lMCSEtLY9SoUaSlpSW6KUIKIPGSnPjWKPHJMbFt8anHwBz8mh0dqNhe2mL5vgUq66k8bxDZvTp/jSVeBDNIvHRtevZsQ3wKmo2vQ3nWRZL1lNLx4nSiacHSrnq9w7upqgplzJxySvDDzz+HDRsgLQ2uvLLzbU0WgqMj9rKGzOqPO65ZxZmR9TR1KuTkNNk84nix29E0sEchKy1SjFH7pk9vR3R99lkoL4chQ5TJeCwZPRpNgyH1G+JafpgspHT/IsQdiZfURMSnBGC32+nduzd2e+dGtRK6BxIvSYiuk7U7aDZ+4tg2V7VYNVzp6i145faWpXcVS5XfU/3A6JTcSbwIZpB46doUFECFrSc+L03FJ59PiSXAF9Uq82l069Z1DaR0vDgcWDTQ0HHX+jq8m4ULwe+HESOguBiVDvToo2rhJZdE4FydQgTFp3xLecNHLfyeDPHp5JNbbB5xvDQIg964ZfwY5uktSggbU1ERKre74QZlJB9LhgxB06DAe6BbZj6ldP8ixB2Jl9RExKcE4PF42L9/Px4p6G6V6gPVrH10Cb76jt8gdhVSOV4OrTiAu6rrvb4r33KENJcqlRt0Wvsm4e5sVXpXs6ul+ORbr8Qn27jomI2ncrwI8UfipWtTUACV1p7K86kslL3Cli3g8eDPzGF5STEQmfiU0vESLO0C8NZ2vP2Gt3aD1rJkCWzapIZo60pZT9AgPuXprYhPe/aoWLJYYPbsFptHHC/BzKdolERGQmmpqhTUNJXJ1Sr//S+4XDBqVMdLCs2QkYFFA2egvlt6PqV0/yLEHYmX1ETEpwTgdrvZtm0b7u6YUxsB297awMZjLsd6y0/45nfvJro5CSdV42XjcysonXU+X154T6KbEnUMs/Hy/KFk9mw/3debXwhA3ZY9LZal7VZldz2mRyfzKVXjRUgMEi9dm4ICqLLltyy7C/o9lfYdRwALvXtHlrCT0vESFDgAvDUda39VVShjpkF8evppNb3wQuXb05UIBkWOX4lPgwZBYWGj5Y1L7nJzW2wecbw4nVg0sOueuIguxjUcObKNS1ZWBi+9pOavuy4+hmhpaWgWcATqu2XmU0r3L0LckXhJTUR8EpIGPaCz9PbXqLviGrJqDgJQt357glsldJTDj7+Npgew7dqW6KZEncovlfjkGRpBqgDAxEkA+L5c3uTj6u0lZFYeQEejaN6IaDZREASBnj2hwlagxKfyclUvBg3i046s8UBkWU8pj6YRsKqyKZ+rYwqHUXI3fHiw5G7tWuVcbbPBFVdEr63JQjDzqYdeBrrOqac2W97ZUe4MgqPdxUt8Mjy7pk5tY6X//hfq6pQZ2syZsW8UKPFJA4de3y09nwRB6PrYEt0AQTi04gA7n/8Sz4cL6bX9SwBc6T3JqCuFQ4cT3DqhI3hdXnJXLQTA4qlPbGNigL5O+T05J7ft92TQ55zj4AXI2baCgNuLxanq07c/txQHcKTXWMYOzI5VcwVB6KYUFEC1NQ+vzwJ6QHnY9OzZYDa+yh8a6a47ELA5AE+Hy+5alNwZWU9nnNEsJaiLYJTdZXh4+ek6Bo7OCC3bv1+VG1osMGdO547jcARHu/PEPONH10OZTy38qwwaZz393//FbxjIoPjk7IaZT+XlcPXVafTsWczkyYlujSAIsULEJyFhlG8vY/2pN5F/aANGsrauWSi//MdkjhwAv74dW6mIT6nIpv9+jdNTDYDV27XEJz2gk7VvIwC9Zkf2xDbijKGssvcg01vOvg/WUXzeMQDUzl+CA/BNjdHQzYIgdGsKCoLfq+QBZar0TtPgwAHQNBaXKgG9W2Q+YYhP4Ks1n1bSeJS7k08Gdu2CRYvUB13N68kgPV0JIvX1DM4rB0sj8cnIepoypUGk6jBG5lMg9plPO3fCkSPKO3zixFZWeuEFcLth3DiYMSO2DWpMWhqWYOZTd7OxefVV2L3bwtat+QQCiW6NIAixQsruEoDVaqVHjx5YrdZENyWhrL7lP+Qf2kBAs3K06BhKL76e7HdeYOa/ryR7eB8AnFUlCW5l4knFeCl9aUHDvMXXtXLHj6zaj9NdhV+zM+jkYRFtY3daKB+mXE0Pvv01ALrPT9YG9fq18Lzo3dymYrwIiUPipWvTUw20SZlWgD+AEp+CWU/eosFsOZAFRC4+pXq8+O3Ko68jZXeLFqlBAocNg4EDgWeeUWk0s2fD4MFRbmkSYQhLjQ3rIZQG1kbJXcTxEkfxyRAQJ00CpzPMCj4fvPmmmr/yyvhlPUGTzKfuJD75/fDaa2pe1+2UlEhuhNA+qf591F2R/+4EkJGRwYQJExLdjIRSubuC/E+D3zT3/4NZP2ia+5w/ujeHgAzXUfweP1ZH9+1YUi1efPU+cld82vC7zde1Mp8OfLwBB1BeOAJHZuTDuzpOOA42fkRg6TLgh+x9fx32+mrqbDmM/1Zk5XuRkGrxIiQWiZeuTUaG+jFMx62lpSr1AyjpPQH2QN++kftkp3q8BOwOrIDfZf6liJHoc/LJQEkJvPee+uB734ta+5KSHj3g4EFVF2Vw4ABs2KBK7ubObXXTiOMlKD45dDeVMS43a7fk7rPPlEibnx+fEe4aY3g+dTPxadEi9S9lsVhJT8/g8GHlqyYIbZHq30fdFcl8SgC6ruPz+dB1PdFNSRirf/USNn895YWjGHv1tBbL8wb3IKDZ0PQApZuOJKCFyUOqxcvm51fg9FThtyhhpquJT9VLld+Tb4Q5k5Sibyln09w9a/FVuTjwyhIAykZMx5EWva441eJFSCwSL12fggKosPUMjXgXNBvfkqZu2s2U3KV8vNhV2Z1Z8cnjga9V0qqyN3rtNZUhc8wx0NUffoxhEBuLT598oqbHHNPmMIkRx0twtDur7o2p0bbPB998o+ZbNRt//XU1PeccZSQfT4Lik113dyvxybDX0jQdXdfZsSNF+xchrqT891E3RcSnBFBTU8MXX3xBTU1NopuSEFxHXWS/+wIA6dd/H83SMqXZYrNQm6XMO8s3dW/fp1SLlyPPq1T80tEnAmANePF7/IlsUlTRNqqR7tInmxOfBs/sT0VGP/D72fXGKliqzPWdc6Pr95Rq8SIkFomXrk/PnlBpiE+HD8N6JaAvrx8HmBOfUj1eAg5VZxWoN/dkv3q1sgAqKIChgwOhrKeLLop2E5MPo+yusfgU4Sh3EceL3d6Q+RRLo+1168DlgtxcGBFugNlDh+BL9d3M+efHriGtkZaGZulehuM7dsDy5SqJ7tRTPdTU1LBlSzdS3oQOk+rfR90VEZ+EuLPyrjdweqqoyi1i0i0ntbqeO683ADXbu7f4lEoEfAGyv1Eld3lXnNXwubuqa/g+BXwBcg5sAqDPPHOlchYL1IxSvk+l//uA3P1KxBpyRRzNTAVB6HYUFEClNSg+ffWVUlGys/ny4CCg+4x0BzRkPvlMZj4ZpVrTpoG2ZrUqO8vIUH5PXZ3mnk8lJSp7TtPgpNbv4UzhdKJpYNO9Mc34MXSlqVPVd3IL3nxT+XhNmQJFRbFrSGsYZXfdyHD8lVfUdPZsOO449aJy9255PBWEror8dwtxxevy4nj5WfXLd6/EYms9BAMFSnyq2y3iU6qw+YWVpNeX43bkMPbaUEaPu7JrlN4d/HIXNl8dHms6RScOMr19xhyV55/zxfvoOhzpMZL+E3pGuZWCIAghCgoaZT7t3g2AZ8Q49uxT37/dZaQ7oMFhWjeZ+bR0qZpOm0Yo62nePEhLi2LjkpTmmU/GyRg7VgVXNLDb0SzgCMQ288kYnPDEE8MsDARCRuMXXhi7RrRFUHyy6V587q6TMd4atbXwzjtq/uKLobhYDXO3Z4+GVFIJQtdExCchrqz44/tk1pbgSi9g8p1ntbmu1luV3fn2ifiUKhz+n0rFrzxmDvYMOz6rutHvMuLTx6pcpbLvaGwO893noItV5pMeUHdV7inHx3UgHUEQuh8FBSHDcYP9+eMB6NcPcnIS1LBE4FCZT2bK7ioqYPNmNT/tGA/Mn69+OfPMKDcuSWnu+WSITzOimLUbzHzSCOCtj43osm8fbNumMp5mzgyzwpIlKqsrNzdo7JUA0tIwnCj0+q6RMd4WH3ygyiAHDYLjjoPiYh1N06mu1ppUeQqC0HUQ8UmIG54aD9rj/wag/sLLcWQ52lzfXtxHzRwW8SlVSF+pTLR7XDAHAJ9NvRX2VHUN8cm1XJXK+Ud1rE6l//h8juYObfi94GwpuRMEIbb07AkVtoIm4tNGuxKfulXJHTSIT2Ye7JctU5VYw4ZBzw2fQU0NFBbCscfGqpXJReOyu0AgJD61OlxcBwiOdgfgr4tNvdnChWp67LGtCK6G0fhZZzXESdyx2xt8UDV317hvagsjE+3cc1UVp9MJPXuq679rV+LaJQhC7BDxKQFkZmYyY8YMMjMzE92UuLLslhfIqjlEbWYhU/56SbvrZwxSZXe2su4tPqVKvBxcvp/sqn0ENCvDL5sCgL+LiU+2zSrzKeu4jj2xaRrUj1eld/XWTEZdEv1RklIlXoTkQOKl69NktLsgS6uV2bhZ8SnV40VLC5bduSMXOBr7PTWU3J1xRiumQV0QQ3yqqIBNm6CqCjIzVdldO0QcLw5HQ8ZPrMWnsElN1dXwxRdqPhFG4waaBsEY7erik8cTGnnwhBPUNLO2lqljHVgsFhGfhHZJ9e+j7ko3+eZMLiwWCw6H6ly7C5W7K8h66UkA9P/7EWl57fsk5AxX4lNaZfcWn1IlXna/pO7QywZMIKMgAwC/XV1nX23qp4/7673kHN4KQL+TO54ukHvxqehY2D/udDJyoj+Mc6rEi5AcSLx0fQoKwGXJxuO3qg+GDGHV9mwARo0yt69UjxfNaS7zSddDiT4njKsMCRRntW0b0KUwyu7KykIn47jjwNb+91fE8WKxgFXFZyzEp7IyNWIhtOIRv3Ah+HwwdCgMGRL145tBS1f3TVZvPYFAQpsSU1auVGMfFBYGT/m2bVguvJCr19wKaOzcmegWCslOqn8fdVfkaiWAuro61q1bR11dXaKbEjdW3vA4Dm8N5b1GMOXXkfkk9BipPJ8y6srwurrJmLNhSJV4qV+obkq1adMaPjPEJ2916r/B2/vpNiwBL/X2HPod17/D+5l6zXiqXv6QE974aRRbFyJV4kVIDiReuj49e4KuWSijJwEd6oeN48ABtcys+JTq8WI282nPHlX5b7fDpJKPlEAxcmTCBYq4YmQ++Xzw8cdqPsKSOzPxogdHIjSTlRYpn32mhMRRo6BPnzArGD5ep5wS9WObxRCfHIH6mJqvJ5olyqWB6dNVwhdPPkmgvp5eB7/G4ndL5lM34tAheOwxGr6XIiXVv4+6KyI+JQCfz0dpaSm+xjnwXZj9X+6hYOHLAOTddVObI9w1Jm9wD/wWB6BTuulIDFuY3KRCvAR8AXK3fg1An/NDN6UBh7rR99WkvvhUslD5PVUNGIPF2nGXcE2DGWf2IL8w+llPkBrxIiQPEi9dn9xclVRSYSvA74M9earct6jIvNl4qseLJV19J0U6jr1RcjdpEjg++UD90p2ynkD5H2WobGa2bFHTCM3GzcSLbpjB10U/U7rNkruqqtCFPvnkqB/bLBZDfNLrIw3TlOTLL9V0xgyUyjt/Pjpg1Tz08uyTzKdugssFP/4xPPoofOc7sHx55Num+vdRd0XEJyHmbL3xn1h0P0eGn8DYq6ZGvJ1m0XBlqeyn8o2HYtU8IQpsf3sDTk81bkc2Q88JlaTpjmDZXRcQn+q/UX5P3c+hVxCEVMZiUdlPb/f8PpXHncxXOSq7Y/ToBDcsAVjSlMARqZ+OUWV24vgKWLNG/TJvXgxaluQY2U8AAwZA/45n/7aKkfnkiW66j8sV0pbCik8LF4LfD8OHq2HXEoyWoe6bnF0486mkBHbsUH3TtGnAf/6jUtMAuz1AX+8eDh0CSWjp2ug6/P73IXP5qiq44QZ49dWENkuIMSI+CTFl9T8WUrj+E3TNwuD7bzS9vTtP+T7V7iyJdtOEKHLoDXWHXjn8uCaZbQGnuony16a++GTfqjKfd1DRkQAAlDZJREFUcqaL+CQIQmpRUADLc05iw5V/Zu0OZc7aLcWnYOaT5m0/pcTnC72Fn2lZop6URoyA3r1j2cTkxPB9guiOcteYDoxEGAlLl6pEt/79laVTC5Ko5A5AS0tD01TZnTv17TLDYmQ9jRkDObUH4d13AQgUF2O16Ay17gJg9+4ENVCIC88/r/79rFZ45BE4/XSlA999NzzxRKJbJ8QKEZ+EmFGzvxL/7/8EwJHTr6R4jnmPhEAvdZNXv7t7m44nPcHXw2lzmt2UBsWnWKTRxxNPVT05pTsAGHCqiE+CIKQWBQVqevQobNyo5rtjEqc1QwkckdQzbd6ssmZycqBo9+fqw5kzY9i6JKZx5lOsxCenEgYD7uim+zQuudOaV8xXViZVyR0AQfHJqccu8ykQgHfeUQ/8iTA1N8Sn448H/vtfpTgcdxz+k04CYGSaUp3E9yk27NsHa9eqKtrduxOTYbZqFfzjH2r+lltgyhSVBXXddeqz//2vIRlO6GLExnREaBOn08mQIUNwBr9ouyqrv/s3etSVUZ43hOlP/rBD+9D6KPHJt7998alu12G2/eZZep5/Iv3Oj7y8L9lJ9nipLamlx/61AAz6drOb0rSg+ORK7cyn3R9tRtMD1KYXMHpsYaKb0ybJHi9CciHx0j0wxKdt2+DgQTVv1mwcUj9erGkOvIDF2/4LEWN0tEnj/WhLg0/L3V18sljUU2KEmIkXzWFXM1FM92k8WmHYUe4+/VSpLyNGQHFx1I7bKdLSsAQzn2Lh+bR7N/zxj7Bihfp98mSYGsdb5kAAli1T8yeMKoWfv6F+ufpqrIcPY3E6GWTZCyC+TzFgzRr4wQ+aio65ufDww+rfIB588gn89rdKczztNLjkEvW5psGVVyrz8cpKKC0NfXeFI9W/j7orkvmUABwOB0VFRTiCKcZdkS2PLaLHV++jYyHvvrtIy+nY3+ooCqa3H27d80n3B1j7m1fZPvlirC8/z56fPtihYyUryR4v2178Bovupyq3iD6T+zVd2EXEp6OLlN9TTdGYlm9Ok4xkjxchuZB46R4YN/CffaamxcWQmWl+P6keL7bMyMvuDIun2XmrobpaPaGNGxfL5iUvRtndhAmQlRXxZqbixeRIhJGwZw+UlamKvrCXLslK7oCGzKdYGI7/97/w7W+HhCdQGX7xZP165e2TnQ2jN7yqshDHj4cpU7APHYrD4aCvR8SnWOD1wh/+oISnvDzlBZiWpoSe225T01gf/9574fbbobZWDeTwq181zUh0OtVgGKBelrRFqn8fdVdEfEoAXq+XI0eO4O2iToLuI1XU3qHK7faf9F3GXjK2w/vKGKzEJ3tZeM+nI+sOs2TC/2G9524sbhcAzjKTY3UmOckeL+Xvq9eK9ROmtVhmDBms16W2+ORZpfyeLOM7HsvxItnjRUguJF66Bz17qqmR9dTRkrtUjxdrunpIsfraz64xxKdjXMGSu+OPV5k/3ZG5c6FPHzUclQnMxIvFyHyKQBiMFENkGTeuwVIqREUFfK1G6U2akjtQ4pNFGY5HU3zavFmVOXm9KpS/9S31uTGAYbwwSu6mTQPLwk/ULxddBJqGt18/vD4fWd5SMvzVUnYXZZ59Vhm99+gBr70GH34I772nxhA4cAB+8QuVjdRRPB644w6VyfTuu6HsKl1X2W7XXKN8nkBlOD3ySGggzcYMH66mW7e2fbxU/z7qrnTTb9HEUl9fz4YNG6ivT+0H8tZYecXfcNaUUpY9iOOfvq5T+8oZrsSntKqWZXd+j5/N5/2UHrtW4LWmsees6wFw1lfire465zaZ40UP6KStUuJT3uktfSC6iviUtkOJT3kzkt+hN5njRUg+JF66B81LFzoqPqV6vDRkPvnafqo/fFiNyGWxQL8dQfHpxBNj3bzkZcwYZRIUdri41jEVL8HMJ6KY+bRypZoec0yYhV98ESq5M1ItkoFGhuPRFJ8Mne3445UIZYRzPDOfdB0WLVLzc0fsV6ktFktDY+otFqodDuw2nT6ePezZ0zkxRAixb58qZwO4+WblZQdqeu+9kJ6uBKKHHurY/n0++OUv4YMPlMB1111w2WXw4otw1VXwox/Bhg3qePfdBz/5CdhaMf+JVHxK9e+j7oqIT0JU2fL4YnK+eA8dCxl/uYus/M6lQuaPVuJTen05npqm38JLrnua/EMbcDuy6fnh85z6/NV4rUrsKNsko+PFg80vriKncg9+i4Nh327pA2EJDhmcykO2uA5Xk12xB4Di07uhQ68gCClPc/GpI35PXQF7ppH51PZTveH3NK3oALbdwTHhY2W0LQBgSVPXJpKSyEhpU3z6PElFxRgZjhvn4rjjVJnTyJHq91274neL9umnSuxyOuEEX1CFOuaYkBIC1Pfpg80OxfpufD54+eXEmKJ3JXRdjSDn8Sh/rzPOaLp86FAlFgE88wz89a9KgI8Uvx/uvFOZ+zsccPnlqqxy+3a45x5Yt059fskl8MIL7f/LGeJTe2V3Qmoi4pMQNVyHqqj55R8B2DfnO0z+3vhO7zNnQA4+q3obdnR9qCfc/cl2erz8bwB8N/2UATOKsFg1arOUWFW+sXWPqGQhEFCjDj3zjHoDcNllqTeyx6F7nwWgdMbZZPVp6QNhDGtNCr+V2P2BGhqqOqsfPQbnJbYxgiAIHcAouwP14NndxSeb393mA+1aNYYGJ6cFBYqJE5s8IAvRxxCfopXuc+iQKjO1WJRVVRN8PliyRM0nm4l8DAzHA4GWQlxBgSq/CgSUSBBrvF54MGjJ+t3vQtbyheqXZk7w7t690TSYNUiNePe3v6kSLUMQFszz9ttqUEeHA37+8zCjPqIqT6++Ws2/9BKcd54afe6FF1Sm0u23K4FpyZKmYuDeverz+fNVJtM996jR6958E773PZVUeOWVKnHy9tuhMIIxe4YNU9MdO9S/qtC1kNHuhKix/LJ7KagtpSJnICc+27lyOwPNouHK6k1O5R4qNh+m37QifPU+9v7gN+TrPkpGzWL2nSEJ35PXGyp3U7MjuTOfSkvh//2/lrX2778P11+fmDaZZf+XeyjcuBiAYb++POw61kyV+aS5U1d8Kl20jnygdkg3NZoVBCHlaSw+DRoU3mejO2DLUt9JNt2Dx9MwJkYLGka6qwmKT8kmUHRBrEbmUztZaZFiiC2jRoWJ99WrleNxjx4wNsm8HGNgOL5zpzL5TksLCc+apioOv/pKZSN1tBQ3Ul5+WQkVPXvCledVwpOr1IJmpZz1vdVL5LPH7aZmEjz6KGzapPyC/vhHNTqaEDlr1sCf/6zmf/CDtgd1vP56NZjlE0/AN98oAak577+v7N9mzYJVq0LPMRaLOs4JJ6jfc3LUc87/+3/m29y3r/qfdbnUoAFDhpjfh5C8SOZTArBYLGRlZWHpIsaVvnofS/7f8xQsexcdCz3uv4uMHtEb9tLTQ30R1e5UgtKX1/2H/MMbcTtyGP+/X6JZQhJ+oLAPAO49JvJF40xJCVx7reqwMzJUB26koIYb2SNZ42Xrb54DdI6MPJEBMweFXacriE+BleopxDml+avT5CRZ40VITiReugd2uxqsDWB0J6zrUj1eHFlK4HAE3K0+2Lvd6mHcEain7/7l6kMRnzqEmXhpXHan650/dpsld8awj8loIh8Dw3HjXEyY0NRnxyi9i7XpeFUVPP64mr/+eshY8blKnxk+HPqFRkm2WCxogwer+X17uPxyeP11ZU4OSuwQIufAATWKncejEsy+//2219c0VZb36KNKgDrtNDjpJLjiCrWfyy5TotKhQyo7assW9e8zdSo88IBpS7g222FkP7Xl+5Tq30fdFcl8SgCZmZkce+yxiW5Gpwn4Anzzxw8IPPJv8qr2AVByyhXMvTS6D+mBXr1hF9TvOsTi7/ybgteNcrvb6DmyqZGFpa8SqvwHklN8OnwYrrtOGf/16aM6+P791egfn30WXnxKxnip2FlOzyVvA1B463dbXc94y6x5U9PzSfcHyN6t6i8KT04N8SkZ40VIXiReug89e6qhtDsjPqV6vFjTHWiAXXe36nOzYYPyMJnuXIPd61F1IvLqvUOYiRdLcCRCe8CDz6cE085gCC6TJ4dZmKx+T9DEcDxank/GqH/NhbgRI9Q01qbjjz+uBKhhw+Dcc4GfB/2empXcZWZmMuqUU+Dhh2H3bggEyM+3MGOGytCqqYltO7sStbXKWLysTF3n3//enM46caL6ac7/+3/wyScqpsaNU5fQeLERTYYPV1lbW7e2nu2W6t9H3RURn4SIqdpXxYrzfoPz8B4cdVU43VVk6qoYty6tB/XfvopZ93876sc1BKWc1/6D3ecC4MjpVzLrzjNarOsoUutqh5PP86myUmU8HTigXvQ88kjohY9xX7tnj6pvbm0EiGRhzV2vUBDwUNZ7NCdcFu61osIQnyye1Mx8OrB0D053FT6rk+Gnjkh0cwRBEDrMnDmq5HvWrES3JIE4nWgWsAfL7sKxZo2azspeiVYGHHtseJMUIarYDPFJ9+D1ti8+3X23Mjh+9lno1avpsvLy0Mu8SZOabbhvnzLYtFqT00Te6Yxq2Z2uhzKGWhOftm5ViUixSCA5fFhlyQDcdBNYvO6Q31a4VJn+/dW1cbtVqUCfPmQFLUVFfIqc3/5WeXkVFMD990ev1NrhgNNPVz+xJNIR74TUQ/LUEkB1dTWLFy+muro60U0xxYrrHqVw02Jyy3eRXl+GRffhduRQdtmPGb35TU546HKs9uiHlCEo2X0uApqV6hvvZParP2lSbmeQMTi4blnyZT69/npIeHrssSaZxhQWqi8Gv1/VxDcm2eLFXeUm8111J5F+7XfDXgcDe5Yqv7Smqvj0gXoKKe87Fnt6kiuCQZItXoTkRuKl+/CjH8HHH6tnu46S8vHicKBpYNO9uOvCO44bfk8TfK2kiwgRYyZejLK7toRBA7dbmSiXlqrM8eYYYsuQIWGyMoysp2OOoUHVSCaM0e6iVHZ34IDScGw2lanSmIEDlZhQV6c0uVjw7rvqpeoxxwS1vmXL1CA0vXuH6v6CVFdXs/iLL/D2URYa7FEjDYv4ZI6NG1V2ksUCf/97ZCbfyUYkI96l/PdRNyU1nqa6IHo0CtrjyP4v91Cw6BUAqm+8k95zx5DZL5ceQ/OxpcU2jHpMGYofcDtySHvwHqZ9p/UUy9wRvakD0quSS3zSdTXSAyjDv969gUWL1F1TVRVaVRW/OmLl745fsHNnH4Il7422T454qSurY9ncn9GrvpyarD4ce+u8Nte3Z6fhB6y+1BSfXF+uJhPQx6dGyZ1BssSLkBpIvHQfopHAk9Lx4nRi0cAPeGq9QFN/Sl1XI93ZAh76la1Vd8lh67aESIk0XixpoZLI9kSX1atDg+Jt2hQs5WpERH5PyVhyB6HR7qKU+WScizFjWhrsW62qFG7DBuXf05YZdUfQdSU+AZxzTvDDRY1K7sJ0SLquoxcVwf79KkNt6lQRn0zy1FNqevrpsTeSjxVDh6rp4cOqZDPcYKNlZbRaPt0Yr1eJr5LAmhyI+CRExNafPEih7ufIiJnM/tN5cT32iIsmsKH2XxRNH0zB6F5trttzbB/2AXZPDe5yF84eyTGkz8aN6jvU4YB5J+nw8CPKza8R4yphpuMddu78QWIa2Q6VeypZe9KN9Dq4Dp/VScaf7sTqsLa5jSMnjXrA5k1N8cmxRfk95Z6YWuKTIAiCEAaHAy2YoO2tcdNcfNq3T5VsjfZtJN3uUaOhDRwY/3Z2R4LXxqZ72xVdvv46NL9pU8vlrfo9uVxqGC9IXhP5KGc+teb3ZDByZEh8Ovnkzh+vMRs3KusmpxPmzUNlMn3wgVrYhjt1oKgIli6VzKcOsGsXfPqpmm/PYDyZycpSo94dPKiyn5r/Ly9bBj/+cQaBwHhuvtnGZZe1LButr4dnnoGnn4a5c+EPf4hf+4XWEfFJaJdNz6+kcMOn6JqFwff9JO7H1ywaY6+aGtG62b0zcNuycPpqOLr+EP1nJodJqJH1NG+2j8y//wneekt9cN55St5ftw7n8x/Rv34H23ckrp2tcWR9CdtOu4H88p24HTlkPnY/Iy5qX5Bx5ASHtU7BzKeaA1XklqqLMehcEZ8EQRBSHqs1+IQSwFvb8sneEDXm5q7AUod6YpfX5fEhWBLZ1kiEBo3Fpy1bmvoVuVwhA+0WgstXX6kasKKi6Kf5RIvgaHfRMhw3ShBbS+ALZzp+6BBkZ0NmZueObdz7zp0LmU4f3HmnUgSmTFE/raAb12b3biAkPtXWdq493YFnnlEZZ7Nmpf44CcOHhxefjh6FO+5Q/8q1tTbuvdfB22/DVVcpj6uMDKVbPvigimVQ/nCx8jUTzCHik9AmekDn6B33kw8cOf58xs5J7p5M08CV3RtneQ2Vmw8nhfjk9cKHH4JV9/KjHT+F7Z+r3u8Xv4ALLlArLV6M87WP6Fe5i4/DjHiXaNZfez+F5TupzSyk90v/pDjCOHBkBz2fAh4CvgAWW+r0+rveWYcFqMwpZszgvEQ3RxAEQegsmkbA6gDq8bmaKhxHjsA//6nmZzhXQB1SchdPguKTYTjeGjU1KlMHVClNfb3K9jAetFeuVA+Z/fqF8bpZsEBNTzwxeUVFY7Q7vT6ikqK2KC1VD+GaBhNaeYdm2C5t2aKmH36oNKKxY0PlWx3BuPcFOPNM4MknYf16pWr99rdtqgCBoiI1ExSfDBGspkYJK8l66RLN4cOhMserrkpsW6LBsGGweHFT03G/H375S1VyN3hwgDFj9rF48XC2bYNf/arlPvr0UevW1ytPXUlkTTwiPiWAjIwMpkyZQlrz4uskZMVf5pN/aD1eWzoTHrou0c2JCE9+byjfTu2OxPg+/ec/yuDxppuU+v7FF2qku/MCb9Nn++cq//juu5sOOTRoEE4H9PXsYvfOAIGApeF7OdHx4nV56bFeGXTm/uvPEQtPAM7cUJvdVW7S89Oj3r5YUb5oDT2B+hGplfWU6HgRUguJF8EMXSFeAjYlPqmyu+BnAbjrLuUtMnqEn5F7g67jIj51ClPx0mAG37bh+IoV6noVF6uqyNWrVemdIT4ZWVFTmyfMu1wq/QFaH7s9GWhUduf16EDHlRaj/HD4cMi218MNt6ob1IwMpegMGcKwG36Kplk5ckSNSve3v6nzu3175/6ML79U9749e8K0jLXw+ONqwS9+ETQ+bUlDvLjUyNYcPAgeD1lZyow+EFDm6NEaua2r8eyzSpw59lgYPz7Rrek84UzHH31U9QEZGfC3v1koLCzmlls0nnlGVdS6XOpH19X7/SuvhP/7P1i3TmX3ifiUeER8SgBWq5XMzuayxgnXUy+QDlSd/z3yh/dMdHMiQi/sA9vBvbck7scuKwu9Od28Gf7xj9BbiItsb6DpqF6w+VjX/ftjz7TjwENO7UEOHOjPgAFqUaLjZevLq7D7XNSl5XPM+ePa36ARzpyQn4a7sj6lxCc9ON6287jUEp8SHS9CaiHxIpihK8SL3+5EgyaZT88/rzxEnE74y9WbsfzcpWp9hg1LXEO7AKbiJWgG317mkyEuHXecynwyxKczz1SfL1sWWt6EhQtV+kNxcXK7MAfFJ40AvnofYO/wrtYq20omTUK9Cf3qq6YrrFhBxty5FBVNY88e+OtfQ4tcLiVkWNu29mwVo+Tu7FPcWH9zp1KOTj8dTj211W0a4iUjQ/3/1dTA/PmknXkWFovaRU1NdMSnmhqlv8U6i2rJEiXkfec7sT3WkSNqVG2IIOtp5051MgcN6vgFjiZ+v1KHxo5V/9RBGotPTz2lMqA++kh9dscdMHiwFcgkMxNuvLH13Y8YERKf2gg/IU6kTg1MF6K+vp7NmzdTX5/8PjjHLvknpZfewJT7rkh0UyLG0k+9UQkcOBT3Yxs3PaCyi6++Wg2sUly/hcH1G1SnetZZLTe0WtGKi3E6oJ9nJzsbld4lOl5KXldZT9UTTjBdNmexWfBb1Bsrd2Xyx7tBwOsnd886APqellriU6LjRUgtJF4EM3SFeAnY1UsRv0tlPm3ZEnppdOut0O9wo6HSxCCkU5iKF7sdzQL2gKfNcjPjPmvqVBg1Ss0bpuOVlaHysRbik2F0ffrpyV23FRztDkCv69z/mVGuNHIkSnwCOOMMeOCBoCIFbN/e4PtkLDbo6Aj2VVWhQQW/lf6ecvIvLISf/azN7Rrixe0ONeSuu9Cee5asTDVqYjRMx996S/mdv/9+5/fVFjt2qD7lH/8ICYGxIBAI2WmNHQvTprWx8pdfwiWXwKWXqvLTK69U6UQ+X+wa2BaBANx2G1xzDfy//6dUzyBFRWqgpro6eOihkPB0ySVKRIq0fzH6CaNvEBKLfKsmAK/Xy6FDh/BGw0kwxmQUZHDik1elVMaKs0iJT1pJ/Mvuli5V03nzVFbxnj2qP7/I/iZpTtTQsvn54TcePBiHE/q7m4pPiY6XtGXqDiLnzI6NDOOzqXT7xiUOyc6+Rdux+1x4bJmmygyTgUTHi5BaSLwIZugK8aLb1AsRf53KfLr/fuVPM2tW0IaxveHBhIgxFS9OZ7ueT2VloXKwY48NPVRu3qyeYZcvV78PGdLsVqusLHSD1lhdSUZsNrCqx7POik9GudKwIQH4XL1I5Jxz4PjjQ4bf27czY4aaPfNMZcdkZBZVVXXsuB9/rP6nhg/T6ff5S+rDyy9Xfk9t0CRefvpTpTIA3H8/3z38NzQ9EBXx6X//U1MjXmJBIAC/+x0NsdzY0D3aPP64+lvS09UxW9VWq6rUBdZ1FWcejzJQe+yxFiNwx41//SukVH79taoOqawEVFLWD34Ao0erf9sf/1i9KPjpT9XqkfYv4Uz1hcQh4pPQ5cgcrBwmHeXxFZ90Xd3b9Pbs5YrjtvDUU+oGyB5wc7LnPbXS+ee3voPBg3E6oV8z8SmRHPhqLzmVewhoVkZ+b3qH9uGzK/HJU5U6b8oPfKhK7iqKx2O1SzcpCILQVQg4QplPfr8q2wL1YKPpgZBRjvg9xRe7PSg+tT7anSEWjBgBeXnqHsvhUKOg7dvXht/TRx8pNWDcOJVOkcxoGrpT3Td1RnwqL1eam6bBUN9m9UtGRkhUNUyyduzg3HOVRYThA56ToxZ1NPPJ0Pm+PXKlSr9KS4NzzzW3E4tFqQw33QTA7MMvclLFq50Wn7ZtC4lyR492bl9t8fzzqtTLoLFpdjT5+mulHYEy4m7T0+jPf1Z/9MCB8Omnqk7vJ8FRzJ94AoJ2E3Hjww+VUS6ozKfcXCWG/eAHUKKsU66+Gv77X/j97+H734fp080nLg4bpsKprCy211yIDHmqErocuaP6AJBefVgpQnFi+3YoP+Llrj3XMO7PV1C47B3+8x946spP6ZVerYZcaCsX1hCfPLvYsSNuzW6TXc+qN2VlAyeTWdgxnw+/kflUnTrik3tZ8Au4teFhBEEQhNTEHsx8crnZtQvcbvVMPmgQygulqko9LBtpNUJ8CGY+2XRvq+JTcz8nqzXkC7NpUxt+T0Z9VbJnPQUxxCc6Ud5qCCz9+0Pa8mDW07RpYA96SA0dqqY7dqCh07t36KHeSFDqSOaTrsOqVWp++p5g1tOZZ4YULTNomjJL+u53sVhgUP1mamvN76YxRvUlKJ+kWLB3r0roASWWQFPT7Ghx5IjyPtJ1OO+8dsL7ww+VCGuxKCUnPV0JsVdeqa5PIKB21tkTHCkbNii1E+B734Prr1cpXIWFqh/+9a+jdqi0tJAoJ6V3iUfEJ6HLUTBaZT7ZvHW4DnfwtU0HWLoURrpW0cdZhgUdfvtbMj55h1Gb3lBjlZx7btv+EcER7/q5d7Jzhx5P3axVvAvVDYt1dsdK7gD8jtQTn5zb1TjOeSeYM1gXBEEQkhynynwK1HvYoLp6Ro0Ci6bDq6+qDyZMaGJ8K8QBhwOLBo6Au9Wyu3CZTYZGuHixsjqwWJolre3Zo0w4LRY45ZSYND3qRCHzqaHkbhghv6cTTgitUFyszkltbQsVxhCfOpL5tHevyjAppIRe6z5RHxrlcx2lXz+sFsj0V3Uq8ykQUBqMQSzEp7o6pe243UoEveUW9fm2ber4ZtF1lZC0bVvT9+mffKIqGUtLlY5olKKFpaREZT2Byipqbrh/++3Qr58aCfEvfzHfSDPoujLduv56VfY3cybccINaNniwMsgClZIaRR8qo/TO8IcTEod8syYAh8NBUVERDocj0U3pkmT2TKPOkUu6p5LSDYfJ6NOBty0dYOlSmFjzBZmZqDc8jWurNa39lOOBA7E7NTID1diryzhypCeFhYmLF9dRF/m7lPfFwCs6Lj4FguKTrzY1PJ9cR2rJKd8NQPFpoxPcGvNI/yKYQeJFMENXiBc92PZAvYfNG9Vno0ejhlN6KZip8a1vJaZxXQxT8eJwNGQ+hTMcP3AA9u9X2U6N7bgM8ckwIx41qpm1kJHqMn16656byUaaum/S3J0Xn8b0LYdF69UvjcUnu10JULt2qdT9wsKGRUaSUkcyn4ysp8sdr2DxBJQSGOGoka3GS24uFitkeSs6JT6tXQsHD6pSTY8HKirUNBrdmd+vNJVHHlGCUFqaSiTq00edapdLHbt//8j2p+vKG/zhh2FjsJ8aPFgZbe/aFRLRhg6Fv/2tIWRaUlGhjLyrq5XodPXVLdfJylKK2bXXwnvvqUb/4AfmT4zXC/fco5zWf/KTltUDJSXwhz+oIQABJk5Uvzd+MT90qMrKqqtTwrFRHhoGM/3LyJHqnEnmU+KRzKcE4HQ6GTJkCE6ns/2VhQ5Rl61Mx6u2xsf3ye1WHqWTaj4nKxP4xS/gootCrylmzFCdeVs4nVj698MRzH4ySu8SFS+bn/kKa8BLdc4A+s8o7vB+dEN8qkmNzKc98zcDOjWZfcgf2iPRzTGN9C+CGSReBDN0hXjRgg8qer274aFu7tGXQnUyt9yiRg0ROo2peAmKT3Y9fOaT4fc0dmzIEBtC4pORVdLC7+njj9U0RUrugAYlQW9r2L92MMSnY+q/VPeiI0ZAr15NV2rk+9SYzohPK1eCLeBhdtnr6oNvfzvibVuNl9xcrBbI6mTmk6FDnnJKKLGxtLTj+zPYsgUuuwz++Ee1v/79lSDUv78SS43THKnv044dSvv5yU+U8JSernSgnTvVwHQffqj0GsMPqVUbs+pqlVW0fTsUFMCf/tR6RufEiUp8AnjySbjiipCSGAn19Wpov9deU9tdcw38/e9KRNqwQR37oouU8ORwwI03KrOqrKym+7FYQmJlO7WKZvqXkSPVVMSnxCOZTwnA5/NRU1NDVlYWNknrjgnenn2gdAu1O+IjPq1cCbk1+ykO7MKRblFv2E4+WXWwr76qaqojYfBgHF/tp59nJzt3TmH69MTFS+W7n1MI1B07E81i0t2vEbph7lqbGuJT2ecbyANqB45pb9WkRPoXwQwSL4IZukS8BB9UfC4Pm3fCtKqPGP32X8GBevi6/PLEtq8LYSpeHA40ixrtzuPWgab3HYafU3NxaehQ9TxtVOg08XsqKVFP8hZL06yfJEdLV+KTpYOZT4FASE8afCDo9zQzTAb70KGqfssYQjBIZ8ruVq2CqdUL6GEtV9lUs2dHvG2r8ZKTg8XaubI7nw/mz1fzZ57ixffRZywMzODIkXT69u3YPkFlIf3oRyrBKCdHiUYXXdQ0aWj4cDXS2tatMGdO2/tbt06JTlVVah+XXqoeIex2WLRI/Q2BgBoUrnn1XBNqa1XG0+bN0KOHSqEaMKDtg//gB8r87p57lNJl/G5kJhUWwlVXqaEmmx/r5pvVW3inU71wX7hQDSv4xhsq7ctg7Fi46642M5oYNkylqW3bplK9WsFM/2KU3e3Zo5rTWMAW4otkPiWAuro6Vq9eTV1dXaKb0mXRC1Xmk2dvfMSnhpK7LNAmTVLf3Jqm3qB+9lloSNv2CJqO93fvZPNm9bIqEfGiB3SyViuPgIILTuzcvoLeBakiPnlXKxMQ2/jUK7kD6V8Ec0i8CGboCvFiSVNPhUf2qVHVLil/VD0oXnIJ/PCHiW1cF8NUvAQznwB87qZeL7oe8ntqbibucIS8s+12lcDRgLHR6NEdM7xOFOmdK7s7cEAlnKTZ/eSu/1J9GE58inLmU2mp8nw6tmYh6RkoF2yrNeLtW42X3FwsFsjyd7zs7quvlECUnw/HLX2Qa7fezmllz3dq9LMDB0LC05gxSme5/PJm1WrPPMO3Vt2JVfe1m/m0bJmyQqqqUgMzvvmmShDq0UMlCJ11Ftx/PzzwQDvCk66rCox169TF/Ne/VM1ee2iaSgt75RV17UCpazt2qJ+lS+G665Q6tmqV8hL7979VCtaKFZCZCQ89pNK+HngAevdWSo/DAaefrtK2/vOftoUniDjzyUz/0qNHqLI0ViMPCpGRoq+tBKFtrP2U+OQ/ED/x6fyaz8nMo+UXfFsm480Jik99K3bxzDvKZHDWLDsDBsTXX2PPp9vJqDuKz5rGqEuPaX+DtgimjwdcqSE+pe1UdRh5x6dm5pMgCILQOlqaynyqKPGQmV/FIHarHJvrrjM/hrcQPYKj3QH4XR7A3rBo504lbDidMH58y01HjVIJHuPHN/O++eorNW1rpOEkxBIUn6zejt03Gc/ss3qsRSupVgLEuDADqDQa8a7Bn5SOZz6tXAmaHmBK4GusFlQGTDTIzcVqVVlx9ZVuwHzZr1Fyd/qceizvvIXNpiwuOmo6XlqqKtpKSpSW8sADYfTN116DBx5gSC2M4hy2bWteExpi4UKlF3m9KlzvuacT2TlffRUqb3voodCQkJGSkwN33qlSrowTpOsqS+6119S+Dd8mg9xcdSyjDvb44+Hll5UAfMwx5sTfCMUns4wYoa7X5s3NRGohrkjmk9AlSRuoxCfr0diLT0ePwp4t9YxxLVdm4+HeLkXKoEFkZcHEnJ04HCo99Jln7Pzud2OaZK3Gmn2vLAWgfMixOLI6KXwZ4lNd5wzHqw+7+OjsB1j77OrOtacNag5UkV25F4CiU1Mz80kQBEFoHc2pvtNsuoehdetIS0eZpuTmJrZh3R2bLSQ+1XmaLDISmCZNCu+BfNZZ6vJdemmjD3U9JD61MIJKbiwZnct8Mp7ZZ2hLgzMzwr8ILSpSmUkul3oqD2LoBB0Rn4rdW+hpr1LKydixHWh9GDIy0GwqgypQXml680AAPg9WH16Y9RHU1GCzQZ7vaIfFp1/8QmV59esH//wn5OU1W2HFioaR45xOGODezt69KiOtOWVl8OtfK+Fp3jy4775OCE+6HvKvu+ii4GgKHWTgQFW5MWWKSjn82c+Ulchpp6l/xEGD4Mwz4bbb4PnnQ8KTQUaGKrs0m3VoiE8HDqiSvihhlN5t3hy1XQodQDKfhC5J5hAlPjnKYy8+vfwyjHYtJzvNg61/n8hSW1tj8GCsFhiRd4SP36hh8YosfvMbqK21UFKi0bt31JrdJr4v1A2L/cTpnd6X8Za5M0MGA3z9o6cY8OkzHNm2Dr7z7063Kxx756sxWKuz+5FXnEIp+oIgCEJEWNLVd5Ij4FbiUxrh02mE+GKxgM0OeFsVn5qU3P31r8oE55lnmDy5JwsWNNtf43Sp/9/efYdHUe1vAH9ntmTTC0mAhITeO6J0pCiIBcUGVsR6bVcRy9WfYrvW67WLvXOt2JEuRUSlQ+glhA7pySbZZOv5/XGym57sJLvZlPfzPD7ELZOZ5M3s7HfP+Z7Kq241ce7iU0NHPnW3la5yN7iGEezuFe/S0mTfp9KLzPpOu9u6FehXtEEWToYO1TTlrlaKAhERCSCntPgUX9czKkhLk4U0kwlI3iwboesNQFRRFnbUo/h09KisLamqHOwTX3l3Tp0CHnxQLoEXEgK9xYLuaiqWCjnIrHJN7p13ZP2vTx/guee0TZioYvVq2eA7OBi44YYGbKgGHTrIzurlRsr5XGSkbI6fmSlz6aO/X3dtjE3HA4sjnwJAURQYjUYoHN7tN9G95cpyIQXpEC7ht+9z6pRcaWJQ4R9o0wZy1FNDfq/h4ZAbAkIyDuO884C4OAFVVVBQ0Dh/rlazFTFpWwAAHS5r+FB1d+PMhhSfcg6bEbPiawBAkLkBE/TrkL1OFp8snZrvlDueX0gL5oW0aAl5cRefDKUjn4JNqH5KEjWY1rwIvZxqV36ktMsFbN4sv/YMYLJYgB9+ANLTy0Y3Vea+ffBg7UvGB5gutKz4JOpxCXvwIAAh0D5X9rCstUFQNX2f6jPtrrBQft++Retlv6d6jDarLS+Ke2RivvaRT9tLB8xPSDoAddcOAGjQyKelS+W/w4eXW2nObAb++gv48EM5Hy8vTy6xdv/9AIAeBvnzrdxv6NAh2SsKkD27G1R4crlkY3FALr8XE9OAjdXB368BXky903p+cY98OnhQZqIhKydS/bH4FABhYWEYMWIEwiovL0k+06ZXHAQUqE4bCo/n+e37vPEGYLMKnK1bJ1+sfbGainvkVFoaAKBNGz1CQ8NgszXO0gwHvt0GncuGotB4JI1twCiuUu5P8FBS/+LTtge/gNEh5x0GWXIavE81cewobTY+oPkWn3h+IS2YF9KiJeRFDZaFCKOrBD3sO2EwgiOf/ERrXkTpSoQuq91z2969sggSFlZuVs+mTXKOElDzMIaalsdrBtzXTUZXiWcVP2/ZbHJkTqz9FEIc+bLK4n4jX53yfZ9K1WfkU0oKoDpsGODYCoMe9fq515YXNUrulFKgcTgWZG9sAJhS8r384qyzYNADIa4C5KVrawkhRFnxafJkAFarHIV3zjlydbm335a/gJgY4OWXPcOckm0HASGqFJ9efVXWjCZMqHmAmteWLpW/x/Bw4LrrGrixAHP3qaql+KT1/JKQIM8jdjtw001y5cGLL5bZpcbD4hO1SKZwA4qDogEAufvrOaG7DikpwLJl8gWlR/gpKEZj1WVY6qNS8akBH/bUS/avcspdUb/hUNSGf7LR0OJT7tECRC/90vP/QfZC2ApttTyj/kLSZPEpZiT7PRERtUT60uJTsvUA2hjM8rVba0Ne8o/SkU+ipKwg4J5yd8YZ5UaFuBv4ANUvXeVwlA2XambNxgFAHyavm4JECWwaL3fS0mQxo6+6B3o9ZLZrG/lVy8inwkK5LW9s2wZ0L05BhMkGxMY2rAVFNXRt5MWwvjBP82iw7duBIFcx+hxeJG+44QboSs8D9tPZmrZ14IBcAM5oBMYn7AOuvRb45hv5g0pOlhWp++4D5s+X0xiTkwGdDmGqBW0c6RXi+vffsm+3Xi/rVg1it8vV5ABZeHL/EpsrPzQdV1XZR33kyLKpkidOyAX4qPGw+BQAhYWF+Ouvv1DI8X5+VRIeBwAwp/q++ORyyZVEIQT+FfqG7BkxcmSlZVbqyf2CvXo1sH49QoKtKCoqRHp646wWZ9gsi0/h5za83xNQNnwc9Wycue2hLxHkKII5tiuEIvsH5KXl+mTfyjMfy0dYwUkAQNK5vep4dNPF8wtpwbyQFi0hL7oQObqmg/WgfMnu3Vu++yOf05oX98gnYSsb+VRlAJMQcol3t+qKT7t2yal5kZHNsrBYfuST1uKT+7360JDdchXHuhpOly8+lVZ1ytctvP1T37oV6Fu0oWzKXT2mZdWWF0Np8clkM3sGvXkjO1sWGIYXLEeYUiR7Fg0dCn27WACALjcLVg2Dn9yjnm5t+xNCbp8pq31t2sipEN9/L/shXX11WXXDYAA6doQpCEi0HsJBOQAKVqsc9QQAV15ZbvpefQgBPPsscPw4EB0NzJjRgI01Ee7i04EDqKnaWJ/Xo4kT5cqEixYBX3whb1u3Ts6SpMbB4lMACCFgs9kg6jORm7xmj5bFJ8sR3xafXC7g009lP78xtt8wpORP+eLS4I8tSp1xBjxL3d15J65ZegMGF65rlBNj9r4sRGUdAKCg29W+Garu7q+h1qP4ZD5ZiMjFctRTyD9vRnGwnL9uPuz7qXfHlu2R245MRkRi8/3EiOcX0oJ5IS1aQl7cIx4A2ZOXU+78R3NeSkfouEc+2WxlU6Y8A8vT0mSvJ6NRFjhycuR/5ZVf5a5BTXQCQw0xQVEAoyjRVGgByopPvYS8pqm13xNQccW7dLlIj8FlRXCQHPLkzdS77Gw5uqhf0Xq56nM9pzrWlhd9rCw+hTnzNfXqcfd7utD5I3QqgGnTAFWFrm0sVEX2fcryspWoEHLGQ7CzEJfsf1GOsBs/Hvj6a7miYE26doUxSM6UMJvloLxZs+TvKiICuPlm74+nWh9+CPzyi8z6E080YKm8JqRTJ3k8BQWoqTFXQ1+PevSQbbmcTmD58gbsK2nS/M7IRF4SbWTxyXbCd8Wnw4eB226Tq1uYnEW4X3lJfmA6a5ZcktQXunaVS5nOmAGYTIjP2YeHMx9GSYbGNW/r4dBX8iPGnLa9ENkxyifbdA8fV2zai09b/vUNTPYCFLTpjP73ToQtVE6ltJzw/cin3HVyyl1xZ065IyJqqQxhQZ6vudJdE+MuPlnlcJ+dO+UIkZiYcrO43FPuhg6Vo1iAqlNzmnG/JwCASRafguo78kkIdCjwotk44BmZAwD4+We5StuYMbjv5BwA3hWfli4FTPYC9FH3wGiAX37uamQEVFV78WnbNiDIZUFP+055w+TJAAAlLlZz0/EdO+RCQ+NLFiPCZJWjxl58EYiKqv2JXbtCVYC+wakAgDvukK3KoqOB//ynrMdWjXJzUWMVctEiuVweADz0kG96zzYFRqMsQAHVT707ehSmmTPR9c03oZw8Wfu29u+vMcgXXCD/Xby4/rtK2rD4RC2Wrp0sPjlP+6b4NH++XDxi61b5aekbvechwZglPzXy9XKm7dvLFTJ+/RWusAg5dPp0um+/RzWKfpNT7pxDfTPlDigrPqkai09OuwshS74DABhunQVFp8IeKVcCLD7h+5FPjh3yU0LjABafiIhaqohYI1QFMBrk+24Wn5oOJahi8cndtunMM8vN4nJPuRs1qmxKXfmpdxaLrBIAzbLfEwBP8UnrtDurVfYjbWs/jjBRKN/Au6fV1cb9mPfeA1auBFwu9ClYDwjh1Yp3ixcDvS2bERXhkoUs95QzX4qMhK4exaft24FuxTsRanLJHkzt5GrYiI2F3qCt+LR0KQAhcLn6PVQFwGWXeTe9sLSpezdF9tVyuWRz8S++kJMdqnC5gC1bgNdeA664Ajj3XODCC2Vx0N2Ey2KRG3jqKfn/118v96clqanvU3Ex8MADUA8fRmRKCoJnzpRLjzudFR+3e7es9F19NTBnTrXfYtIkOcAqJQU4dswPx0BVcJI7tVjGRFl8qtc6qpX88EPZ3OxRo4BHz9+MuMe+lTc8/LD/lvGNjIQzJhZINcOVneef71FKuATCd8niU/xU3xWfDOEmuADo7NpWFNn58UaEFaXDZgxH/9nnyH2MlCOfbOm+LT4Jl0DokV0AgJjRzXelOyIiql1wpBFdugKqAijx8f55o0z1Urn4tKd05pinPlhUVDYPb+RIOZph5cqKxacNG+Sb0MREubxVc2QyyQKpxobjv/8uf0Rjg/fA5IScV+RNP7OhQ4EVK+R0rSlTgO++Q5BiQ6irAGZz7cNyjhyRv6eZlg2IiIX/Cn6RkVB1QKjL7HXxqaRErpZ4YXEKgiMBDBxYdmestpFPLpecmtWlZDc6Ow/I6/4pU7zbkdLiUxccQkSYC5deruL22+VsxypOngSefLKs8uqWnS0LTV99JX9fP/9c1pDrnHOAu+7ybl+ak27d5DzH8n/fQgBPPw2kpkJER6OgQweEHD8uC3XffCOLn3FxcpWm338ve96OHXL0mMFQ4VvExsrI/vWXLKLeemsjHVsrxuJTAAQHB2PgwIEIDg4O9K60aMHJsvikz21Y8WnjRuD55+XXD1y0F1fmvQfl/0pPaOed5/dh3br4WKhqGvRm/y53d+S3gwguyYFdH4zel/juk2BDuAlWADq7tpFP2R/9hHYAzKOmwBAqL0iVNrLnkzPDt8WnjY8vRFhRBhy6IHSb3HybjQM8v5A2zAtp0SLyEhQkpwYBQL9+Ad2Vlk5rXtzFJ8UuKy5798rbe7lfltevl4Wl5GQ56ry6kU/uaXmjRzd09wOnntPufv1V/js5aTeUw6h7yp3bpZfKx3bqJAtQK1ZAp+YjypGJgoLai0+LFwOKcGG84Q/odWjQqs+15iUiQvPIp927ZVwGiBRZc6iu+GTNQoYXPZ/+/lu2FptR/D1CoyFHI9U5X65Uhw6A0YhIWPHbZyegJFfTXdzlkg3LX3tNjuwxmYAJE2SOhw6V0+s++EBOIdu/Xz4nOVmutjd1arPsbVan6kY+ffmlLEjpdMALLyCka1e5QNMbb8g5kadOlT1WUeS8utWrZaEuLU0WZCuZMkUWnxYtAm65pV698kkDFp8CQK/XI6qu+cHUYBFd41ACwFRQ/+LT0aNy+jscDrwY/BTG/7JIToFTVTlv/MEHfbS3NTO2bQMoCtT8PL9+n5MLtyAKQF6nwTCG+W4klyEsSBafHN4Xn3KPmBG7azUAoOPdUz236+Jk8alKc9EGyDmQDcObLwMAzDNuQ0hs827UyPMLacG8kBYtIi9BZT2fWHzyL615UUylvxubDTk5QEaGfCPoeb/onnLnLiy5i0+HDskqg6pWfUxzZDJBUeW0O28bjufkAH/+Kb8eaCzt91TXSnduqlqxUBUXB50uH9H2TJjNXWt8mhCy+NS/6G8k6U8CYWHA8PqPnK81L1FRUHVAmD0fmV4Wn7Ztk4Wx/iJFXrtXKj4Z9EBUURZ2efE24dtvZa/XyWKpnHJ36aXe7QQgf76dOwP79kFJOwRULj4JATz6qCyqAMCQIcDcuWU9zQBZZLrgAtlc/Phx+f1Hj26ZRSc3d/EpLU0uUZeRUfYzmj0b+qFDEQXIJvLnnCNXuczMlP+VlMj3aV27yma9mzfLol01xadx42St7/hx2WeOM7H9i8WnALBarThx4gQSExMRVP4iiHwqqnscTgMILs6B0+aEzljd+NaaFRUB994LFJpdeNwxF+OKl0HRlRadbrqprBGen6ltIiBcAgZzNlwu/73O2DbKJUHUIYN8ul1jhOz5pNdQfNr13yWIcdmQH98DfSb19Nwe1F4Wn5Q83zUcT7n2RcTbCpAb3wsj3rzGZ9sNFJ5fSAvmhbRoEXkpP02e7zL8Smte1CA5JE2x2zyjnpKTSxfvEqKsujJypPy3fXt5p8Ui53/Z7fKNZ3BwDc10molyPZ+sXnYsWLpUDp7p18eF8MOlPzxvRz5VFh8PVXcQMY6MWhuO79gBnDgBXGv+GuHtIEfgNGBUZK15KTfyKa1AAKh7eMr27UCCLQ2R+kK5X+5iJeAZ+RTtyKxz2t3Jk3JA3XjzEsSGl8geWQMGaDu4rl2BffuA1FTg7LMr3rd4sSyq6PXyjceVV1Z/sR8dLfvBthbt28uCZmEh8NlnZbdPmQJMn14xL+HhNRc+e/YsKz5VIyREDjJbtAj4739l7S8yUtZum+uaBU0Zi08BYLPZcOzYMcTFxTXfi7dmIKpTFE4pKhThQs6BbMT11dbX4ddfgWNHXLin4N84L2QZVINenpUaeSUJfXwEhBAIs+egsND7Ub5ahR6Uxac24zW+oNYhKLK0+OS0QrgEFLX2CwYhAPHzLwAA5ZKpFca/mhJk8UlvzvbJvm17dTXid/4GoahIeGeu5gJlU8TzC2nBvJAWLSIv7mXIdTrvR4ZQvWjNixpcNvKpypS7AwdkYclkku8OAfkGvVs32S34wAE5dAGQ7xj91YuzMZSbdpfv5cgn95S7y886Cuy2yJ9TfT8kjY2FTif7IdXWcHzJEiDedhwj8aeslVxxRf2+X6la8xIZCVUFdMKB4txiALWPUne5ZCyGWrbLP/l+/So2WSptOB7uzEV2ugO1vSX+7jvZG/QK3XcIMkKOtNE6N6u07xNSUyvenp0NvPSS/PrWW+VK1yQpCvDII3LaXGys7OWUlASMHQsoivfnF/dop337anzIhRfK4tPOnfI/t19+kTUw8h0Wn6jFUvUqLCGxCC3KQP7BTM3FpxXLBa5N/y+mGH+G3qgCzz4bkCVMdXHRUFSBSGcO8vL8U3zK3JmO0KJ0CEVFlwv7+nTb7uITANgKbQiKqP0CNHXxfrTJ3AOXqkff+86rcF9oh2iUADAWNXzkU+HpQjj+/TyMALLOn4mzJ1cdiktERC1M27Zyhdr27eUbdGoyVGPVkU+e4tPatfLfyoWl8sUnd5Pm5jzlDvAUnwzCCpu17lE+hw7J/lg6HTAuvnTKXc+eNXS09kJ8PHQ6INqagRM1FJ8cDjlYZ0ruAkRGCjkaLamaXka+YjLJJSphhz3LjLqKT6mpQEEB0Nu+HaYoVB2pFBUlr+3hgvVUDoDq3yPYbMBPPwHdinegl7JfZu+CC7Tvf03FpxdekI3ze/aUK9ZRRZMmyf8awl182r9ffsJdTeHwrLOAF1+UM/zy82UxNz9froDH4pNvsfhELZo1Ih6hRRkoOKSt71NWFuBc+yfOzf0a4d0APPGEHJMZACIqCqoqEOHIRb6feo4f/WU7ggHkxvdEcIxvG8maosou7kvySuosPh196xe0A5DT/2z0S4qqcF94xxiUQE6ldDkFVF39uwLuev03hBdnwRyZhBEf3VLv7RARUTOiKC1zZagWQBcqrw+qLT65V64aO7bik9xTqTZsKFseLwAfFPpU6Wp3CgQcxXYAtY/ico96Gj0aCDtaWnyq75Q7QPZ8UoFoeyb21DDtbtcuwJJTgomFPyG0LeRUMX9SFDjDIoGMLDhz8gG0q/Xh7rgMNabIWkP5fk8AoKrQt40FDmQgqCALFku8Z1BkeStWAHl5wD2W9xEWC+D88+v3KXCXLvLfw4dl5U6vB377Ta7WqNMBjz/u3cqEpF3nzvJnW1AAnD5dYzWp/Nu8/fuBTZvkwDTyrRbcpYwIcMbIFe+Kj2orPq1cCYzN+xnBwYDx2unyxSZAREwMdKUjn/xVfCpYlwIAcPT27ZQ7QI5Ac6ry00ybufa+Tw6rE1F/LgIAxN54cZX7ozpHy20KJwpP1TIW3AvFf8tphtax5/q0wToRERFppzPJ12Kd04aTJ+VtvXpBdtPetUveULmw5C4+7d4tRzX06AHEaxvp3uQEBXkGZzgKa79ucrlkyyCgdEBOiryea9CU0rg4qDrZD6mmaXd79wIjzEvQxlgAJTGxrA+XH4kwWfRx5dZ9MbxqFRDhyEEyjskbqunvpmsbC1WV0wuzaljx7ttvga7FOzECf0FRVWDWrPrtfLt2csqvwyH7ky1bVraU9g03VNsIm3zEYCgr/pVfGbMWsbHy35pyQfXH4lMAGAwGtGvXDgaDoe4HU4OIWFl8sp/UVnxau6gAgwrXyg83pk6t8/H+pIuNhd6gIsKZi7xc4Zfvod8tCzHhowfW8cj6cejl6Cdrfu0XUfu/2wGTLR/WoAj0mjmsyv2GUCNshjAAQH5aw1a8M+2Txxx9tn+OOVB4fiEtmBfSgnkhLbTmRRcsi08Gl+yynZgIhIdDdnsGZEElLq7ik9wrYrmNGdOQXW4adDoInRwF47LUft20c6dcBCwsDBgTukUW4XQ6YOjQ+n//uDg57a6WhuN79wicm/ONnLl6xRU+WQ2nrryIyCj5b17txadTp2RxrEdJCsLCIQsP4eFVH1jadDzKkVVt0/G9e2VT9Wk5HyAqCrIxUGKipmPyUNWyAshNN8leRrm5Mr833VS/bbZyms4vXvR9Kq9NG/kvRz75HotPAWAymdCzZ0+Y2GvA7/TtZOname596TorCwj64zcYhA0h/boE/NMIU0ICgow6GIQNhRkWn2+/OKcY0RnyZJx8kX+LT3WNfEr/Qa5kY+4zAqqh+l4FJSGy6Xjh0eqLT8IlsPW/K5G5K6PG75N/JA8ReUcAAJ0ualmrHfH8QlowL6QF80JaaM2Lu/ikF7LLtmfKnbv4VF1hKSwMSEgo+//m3u+plNMof2bOotqvmzZtkv+edaaA4d035f9Mm9aw0V/x8dCpQKQjB0VmZ7UPyd90AMnW/TCGG332IW1deVGi5MgnpaCWJfgg+1MDwLiYFOh1AAYNqv6BsbEw6Gse+bRkCdCpeA9G4w/ZH6q+o57c3H2f3KsH/eMfwAcfNO/m+AGk6fxSvu+TFzjyyX9YfAoAp9OJoqIiOJ3Vn9DJd0xJ8hMyNbvmQkRlK1cCI/MXITgYCL70fO0rWviY02CAM0j2YbKdbthon+qkLdwFRbhQFBqPuH5tfb59AHAa5AuDo6j2NYONG+QFZtjkmvs12MNl8clyovqm49tfX4OguQ9iz+WP1biNwz/LYen50Z0R0cFPywcGCM8vpAXzQlowL6SF1ry4i09GIa8VevWC7Pj899/yATWNanKPfoqKAvr6dtGUQHFfN9U18sndY/288HVyyl1QUMNH0kRHQzWoUOCCmpsNl6vi3TYbYNy3AwCgP3Owz1bCqSsvuuhIAIBaUDbyad48OWutfJFg1Sr575nGbfKLys3G3eoY+bRjBzAt632EhwE477yGN1S/+mo5PfGee4CFC4Gbb5bFU6oXTeeXnj3lvxz5FHAsPgWAxWLBpk2bYLH4fhQLVRTcUX7yY8zzftrdhp9OoZdli3wtnTLFT3vmPYvFArPeCAj/FJ+yV8lCTFG3QT7ftptLL5uI2gtqvojK3JOF6Kz9ABR0v254jY9zRsrik1ydpKr8FRsBALFHtyA3tfrH5P0uj9na0/c9rgKN5xfSgnkhLZgX0kJrXpQgIxSl0sinLVsAi0UORXC/gazMXXAaM8Yn07+aAmGsu/hktwPbtwOKcOHMTfPkjdOnV52aqJWqQhcvh35E2rNQVFTx7tRUoHPRTuh0QMhQ3xX76sqLvo0sPumKZPHJ5QK++EJOPfzPf+RjcnOBbdsAvcuGpILSBvSVm427xcZCb6i++ORwAJat+zC48HeYQhTfTI3r2hV4/XXguutQbXdz0kTT+cXdG+7kSdTYyKwcjnzyn5ZxhiaqQWQ3+QJsKvCu+JSZCUT8uQQAEDz6DLkkcxNgD5efKjkzfV98cm2VvY+MQ/1XiHGVXkTV1jgz9XM55S63fW9EdIqpeWMxsum4I6P6n4Vuz47SrwT2f/B7tY9RdsriU/DwltXviYiIqNkyyuKToXTkU8+eANaulfeNHl1zYemqq4D77gPuvbdRdrMxuK+bRHHN1027dwMlJcAE1wqEndwPhIYCM2f65Pur7eKhKECMI6PKe/W9e4EuJbtgMgFK/34++X7eMMTK4pOhtPh09Kg8fkAuHLdmjYyLywVMjtsCo2IHoqOBDh2q32AtI59SU4ERGT9BpwLG888FOnb012FRY4iIkE3fAa+ajruLTxz55HssPlGLFtNDnj1MdjMsebY6H7/yN4GReYsQEgyEXH6Bv3fPa85wOSxX5FQ/1ay+XA4XIo7IQkz8OYEtPhX/tk4+dnjtSyTrYmVhyplVtfhkNVsRlV42pLZk6Zoqj3GUOBB9fCcAIHFKyxv5RERE1CwZjVAVwOCyIT4eiIkWZcWnsWNrfl5IiJzSFBnZOPvZCFxBdRefNm2Sq/9eV/QOFECOqPHVz6C06XiUI7NK0/HUlCIkWNNks/F+jVd8CoqTH8SabGY4HLIINj3jdTyZdj3CHbl4/nng11/lY6fpfpZfnHNOze0zyhWfKo9w2bUL6GHZBlMwoJwz0U9HRI1KQ98nd/HJbJbTTMl3WHyiFi2kbThcOtlDIPdA3WMnt3y5Dwm2NITGGIEJE/y9e15zupss5vi2BH/8j8MIshXAoTOh0yT/NVYXQbUXnxxWJ6L2rQcAtL+89uKTPl4Wn5TcqoW4I4t3QxVOOFX5O485sB6WrIrDcQ8v3QedywarMQIJw5O1HQgRERH5h2fkk01OuUtLk9NkjEbgzDMDvXeNyn3d5BnaU43Nm4G+RRuQ4Dwqi05XX+27HXCveGevWnwq2rgbCgTUhPZATC0j1X0sKF4W1sKdeSgsBPbvdmBSzlcYHLQbM8SXyMyUP5NQpxm9Tq+WT6qtGXppw/FIRzZOnXBBlFtQet/mQiRZDyI4GDVP26PmxT1t14viU3g44F5Ej6OffIvFpwBRAtzEutVQFFjC5NS7vP21Nx0/cABot+VXKADCzj+7STUBVGLkvugKfDvy6eRiOeUuL7Ev9Ca9T7ddnjDKnk/OGnoXHPguBUH2QpQERaLLhX1q3VZQe3mho+ZXHfmUuVJOucvuNQoFER2gc9mw79O/KzwmfZk8ZnOnAVD1LfMUyPMLacG8kBbMC2mhKS+Vi0/r5IhoDB0KWQVoReoY+WSzyd5GQwtWITQEcoSPL/sIxcVBpwLRjswK0+6cTkC/V44eNw7xfXP32vKii4mEqsriUmEhkLPpEAzChuAQ4Gr9NzA5ZXOqCw1LEKTa5EgXz5KJ1YiJQVCwAp3iRNGJPKSlld1V+PcO2XA9KbFsGAw1OZrOLxpGPilKWdNx9n3yrZb5zquJCw8Px9ixYxEeHh7oXWkV7JGy+FR0uPa+Twu/s2J0/q8IDweCr7iwMXbNK+Hh4egxfDCgAMbCnAqfzDRUyd/bAADC35/qlC6D6qphyeCMH+QFprnPiDoLQiGJsueTsaBq8cmxtXT1lcH9UTLsbABA/k+rKzzGvllOM1QHtcwpdzy/kBbMC2nBvJAWmvNiNELVAXphQ58+kKu3Aa1u1BMACFPtI5927QLsVheGl6yGMQjARB9PDYuPlyOfHBkVRj4dPgwkF+6CqgLhw3075a7OvEREQFWBMGc+CgsBsUMWwUwmIFwpxANdvgMAXIIf5TTEiy+ufcVqvR66mCiEhsqpd6tXy5stFiD84DYAQMiIQb44NPIDzecX98in1FTg4EFUWcaxEvZ98g8Wn6jFc7aRK95Zj9dcfLLZgKwvliHUaUZIt/bAiBGNtXteCU6Uo33CbDkoLvbNNl0OF8J2yVFBsZOH+majNXEXn2oY+aTfIJuNh06qfcodAIQly59FkKVi8Um4BMIOyQvVNuMHoO30cQCAyB1/wFHi8DwmNFWOfIo9Z5C2YyAiIiL/MRrRNh7olmzDyBFCrnUPNGpfoaZCKb1uUqzVXzdt2gT0KN6GtsYcKBERwJAhvt2BuDiouqojn/btFehavBMmE6AOaOTfS2QkdKXFp0OpAu1ydkMBENQ1CQAwteB/+Hh2Cro698s5U+edV/c2Y2MRHi6LT6tWyZt27wa6W7bDYABCRg7y2+FQI2vfXjYet9uBGTPkaMEHH5RTe6vBkU/+weJTABQVFWHz5s0oqrx2KfmFEidL17ZTNZ89Vq8GRpxYAIMeiJp1aZNaqreoqAipuelQFCDSkYO8PN9s98hvBxFSnA27Phjdrxjkm43WJLjm4eOZuzIQnbUfgIIeM+su+rlXwguyF8JWWNYFMGvHKQQXZ8Ol6ND5/N7occVAlARFIchmxv5vtgEAMlJOI9SSCaGo6HxB7dP7miueX0gL5oW0YF5IC815MRoRGgp0SbBCzcqQ7/pUFejd27872hTVUXzavLnclLuxYwG9j1sn1NDz6cimTEQ5shAUrNY+pa0e6sxLZCRUHaDAhe1/FqFL8S4EBQHqXXcAbdtCyclG/y8ehqoAGD/eu+brsbEIDwOinVnYswc4dQrYneJAt+IdcqbnoEE+PELyJc3nF0UB5s4FzjpL/n2ZzcDKlcAHH1T7cPfIJxaffKvpvMNuRVwuFwoLC+GqY7gf+YYhQU67Exk1j3z66+O96FKyCxExeqjTLm6sXfOKy+VCgUEPnSoQ4fRd8en413KqW263M2EMM/pmozVQ3cWnEmuV+9K+3gAAyGnXG5Edo+rcVnhCOISiAwDkHc7z3H5skfyENDe+J0yRQVD1KsyD5Oo4Gd+slo/5VY6Mym3bC6YoU72Opanj+YW0YF5IC+aFtNCclyDZHxJ2O7BTTqlC9+6eQkxrogTXXHyy2YCU7QJnmlciJBT+WSCntOdTiKsARdll+2DZIH8vrs7dfP57qTMvQUFwGWRG0v5ORwdrqtyFgQOBa6+Vj0lPl//W1mi8vLg46PXAgARZYVi9Gsj8Yx8Mwgp9dATQsWP9D4j8ql6vR+PGAfPmyV/0v/8tb/vtt2qXtHOPfOK0O99i8YlaPFOSLD7ps6tvOH7yJBD3u5wnHnLhhEZducNb9vBw6HSyyWJ+tsMn2xR/yqluQeNG+mR7tVFMpReU1fQusPyxBQDgHOxdTwdFVVAcLH9HBYfLXhEK/5SFJWfv/p7boqeNk/+u/Ql/J1wKw4vPAAAcvVtmvyciIqJmy728lNXaqqfcAYASIgs7qq3qddPOnUCieQ/ikQ5jZDAwbJjvdyA0FMLd5D1TfnjrcgGGfbL4FHRGYH4v9hA5mikubT0UuOTshvh44JJL5JQqAGjXTo5u8Ubp8BZ38WnVKsC5eRsAQBkyqEnNhCAf0uuBSZOAtm2BoiJg7doqD+HIJ//gXxS1eKGdZfHJmF/9yKfF3xZiZP5ihIYC4bMub8xd85ozNNTTiNtyouEr3hWeLkSb47L3Uedr/F98UkNqbpxp2rsVABA90ft+BdZQWXwq/7PQ7ZEXqqEjygpLvWYOg9UYAYOjGBH5R2FwWCAUFW1njNd8DERERORH1Y186t+/5se3YJ6RT9UUn9atA84sWImQEEAZPbrs5+bTHVDgiimdOVBafDpxAuiQvxOKAkSPCUzxyRkqi08DCv8CAKj9S1fcCw4GZs2SX8+Y4X3RqLTC0D1aVhi2bgXapW+DAiB63CBf7TY1Rapa1hds8eIqd7PhuH/4b211oiYiqlscMgEEW7LgclV8PRICyPx0EYyiBEG9ugCDBwdsP2ulqrCFRAKWPJScygUQ16DNHfjfBgQJF8xRHdFnSIJv9rEWutDS4lOl4ePZ+7IQkX8MgIIu07xfcc8REQNkApYTsum4rcCKqNP7AACJ55VdqAZFBKHdss+Q/mcqTPERCGkfiahusYjoENGwAyIiIiLfco98stuBPXvk16105JMaYoITgK5S8clmA376UeCRgpWIiIfsbeQnIjYOwFHosmXxad8eFzqX7IEpCNAN6Ou371sbV1gEdAB6WTYDAKJGlduPa6+VP4/ERO83WFphCCvJQq9ewN49Aj0t2xAUBBjPGuS7HaemacoU4NNPgT/+kD2gIsreH3Dkk39w5FMAmEwm9OnTB6ZWOIc9EKK7y7NHkNOCvJOWCvelpQFDDn8HRQHa3HZ57UuyBog7L45IeRz20w0vwecvllPuSobWvbqcL7iLT5V7Fxz+QY56yo3rjrB2YV5vT0RFAwDsp2Xx6ciSPVCEE8WmGLQf0r7CY9uf2QGD7jkbva4ajORxXVp84YnnF9KCeSEtmBfSQnNeyo/gsVqBsDAgOdk/O9fE6WqYdrdiBRCacQhJrqMIjzYAo0f7bR+UePlBpyFXtq3Y9v0hBLmKoYsIATp39vn38yYvIkKOfDIIG4xGIGhIueKTogAdOmi7lo+XK2Jj715c0XED2tqPIdyZC0OY0ecN1cm3fPJ61K2b7CvncMg/rnLK93xim0PfYfEpAAwGA+Li4mBwf8JDfqWPCIHDGAoAyN1fcerdjkXHZMPCMD0MU6cEYvfq5M6LiJJTzRyZDZt2J1wCoSmy+NTmgrpXl/MFfZj7Iqpiw/GC32Xxyd5P2xLBShv5s3BmyuJT1krZ78nceQAUtekVEBsTzy+kBfNCWjAvpIXmvBgrLX7Sr1+r7bnj/tBO76hYfPr6a7nKXXQ0oIwYDoSE+G0f9AmyMBNkzsTWrcCpFXIqZPiZvf3ye/EmL6LcCnYmExq+EmKfPsDw4YDNhsmL78Flme8AAJw9+1TNIzUpPns9mlL6/m/Jkgo3u1sAO51Afn7DvgWVaZ1n9ACz2Ww4duwYbNV01if/KAmXn96YD1ZsOp63WM4Zt/ceCISHN/p+ecOdF1dUFADAlZXToO0dXZWK0KIMOHRB6Hn1GT7Yw7qVFZ8qXkQZd8pm45HjtRWfdHHyFUFk58BldwJL5QuGbhAbifP8QlowL6QF80JaaM6LvlI3kFY65Q4AgiLldZPLUoL9++Vtu3bJ/wZb1iEqCsDYsX7dB0N7OeI+uDATL73gxKScrxEdpa1Hpxbe5EWNKis+OROSK0yTqhdVBV5+GZgwAUGqHeNty6AoQOTZgxq2XfI7n70eTZ4sR8tt2QKcOuW52WAASt96+bXv019/yZnGrQWLTwFgtVpx6NAhWK1Vl50n/7BHyeJT0eGykU8OBxC8TRafwif7v+l2fbnzIqJLX2BzGlZ8Ova1HPWU22UojGGN86mOp/hkLys+mY+bEZV9EADQ6ZJBmrZnbCeLT0peLtbf9Tki0/ejxBCOXnMu8M0ON2M8v5AWzAtpwbyQFprzoigVR5u00mbjANA2OQhhoXLk0+zZ8tLvm2+AMEceBut3yjrdKP+2TgjuKEc+RdkzkbjxR3RyHEBs1wjZ0NsPvMmLLqas2ORpNt5QRiPw3HNQLr4YyclA1y5A9Nne9yGlwPDZ61HbtsCQ0oLqV18BGRmeeXbuqXf+6vu0fz/wz38Cl18OWCx1P74lYMNxahUMHdsDqUDm73sAnA8A2LXVhh75G6HTAW0vaZzpZw2hj5d9jnT5DSs+uf6QxSfD2Y1XcDOEm2ADoCtXfEr7YRsMAPKjO6FP1xhN2wtOlI8PO7kfxi9l08mSO+YgvncbX+0yERERNTajUXbVBoC+gWlq3RQowSYkJgIn00uQng7cey9w8CBwRtHfiIkWsleNu1+RnxgS46EoQDvbUVyW+Tbi4gDDnbcB5aa+NTZDbBTcg0SiR/swHzod8Oij0CUlQXfokJyKR63HlCnA5s3A//4n/zMagcGD0Tb6FaTC6LeRT2+9JRe/6tvXrzNomxSOfKJWodONEwEAHVIW4eRheVFz6PttMIoSKLFtoPbsHsjd84qhrSw+GQrqX3wqyihCzNFtAIBOVzde8ckYUdq7oFzxKW+V7Pdk7a19hcHQDvJnEVycDZ3ThvQuIzHi3xz1RERE1Ky5Rz516FA256U1Mpmg0wEDuxUiPExg925Zk5sY/CeCgwGM9P81nBIXC50KRDhzEGfIQ/TgzsBll/n9+9YmPFGOfDIYgLCz+vh244oC3HAD8NRTZSsvUutw3nnApElypURVlX9s69djgHUjAP+MfNqyBVi3TtY9b7/d99tvqlh8olYh/uIRcMXGI9SZj83/XQ0AKFklp9w5h41skqvcVWZKiAIABFnqX3za//l6qMIBc2QyEoYl+WjP6mYIkyvY6JxlQ2N122W/p9DR2otP4Z3KRjjZ9CHo/fkjrb7ROBERUbPnXvGuFU+5AyCLb0Yjgi05eOPGrVBVQBEujNLJa1d/T7kDAMTGwhQsL5HbtQOUOfdV7cvVyNr1jERiItAhWQf07BnQfaEWxGQCnn0W+Okn4M8/gQvkB9o98mXxydcjn4QA3nhDfn3JJUBS470lCzgWnwJAr9ejTZs20Af4BN6qqCp00y6WX//0I8xmIHa/nH4WP7VpT7lz5yUsWTZ+DLPmoL7Tm/N//QMAUHKm/5bmrY67cabBUQLhErBkWRCdvgcA0HGa9saVkR2jIBR5+rLc9E+0G9TOdzvbzPH8QlowL6QF80Ja1Csv7hEnrbjZOAC5CM6FFwIA+m2bj5deAu6/cC9idblyfs7ARuhJZDQisW8UunUDQiaNAUb493rZq7x0747IbvEIvnhSWaGSWiW/vR7p9Z7ibvLpDQB8P/Lp99+BHTtkzeuWG1pRt3Gw+BQQwcHB6NevH4KDgwO9K61Kt/umQqdX0DV7A756cAsSrakwGBW0OX9YoHetVu68RHdpDwVAuDMX+XlC83ZcDhfCt8viU9wlgSk+AQK2QhsO/bQDinChMKw94gdoLxwZw4zIv/E+ZE29CcNfvNS3O9vM8fxCWjAvpAXzQlrUKy/dusl5KH4udDQL11wj//39d4zteATTE/+AAsh+RI1UANaNGwtD2zbA7Nl+/15e5SUsDFi4EHj6ab/vDzVtfn09GjoUABCdtR+hzvwKxac9exq29pPLJXs9AcD1lxUh9h+XA++/X9brroXjR1cB4HK54HA4oNfroaqs/zUWQ3J7lAwcDsPmv9DzqycBAMVd+ga0caI3PHmJjoJOBwinHfknChHfNlzTdg4t2ovgkhzY9SHoM137VLeGMEWZPF/vTxwPhz4IQQAsPeu/HyNf989qK80dzy+kBfNCWjAvpEW98vLss4DZDMRoW4ikRerYERg7Vg6T+N//5NJYQONMuXObO1e+W26Ev3ev88JzD8HPr0cxMUDXrtDvSEWfok1Iz5K9gzdsAJ656RBie7bBB99Get21JSND9ndKTQV27wYOHQIiIoDrS94FTpwAFi0CZs707TE0UfzrDYCioiL89ddfKCoqCvSutDrtbp8GAIiznwAAGBtxxbf68uTF4YAjSC6FYDmRW+tz/n74J2xoexH2L0jx3HbyGznqKbfncBhCGreRos6oQ0bfCfJrlw1BtgIAQPiUxh2B1Rrw/EJaMC+kBfNCWtQrL3o9C0/lXXut/HfhQmDXLvl1Y48Ka6RiD88vpIXf83LmmdDrgT6WjcjOln2afn1mG549NAOXrrobKdu9m4WyeTNwxRXAM88AX30FpJS+NXvo0gMw/fCV/J8HHyxbbKGFY/GJWpW2l4+BEh3t+f8OVzSvYd3WUHlBZjlR83jPnOMWGN9+DWGFp5B13zNw2pwAAPUvWXwKPjcwBZ9xG15Et/Q/EbP2Z+g//Qi6jz7AkIfODci+EBERETV5gwcDffrIKTlCAN27A/Hxgd4ropavtPjUt2gDioqAtWuBXn9/DAUudC7ZjXXv7qxzEytWAHfdBRQVyRnF11wDPP448NUXLkze+rwcVThhQquaZsziE7UuBgN0l1wEAFAjIxA2rG+Ad0gbe7gsPu36PQcOR/WP+fO+BTDZzQCAqOxUbPjX98g5kI2Y07sBAN1vaMTh2pUYw4xoNyQBPS4fgJ7TB3GFOiIiIqKaKErZ6CegcafcEbVmQ4ZA1atIsB9FtD0Dnz95CAML1yFETkKB8dcfUFBQ89O/+gp4+GHAbpf1pc8+k63TLroI6LbvV2D7diA4GJgzp3GOp4lg8akGqampuP766zF48GCMHDkSQ4YMwfvvvx/o3SIf6DF3BuJG9UT7h29odvPG2/WWxSfdquW4+3Y78vMr3n9kXwlil84HABT2lM3ygj55B3teWQIAyGnbGzHd2zTeDhMRERFR/U2cCHToIL8eNy6gu0LUaoSHQ+nVyzP1buiez6EoQPvhnRAUBAzNWYZlP1Q/5e+nn4CXXpKDFa+4XOD5C/+A8ZP3gG++AZYtA15/XT7wlluAtm0b8aACjw3Hq7Ft2zacffbZmDp1KjZs2ACDwYB169Zh8uTJ2LhxI957771A7yI1RHw84pb9L9B7US/Jd14E847foR5fjsgfc3Dr8f/g8f9GoE8fef/a+3/EEEcOXO0ScMYfr2FDz+sQmXMIxs/kSc41gj2WiIiIiJoNnQ54+23g5EmgX79A7w1R63HWWdAv2o3R+b+il2ULoqOAoOeegOHmJ2HckYaj7y+BuO6yCo3Ht20DnntOfn3HZemYlf4ClPt+r7rtzp2Bq65qjKNoUhQhhPY121uw/Px89O/fH0VFRTh8+DDCw8tWFHvyySfxxBNP4OOPP8YNN9xQ57bMZjMiIyORn5+PiIgIz+1CCDidTuh0OijetsmnVqtKXv74A8X3PYIT+y04qiRjXsIzaDuuN8YOt6HDXZcgxpGB6JceQbvbL8WujzdAuesOz7aMX36GblP7BPBoyN94fiEtmBfSgnkhLZgX0oJ5IS0aJS/r1+P4xXfCXCBnwHaaNgTBn78Hywf/w5F7X0FaUC90WjvfMwjg9Gng+uuBnGyB2R2+xdW5b0KxWORCCuecI3u35eTIfx96COjbvNq/1KSmmkd1WHyq5IUXXsC//vUv3HrrrXj33Xcr3Hfs2DEkJycjMTERaWlpMBhqXzFMyy+CSJODB2G/azYyUk7BnA8cMvXBiaAuGJ2/EEGJcei68yfPqgmrz7gP8Xt/R7EpBoPTl0DVN6+phkRERERERI2qpASn+4xHTrodMdFAuy9fAcaMAfLycLTfFBTm2rHm5vm45uleyMiQzcT373XhPueLmK4ukN1dBgwAHn0U6NIl0EfjN1pqHnwXWskHH3wAABhXzZzqpKQkdOnSBSdOnMCKFSvq/T0sFgtSUlJgsVjqvQ1qParNS7duMHzxKRJvmISuPfU4I3g3xpoXQqcD4uZcX2G5zl7v34/sxAGwzbyFhadWgOcX0oJ5IS2YF9KCeSEtmBfSolHyYjKhzdn90SERiB/Wuazhf1QUjJPGAwCcC37AhAnAjBnAgb1O3JP7BC4TC6DqFNlh/IMPWnThSSv2fConMzMTBw8eBAD06VP91KR+/frh0KFDWLZsGaZMmVKv7+N0OpGbmwun01nvfaXWo8a8xMQAzz4L4/05aPfrr4j98ReI4FAYZk6r8LB2QxLQbv9HjbjHFEg8v5AWzAtpwbyQFswLacG8kBaNlRfDjMtgSN0L3HN3hYWq2v5jGop/WoYx+QsR4ipARnQvDFK34+zgNTAGqcDTTwOTJ/t135ojFp/K2bVrl+frxMTEah+TkJAAANi5c2eV+6xWK6xWq+f/zWa53H1BQUGFuajux7hcLhRUs0aju8+UxWKp8gdlMplgMBhgs9kqfC8A0Ol0CAkJgRAChYWFVbYbGhoKVVVRXFwMh8NR4b6goCAYjUbY7XaUlJRUuE9VVYSGhnqOpbKQkBDodDqUlJTAbrdXuM9oNCIoKAgOhwPFxcUV7lMUBWFhYQCAwsJCVJ4BGhwcDL1eD6vVCpvNVuE+g8EAk8kEp9NZbcXb/TMsKiqCy+WqcF9tP0O9Xo/g4GC4XC4UFVVdwSAsLAyKolT7u6ntZ+j+3QDV/wxr+924f6ZOp7PKc1VVRWhMDHDddSiZNg1CCJTY7XJdT5T9brT+DMv/bqr7Gbp/N77+Gbp/N7X9DBuS7+pyWD7f1eXQm3w35GdY3e+mrp9hbecI97Hb7fYqeeE5okxLOkfU9jOsK9/ufbTZbFW+L88RUks7RzTkOsJ97JWfB/Ac4dbSzhENuY5wq/w9AZ4j3FraOaIh1xFu1f098hwhtbRzREOuI9yq+9349BwxciTw668AgFCXq+xn2LMHEsZ2RPuDaeirWwJVtxSqokAYDLA8/jicI0cCpb+Hln6OqC5vNWHxqZycnBzP1+UbjZfnnseYkZFR5b7nnnsOTz75ZJXbt2/f7gkcAERHRwOQF/u7d++u8vizzz4bALB3794qv8xevXqhbdu2FUZpld/ugAED4HQ6sWXLlirbHTFiBIxGI1JTU5GdnV3hvi5duiApKQl5eXlV9iksLAxnnHEGAGDr1q1V/mCGDh2K0NBQHDlyBKdPn65wn3uqYmFhIbZv317hPqPRiBEjRgAAduzYUeWPYuDAgYiKisKJEydw7NixCve1a9cOPXv2RElJSZVjVRQFY8eOBSB/hpVfHPv06YO4uDikp6fj0KFDFe5r06YN+vXrB4fDUe3PcNSoUdDr9Th48CByc3Mr3NetWzckJiYiJycHe/furXBfeHg4hgwZAgDVbvess85CcHAwDh8+XCVb7dq1AyBPKpV/5yaTCcOGDQMApKSkVDlhDRo0CJGRkTh27BhOnDhR4b6EhAR0794dFoulyj7pdDqMHi1Xxtu9e3eVk13fvn0RGxuL06dPIy0trcJ9sbGx6Nu3L+x2e7XHOmbMGCiKgv379yM/P7/CfT169ED79u2RlZWF/fv3V7gvMjISgwYNghCi2u0OHz4cQUFBOHToELKysirc17lzZyQnJyMvL69CkRmQJ/wzzzwTgFzpsvIJdsiQIQgPD8exY8dw8uTJCvclJiaiW7duKCwsxLZt2yrcZzAYMHLkSACyWF35Ba5///6IiYnBqVOncOTIkQr3xcfHo3fv3rBardUea23niI4dOwIA8vLyqvzd8BwhtbRzRMeOHdGpUyeYzWbs2LGjwn11nSN69OgBQL6mVd4uzxFSSztHNOQ6on///gCA48ePV/nd8BwhtbRzREOuIwYOHAgASEtLq5JvniOklnaOaMh1hPv1aN++fTxHtJJzREOuI5KTkwGgys8BaLxzhPqPWxF28CCCjx1De7MZkSUlyL/qKmw3GoFyz2/p54jqilc1YcPxcubPn4/rrrsOgByVVF3n/Llz5+Lpp59G165dq5yQqxv5lJSUhOPHj1dovmW1WrFr1y4MGjSoQqXfrSl+GsFPLKVAjXzasWMHBg4cCJ1OV+G+pvppBD+xDOzIp5SUFPTv37/Kogg8R5RpSeeIho582r59O/r16wdjuV5xAM8Rbi3tHNHQkU9bt25F3759ERQUVOE+niOklnaOaMh1hPsNXO/evREcHFzhfp4jpJZ2jmjIdYTL5cKWLVvQq1cvT9bdeI6QWto5oiHXEe7iXXV54TlCaqxzhNlsRocOHbjanVbfffcdLr/8cgCyQFT5QhwAHn74YTz//PPo378/UlJSat1eTZ3fbTYbMjMzERcXV+33ICqPeSEtmBfSgnkhLZgX0oJ5IS2YF9KCeWk6tKx2x2l35binNwGyKhkTE1PlMe4qaNu2bev9fYxGY409pYgqY15IC+aFtGBeSAvmhbRgXkgL5oW0YF6aJ667Xk7v3r09U+1OnTpV7WPct/ft27fe38dutyM9Pb3KsDqi6jAvpAXzQlowL6QF80JaMC+kBfNCWjAvzROLT+XExMRgwIABAFBtI3CgbEW88ePH1/v7lJSUYO/evVXmmRJVh3khLZgX0oJ5IS2YF9KCeSEtmBfSgnlpnlh8qmTGjBkAgLVr11a5Lz09Hfv370dMTAwmTZrU2LtGRERERERERNTssPhUya233oq4uDh8/fXXVTrKf/zxx3C5XJgzZ06VVTuIiIiIiIiIiKgqFp8qiYmJweeff46CggLcddddnnmkGzduxHPPPYfzzz8fDz30UID3koiIiIiIiIioeeBqd9WYPHky/v77bzzzzDMYPnw4QkJCUFRUhKeeegp33XUXdDpdg7av0+kQHh7e4O1Q68C8kBbMC2nBvJAWzAtpwbyQFswLacG8NE+KEEIEeidaKrPZjMjISOTn5yMiIiLQu0NERERERERE5BNaah6cdkdERERERERERH7D4lMAFBQUYM2aNSgoKAj0rlAzwLyQFswLacG8kBbMC2nBvJAWzAtpwbw0Tyw+ERERERERERGR37D4REREREREREREfsPiExERERERERER+Q2LT0RERERERERE5DeKEEIEeidaqpqWHXS5XLBarQgKCoKqsv5HtWNeSAvmhbRgXkgL5oW0YF5IC+aFtGBemo6aah7V0TfSPlE5qqoiODg40LtBzQTzQlowL6QF80JaMC+kBfNCWjAvpAXz0jyxTBgAxcXF2LNnD4qLiwO9K9QMMC+kBfNCWjAvpAXzQlowL6QF80JaMC/NE4tPAeBwOJCRkQGHwxHoXaFmgHkhLZgX0oJ5IS2YF9KCeSEtmBfSgnlpnlh8IiIiIiIiIiIiv2HxiYiIiIiIiIiI/IYNx/3IvZCg2WyucHtBQQGKiopgNpvBxQapLswLacG8kBbMC2nBvJAWzAtpwbyQFsxL0+GudXjze2DxyY8KCgoAAElJSQHeEyIiIiIiIiIi3ysoKEBkZGStj1EES4V+43K5cPLkSYSHh0NRFM/tZrMZSUlJOHbsGCIiIgK4h9QcMC+kBfNCWjAvpAXzQlowL6QF80JaMC9NhxACBQUFSEhIgKrW3tWJI5/8SFVVdOjQocb7IyIi+MdCXmNeSAvmhbRgXkgL5oW0YF5IC+aFtGBemoa6Rjy5seE4ERERERERERH5DYtPRERERERERETkNyw+BUBQUBAef/xxBAUFBXpXqBlgXkgL5oW0YF5IC+aFtGBeSAvmhbRgXponNhwnIiIiIiIiIiK/4cgnIiIiIiIiIiLyGxafiIiIiIiIiIjIb1h8IiIiIiIiIiIiv2HxiYiIiIiIiIiI/IbFJyIiIqJWxL3WDNecISIiosbC4hMRURPlcrkCvQvUxAkh4HQ6AQAbNmwI8N5QUyeEgMvlgqIoAOD5l6gmLFASEZGvsPhUD+4LfaK6sHhAWhUUFGDy5MnYsGEDVFXl+YZq5HQ6oSgKdDodduzYgeXLl8Nut/PNIlXLnRdVVbF//36MGDECL774IgAWGKii8tcu5QuUzAlVh9e6pBWvbVsvFp80ysjIwI8//oi8vLxA7wo1Ye4XYlVVYbPZsG3bNmRkZAR4r6g5SE1NxfLly/HYY48BAHQ6XYD3iJoa9/lFp9OhpKQEDz/8MAYOHIjnnnsOBoOBo1mogsp5uf/++9GrVy+sX78e+/btg91uZ2YIQMVrl+LiYnzyySf49ddfsX79egAcKUcVuYuRqqqipKQES5cuxa5du5CZmRngPaOmjO+lWzcWnzRasGABbrzxRqxZs4afAFGNVFX+aX3yyScYOnQoLrjgAnTo0AG33XYb/vrrLwD8pIiqFxERAb1ej+XLl+OHH34AADgcjgDvFTUl7vPLxx9/jMTERLzwwgsAgFtvvRUOh4PnFgIg3xgKITx5+eCDD5CQkICXX34ZJpMJycnJ2LdvHxRF4fUMASg7t3z66acYOXIkfv75Z9x55504++yzcfvttyM7OzvAe0hNibsY+eGHH2Ls2LF49dVXMWbMGJx11ll45JFHkJqaCoAj5qgivpdu3Vh80mDfvn147733UFBQgA8//BAnT54M9C5REySEgMViwd13340bb7wRO3fuhMFggMPhwKeffopnnnkGhYWFnos8ovJ27tyJNm3aAADmzJkDANDr9XyBJg8hBKZOnYqbbroJubm5mDhxIv7880+8/PLL0Ov1PLcQAPnGUFEU/P777zjjjDNw6623Ii8vD9OnT8eePXvw7rvvYv369cjOzmYBiiCEQHZ2Nq699losX74cX375Jb7//nssXrwYM2fOxLvvvouvvvqKOSEPIQQeeOAB/Pzzz56sfP/99+jWrRuef/55TwsBjpgjN76XJl6heslms2HRokUYPnw4TCYTFi5ciIULF8Jutwd616iJURQF27dvx7x583DWWWdh6dKlnv/v2bMn1q1bh23btgV6N6mJcV/QR0RE4LHHHsPQoUNx+PBhvPTSSwA4Uo4q0uv16NChAz7//HMsX74cw4cPhxCCo+TIw+FwYO7cuRg3bhy2bt2KM888E0uWLMGXX36Jjh07wmKxIDo6GkuXLgXAKVWtnaIoWL9+PWw2G+bPn49evXrB6XSid+/euO2229CnTx/8+OOPLFSSR2pqKlasWIG5c+eiQ4cOcDgcGDduHN577z3cfPPNOHToEG666SYsX7480LtKTQDfSxPA4pPXjhw5gv79++Odd97B888/DwB4++23cfDgwQDvGTVFv/zyCyZMmIC//voL5557LiIjI3HTTTfhzjvvRH5+PkJDQwO9i9TEuN/4bdy4ERaLBfPnzwcAPPLII8jMzIROp2ODRgIgs5KdnY1HHnkE11xzjacwqSgK9Hq953F8g9i6lZSUYNOmTdDpdHjzzTexfv16TJo0yZOLkSNHwm634/Tp0wCYFwKee+45z4qILpfLM4qyd+/eiI2NRW5uLqxWKwuVBAD4+++/sX37dgQFBQEom7bZuXNnvPLKK+jVqxd27dqFl19+2dNyglovvpcmgMUnAGV9ESp/XV737t1xzjnnAABuueUWDBo0CCkpKfjiiy9gsVgadX8psGrLi/vr3NxcXHjhhVAUxTMSwWAwoG/fvhg/fjwSExMbf8cpILw5v7jvA4A2bdogKSkJPXr0wPTp0+FwOPCvf/0LADidqhWoKy/uAuSUKVOQnp6OgwcPYt26dXj//fdx11134aWXXsKXX36J/Px8vkFsBWrKi8vlQlhYGLp06YKrrroKd9xxB4CyFe9cLhfatm2LwYMH47fffgvY/lPjqe3c4nK54HA44HQ6cfToUZjNZqiqCkVR4HQ6ERwcjODgYFxxxRWeQgPRnj17AMBTwHZfozidToSGhuKVV15BeHg4Vq1ahU8++QRmszlg+0qBx/fSBLD4BJfL5emLcOLECc+Lr1vlC3+Hw4Hg4GD83//9HwDg/fffx5YtWxp1nylw6sqL+0LNbrfjqquuAlCxX09CQgIyMjKwYsUKbNmyhXOdWzgt5xd3oSA1NRVHjhwBAM+Uu48//hibNm2Coiiw2WyNeATUmLzJi3v1w/z8fCxYsAAzZ87E1Vdfjdtuuw3z5s3Dgw8+iGuuuQbnnHMOFixYEKhDoUZQW17cbwKHDx/ueS0qnx9VVeFwONCvXz+kpqbi6NGjLFa2YHWdW1RVhRACXbp0wcaNG/HII494RqooioLMzEyUlJR4suTG0XItk3s07aJFizxFgeqm/peUlACA55rFnSn3eWby5MmYOXMmbDYbli1bhkWLFvl936nxeZsXN76Xbt1affFJVVVkZmbi1ltvxWWXXYahQ4di1KhR+Oijj5Cbm+u5GHO/wLqnNFx22WWYOnUqMjIy8MEHHyAnJydgx0CNp668APJF95ZbbqnwPPenjF9//TV27dqFO+64A8OGDcNFF12ELVu2cDpVC+Xt+QUoO8eEhobijDPOAAAkJibiiSeeAADcd999AACj0Vjh8dRyeJMX9+99wIAB2LVrFzZv3gyz2YykpCQMHz4cnTp1QkREBDZv3ozbbrsNy5cv5/mlhaotL+5rkrCwMPTu3RsAqpxv9Ho9unXrhpycHJw6dSogx0CNw5trF4PBgGuvvRZ9+vTBO++8g0mTJmHChAm4+eabMXPmTLhcLsyfPx/fffed57qFBcuWSVVVpKWl4bnnnsN7770HoOr5AwC6dOkCAJg3bx6AsqITUFaI+uc//4k+ffrgyJEjWLFiBbKyshrlGKjx1JWXyvheupUTrZTL5RJCCPHzzz+LwYMHi+eee07k5+eLefPmiREjRghFUcTkyZPFxo0bqzzX4XAIIYTYvHmzMJlMQqfTiW+//VY4nc5GPQZqPDXl5a233qqQlw0bNtS4jczMTDFs2DCh0+lEz549RUxMjFAURYwePVqsXLmysQ6FGoG3eSl/fnGfP+644w7x+eefV9hWYmKiUBRFLF68WAghxOuvv17hMdS81Scv3333nZgxY4Z44YUXxLJly4TdbhcFBQXCbreLP/74Q1x22WVCURQxbtw4sX///kAdGvmBN3k599xzxdatW+vcRmpqqlAURSxYsEAIUXZ9Qy2Dt+eW9evXe56zbNkycdFFF4moqCihKEq1/4WEhIjrrrtOrFu3LlCHRn5UWFgorrzySqEoihg0aJBITU0VQogq73NSUlJEQkKCUBRFfP3111Ue487f888/LxRFEf369RObN29upKOgxlI5LwcPHhRCVM1LeXwv3Xq12uKT25VXXineeeedCrdlZmaKMWPGCEVRxMCBA8WSJUuEENVflM2ePVsoiiImTJggjhw50ij7TIFTXV4yMjI8eRk0aFC1eSksLBQPP/ywuOuuu8SxY8dEenq62Lhxo7j00kuFqqri7rvvFvn5+Y16LOR/Ws4vVqtVuFwuce2114pdu3YJIYQoKioSQgixaNEioSiKiImJER07dhSKoohrrrlGZGZmNu4BkV95c35ZtGiREEKIrKwscfjwYWG1Wj2PtdvtFZ43Z84coaoqC5UtlJbzS/lslHfo0CHRq1cvcd111/l9fylwvMmK+9wihBAlJSUiNTVVfPnll+Lss88WI0aMEFdffbUYO3as6NKliwgKChKKoojevXuLbdu2CSFqf6NJzcvatWvFueeeK5KSkoSiKOKBBx6o9nFHjhwRl156qVAURYwfP15YLBYhRFnRyZ2JvLw8z7bchW7mpeXwNi814Xvp1qVVF582bNggFEURP//8sxBCngjdBYM///xTXHDBBUJRFNGlSxdRWFhY4bnuk2Z6erpITk4WiqKI1157rcIbAWpZasvLunXras2Lw+EQ6enpFf5fCCHS0tLExRdfLDp16lTlOdS81ff88o9//EP8+uuvFbaVlpYmoqOjhdFo9BSeahvVQM1PQ84vNdm5c6cYPHiwGD9+vN/2mwKjIdcvlY0aNUpMmDBBZGdn+32/qfF5m5XOnTt7smKz2TzPnzZtmli9erXn+tZsNosffvhBTJs2TSiKIq666qpGPiLyp7S0NPHOO++Ibdu2iU8++USEhoaKhIQE8ccffwghqn4Q/9prr4nY2FgRHBws5s2bJ4QoKz6Vf/yzzz4rFEURV199dSMdCTUGrXkpj++lW6dW3fNp//79AFBh9Q/3fOURI0bgzjvvRO/evZGWloaHH364wnNVVYXL5UJ8fDweeOABAMA777yDvXv3NuIRUGOqLS8jR47EnXfeiT59+lSbF51Oh/j4eACyCZ/7eZ06dcKNN96IU6dOebZPLUN9zi+FhYXYt28fhg0bBkA2lf7HP/6BLl26IC8vD3a7HQDw6quvYtCgQZ6VFKn5a8j5pSY9e/bEhAkTkJWVhfz8fP/sOAVEQ65f3Nw9Wc455xxs3brV00+OWhZvs3L48GFPVgwGAwC5AMaOHTuQnJwMo9EIp9OJ8PBwXHLJJZg/fz6SkpKwbt06HDp0KABHRv7QqVMn3HbbbRg4cCDGjh2LqVOn4tSpU3jrrbcAyOtZUW61xAsuuABDhw5FSUkJ3n77bRw+fNiz+A5QtvjBeeedh/DwcADyOliwb2WL4G1eqsP30q1Tqyw+uf8I3Ks0/PLLLwDKGuW57x8zZgxuvfVWAMCbb76JP//8E0BZB393M7U777wTw4YNw969e/H555+joKCgkY6EGoO3eRk7dmyFvKxbtw5A1RUf3C/EbtHR0WjXrh0iIyP9dATUmLScX2677TYAMi9r165FWFgY+vTpA7PZjNdffx2JiYl47733kJSUhI8++gizZs0CANxzzz0VtknNl6/PL25OpxN6vR5RUVFwuVw8v7QQ9T2/VL5+Kf+c3r17o7CwEKtXr66wDWreGpoVAFiyZAnS09NhMpkqFK2cTidCQkJw2223wWq1IjExsXEOihpV586dcdVVVyEhIQE//fQTvvrqKwAyO+73QF27dsU111yDHj16YOfOnfj3v/8NoCxn7seFhYUhKCgILpcLqqqyWX0LVFteasL30q1Pqyw+uYOemJgIk8mEQ4cOVaiylj9RTps2DRdccAEA4JlnngFQVjxwV/YVRcFjjz0GAPjoo4/w+++/AwC2bt3K0SwtgLd5CQ0NxSWXXOLJy3PPPQegarHJzf2pkKIo6Nu3LxISEvx2DNR4tJxfyuflpZdegs1mw6pVqzB27Fjce++9cDgc+Oc//4k1a9bghhtuwGuvvQaTyYQvv/wSq1atgqIotS5nS02fv84v7tsdDgcuv/xyv+0/Na76nl+effZZANXnJSkpCSaTCSkpKRW2Qc1bQ7MCyOsUd2HS/XpTfpW7w4cPY8iQIdDpdHwtamHcBYMRI0Zg+vTpKC4uxttvv43c3FzPiBX3Yy6++GLMmjULoaGh+Oijj/Dll196tmOz2QAAcXFxKCwsxKBBgypsn1oGb/JSHb6Xbn1aVPGpuLhY08ksPDwcJpMJW7duRUpKSrXPTUxMxPXXX4+goCAsXry4yqfN7sr++eefj4suugi5ubm4++67kZSUhHvvvZcn1ybM33lZtGhRraMT3Nn5+++/cfvtt3s+WaSmyd95+eWXX3DixAlceeWVOHHiBKZNm4Y1a9bg1VdfRadOnWC1WhEWFoYnnngCAPDGG28AqLn4QIHVmOcXdyG7PEVR4HA4sHPnTkycOLH+B0KNIpCvRyNHjkRcXBwOHjwIoPo8UdPRGFlZu3YtADl1FwD+9a9/4fDhw1BVFTqdDqqq4siRI0hPT8c999wDvV7P16ImSmte3NwFxtjYWFx22WUYOHAg1q5diw8++AAAKoxeCg8Pxy233IKHHnoIADBnzhzMnz8fADzTeTdu3IjRo0fj2muvrbB9alr8mZea8L1069IiXinsdjs+/PBDfPvtt5qG6Y0aNQoDBgxAXl4eFi5ciIyMjCqP0el0OOusszyfCP3www8AKv4RuS/k3Bf46enpuOOOO7BmzRrPCzc1HYHOS15eHlJTU3HixAn8+9//Rnp6OiZMmACAL8ZNUWPm5aOPPsJjjz2Gb7/9Ft99952n95PL5fJcwD344IP46KOP8P333/vg6MjXAnF+cfdU2Lt3L1JTU7FlyxacOnUKTz31FPr3748xY8b45uDI5wL9egTIYtOwYcPw448/ep5HTU8gsjJ58mRce+21OHbsGK655hq88MIL2L17Nx566CFcf/31mDx5MiZPnuybAySfqm9eqjNw4EBcc801UBQFH330kWcEXflCdkxMDB599FE89NBDsNvtmDVrFi6++GIsW7YMTz/9NJ544glcddVVnKLZRDV2Xirje+nWo9kXnywWC5555hlkZ2fj8ssvR0REhFfPc3+y98gjjwAAvvrqK/z555/VfuLXoUMHjBo1CkajERkZGbBarRXuV1UV//vf//Dggw/i+uuvx8mTJ71uCEuNKxB5cQ85tlqtuPPOO9GjRw+ceeaZ6N27N06ePIm5c+ciJCTER0dIvtTYeTl06BCcTicuu+yyCttxf8LofnG+4YYbGnpo5AeBPL/s2rULs2bNwpAhQzB06FB06dIFJ0+exJw5c3x0dORrTeH6BZCFhzZt2mDGjBmw2+38lLkJauysZGVloaioCICchvfqq6/i1KlT+PzzzzFr1izk5ubi559/xh133OGjIyRfqm9eahIaGorzzz8f5557Lvbt24d58+YBqP6D+KeffhorVqzA3XffDYvFgjfffBP5+flYtGiRp28lNS2ByEtlfC/divhw5byA+Pjjj8V1110nzGazEKLi8p7eci8zO2nSJLF///4K97m39/vvvwuTyST69u1b5fkWi0V89tlnYsOGDfU4AmpMgcyL0+kUU6dOFcHBwWLKlCli8+bNDTgSagyBzEt9vhcFViDzsnjxYjFs2DDRpk0bMXXqVLFly5YGHAk1hqZw/eJeBptLWzdtTSErRUVFoqCgQJw6daoeR0CNyRd5qczhcIjPPvtMREZGivj4eLFixQohhLy2La/y9yooKGjw9yb/CmRe3PheuvVo1sWnnTt3ivbt24uPPvqoXs93X3Rt2rRJKIoiFEURTz31lMjMzBRCVP3jGzhwoOjevbswm818Y9gMBSov+fn5nucWFRVVueijponnF9IiUHnJy8vzPD8/P1/s3bu3AUdBjYXnF/JWU8oKs9P0NTQvtf2Ojx07Jm644QahKIq45JJLhN1ur+9uUhPBvFBja9bT7j788EM4HA5MmzZN0/Pcw43dfTLOOOMMPProowCA9957DwsWLAAg++8IIWC32+FwOGA0GpGcnIzw8HD25mmGApWXiIgITw+NkJAQdO/e3YdHRf7C8wtpEai8REZGep4fERHB3gjNBM8v5K2mlBVmp+lraF7K/44rT8/s0KEDpk+fjo4dO2Lp0qX4/PPPAcgpdxaLpYF7ToHAvFCjC0zNq+GKi4tFcnKyuOSSSzy31fUJjdPprHDbr7/+KmbPni2EkJ8MzZgxQwQFBYnExEQxf/78KtsYMWKEWLx4sc+PhfyPeSEtmBfSgnkhLZgX8hazQlr4Ki/3339/lW27H5OVlSUeeOABoSiKiI+PF7NnzxadOnUSCxcu9OWhUCNgXigQmm3xaePGjUJRFHHHHXcIh8MhbDab577yX7u5hx0LIcTevXvFjTfe6Bl+/NtvvwkhhDh8+LB48sknhaIowmQyiRdffFEcOnRIpKSkiEsvvVRcddVVIicnh8OOmyHmhbRgXkgL5oW0YF7IW8wKaeHLvKxZs6bK4939ej7++GPP44YMGeLJFjUvzAsFgj7QI68qc7lctXbDd9u0aRMA2R1fp9NBp9MhKysLb7/9Nk6dOoWCggKMGDECF110EZKSkqDT6WA2m/Hf//4X7777LjIyMpCQkIAnn3zSs8x9x44dMXfuXCQnJ+Orr77C888/j19++QUlJSWYM2cOpk+f7tdjJ+2YF9KCeSEtmBfSgnkhbzErpEUg8jJ27Ngq21dVFSUlJfjss88QExODV155Bdddd53Pj5cahnmhJi3Q1a+afPfdd+KPP/4QO3furFB9dTcre++994SiKOKCCy4QhYWFYv78+WLUqFFi+vTpYty4cUJRFKGqqhgyZIjYunWrEEKI//73v57K68MPP1yhgutyuap04DebzWLv3r01duanpoN5IS2YF9KCeSEtmBfyFrNCWgQiL5XNnTtX3H///Wwe3QwwL9QUNbni008//SQmTJggJk+eLPr06SNCQ0PF1KlTxfLlyys8zj1keNy4ceKNN94QTz75pDhx4oTn/q+//lqMHj1aKIoihg4dKqxWqzh+/Li45ZZbxKFDhzyPq+mPgcONmwfmhbRgXkgL5oW0YF7IW8wKadEU8uIuTlqtVj8dJfkK80JNWZMqPs2fP1+MHj1abN68WQgh56U/8sgjwmg0CkVRxLx580RRUZEQQoiVK1d6Kq/Tp08XWVlZQoiyOao2m02sWbNGtG/fXiiKIl599dUK38vhcPBTnmaOeSEtmBfSgnkhLZgX8hazQlowL6QF80JNXZMpPlksFjFp0iTxn//8RwhRFnyr1Sref/99oSiKCA8PFy+88IIoKCgQ+/fvFwMHDhSKooiLL75YCFH9JzivvfaaUBRFJCYmerbJoX/NH/NCWjAvpAXzQlowL+QtZoW0YF5IC+aFmoO6u5E1kpMnT2L58uWIjo4GAE+jNKPRiJtvvhk333wzCgsL8dZbb2HBggXo3LkzevToAUVRkJWVhcOHD0NRFAghKmx32rRpGDRoEE6ePIl169YBAPT6JtdnnTRiXkgL5oW0YF5IC+aFvMWskBbMC2nBvFBz0GjFJ5fLBQBVAu128OBBAMDRo0fhcDig0+kAAE6nEwDwyCOPYMyYMTh27BheffVVnD59Gtdffz1CQkJw8OBBLF26FACgKEqF7cbGxmL8+PEAgIiICN8fGPkF80JaMC+kBfNCWjAv5C1mhbRgXkgL5oVaAr8Xn9x/KKqqIj09HRkZGSgqKqryOLvdDkVRcPToUbhcLs8flk6ngxACnTp1wi233ILk5GSkpKTgzTffxAUXXIDzzz8fGRkZmD9/vqca6/4jA4Dg4GCYTCaEhYUhJCTE34dLDcS8kBbMC2nBvJAWzAt5i1khLZgX0oJ5oRbF/zP75JzTxx57TAwcOFAMHTpUJCQkiDlz5oidO3d6HvP3338LRVFEcHCwOHbsmBCirFO+e/6pxWIRN954o9Dr9aJPnz7i4MGDYvv27WLs2LFCURQxefJkUVhY6Nmm+/n//e9/xTXXXNMYh0o+wLyQFswLacG8kBbMC3mLWSEtmBfSgnmhlsLvxaedO3eK4cOHizlz5oiCggKxevVqcdNNNwlFUUTnzp3Fhx9+6GleNmbMGKEoirj33nuFEKJCB33318uWLROdOnUSoaGh4p133hFCCLF27VoxcuRIT8O0DRs2eJ7nXiZyyZIlQgguK9vUMS+kBfNCWjAvpAXzQt5iVkgL5oW0YF6oJfF78empp54SN954Y5XbH3jgARERESFMJpN4/vnnhRBCPP/880JRFGEymcTevXuFEHIZx8quueYaoSiKuPPOOz23HT16VFx11VUiIiJCKIoirrzySjFq1Cgxffp0sX37dj8dHfka80JaMC+kBfNCWjAv5C1mhbRgXkgL5oVaEr8Wn8xms0hKShK33367EEJWXN1V1xMnTojHHntMKIoiFEURf/zxh1i3bp0YPny4UBRFXHvttVW2537uqlWrhKIoomPHjlWWety0aZP45JNPxGuvvSa+//57fx4e+RjzQlowL6QF80JaMC/kLWaFtGBeSAvmhVqaBhWfyg/lq86BAwdEaGiomD17thCiauX16NGj4tJLLxWKooiJEyeKnTt3irlz54rg4GChKIpYtGhRtc8TQogzzjhDJCQkiMOHDzfkEKgRMS+kBfNCWjAvpAXzQt5iVkgL5oW0YF6otan3anculwuqKp++fv16rFu3Drt370ZBQYHnMRaLBRaLBQsXLkRBQYGn275bUlISHnroIYSEhGDlypVYtWoVLrzwQpx33nkAgNmzZ8Nut3uWinSz2Wzo1KkTTCYTYmNj63sI1IiYF9KCeSEtmBfSgnkhbzErpAXzQlowL9QqNaRytWPHDnHeeecJo9EoQkNDRVhYmJg0aZI4dOiQcDqdIj8/X/Ts2VPExsaKBQsW1LiduXPnCkVRRPfu3cWxY8fEypUrRffu3YWiKOKee+4RmZmZQghZtXVXbkeMGCGmTJlS4TZq2pgX0oJ5IS2YF9KCeSFvMSukBfNCWjAv1NpoLj65hwd+/fXXIiQkRCiKIiIiIoTRaBQmk0koiiKmTp0qNm3aJPLz88U555wjVFUVs2fPFnl5eUKIql3yjxw5Irp27SoURRGvv/66EEKIhQsXCkVRhMFgEPfee6/IysryPP7o0aNi0qRJYvny5fU+cGoczAtpwbyQFswLacG8kLeYFdKCeSEtmBdqzeo18slqtYozzjhDKIoiHnnkEbFnzx7x22+/iddff12oqioMBoN4+umnhRBCPPHEE0JRFDF48GCxcuXKarfndDrFiy++KBRFEUOGDBFFRUVCCCHmz58vRo0a5ankzps3T7zyyivi7LPPFk888USd82SpaWBeSAvmhbRgXkgL5oW8xayQFswLacG8UGtVr+LTTz/9JGJjY8XatWur3Pf888+LkJAQMXbsWCGEEMePH/cs2fjggw+K9PR0IUTViu0ff/whunTpIrp37y5SUlI8t+fl5YkPPvhAXHnllWLmzJni1ltvFWlpafXZbQoQ5oW0YF5IC+aFtGBeyFvMCmnBvJAWzAu1VvUqPi1YsECcc845ori42LPko3uuaGZmppg4caIwmUzi4MGDQoiyim2XLl3Et99+W+02T548KSZMmCCMRqPneZXnn1qt1vrsLgUY80JaMC+kBfNCWjAv5C1mhbRgXkgL5oVaq3qtdnfkyBEMGjQIJpMJiqJAVVVP9/3Y2Fice+65MJlM0Ov1AIC5c+eiR48eSEtLw/z587FlyxZ3s3PPNtu3b4/evXvDbrfDbDYDQJXO/EajsV5N1SmwmBfSgnkhLZgX0oJ5IW8xK6QF80JaMC/UWtWr+DRlyhTYbDaUlJRAURTP7e4/gGnTpkEI4fmDURQFL7/8MqKiorBkyRK8/fbbyM3NhaIocLlcsFqtAICIiAhER0ejU6dODTwsakqYF9KCeSEtmBfSgnkhbzErpAXzQlowL9Rq1We4VHFxsTh9+nSN969evVqMHj1aOByOCo3MXn75ZdGpUyfPso+VXX311eKZZ56pzy5RE8a8kBbMC2nBvJAWzAt5i1khLZgX0oJ5odaqXiOfTCYT2rZtW10hCwDQrl07dO7cGS6XC6qqwuVyAQBmzpyJ9957D5GRkXj99ddx/fXXY8mSJTh8+DBuv/12nDx5EpdeemkDSmnUFDEvpAXzQlowL6QF80LeYlZIC+aFtGBeqLXS+3Jj7mGD69evR48ePWAwGCCEgKrKGtemTZswaNAgrFy5EvPnz8fXX3+NgwcPwmazYebMmXj77bd9uTvUxDEvpAXzQlowL6QF80LeYlZIC+aFtGBeqKXzafFJCAFFUZCRkYEBAwYAAOx2O3Q6HXQ6HTZu3IiYmBgMHToUgwcPxrPPPou8vDyEhoYiLCzMl7tCzQDzQlowL6QF80JaMC/kLWaFtGBeSAvmhVq6ek27q4l7qGBGRoZnKKHRaIROp8OGDRvw4osv4siRIwAAp9OJoKAgxMfH84+llWJeSAvmhbRgXkgL5oW8xayQFswLacG8UEvn0+KTqqrIzMzE6dOnMWzYMABAZmYmbr75ZgwfPhwFBQVIS0sDULb0Y/kO/9S6MC+kBfNCWjAvpAXzQt5iVkgL5oW0YF6opfNp8QkAjh8/juHDhwMAnnnmGXTo0AEfffQRAGDu3Lm4//77ff0tqRljXkgL5oW0YF5IC+aFvMWskBbMC2nBvFBLpgj3+L4Gcs9R/eWXX/Dyyy/j9OnT2LdvHwDg6quvxosvvoiEhARffCtqAZgX0oJ5IS2YF9KCeSFvMSukBfNCWjAv1Br4rOG4e8jf0qVLsWbNGgDAmWeeiVdeeQUjR4701behFoJ5IS2YF9KCeSEtmBfyFrNCWjAvpAXzQq2Bz0Y+AUBhYSF69+6NkpISvPjii5g1a5avNk0tEPNCWjAvpAXzQlowL+QtZoW0YF5IC+aFWjqfjXwC5HDBf/7zn7j77rthMpl8uWlqgZgX0oJ5IS2YF9KCeSFvMSukBfNCWjAv1NL5dOQTERERERERERFReT5f7Y6IiIiIiIiIiMiNxSciIiIiIiIiIvIbFp+IiIiIiIiIiMhvWHwiIiIiIiIiIiK/YfGJiIiIiIiIiIj8hsUnIiIiIiIiIiLyGxafiIiIiIiIiIjIb1h8IiIiIiIiIiIiv2HxiYiIiIiIiIiI/IbFJyIiIqIm6JZbbkHbtm2xffv2QO8KERERUYOw+ERERETUBH3xxRfIyMjAsmXLAr0rRERERA3C4hMRERFRgJ0+fbrKbQ8//DDGjBmDK6+8MgB7REREROQ7ihBCBHoniIiIiFors9mMadOm4bfffgv0rhARERH5BUc+EREREQXQLbfcgtTU1EDvBhEREZHfsPhEREREFABCCNx///345ptvan2cy+VqpD0iIiIi8g8Wn4iIiIgC4LPPPsOKFSsAyJ5P48aNw7hx4/Dzzz+jsLAQn3/+Oc477zw8++yznudYLBb88ssvuP3229GxY0fs378fq1atwsSJExEWFobY2Fg8+uijAACn04m33noLQ4YMQUhICLp27Yqff/652n3ZuHEjZsyYgXPPPRcJCQk466yzsGDBAv//EIiIiKhVYM8nIiIiogBZvXo1xo8fj44dO+Lw4cMAZCHovffew7fffov8/Hw8/vjjeOKJJzz3rVu3DrNnzwYA3HbbbQCA6dOnQwiBmTNn4vjx43jllVewYcMGXHjhhejdu7fnOXq9HmlpaWjXrp1nHxYsWIDHH38cS5cuRYcOHZCXl4eJEydiy5YteOutt3DHHXc06s+EiIiIWh6OfCIiIiJqQs4880y8//77mDlzZrX33XvvvYiPjwcA9O7dG++88w7Gjx+PCRMm4N577wUAPProo3jmmWdw9dVXY/Dgwbjrrrtw3nnnoaSkBD/++KNne8eOHcOsWbPw7LPPokOHDgCAqKgozJkzBwDwyCOPoKioyL8HTERERC0ei09ERERETVB0dHSN9wUHBwMABg4cWOH2Xr16AQBiY2PRuXPnau/bu3ev57Y33ngDVqsVkyZNqvDYESNGAADy8/OxZs2aeh4BERERkaQP9A4QERERkW+EhobWeZ/ZbPbctnTpUqiqiilTplR4rBACHTt2BAAUFBT4YU+JiIioNWHxiYiIiKgVKb96XmpqKtq0aYPVq1cHboeIiIioxeO0OyIiIqJWymazITc3F1x/hoiIiPyJxSciIiKiViouLg7FxcXYsmVLjY9JSUlpxD0iIiKilojFJyIiIqIAUVV5KVZ+KlxjGjZsGADgscceq3b0044dO/Cf//ynsXeLiIiIWhgWn4iIiIgCxL2iXXZ2NpxOJ4CyQpTdbq/wb3kOh6Pa7bmfa7PZanxO+SLTLbfcAgBYvHgxZs2ahaysLM99CxcuxHnnnYeHHnpI20ERERERVcLiExEREVGAdO/eHdHR0bBYLHjppZewYsUK3HfffQCA7du3AwC2bdtWoWB0+vRppKenAwCOHDlSYXtpaWkAgIyMDBw/ftxzuxAC27ZtAwAcPHjQc/uUKVNw0003AQA+/fRTtG/fHp07d0ZkZCQuvvhi/Pvf/0a/fv18fNRERETU2iiCHSaJiIiIAuarr77C7NmzYbPZMGPGDPTo0QOvvPJKhcJS586d8emnn2L16tV45ZVXkJubCwAwGo2YOHEiFi1ahPPPPx8rV66E1WoFAEREROC2227DPffcg5EjR+Lo0aOe7XXt2hXvvvsuJk6cCJfLhXnz5uHdd9/FgQMHYDKZMHr0aDz88MMYNWpU4/4wiIiIqEVi8YmIiIiIiIiIiPyG0+6IiIiIiIiIiMhvWHwiIiIiIiIiIiK/YfGJiIiIiIiIiIj8hsUnIiIiIiIiIiLyGxafiIiIiIiIiIjIb1h8IiIiIiIiIiIiv2HxiYiIiIiIiIiI/IbFJyIiIiIiIiIi8hsWn4iIiIiIiIiIyG9YfCIiIiIiIiIiIr9h8YmIiIiIiIiIiPyGxSciIiIiIiIiIvIbFp+IiIiIiIiIiMhvWHwiIiIiIiIiIiK/YfGJiIiIiIiIiIj85v8Bqpg173DNmakAAAAASUVORK5CYII=", "text/plain": [ "<Figure size 1400x700 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABJ8AAAKyCAYAAAB7b3+jAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXxcVd3H8e/s2dOm6U5XuqcbhUJZ2rIVUBBBEXBhERRZBB9FUGQHBQRFZVEQFMTleVBBQEB2kFIEil1pKaUbdG/TNPs2y33+uLmTTGaS5jSTTG7yeb9efc1k7szNyZ1vTm9+c865HsuyLAEAAAAAAABdwJvpBgAAAAAAAKD3ovgEAAAAAACALkPxCQAAAAAAAF2G4hMAAAAAAAC6DMUnAAAAAAAAdBmKTwAAAAAAAOgyFJ8AAAAAAADQZSg+AQAAAAAAoMtQfAIAADDU2NioLVu2ZLoZAAAArkDxCQAA9Ep79+7VIYccoqFDh+rdd9/t9P7Kysr05z//WWeeeaaKi4t133337dd+1qxZozvvvFO/+tWvOt0m9Cznn3++CgoK9MADD2S6KQAA9CgUnwAA6KGmTJmiUCgkj8eT9G/QoEEJf+Dec889GjlyZMrnHnDAAXrvvfcy+JNkxquvvqr//ve/2rFjh/70pz91en+PPvqo/v73v+tvf/ubqqqqjF67efNmXXDBBRo5cqQmT56sH/zgB1q6dGmn24Seo7S0VH/4wx9UVVWl+++/P9PNAQCgR6H4BABAD7V69WqVl5fr85//fPyxQCCgZcuWadeuXbr44ovjj19xxRX69NNPdckll8Qfu+SSS7Rp0yZt2bJFhx56aLe2vSeYP3++pk2bpiFDhujss8/u9P6+973v6YknnlB+fr7xa4cNG6YHHnhAf/3rX+XxeDrdFvQ8xcXFOvPMM5WXl6eLLroo080BAKBH8We6AQAAoG3Z2dk655xz9PTTT0uyR0PNmDEj5XOj0aj++9//KhgM6pFHHtFXvvKV7mxqjzNw4ECtWLEirfv0er0qKioyHvnk8/nk8/k0Z84cDR48WDt27Ehru9AzPP7445luAgAAPRLFJwAAeriioqL4/cLCwpTPicViuuCCC7Rq1So9++yzWrBgQXc1D4ZCoVCmmwAAANCtKD4BANDDtZymlWrKVmNjo7761a/qlVde0UsvvaQjjjiiO5sHAAAAtIs1nwAAcLGKigqddNJJevPNN/XGG29QeEohEolow4YNmW4G+pC1a9dmugkAAPQoFJ8AAHCp7du3a968eVq/fr0WLlzY5lpQqSxZskSf//znNWHCBA0dOjR+Zbx+/fp1eB9XXHFF0pX1ioqK9M4778Sf09jYqEGDBsW3FxQUaPPmzQn7+de//qVTTz1V06ZN0/DhwzVo0CB98Ytf1LJly1J+3507d+pnP/uZjjnmGEnSRx99pAULFig3N1cnnXSSGhsbJUn/+c9/dPnll2vYsGG65ZZbUu6rvr5eDz30kI466ihNnz5dAwYM0OjRo3XZZZdp165d+zwGkUhEP//5zzV16lRlZ2dr6NChOvfcc7Vu3bqOHMI2/ec//9FZZ52lWbNmqaCgQMOGDdPZZ5+t5cuX7/c+N2/erP/5n//RtGnTNH78eI0ZM0af+cxn9Pzzz7f5mvr6et1zzz06+uijNX36dBUXF2vEiBH68pe/rLfffrvN17377ru6+OKL9cUvflGS9Mknn+iiiy7SAQccoNzcXM2bNy9hPa7S0lL98Ic/1Pjx45WVlaWSkhI99dRTKff98ccf69prr9W8efPiX5933nkaOnSocnJyNHv2bP35z39us20rV67UN7/5TU2fPl3jxo1Tv379NG/ePD355JMpn19XV6c///nPOvbYY7V27VpVVVXpG9/4hvr166dJkyZp/fr1kqT169fr1ltv1eTJk3XCCSek3NeOHTt0ySWXaMqUKRo1apT8fn/8d6OtvO/YsUM//OEPdcghh6ikpET9+vXTxIkTdcUVV+iTTz5J+ZrS0lLde++9mj17tl5++WVJ0t/+9jcdeuihysnJ0ZgxY3Tvvfe2eYwAAEg7CwAA9Givv/66JcmSZM2fP9+yLMv68MMPrVGjRlkTJkywPv30U6P9/fvf/7b8fr/1P//zP1ZjY6NlWZa1ceNGa/78+VZhYaHRvp566ql42/r37281NDQkPScajVpHH320NXz4cGv37t3xx2OxmHXeeedZkqzrr7/eCofDlmVZ1nPPPWf5/X4rJyfH+u9//xt//muvvWZ97nOfs3w+nyXJGjx4sLVx40ZryJAh8cckWW+++ab19a9/3Zo1a1b8sfPOOy+pXWVlZdaMGTMsv99vPfvss/G2XnfddZYka/z48VZlZWXS60aNGmVJsr7//e9bCxYssCRZOTk5lsfjiX+/3Nxc69///nfKY+a8PlWbLMuybrvtNuuII46w1q1bZ1mWZUUiEesnP/mJJcny+/3WX//619RvRjv+9re/WUVFRdY999xj1dbWWpZlZygUClmSrG9+85tJr1m9erU1btw4a8aMGdaqVavibfnLX/5iFRQUWJKs733ve1Y0Go2/5vHHH7cmT56ckNe33nrL6tevn5Wbm2sNHz48vm3YsGFWeXm5tXDhQmvo0KHWoEGDrMGDB8e3+/1+a/HixQk/w0EHHRTfPmrUKOu5556zcnNzrUGDBlnFxcXxbZKsq6++Ouln+u1vf2v5fD7rM5/5jLV3717Lsizro48+skaPHm1Jsh544IH4czdu3GhdeOGFVn5+fnyfy5cvt+bOnWv5/f74Y3feead14403Wscff3xC21rbvXu3NWzYMGvevHlWaWmpZVmWVVVVZV122WWWJGvp0qVJr/nHP/5h5eXlWWeddVbCa66//npLkpWVlWX97//+b/z5jY2N1mWXXZbQ5ueff9761re+ZYVCIeuAAw5IyOmjjz7aVmQAAEgrik8AAPRwrYtPb7/9tjVgwABLkrVw4ULj/X3mM5+xJMX/+Hbs3r3bGjlypPH+vvjFL1qSLJ/PZ+3atSvlcw4++GDrF7/4RcJjzz//fPzn2rRpU8K2s846y5JkfelLX4o/Vl1dbcViMeukk06yJFkDBgywPve5z1krVqywPv74Y+vwww+3xo8fb5WXl1uWZVl1dXVWVlZWm4Weq6++2pJkjR49OuHxaDRqDR061JJk3X///Umvc4pHgwcPtk477TRr/fr1lmVZVmlpqfXtb387/jMNHDgw5fFor/j0pz/9ySooKLC2b9+etM0pphUWFlplZWVJ29vy7LPPWn6/3/rd736XtO20006Lt7dloW/Hjh3W8OHDrUAgkPTeWJZdCHSKGNdff3388YqKCmvXrl3WmDFj4kWYww47zHruuefixcVnnnkm/j3POecc69BDD7Xee++9+D7eeOMNKxAIWJKsc889N/54Y2OjtWvXLmvSpEnxgt+8efOs999/P/6cJ5980srLy4vv/4UXXohvKysrixfbWhddfvOb38TfM0ddXZ0ViUSsO+64I76/z372s9bjjz9uVVZWWuecc45VXFxsLVq0KP6ao48+us3i009/+lNLkvWPf/wjadsRRxyRVHx6/fXXLb/fb02aNMmKRCJJr7nxxhstSZbX67VeeumlhG1PP/10vM0HH3ywdfHFF8d/L1auXGn179/fkmRNnz49ab8AAHQFpt0BAOAia9as0XHHHac9e/ZIkr72ta9py5YtRvtw1j/avn17wuPFxcX6yle+Ytyma665RpIUjUb16KOPpmzzhx9+qPPPPz/h8ZbT75yfxzF+/HhJ0urVq+OP5ebmyuPx6OCDD46/5tJLL9W0adM0btw4vf3221q7dm38ioBZWVkaOHBgm+12vn/r7+31enXggQcmff/W+vfvr7/97W8aO3asJGnAgAG69957dfbZZ0uSdu/erbvvvrvN17dWX1+v//mf/9FJJ52kIUOGJG0/+eSTJdnrfLU1Ja21mpoaXXTRRZowYYIuuOCCpO1f//rXJUk+n0/BYDD++LXXXqutW7fqjDPO0KhRo5Jed8wxx+jLX/6yJOm2226LTzMsKCjQwIEDddhhh8Xb+vzzz+uzn/2s/H77Ojef+9znNH36dEnSM888o2eeeUazZ8+O73v+/Pn6zGc+I8mefugIBAIaOHCgZs2aJclefP/ZZ5+N50GSTj/9dP3617+Of33bbbfF7+/evVsNDQ2S2s7b7t27VVpaKsnOj8/nS9j/tGnTdOaZZyo/P1+PPfaYdu/enbDO2ogRI5KOlaOt3zvJnsLaUiwW08UXX6xIJKLvfve78vl8Sa+59tprNXr0aMViMV1yySWKRCLxbVOmTInfP/bYY/Wb3/wm/nsxdepUnXPOOZLsKYi1tbVtthkAgHSh+AQAgIuUlZXpy1/+srxe+7/wTz75RAsWLNDu3bs7vI/JkydLsgsPrdc1uv32243bdPDBB2vu3LmSpAcffFCWZSVs/93vfqezzz47aT2pr3zlK7rssst066236qCDDkrY5vyxneoPY6eIIUkLFixot23OcUrlxhtv1DnnnKPf//73Sdva+/6O2bNnJ7TF0XJ9qb/97W/ttq+lp556SqWlpXr11Vc1adKkpH+PPfaYBgwYoAEDBnT4/f6///s/bdu2TaecckrK7aeeeqoWL16sVatWaerUqZLsn/lPf/qTJCW9Ly1deOGFkuyiY+tjGAqFJEmFhYUqKipKeu24ceMkSf369dPgwYPb3J6qsBoIBCTZxdL8/Pyk7V/72tc0ZswYSdJbb72lqqoqSdKECRN055136pJLLokX3Rwtizut3/N05c35vbvhhhv03//+N2HbWWedpZkzZ8a/fuONN/TRRx9Javs9CAQC8SLS+vXr9dprr6Vsc8tClGPixImSJMuyVFZW1t6PBABAWlB8AgDARY444gj97ne/0+9+97v4H7pr1qzRSSedpMrKyg7t44YbblAgENC7776rSZMm6Te/+Y1isVin2nX55ZdLsv8IdhY4lqRwOKzHHntMl1xySdJr8vLydN999+m6666Tx+ORJC1btkxXXHGF/vd//1eS9tmuVCNCOmrixIl67LHHdMYZZ8S/17/+9S+dc845Wrly5T6/f1uFhvHjx8cLDevXr1dNTU2H2vPmm29Kki6++GKtWbMm6d+mTZtUWlqq0tJSXX311R3a5wsvvCBJ8WJMKocccki8GCFJixcvjo8QGj58eJuvmzNnTvz4t7f4eCqpikapttfV1RntV7JHRJ144omS7Pev5eLvV111lX7961+rf//+kqRt27bpJz/5ia699tr4c9p7zzuTtwsvvFCjRo1SaWmp5syZo+9+97tt/s4uXLgwfr+99+DII4+M3zd5D3JycuL3W46YAgCgq1B8AgDAhc4//3w9/PDD8aLNkiVLdMopp3Toj/WDDjpI//jHP5Sdna29e/fq0ksv1SGHHKJ33313v9tz+umnx6cc/eY3v4k//swzz2jEiBE65JBD2nytZVl65plndMIJJ+jPf/6zvv/978endHWHuro63XvvvTr66KP18ccf6/7779e0adM6tc+SkpL4/YqKig69xpkG2NFiVUds3LhRkuI56YgdO3bE7ztXDkwlJycnPmqp5Wt6ggkTJsTvp/qdWLZsmb785S/r+9//vo4//nj95Cc/6fI25eXl6dVXX9WYMWMUiUT0y1/+UhMmTNAf//jHpOd29D1wpny2fg0AAD0NxScAAFzq61//uh566KF4YWHhwoU644wzFA6H9/nak08+WStWrNCxxx4rSVq6dKmOPPJI3XDDDfvVFr/fHx/d9Oyzz2rr1q2S7Cl3F198cZuvW79+vY444ghdd911+u1vf6u77rpLI0eO3K827I8XXnhBEyZM0Ntvv61//etfuuKKK1RQUNDp/bacauastbMvzmijTz/9tNPf3+EUvpz3oyNajuhy1j9qizNCqeV6UT1By/fQGeUkSdXV1Tr//PN1zDHH6Jvf/Kb+8pe/xNen6g4HHnigli1bpksvvVRer1c7d+7Uueeeq1NPPTU+PVDq+HvQcgRZT3sPAABoieITAAAuduGFF+q+++6Lf/3888/rnHPO6dA0unHjxunVV1/VP/7xD40bN07RaFS33nqr7rjjjv1qyze/+U1lZWUpEonooYce0pYtW/TOO++0OYpp/fr1OvTQQ7V06VL94x//0OjRo/fr++6vJ554QieffLIKCwv1hz/8Qbm5uWnbtzOVafjw4R3er1Mkeeutt/Y5FeqDDz5IKFbsa5+vv/56h9ogKaH4t2LFinaf6xTMUi1KnknOuk1ZWVnxxeMbGhp0/PHH6w9/+IPuu+++eOG1uxUUFOj+++/XkiVLdNxxx0mS/vnPf+pLX/pS/DkdfQ+c4y/1vPcAAICWKD4BAOByl156aULB6PHHH293tJGzULTjtNNO04oVK3T88cdLUsLVwkwUFxfHC00PP/ywfvvb3+qrX/1qm8WX73//+yorK9PMmTPjBYLu0tjYqMsuu0yxWEynnHJK2keNOAtlO1dt6whnqt+uXbv0hz/8oc3nVVZW6uKLL1ZWVtY+9+ksYv3WW29p8eLFbT5v48aNuuuuuyTZC8g7o7Vee+21pAXkHeFwOD6iyimi9BTOOk/HHXdc/L194IEH9O6778rr9eq0007r9jZdccUVCYuZz5gxQ6+88kp8vakXX3wxfkW8loWxV155pc19btq0KX6/p70HAAC0RPEJAIAeLhqNxu+3VQj4wQ9+oO985zvxrx966CFdeeWVKZ/77rvvJl3uPTs7O77ujcmV81pzFh7funWrfvrTn7ZbBHv11VclpV7g2fkjvCNTCNvT1vH64IMPtHPnzja/v7NW0v58/7q6Or3zzjvy+/36/ve/3+HXtSyIXHXVVVqzZk3ScxoaGnT22WfrtNNOi1/1rT1nn312/P7Xvva1+M/c0s6dO/W1r30tXjhsOYVy69atevHFF1Pue9GiRQqHwyooKND555+/z7Z0J2eh9e9973vxx5y8pcqEkzepc5lrK2+SXfB87rnnkh6/6aab4tPnnN+92bNna86cOZLsddP27NmTcp/OiLa5c+cmXC0PAICehuITAAA9XMuFhNu7LPrPf/5zHXXUUfGv77777pQFqEgkop/+9KdJj9fX10tS/I/e/XHQQQfF23DooYcmLLzdmnPFrffffz/+R3k0GtWjjz6ql156SZJdGNm+fbtKS0vjC3G3XEB6X4t5O1PTWk9Ra3m1rz/96U/x4kNVVVXCVchWrFihWCyWMMLEWWOr5ZSnln71q1+psrJSd911V8JV5Bx79+6VpIRRMJI0derU+JX39u7dq8MPP1y/+MUv9OGHH2rt2rV6/PHHNXv2bO3cuVNXXHFFuz+349hjj9VJJ50kSVq7dq1mzJihu+++W4sXL9Z7772n++67T7Nnz9b555+vAw44IP66a6+9VpMmTZJkFzZTFWSckVL33nuv+vXrl7DNea/amv7pZK2t96+6ujp+v61i0N69e1NOPfy///s/rV27Vl//+tcTRhA577llWfrxj38cLxQtWrRIv/rVr+LPW7p0qcLhsLZt2yYpPXlz/PSnP00oJkv2MQqHw8rLy0v4ffntb3+rnJwc1dTU6LrrrkvaV2VlpR588EHl5ubqwQcfTNjWVjYdLY9v6/YAANAlLAAA0GNVVlZaCxYssCRZkiyv12v985//tGKxWMrn33///fHnOv/OOOMM65NPPok/Z+LEiZbH47FuvPFGq6amxrIsy9q8ebN16KGHWoWFhdaKFSs61eb/+7//syRZf/nLX9p93qWXXprQzmHDhlkFBQXWmWeeaT355JPxx/v162cNGzbM2rt3r7V582Zr+vTp8W2//OUv29z/G2+8EX/ekCFDrC1btsS3RSIRa9q0afHtPp/PGjlypJWTk2Pdfffd1pVXXhnfNmjQIOv444+Pv/aiiy6yJFkFBQXWk08+aYXDYcuyLKuurs76xS9+YWVlZVm/+MUvUrbp0UcfTfh5d+zYkbB9z5491qxZs5LeQ+ff1KlTrW3btu3rLUiwe/du66CDDmpzn9dcc03K123evDl+jD7/+c/H21pdXW1973vfs/x+v3XfffclvW779u3W0KFDLUmW3++3Pv7444TtNTU11sSJE+Pf/9lnn03YvmvXroT3uPX28847L77v2bNnWwsXLoxve/rpp62CggLr9NNPtxoaGhJe99e//jXh5y4qKrIGDx5slZSUWKtWrbL8fr8lyQqFQlZRUZH1xhtvWFVVVda5554bf82XvvSlpP06du7caQ0ePDj+3FdeeSVh+7e+9S1LknXaaafF38Pa2lrrG9/4huXxeKxHH300aZ+vv/661b9/f0uSdfPNN1u1tbWWZVnWli1brGOPPdYqLi623nrrraTXPfXUU/F23HjjjUnbL7zwwvj2F154IeXPAwBAOlF8AgCghxozZkz8D+LW/woLC63f//738ec+8cQT1ujRoy2fz5fy+R6Px/ra175mWZaV8Ie/z+ezhg4dag0YMMA688wzkwoF+6OhocE6/vjjrcbGxnafV11dbV1++eXW0KFDrdzcXGvOnDnWH//4R8uy7OLQ6aefbmVnZ1tHHnmktXz5cuvKK6+0PB5PymNx2223xff7/vvvW0OGDEl6ntfrtU455ZT48zZs2GCdeuqpVr9+/az+/ftbp556qvX2229blmVZn376qTV9+nQrNzfX+spXvmLt2bMnoe0vvPCCdeGFF1oTJkywBg8ebE2cONGaPn26ddlll1lr165N+lnXrFkTLyK0/Of3+63DDjss4bl1dXXW7bffbs2YMcPKycmxsrOzrYMOOsi68847rbq6OrM3o8U+b7vtNmvq1KlWVlaWVVhYaJ100klJBZLWGhoarHvuuceaM2eO1b9/f2v8+PHW1KlTrYsvvtj66KOPkp7/1a9+NSmzPp/PmjlzpmVZlnXZZZdZ2dnZScehuLjYKisrs375y1+mfI8HDRpklZWVWZbVXHwaNWqU9eKLL1pz5syxhgwZYo0dO9aaO3eu9ac//anNn+e+++6zxo8fb2VlZVkTJ060br311vgxve2226y8vDxr/Pjx1l//+lfrySeftILBYFJbsrKyrM997nMJ+x0zZkzK370DDjjAqqystCyrufjk/Bs8eLBVWFhozZs3z3r55ZfbbPOuXbusq6++2po0aZJVVFRkTZkyxTrkkEOsG2+8MX5MWrrqqqusgQMHxr9Pdna2deGFF1offfSRtXnzZuurX/1qwjEeMmRImwVIAADSxWNZ7UxOBwAAAHqQ888/X3/4wx80atSohOmQAACg52LNJwAAAAAAAHQZik8AAAAAAADoMhSfAAAAAAAA0GUoPgEAAMA1ampqEm4BAEDPR/EJAAAArrB161YtWrRIklRaWqqXXnopwy0CAAAdQfEJAAAAPd55552nkSNHavv27fHHTjzxRA0cOFB33313BlsGAAD2xWNZlpXpRvRWsVhM27ZtU35+vjweT6abAwAAAAAAkBaWZamqqkrDhg2T19v+2CZ/N7WpT9q2bZtGjBiR6WYAAAAAAAB0ic2bN+uAAw5o9zkUn7pQfn6+JPuNKCgoiD9eVVWl5cuXa8aMGfHnAG0hLzBBXmCCvMAEeYEJ8gIT5AUmyEvPUVlZqREjRnTofWDaXReqrKxUYWGhKioqEopPsVhMDQ0NCoVC+xyaBpAXmCAvMEFeYIK8wAR5gQnyAhPkpedoq+aRCiOfMsDr9So7OzvTzYBLkBeYIC8wQV5ggrzABHmBCfICE+TFnSgTZkBdXZ0+/PBD1dXVZbopcAHyAhPkBSbIC0yQF5ggLzBBXmCCvLgTxacMiEQi2rVrlyKRSKabAhcgLzBBXmCCvMAEeYEJ8gIT5AUmyIs7UXwCAAAAAABAl6H4BAAAAAAAgC5D8QkAAAAAAABdhuJTBgSDQY0aNUrBYDDTTYELkBeYIC8wQV5ggrzABHmBCfICE+TFnTyWZVmZbkRvVVlZqcLCQlVUVKigoCDTzQEAAAAAAEgLk5oHI58yIBKJqKysjNX50SHkBSbIC0yQF5ggLzBBXmCCvMAEeXEnik8ZUFdXp5UrV6quri7TTYELkBeYIC8wQV5ggrzABHmBCfICE+TFnSg+AQAAAAAAoMtQfAIAAAAAAECXofgEAAAAAACALtNri0+vv/66nnnmmUw3IyWv16usrCx5vb328CONyAtMkBeYIC8wQV5ggrzABHmBCfLiTh7LsqxMNyKdlixZomuuuUYvvfSSbrzxRt10003G+3j99dd1++23q6KiQuFwWP3799f111+vo48+2mg/JpcdBAAAAAAAcAuTmkevKRWWl5frrrvu0l/+8he98847+72f3/3udzruuON0+umn691339WSJUt06qmn6vjjj9djjz2WxhYDAAAAAAD0fr2m+FRYWKirrrpKP/vZz/SZz3xmv/bx7rvv6pJLLtFxxx2nSy65JP74d77zHc2dO1ff+ta3tGbNmk63tbq6Wm+//baqq6s7vS/0fuQFJsgLTJAXmCAvMEFeYIK8wAR5cadeU3zyeDzx+1lZWfu1j5tuuknhcFgXXHBB0rYLL7xQ9fX1uvHGG/e7jQ7LshQOh9XLZjyii5AXmCAvMEFeYIK8wAR5gQnyAhPkxZ16TfGps7Zu3aoXXnhBklKu7TR//nxJ0lNPPaWKiorubBoAAAAAAIBrUXxq8vbbb0uS+vXrp6FDhyZtHzFihAoKCtTY2Kg33nijm1sHAAAAAADgTv5MN6CnWLVqlSRp+PDhbT5n2LBhqqys1AcffKDPf/7z3dW0jNr85kZVbSzNdDP6tLq6Ou355FOt/dCj7OzsTDcHPRx56TreoF9jP1eiYF4w4fHG6katf/oDWZGoJMnj92ns50oUKgglPK++vF4bn1sdf15rw+aNU78x/RMes2KWPn19vWq27I0/Nvzo8Soc1S8NPxHaUloqbdxo3/eEG5W9/gN5Yqnft4ZhYxTpV5z4oGUpa+OH8tXXdHFLuxf9C0yQF5ggLzDRm/ISKMjW+NOnZroZ3YLiU5OysjJJUn5+fpvPcS4duGvXrpTbGxoa1NDQEP+6srJSklRVVZWwJpXX69XMmTOVlZWlqqqqpP04baitrVU0mniym5WVpUAgoMbGxoTvJUk+n085OTmyLCvl4mu5ubnyer2qq6tTJBJJ2BYKhRQMBhUOh1VfXx9//KPrHtGw95+XnOanmlbraXG/9fb2trXc3lP229HXduN+syVNkiV5PBzDTO431fYeeAyzPdIkq5N56Q3HsAv2G5O0cM6pOu61GxSLxVRTYxcW3v3snRr233/FX2tJevvAOTp44W3yeO2dxSIxLT3yBxr0yfttft91OcWateN51dQ1FyzWPPq+cn9wVUJ7P8op1sSPH5fXbw9eDgaDCoVCikQiqqurS9in1+tVbm6uJHtxztZrI4RCIc2cOVM+ny/p/6NAIKCsrCxFo1HV1tYmHiKPR3l5eZKkmpoaxWKxhO3Z2dny+/0p/6/y+/3Kzs5OOIYt5eXlyePxtPt/YOv/q6T0/B8YiURUXl6nL3whW9XV9kG/ePutOqqy6f1N8b41+vvpR2MfV7mvf/z4fqbsL/rqrl/1yD6iM/uN9y8JO+n8fntLH2H0WrftN9X2fey3y/PSB46ha3/W/dhvc15aP3kfr+W96Rn7TbW9C49hh/LikmO4e8AYjT/9b6qvr1c4HE7Y5pzjdeZcrKGhQY2NjQnb9nUuZlKPSFXPaAvFpybOmxkMBtt8Tihkf4qd6g2SpNtvv10333xz0uPLly+Pn/xL0qBBgzR58mTV1dVpyZIlSc931pdas2ZN0ps5adIkDR48WLt379a6desStvXv31/Tp09XNBpNud/DDz9cwWBQ69ev1549exK2jR07ViNGjFB5eblWr14df7w84JW/YET8uDQ0JJ7sS1IwEJLH61EkHFa01SfDPp9ffr9fViymxnBi6D3yKNh0TBsbGmS1+m0MBoLyeL2KRCKKRhP/UPB5ffIHArJilhrDiX/YSFIoZC8639jYKMtK/EUM+APy+nyKRqKKRBN/wb1enwKBgGRZamhMsd9gSPJ4FG4MK2Yl/qx+f0A+n0+xaFThSOJ+PR5v+8cwGJLH41E4HFasjWMYi8UUbucY2n/gmRxDv/yB1O+N5InnPfUxDMrr8yoaiSjSar/7PoZZkkcKNzYq1mq/zjGMRqOKtDqGXo9XgWBQsqSGxuRjGH9vUhxDv88vn9+vWDSmcKTVMUx4b9o5huGIorFWx7CdfCccwxT5DgSC8rbx3jjH0LIsNaY6hh3Jd8pj6FMg2IF8pzyGAfn8+5nvXtBH+KIRFVVvV86ytyRJkUhES5YskRWzlLfiLcViMZXlDZU/O1f55Zs18OO39eLFv9egiw+SJO381WKVbFqsqC+kioJhScdwYOVm5dSVqnpHtZauXxp/fNdr72tyLKZwVr7q8weroHSdcqp3afFbixUoCEiSRo0apdGjR6uyslIrV65M2G9WVpYOO+wwSdKKFSuSTmpmzpypwsJCrVu3Tlu3bk3YNmzYMI0fP161tbVJ/6f4fD4dddRRkqTVq1cnnRCVlJSouLhYO3bs0EZnCFGT4uJilZSUKBwOp/y/au7cufJ4PFq7dm3SGosTJkzQ0KFDVVpaqrVr1yZsKyws1MyZM2VZVsr9zpkzR6FQSBs2bFBpaeKI3jFjxmjkyJEqLy/Xv//9sXbunCqPx9KwYfUasXOjQiGpPGuIKqN+tewjChvLNEB79b3aH+v+A29WfUO9htZt0lf2/ko+f0SlOaPkCWbRR/SBPsLBeUTznjmPsHEeYaOPsNFHNO+ZPsIWG3iAJGnz5s3atm1bwrbhw4dr3Lhxqq6u1rJlyxKPUSCgI444QpL0wQcfJH0oN23aNBUVFWn79u365JNPErY59YiGhoZO1yPaqo2kQvGpiTNcr/WJeUvOtpycnJTbr7nmGn3ve9+Lf11ZWakRI0ZoxowZ8VFTkhSLxbRu3ToNHz5cs2bNavP7TZo0KWWlUZIGDhyYsE/J/mPAuU21X7/ffrsPPPBAjRo1KmGb88vfr1+/xNc+NSvhk/NUlc2cnBz5fL52q7WpPpFvWa1N9Yl8e9Xa9j6Rl5qrtamqwO2NHuvMJ/JtjR6Tmj+Rl1Ifw/Y+kZeknTt3aujQoUk/y75GNTjvjekx7M2jGkxHhnQk3z3p0wiv16vt27dryJAhST9LV4yOdL5nb+8j6svrtXPSZ1VYX6bdH+zUgCkDNWvWLO1aul0N4SpF/UGVrHxMRUOK9Pa3/1f9H7lb45/7u/Iv+ayiDRH1f/kJeTweVV/0PR12x+eTjuGG4SfJG21QzY6qhD74vcBKeb1elc85SfOeuVof9TtMHo80+cBJKhhRGD+Gkj06t3Xf7/U2L+04ffr0lJlYt26dBg0apMGDBycdQ8l+/1rvt+Vo3ilTpqTMtyQNGTJE/fv3T9jm/F8UCARS/l/l7HvChAlt/h9YXFwcz0bLn8V5far9Oj/P2LFjNXLkyIRtLf8PHDNmmnJzs9Wvn6Wnn/Yo6xIpsEbS3VeretashGPoWb9euRdfrHGRhVrwjZfVcOyxyrr45/I2xBQ97HCN/sUvFOpkP9vVn1i2Pobt9RF+v19bt27VwIEDE7LlHMO+3Ee0PEY97TyiM6MjO3MeEQgEtHnzZg0YMCD+e+/gPMLWE88junuWhWQfQ7/fr82bN6uoqCjeXzvoI2y9rY/ozN8aXq9Xn376qQYMGJCUFzf2EZK9xvSQIUMStjnneHl5ee2ei02dOrXNc7GhQ4dqwIABCducPjkUCnW6HuHM9uoIik9NnDc6VdAczrbWJ+iOUCgUP4FtKT8/P2E6X1VVlbZu3arBgwe3O82vrSKXZAexrVFaHo+n3f22Ny82EAgk/QK31N5+s7Ky4mFsze/3t/va1n9EtNTWcZXsTqK9/bYccdZae8fQ6/Xu93vTmWOY6r3paF76yjHsTL47k8P28t2ZY9jee7M/x7AjeaGPaNbRfOfn5+ujIZNVtGO1Pv3ncg2ceoLy8/O15vWFyvVI5cOmaNpQ+z/2w391tt567Q0Vf7pEWy+6S55oRANiYe0ee5jm3fVFebyepGPYGCpQoHa36nZVaeghzWsP+mrrJY/kLSiQL+iT5fXKY8UUtIJJP9f+HMOO5KWv9RFeb568Xqlfv6Y8O0UWny/5GM6cKV1yiXTvvQrec4+CH30krV8v9esn3y23SE1570l9hGN/ziM6kpe+2ke01pPOIxzdfQw7khc39hG9/TzC0d1/a3QkL/QRtt7SRzj25xhWVVVp27ZtGjJkSJv7po+wdXUf0bqY1h6udtdkypQpkqTt27e3+RxnW0lJSbe0CQDQc0QmT5ckVS1aEX+s5j/2/VjJ9PhjXr9XE/58k8L+bBVvXqoB21aqMZCrKf97Q3wNqKR9Z9n/8deXtvoApOlDD18/e3vEZ588ROraHqWLznE+nI2fbzmf+HnbOGU65xxp2jSppkZ68kn7sR/8QBo4sEvbCQAA4CYUn5rMmzdPXq9XpaWl2r17d9L2nTt3as+ePfL5fJo3b14GWggAyKT8I+0Ck//D5uJTYI19v+Co6QnPHTJrmOq+9d34141XXKWBU1OPmpWkSLb9SVhDaauh8tX21/5+9vaY1/6ULlydvMYB0sMZAJ1UfGqa1pfE65VuvllyPlU87jjphBO6tI0AAABuQ/GpyYABA7RgwQJJ0sKFC5O2v/nmm5KkE044QUVFRd3aNgBA5o383AxJUv+da1RXVqeaXTXqV2pf+GHkKdOTnn/YHaer9LRvas8ZF2v2TSe3u+9YU/GpcU9i8clbY38d6G9vj/gZ+dTVnJFP8ZHxzhoKbRWfJGnkSOm226RTT5V+9CPJk3qEGwAAQF/VK4tPziJfrRfdcrzyyiuaOnWqfv7znyc8/qMf/Ugej0ePPPJI0mt+97vfyev16kc/+lGn2xcIBDRs2LB25+oCDvICE+Sl6wycOlg1uYPksWLa9PxqbfznB/JYMVXlD9OAicVJz/d4PZr3529p7h++0eZ0O4eV1zStrjxx2p2vzv46OMDeHvPZ72ukJj0jn8hLMuNpd47586UbbpAKC7usbZlGXmCCvMAEeYEJ8uJOva74tGfPHr31ln0p7EWLFqW8ctgvf/lLrVq1SjfddFPC4/PmzdNNN92kZ599Vg8//HD88QcffFAvvviibr311vilpTsjKytL48ePb3NBMaAl8gIT5KVr1Rxoj34qfXW5yl5fLkmqGz+j8ztuWuwxWp448ilQZ3+dNbCp+NQ08ilan56RT+QlmTPtLr52576m3fUh5AUmyAtMkBeYIC/u1GuKT9FoVIcccohGjRqlbdu2SZJee+01DRs2TKeffnrCc8866yzl5+frvPPOS9rPDTfcoKefflp/+tOfdPjhh2vOnDn63//9X/3zn/9My6gnp61VVVVJly0EUiEvMEFeulbwEHt6XWzZClkr7PWeQrOTp9yZ8hQ0FZcqEotPwQb76+xBTvEpvSOfyEsyZ+RTvPjUkWl3fQR5gQnyAhPkBSbIizv1muKTz+fT+++/r+rqalmWFf+3a9cu/eMf/0h47jnnnKPKykrdd999Kfd16qmn6o033tB//vMfvfPOO3rjjTd0yimnpK2ttbW1WrJkiWqdM1ygHeQFJshL1xq0wB7lVLBphQo/XSlJGnJi50c+OVeziw+7kRSLxBQM10iScoc0FZ8C6R35RF6S1diH3HzaXR9AXmCCvMAEeYEJ8uJOnEkBANBBo0+YoIgvpFBjpYLhGoX9ORp5zIGd3q9zNTvn6naSVFtaK8mSJOUOtrdb/qAkKVrL1e66ilN8YtodAABA+lB8AgCgg/xZfpUPL4l/XTFiqnzBzhclnKvZOVe3k6SaHfb9qDeoYJ5ddLICTcWnusZOf0+kxrQ7AACA9KP4BACAAWtqizWepnd+vSep+Wp2ztXtJKl2p118agzmNX/voF18itVTfOoqbY58YtodAADAfuNMKgM8Ho98Pp88nvYvvQ1I5AVmyEvX6zevueDUf356ik/O1eycq9tJUn2pXYgKZ+U3PzGQ3uITeUnW5ppPjHwiLzBCXmCCvMAEeXEnf6Yb0Bfl5eXpqKOOynQz4BLkBSbIS9cbfep0bb7GL8vj0aiTp6Zln9mD8hVW89XtJKmhtEpBSZHsFsWnNI98Ii/JkkY+Me0ujrzABHmBCfICE+TFnSg+AQBgoHBUP2259x55vR4VHFCQln3mDslXpaRguEaxSExev1fhvdUKSormJBefrAam3XWVpDWfmHYHAADQaZxJZUBNTY0WL16sGufjVaAd5AUmyEv3KPn6oZpy3uy07c+5mp1kNV3lTgqX2aOgrLwUI5/SVHwiL8mYdtc28gIT5AUmyAtMkBd3oviUAbFYTLW1tYo5Q/mBdpAXmCAv7hTMCyrqtQtLzlXuIuVNU/Dymhcc92SF7DtpKj6Rl0SRiNTYdGiZdpeMvMAEeYEJ8gIT5MWdKD4BANADOFe1c65yF6uwbz35LYpPwYAkpt11FWfKndRUfLKs5uIT0+4AAAD2G2dSAAD0AM5V7Zyr3KnKvvUWNk+7i498aqT41BWqmw59MNg00KnlJ6qMfAIAANhvFJ8AAOgBnKvaNZQ2Tbersm/9/VsUn0L2yCeKT13DGfkUn+norPckUXwCAADoBIpPGZCdna2SkhJlZ2dnuilwAfICE+TFvZyr2oX3No14qrVvA0XNxSdvdnpHPpGXRE7xKWmxcYlpdyIvMENeYIK8wAR5cSd/phvQF/n9fhUXF2e6GXAJ8gIT5MW9nKvaOVe589Xat6HiFsWnpjWfFE5P8Ym8JHKm3cWLT0y7S0BeYIK8wAR5gQny4k58jJcBjY2N+vTTT9XItAl0AHmBCfLiYk1zvZyr3Pnrm4pPA5oXHPfl2COfPGkqPpGXREy7ax95gQnyAhPkBSbIiztRfMqAhoYGbdy4UQ0NDZluClyAvMAEeXEv56p2zlXugk3Fp6ziFsWn7KD93DQVn8hLopoa+5Zpd6mRF5ggLzBBXmCCvLgTZ1IAAPQA8avaVVXLilkKhu05YDmDm6fdOcUnbyMnW13BKT7l5jY94Ey783oljycjbQIAAOgNKD4BANADxK9qV1WlurI6eSy78JE3NLn45ImGu719fYEz7S5efHJGPjHqCQAAoFM4mwIAoAdwrmrnra1WzU571FPM41eoIBR/jlN88oUZ+dQV2px2R/EJAACgUzibygBndX6/n4sNYt/IC0yQF/dyrmrnq61S7U57vaeGUL483ubpXv6c9I58Ii+J2px2x/GRRF5ghrzABHmBCfLiTrxbGZCdna2SkpJMNwMuQV5ggry4V2hAniKyr3JXv9suPoVDeQnP8ecEFZbki6Rn5BN5SZRUfGLkUwLyAhPkBSbIC0yQF3fibCoDYrGYGhoaFHM+UQXaQV5ggry4l3NVu2CL4lMkOz/hOYHcpml3aRr5RF4SseZT+8gLTJAXmCAvMEFe3ImzqQyoqanRO++8oxrnI1agHeQFJsiLezlXtQuGq9W4xy4+xbKTRz5Jki+anpFP5CVR0ppPTLtLQF5ggrzABHmBCfLiThSfAADoAZyr2nmsmBo275IkxXJTj3zyRxtlxazubWAfwLQ7AACArsHZFAAAPUCoIKSYxx5hE9m83X4wP3XxSbIUbYx2Y+v6BqbdAQAAdA3OpgAA6AE8Xo8aQk2jn3bYxSdPQWLxKZgXjN9vrG7svsb1EUy7AwAA6BoUnwAA6CGcq9sF92yTJHkLEtd8all8CtdQfEo3pt0BAAB0DT7Ky4C8vDzNnTtXHo8n002BC5AXmCAv7hbJzpcqpNxKe+STr3/iyCev36uYxy+vFUnLyCfy0iwalRqa1nFPKj75fBlpU09DXmCCvMAEeYEJ8uJOFJ8ywOPx8IuCDiMvMEFe3M25up2/6Wp2gX55Sc+J+oLyRiKK1Ha++ERemrW8YE7StDuKT5LIC8yQF5ggLzBBXtyJceQZUFtbq2XLlqnWWdkUaAd5gQny4m6tr24XHJCf9Jyoz556l45pd+SlmXMIgkEpEGh6kGl3CcgLTJAXmCAvMEFe3ImzqQyIRqOqqKhQNMqVirBv5AUmyIvLtbq6XdbAFMUnf1Pxqbqh09+OvDRzzl/jo54kpt21Ql5ggrzABHmBCfLiThSfAADoIVpf3S5V8SnWNPIpWh/uljb1FdXV9m18vSeJaXcAAABpQvEJAIAewluYWGzKGZyi+NQ08ilS0/mRT2jmjHxKKD4x7Q4AACAtOJsCAKCH8LVaYDx3cPKC407xiZFP6eUsOM60OwAAgPSj+JQBWVlZmjBhgrKysjLdFLgAeYEJ8uJuLa9uZ3m8yi7KTnpOLJC+kU/kpZlTfGLaXdvIC0yQF5ggLzBBXtzJn+kG9EWBQEBDhw7NdDPgEuQFJsiLu7W8ul1jIE8eb/JlhK2mkU+xhs6PfCIvzZh2t2/kBSbIC0yQF5ggL+7E2VQGhMNhbd++XeEwUyawb+QFJsiLu7VcYLwxK3m9J0mymkY+RWs7P/KJvDRj2t2+kReYIC8wQV5ggry4E8WnDKivr9fatWtVX1+f6abABcgLTJAXd2tZfIrsq/hU39jp70demjHtbt/IC0yQF5ggLzBBXtyJ4hMAAD1Ey6vbRXNSF58UtItPVhqKT2iWsvjEtDsAAIC04GwKAIAeouXV7WI5yVe6kxQvPsUoPqVVu2s+MfIJAACgUyg+AQDQQ2QXZcvyNP3XnN/+yKdYA8WndEq55hPT7gAAANKC4lMG+Hw+FRYWysfJLDqAvMAEeXE3j9ejxkDTiKf8NkY+hUKS0jPtjrw0Y9rdvpEXmCAvMEFeYIK8uJM/0w3oi3JycjRz5sxMNwMuQV5ggry4X2NWvkKNlfIWph755AkGJElWY+eLT+SlGdPu9o28wAR5gQnyAhPkxZ34KC8DLMtSLBaTZVmZbgpcgLzABHlxP+cqd/5+bRSfsuyRT0rDtDvy0oxpd/tGXmCCvMAEeYEJ8uJOFJ8yoLq6WgsXLlR1dXWmmwIXIC8wQV7cL5JXKEkKDChIud0Z+aSGhk5/L/LSjGl3+0ZeYIK8wAR5gQny4k5MuwMAoAcZeNXXtevRwTr4m3NTbvdmN418Coe7sVW9H9PuAAAAug7FJwAAepAp5x6iKece0uZ2Tyh9I59gi8Wkujr7PtPuAAAA0o9x5AAAuIivaeSTJ8LIp3RxRj1JTLsDAADoCpxNAQDgIt6soCTJ08jIp3Rx1nvy+6VgsMUGpt0BAACkBdPuMiA3N1dz5sxRIBDIdFPgAuQFJshL7+fLbqqOpGHkE3mxpVxsXGLaXSvkBSbIC0yQF5ggL+5E8SkDvF6vQqFQppsBlyAvMEFeej+n+OQNd37kE3mxpVxsXGLaXSvkBSbIC0yQF5ggL+7E2VQG1NXVadWqVapzVjcF2kFeYIK89H7NxafGTu+LvNickU8Ji41LTLtrhbzABHmBCfICE+TFnSg+ZUAkElFpaakikUimmwIXIC8wQV56P39OU/Ep0vniE3mxMe2uY8gLTJAXmCAvMEFe3IniEwAALhIvPkU7X3yCrc3iEyOfAAAA0oLiEwAALuIUn3xpGPkE2z6LT6z5BAAA0CmcTQEA4CKBPHuBTR8jn9KmosK+LSxstYGRTwAAAGlB8SkDQqGQxowZwwr96BDyAhPkpffzZ9uXFU5H8Ym82NosPrHmUwLyAhPkBSbIC0yQF3fyZ7oBfVEwGNTIkSMz3Qy4BHmBCfLS+wXzm0Y+xRplxSx5vJ793xd5kSSVl9u3bY58YtqdJPICM+QFJsgLTJAXd+JsKgNYnR8myAtMkJfezxn5JEnh2nCn9kVebE7xqV+/VhuYdpeAvMAEeYEJ8gIT5MWdKD5lQF1dnVatWqW6urpMNwUuQF5ggrz0fqGC5iHmnS0+kRebM+0uqfjEtLsE5AUmyAtMkBeYIC/uRPEJAAAX8Wc1z5hvrGrIYEt6j30uOM60OwAAgE7hbAoAABfx+r2Keu2pd5G6zo18go1pdwAAAF2L4hMAAC4T9QUlMfIpHRobpfp6+z5XuwMAAOgaFJ8ywOv1KicnR16G8aMDyAtMkJe+wSk+dXbkE3lpHvXk80m5ua02Mu0uAXmBCfICE+QFJsiLO/n3/RSkW25urmbPnp3pZsAlyAtMkJe+IdZUfApXd27kE3lpLj4VFkoeT6uNTLtLQF5ggrzABHmBCfLiTpQKAQBwmajfLj5F6xoz3BL3a/NKdxLT7gAAANKE4lMGVFdX66233lJ1dXWmmwIXIC8wQV76hlhT8SlS27niE3lp50p3EtPuWiEvMEFeYIK8wAR5cSfOpjLAsixFo1FZlpXppsAFyAtMkJe+IZamkU/kpZ0r3UlMu2uFvMAEeYEJ8gIT5MWdKD4BAOAyFtPu0qbdkU9MuwMAAEgLik8AALiMFQxJoviUDky7AwAA6HqcTQEA4DKWPyCJ4lM6MO0OAACg61F8yoCcnBzNmjVLOTk5mW4KXIC8wAR56RuckU+x+s4Vn8hLc/GJaXf7Rl5ggrzABHmBCfLiTv5MN6Av8vl8ys/Pz3Qz4BLkBSbISx8RsEc+dbb4RF6ap921O/KJaXeSyAvMkBeYIC8wQV7cibOpDKivr9fHH3+s+vr6TDcFLkBeYIK89BEhe+ST1dC54hN5YdqdCfICE+QFJsgLTJAXd6L4lAHhcFjbtm1TOBzOdFPgAuQFJshLHxG0r3bX2ZFP5IWr3ZkgLzBBXmCCvMAEeXEnik8AALhNyC4+dXbkU18XiUjV1fZ9rnYHAADQdTibAgDAZTxNI5+sRopPnVFZad96PFJBQYonMO0OAAAgLSg+AQDgMp6mkU9i5FOnOOs95ee3MbiJaXcAAABpQfEpA4LBoIYPH65g0yfXQHvIC0yQl77Bm9X0/nZy5FNfz0u7V7qT7Hl5EtPumvT1vMAMeYEJ8gIT5MWd/JluQF8UCoU0bty4TDcDLkFeYIK89A3xkU+dLD719by0e6U7iZFPrfT1vMAMeYEJ8gIT5MWd+CgvA6LRqCoqKhR11pIA2kFeYIK89A3pGvnU1/PS7pXuJIpPrfT1vMAMeYEJ8gIT5MWdelXxaf369Tr33HN10EEH6YgjjtCsWbP00EMPGe2joaFBP//5zzV37lzNnTtX06dP10EHHaQHH3xQlmWlpZ21tbVatmyZamtr07I/9G7kBSbIS9/gFJ88jQ2d2k9fz8s+i09Mu0vQ1/MCM+QFJsgLTJAXd+o10+6WLVum+fPn69RTT9V7772nQCCgRYsW6cQTT9TixYv129/+dp/7qK2t1bHHHitJeuqppzRkyBBJ0iuvvKJTTjlFS5cu1QMPPNClPwcAAPviy24qPkXCGW6JuzHtDgAAoHv0io/yKioqdOqpp8rv9+vXv/61AoGAJOnII4/UVVddpYceekiPPvroPvfzq1/9Su+++65uv/32eOFJko4//nhdeOGFevDBB7VixYqu+jEAAOiQePGpkyOf+jqm3QEAAHSPXlF8euCBB7R582adccYZys/PT9h2wQUXSJKuu+46hcPtf0K8cOFCSVJRUVHStqlTp0qSPvzww3Q0GQCA/RYvPkUZ+dQZzsgnpt0BAAB0rV5xNvXwww9Lko4++uikbSNGjNDYsWO1detWvfLKK+3uxylc/etf/0ratmXLFknSmDFjOtlayePxKBAIyOPxdHpf6P3IC0yQl77BKT55w50b+dTX88K0OzN9PS8wQ15ggrzABHlxJ9cXn3bv3q1169ZJkqZMmZLyOc6opZdeeqndfZ188smSpJ/85CdatGhR/PGysjI9+uijOu6443TooYd2us15eXk64ogjlJeX1+l9ofcjLzBBXvoGf05T8amTaz719bw40+5SFp+cwpNE8alJX88LzJAXmCAvMEFe3Mn1xadVq1bF7w8fPjzlc4YNGyZJ+uCDD9rd11e/+lWdeOKJqq6u1oIFC3TPPfdo3bp1OvHEE7VgwQI99dRTaWs3AAD7yxn55Is0j3za/OZGRRu55LCJdtd8ann5ZqbdAQAAdIrrr3ZXVlYWv996vSdHQUGBJGnXrl3t7svn8+nJJ5/Ul770JT3//PP6zne+o+9+97u6//77dfHFF++zLQ0NDWpoaP5DoLKyUpJUVVWVMCQwHA7r448/bnOklvNz1NbWKhpN/EMiKytLgUBAjY2NCd/LaX9OTo4sy1J1dXXSfnNzc+X1elVXV6eIs45Fk1AopGAwqHA4rPr6+oRtXq9Xubm58Z+ltZycHPl8PtXX1yetqxUMBhUKhRSJRFRXV5ewzePxxKvV1dXVsiwrYXt2drb8fr8aGhrU2NiYsC0QCCgrK0vRaDTlJTadY1hTU6NYy0+v1f4x9Pv9ys7OViwWU01NTdJ+8/Ly5PF4Ur437R1D572RUh/D9t6bSCSitWvXavLkyUlDS1u+N6mOofPemB7Dlu9NqmPovDfpPobOe9PeMexMvlPlsKPHsL18d+YYpnpv9nUM2+sjYrGY1qxZo4kTJ8rXarQGfUQzt/cRYW9EsiRPxP5/56Pfvy//97+jf48/Uof8+1Z5vHZfsa98W5alDz/8UBMmTJDfn3hK0Nv7iFhM2rs3R5Yl5eREJbXqIxoalNP0czm/S72hj+jMeYQkrV69WuPGjVMwGEx4nD7C1lP6iJbaO4ZdeR7h8Xj0wQcf6MADD1QoFErY7oY+oqW+dB6Rqb81JHugwNixY5WVlZWwnT7C1tv6iM6cR8RiMa1cuVJjx45VdnZ2wnb6CFt39RGp8tYW1xefWr4JrU+EHM5/eKkObGs5OTn6y1/+oqlTp2rLli2KxWL67ne/K7/fr2984xvtvvb222/XzTffnPT48uXL44GTpP79+6u+vl719fVavXp10vPnz58vSVqzZk3Smzlp0iQNHjw4Ybphy/1Onz5d0WhUS5YsSdrv4YcfrmAwqPXr12vPnj0J28aOHasRI0aovLw8qU15eXk6+OCDJUlLly5N+oU55JBDlJubq08++UQ7duxI2OasuVVdXa3ly5cnbAsGgzr88MMlSStXrkz6pZgxY4b69eunrVu3avPmzQnbhgwZookTJ6q+vj7pZ/V4PJo3b54k+xi27jymTJmigQMHaufOndqwYUPCtgEDBmjq1KmKRCIpj+GRRx4pv9+vdevWae/evQnbxo0bp+HDh6usrExr1qxJ2Jafn69Zs2ZJUsr9HnroocrOztamTZuSiqRDhgxRfX29qqqqkt7zrKwsHXbYYZKkFStWJHVYM2fOVGFhoTZv3qytW7cmbBs2bJjGjx+v2trapDb5fD4dddRRkuw/NFp3diUlJSouLtaOHTu0cePGhG3FxcUqKSlROBxO+bPOnTtXHo9Ha9euVYUz7KDJhAkTNHToUJWWlmrt2rUJ2woLCzVz5kxZlpVyv3PmzFEoFNKGDRtUWlqasG3MmDEaOXKkysvLE0ZLSvbv/OzZsyVJy5YtS+pgZ82apfz8fG3evFnbtm1L2DZ8+HCNGzdO1dXVWrZsWcK2QCCgI444QpJ9MtX6P7hp06apqKhI27dv1yeffJKwbdCgQZo8ebIaGhpS/qzt9RGjRo1SfX29ysrKkn5v6CNsvaGPqPp0r0bHYlJjnbZv366ypxdqoGVp0JqFeuGSRzT4WzMl7buPmDBhgurr67Vjx46kvqe39xE1NT5VV8+QJNXW7pWU2Ed46+s1s6bGPmlsKj71hj6iM+cR06ZNU319vTZv3pz03tBH2HpKH9HSqFGjNHr0aFVWVmrlypUJ27ryPGLGjBmqr6/X+vXrk/Lthj6ipb50HpGpvzWc/48+/PBD+og+0kd05jxi5MiRamhoSHkxMPoIW3f1ER2psTg8Vuvfbpd54okndMYZZ0iyRx6lKkBdc801uuOOOzRt2jStWLGi3f2tX79en/vc53TBBRdo2rRpuuiii/Tpp59Kkn784x/r2muvbfO1qUY+jRgxQlu2bImPvnKet2rVKs2cOTNe6W+pJ34awSeWtkx8GhEOh7Vy5UrNmDEjaSRLT/00gk8sM/dpRCQS0YoVKzRt2jQFAoGEbfQRzdzeR+xZvVu1x5ypqNevCXv+rfcnfl39d6+VLKkxkK38Z3+vQTOH7DPf0WhUy5cv19SpU5P+/+ztfcTmzR597WvZys629PrrseQ+oqpKOaecYu/73XelQKBX9BGdOY+wLEtLly5VSUlJ0kgW+ghbT+kjWsrUqAbnD7jJkycnjUxwQx/RUl86j8jU3xqxWExLlizRpEmT4ll30EfYelsf0ZnzCKd4lyov9BG27uojKisrdcABB6iioiKh5pGK64tPixYtildN9+zZo6KioqTnXH755brvvvt0/PHH6+WXX25zX1u3btXs2bN18skn66GHHpIkVVRU6Pzzz4+v97Ro0aJ4hXFfKisrVVhYmPRGVFVVacmSJfEqJ9Ae8gIT5KVv2Lu+TNunnyBJGrn+DX0y7lh5rJj2Dpyg/rvXqnTkwTpq5W/k9be/VlFfzsuKFdIFF0jDhknPPJPiCRUV0nHH2fffe491n9S38wJz5AUmyAtMkJeeo62aRyquP5NquQ7O9u3bUz7HebykpKTdfd1+++3avn27vvOd78QfKyws1N///nedeOKJkqR77rknHc0GAGC/BfObR52s//tSeayYqvKHaezf7lTYn63iT/+rd7731wy2sOdr90p3EguOAwAApJHrz6aKioo0ffp0SUq5fpLUfEW8Y445pt19LVq0SJI0fvz4hMd9Pp9+8pOftPs9TGRnZ2vatGlJQ5CBVMgLTJCXviGQ0zylcu8r70uS6sZN19DZB6j2ov+RJOX+4deKRWKpXh7Xl/PS7pXupObiE4WnuL6cF5gjLzBBXmCCvLhTrzijOvvssyVJCxcuTNq2c+dOrV27VkVFRTrhhBPa3Y8znzHVVfEmT54sSUlrqOwPv9+voqKipCsLAamQF5ggL31Dy+JTYNliSVJwtv1BzCE3n2o/HqlVza72F4Hsy3kpL7dv2xz55Kyd0AePTVv6cl5gjrzABHmBCfLiTr2i+HTRRRdp4MCBevzxx5MW4nrkkUcUi8V05ZVXxiujr7zyiqZOnaqf//znCc896aSTJEkvvPBC0vdwVtJ3ntMZDQ0N2rRpU9LiaUAq5AUmyEvf4PF6FPXaC4T33/2xJGnICfaV2wI5AUW9dnGqrrT94lNfzgsjn8z15bzAHHmBCfICE+TFnXrFGVVRUZH++Mc/qqqqSt/+9rfjq8QvXrxYt99+uz772c/qBz/4Qfz5v/zlL7Vq1SrddNNNCfu59tprNX36dP3oRz/S66+/Hn98x44duuyyyzRjxoyE/eyvxsZGffLJJ0mrzgOpkBeYIC99R9TnXJ3OUtifrVHHjYtvCwfsK7/UlyVfoaelvpwXik/m+nJeYI68wAR5gQny4k69ZpzaiSeeqHfeeUc/+clPNGfOHOXk5Kimpka33HKLvv3tbydcov6ss87Sm2++qXPPPTdhH4WFhfrPf/6jn/3sZ7riiisUiUQ0YMAARSIRnXzyybryyiuTLuUIAEAmRH1BqemKvBUjpskXbP5/LhzMVVZDhepLky8VDBvT7gAAALpPrzqjmj59uh5//PF9Pu+cc87ROeeck3JbTk6ObrjhBt1www3pbh4AAGkT9Qebv2i68EZ8WyhXqpIay9sf+dRX1dZKTdci0YABbTyJkU8AAABpwxkVAAAuFPM1F5/6z29dfLJH6YYrKD6l8stfSjt3SkOHSnPmtPEkik8AAABpwxlVBvj9fg0aNIjV+dEh5AUmyEvfEWsx8mn056YlbsvOlSQ1lrU/7a4v5uXtt6Unn7Tv33ij1OZseqbdJemLecH+Iy8wQV5ggry4E+9WBmRnZ2vy5MmZbgZcgrzABHnpO2IBu/hUUTRWU4blJ2yzcuziU7Sq/ZFPfS0vlZXSrbfa97/8ZemQQ9p5MiOfkvS1vKBzyAtMkBeYIC/uxBlVBsRiMdXV1SnmfKoKtIO8wAR56TtigZAkqWHSjOSNuU3Fp8qa9vfRx/Lys59Ju3dLI0dKl122jydTfErS1/KCziEvMEFeYIK8uBNnVBlQU1Oj9957TzU17f9RAEjkBWbIS98RyyuUJOUedVDyxlx7Llmsqv0c9KW8lJdLzz9v37/5Zikrax8vYNpdkr6UF3QeeYEJ8gIT5MWdOKMCAMCFxt97hT7566E67JoTk7Z58+yRT1YNC447du60b4uKpGnT2n+uJEY+AQAApBHFJwAAXGj44SM1/PCRKbf5Cuzik/hEMK601L4tLu7gCyg+AQAApA1nVAAA9DK+/KZLuNVSfHIYF5+YdgcAAJA2FJ8AAOhlAv3zJEneuvan3f33h09r52+Xd0eTMm7PHvuWkU8AAADdj4/zMiA/P1/z58/PdDPgEuQFJsgLJClQaI988ta3PfKpYnOlBj36SxV7fMp66JLualrGMO2u8+hfYIK8wAR5gQny4k6cUQEA0Ms4xSd/O8WnsrV2NcZrRVVXVtct7cokpt0BAABkDsWnDKitrdWSJUtUW8tViLBv5AUmyAskKavYnnbnb2y7+FS5qUyypFgsprJtZd3VtIxh5FPn0b/ABHmBCfICE+TFnTijyoBoNKqqqipFnRNboB3kBSbICyQpq8ge+RQIt31SVrt1r33Hkur2MvIpifM75PN1SXvciP4FJsgLTJAXmCAv7kTxCQCAXia7OFeSFIjUKRaJpXxO/fa98fsN5fXd0q5MsaxOTLuj+AQAANBpFJ8AAOhlcgbmxu/XlqYe/RTe2TzVLlzZu4tPVVVSY6N9n2l3AAAA3Y8zKgAAeplATkAxjz1ip25P6uJTtLTvFJ+cUU/5+VIw2MEXMe0OAAAgbSg+ZUBWVpYmTZqkrKysTDcFLkBeYIK8QJI8Xo/CAXv0U11pG4uOl5dLHvu5qot0X+MywHjKncS0uxToX2CCvMAEeYEJ8uJOXD84AwKBgAYPHpzpZsAlyAtMkBc4wsFchRor1VCWuvjkr7BHPnk8HsVqw93ZtG63X8Unpt0loX+BCfICE+QFJsiLO3FGlQGNjY3aunWrGp0FKIB2kBeYIC9wREL2Fe8ay5On3VmWFKwua7pvqaG8ulvb1t327LFv96v4xMinOPoXmCAvMEFeYIK8uBPFpwxoaGjQunXr1NDQkOmmwAXIC0yQFziiWfa0u8ay5MJSTY2U27hXsiQrZqmxqo2peb0E0+7Sg/4FJsgLTJAXmCAv7kTxCQCAXijWVHwKVySPfCrdHlZOrCr+tVXTNxYcZ9odAABAZnBGBQBAL2Tl2MWnSFVy8al8U3nC17HavlF8GjDA4EVMuwMAAEgbik8AAPRGOfaaT9EU6zlVfrI38YHauu5oUcYw7Q4AACCzKD5lgM/nU//+/eXjhBYdQF5ggrwgLtce+RSrTh75VLu1rPkLj6T63r1mAtPu0oP+BSbIC0yQF5ggL+7kz3QD+qKcnBxNnz49082AS5AXmCAvcHjz7eKTVZ28mHj9NnvkUyAghSNe+Xrx1WLq6+0F1iWudtdZ9C8wQV5ggrzABHlxJz7OywDLshSJRGRZVqabAhcgLzBBXuDw5tnT7uKVlxbCu+ziUzBof+2pTx4d1Vs4o55CofhgsI6h+JSE/gUmyAtMkBeYIC/uRPEpA6qrq7Vo0SJVVyevwwG0Rl5ggrzA4e+XZ9+pTS4sRUvtaXfhgn6KRWNSXe8vPhUXSx6PwQudNZ+YdhdH/wIT5AUmyAtMkBd34owKAIBeyF9gj3zy1iWPfPKU2cWn6JChkiRfY+9dcHzPHvvWaMqdxMgnAACANKL4BABALxQobCo+1ScXn7yV5ZIk/4gh9tfh3rvg+H4tNi5RfAIAAEgjik8AAPRCwSJ72p2v1XpODQ1SVp098in7QHvkkz9cr966bMJ+F5+YdgcAAJA2nFEBANALhfrbI5/8jYkjn/bskQojZfJ4pJxx9sinkFWn+vpub2K3cIpPAwYYvpCRTwAAAGnjz3QD+qLc3Fwdfvjh8vs5/Ng38gIT5AWOrAG5qpcUbFV8Ki2V8qN75fdLeRPGyOvzKitWr7o6KTs7M23tSky7Sx/6F5ggLzBBXmCCvLgTI58ywOv1KhgMystQfnQAeYEJ8gJHdnGuJCkQqVUsEos/XratXqFYnfx+yT9iuLxeKWjVq6Yq1tauXI1pd+lD/wIT5AUmyAtMkBd34t3KgLq6On3wwQeqq+u9VxdC+pAXmCAvcGQPyInfry9vnlNX+cleSZInFFRdbq5kxSRLqq/onYuOM/IpfehfYIK8wAR5gQny4k4UnzIgEoloz549ikQimW4KXIC8wAR5gSNUEJLlsf+br93dPPWuZotdfIrm91fE75c89gifurLedwIXiUh77R+X4lMa0L/ABHmBCfICE+TFnSg+AQDQC3m8HjUG7Kl39Xuai0/12+wr3Vn9iySvV1FfUJLUUNH7Vhwvs39U+XxSv36GL2baHQAAQNpwRgUAQC8VCdhT7+rLauOPhXfZQ4G8A/rbXwdCknpn8anlle6Ma0iMfAIAAEgbik8AAPRSkZA98qmhrHnkU7TULj75B9nFp4g/S5IUrux90+72e70nieITAABAGlF8yoBQKKSxY8cqFApluilwAfICE+QFLUWy7OJTuLy5+OTZa89FCw0tUigUkjc3T/JIjRUUnxI40+4oPsXRv8AEeYEJ8gIT5MWd/JluQF8UDAY1YsSITDcDLkFeYIK8oKVYdlPxqcKedheLSf4qu/iUM6y/gsGg/Hn5kqRIVe8rPm3aZN8ecMB+vNgZ+cSaT3H0LzBBXmCCvMAEeXEnzqgyIBwOa/fu3QqHw5luClyAvMAEeUFLVpa95lO4vFqSvQB3XrhcHkm5B/RXOBxW2G+P7OmNxaf16+3bAw/cjxcz7S4J/QtMkBeYIC8wQV7cieJTBtTX12v16tWqr+99i7si/cgLTJAXJMi1Rz7FquyRT6WlUkG0TD6/5C0uUn19vWqiUcmSojW9LzNO8Wns2P14MdPuktC/wAR5gQnyAhPkxZ0oPgEA0Fs1FZ+iLYpPhZEy+f2S+tsLjltZ9noJ0ereNfKpsrJ5zaf9Kj4x7Q4AACBtOKMCAKCX8uTZ0+6sKnva3a6dlvKje+3iU1GRvS0rKEmK1fau4pMz6mnIkHgNzgzT7gAAANKG4hMAAL2UryDPvlNrj3z6aGmt/FZYWSE1j3zKtotPVm3vGrreqfWeJKbdAQAApBHFpwzwer3Ky8uTl6H86ADyAhPkBS358u2RT07xadMS+0p3of45Uigkr9erYNNzrLreNfJpwwb7dr+LT0y7S0L/AhPkBSbIC0yQF3fyZ7oBfVFubq4OPvjgTDcDLkFeYIK8oCV/gV1Y8tZWq6JCqti0V5KUM9we9ZSbm6uhY0er3iN5elnxad06+7bTxSdGPsXRv8AEeYEJ8gIT5MWdKBUCANBLBYvsaXfe+lqtXCkVRssUDEqBwUXx5wQKsu07La4YEw5L//pX84LdbmNZnbzSncS0OwAAgDSi+JQBVVVVevPNN1VVVZXppsAFyAtMkBe0FCi0Rz756mu0YoU0qHGLcnIUX2y8qqpKn+zcLFmSt6F55NPLL0vXXy/dc08mWt15e/dKFRWSxyONGbOfO4lE7FuG9MfRv8AEeYEJ8gIT5MWdOKPKEMuyMt0EuAh5gQnyAkeoyL7Mm7+xRsuXS7OrXlN2tqTZs+PP8eYG7NsWxadNm+zbLVu6q6Xp5Yx6Gj5cysraz50w8ikl+heYIC8wQV5ggry4D8UnAAB6qawBTcWnhlptX7pD4+pWKDvHIx13XPw5TvEpEKmLL3O0c6d969Zpd52+0p1E8QkAACCNKD4BANBLZRXZ0+6CkVodtPsl+bxS6LCDpIED48/x59nFp1CszrkoXkLxyY0fLHb6SncS0+4AAADSiDMqAAB6qZyB9sgnj2KaW/5PZedInhNPSHiOJycoeaSgVS/ngndO8amxUXLjcgqdvtKdxMgnAACANKL4lAE5OTk65JBDlJOTk+mmwAXIC0yQF7SU1S9Llsf+r35Y40Zl53ilY4+Nb8/JydHkWbPsEVGxetXU2COdnOKT5L6pd5bVPPJpv690J1F8SoH+BSbIC0yQF5ggL+5E8SkDfD6fcnNz5eOEFh1AXmCCvKAlj9ejsD87/rV18CHxK91Jdl5yBgyQ12dPu6urk8rL7RFPDrcVn3bvlqqr7dlyo0Z1YkdMu0tC/wIT5AUmyAtMkBd34owqA+rr6/XRRx+pvr4+002BC5AXmCAvaC0cdKbeSYVfSpxyV19fr3Vbt8rjkUJWnWpqEkc9Se4rPjmLjY8cKQWDndgRI5+S0L/ABHmBCfICE+TFnSg+ZUA4HNaOHTsUDocz3RS4AHmBCfKC1iJNxadAtk+hzxybsC0cDmtHebm8Xks+K6K6qkhS8WnPnu5qaXqk5Up3EsWnFOhfYIK8wAR5gQny4k7+TDcAAAB0nWiWXXyqmHiYVFCQtD0WDMZnltXvrVN5ND9hu9tGPqXlSncS0+4AAADSiDMqAAB6scaBwyVJvlNPTrnd8vvlaSqwhCvrtGOH/bgz4Mdtxac1a+xbRj4BAAD0HBSfAADoxWb84XuqveMezbjqhNRP8HgUDWZJkurL6+PT7iZMsG/dVHyqrZXWrbPvT5vWyZ1RfAIAAEgbpt1lQDAY1IgRIxTs1Eqo6CvIC0yQF7Q2YMIADZhwRMptTl5iWTmS6hSpqosXn0pKpA8/dFfxadUqu2Y0ZIg0aFAnd8a0uyT0LzBBXmCCvMAEeXEnzqgyIBQKaezYsQqFQpluClyAvMAEeYEJJy+e7BxJUriqPqH4JLmr+LRihX07fXoadsbIpyT0LzBBXmCCvMAEeXEnik8ZEIlEVF5erojzqSrQDvICE+QFJpy8xEL2tLtwZZ127bK3OcWnmhrJLVcyXr7cvp0xIw07o/iUhP4FJsgLTJAXmCAv7kTxKQPq6uq0fPly1dXVZbopcAHyAhPkBSacvFihgCSpbGudolF7ptno0ZLzgaIbRj/FYtLKlfb9To98sqzm4hPT7uLoX2CCvMAEeYEJ8uJOnFEBANDXZdsjn8q22idxAwfaNZfiYnuzG4pPmzZJVVVSVpY0fnwnd+YUniRGPgEAAKQBxScAAPo4T1PxqbHSnl83eLD9uFN82rMnE60y46z3VFIi+Tt7OZVotPk+xScAAIBOo/gEAEAf583NliSFYvbIpyFD7McHDLBv3TDyySk+pWW9p5bFJ6bdAQAAdBpnVBng8XgUDAbl8Xgy3RS4AHmBCfICE05efHlNxSfLLj6NzdomfeMbmlXxuqTMFJ8sS7rhBumuuzr2fGex8bRe6U5i5FML9C8wQV5ggrzABHlxp84OTMd+yMvL0+GHH57pZsAlyAtMkBeYcPKy86n/qFZSVtPIp2nbXpSWLdOM/KCkYzJSfNq9W3r+efv+eedJgwa1/dzycumTT+z706al4Zsz7S4l+heYIC8wQV5ggry4EyOfAADo4/z59ppPwVjTmk/V6yVJ/Wu2SMrMyKfy8ub7zlXs2uJsHz1aKixMwzdn2h0AAEBacUaVAdXV1frPf/6j6urqTDcFLkBeYIK8wISTl1jQHrburPnUf+8GSVJu9Q75rHBGik8VFc33nSl1bXHWe0rLlDupedqd1ysxpD+O/gUmyAtMkBeYIC/uRPEpAyzLUmNjoyzLynRT4ALkBSbIC0w4eQnkhyRJQateXiuq3F0bJUkBb0zF4R0ZH/nkFJfa4hSn0rLYuNQ88olRTwnoX2CCvMAEeYEJ8uJOnFUBANDHBQrsBcezYnUabm2RzwpLkvx+aVDjFu3dK0Ui3dumliOf1qyRGhpSPy8cllatsu+nbeQTxScAAIC04qwKAIA+zpOTJa/HnnZXkrVezkQzn18aErXXfSor6942tSw+RSLShx+mft7ixXZhqqhIGjUqTd/cmXbn57osAAAA6UDxCQCAvi47W16vXXya4F8ff9gjaYw/M4uOt5x2J7W97tNLL9m3xx+fxoFKjHwCAABIK86qMiA7O1szZsxQdnZ2ppsCFyAvMEFeYMLJS7CgwC4+WXUaE20qPg0bJkka4clM8ckZ+VRcbN+mKj41NkpvvGHfX7Agjd+c4lNK9C8wQV5ggrzABHlxJ86qMsDv96tfv37yM5wfHUBeYIK8wEQ8L/n58vqkUKxeQ+vsK91p/nxJzdPuMjXyad48+3bFCqn1uqLvvCNVV0uDBqVxsXGJaXdtoH+BCfICE+QFJsiLO1F8yoCGhgZt2LBBDW2tngq0QF5ggrzARDwvPp+8XiknWqWiqk/sjU1Vn+L6rZJlZaz4dNhhUjBof715c+JzumTKncTIpzbQv8AEeYEJ8gIT5MWdOKvKgMbGRm3evFmNjY2ZbgpcgLzABHmBCScvYZ9PeXlSgadKudlRKTfXHkrk9SpL9SqMlmVs2t3AgdLkyfb9FSuatzc0SG++ad9P65Q7ieJTG+hfYIK8wAR5gQny4k6MU9uHmpoaPfvss3r11VcVDAY1efJkXXbZZZluFgAAaWOFQioeIA0YYC8yrgMPtIcbDR4s/57tGtS4RaWlA7q1TU7xqbDQroMtX24Xn045xX580SKptlYaOlSaOjXN35xpdwAAAGnVq86q1q9fr5tvvlkrV65Udna26uvrdckll+ib3/ym8b6i0ah+85vf6MYbb9Rhhx2mu+66SyUlJV3QagAAMqxpwU6P8/WBB9q3Bxwg/9rtGhTeotLSdC6q1L5IxF7LSbKLT9On2/dbLjruTLlbsEDyeJRejHwCAABIq15TfFq2bJnmz5+vU089Ve+9954CgYAWLVqkE088UYsXL9Zvf/vbDu+rtrZWZ5xxhl544QXdcccduvrqq7uw5QAAZFhWVuLXY8fatwccIL9/sQZXb9HH3TjtrrLSvvV4pIKC5uLThg3Shx9KPp+0cKH9WNqn3EkUnwAAANKsV5xVVVRU6NRTT5Xf79evf/1rBQIBSdKRRx6pq666Sg899JAeffTRDu2rsbFRJ554ov71r3/p1ltv7ZLCUyAQ0JAhQ+LtBNpDXmCCvMBEPC+hkD3NztFy5JNfGtS4RXv2NE+F62rOYuP5+Xb9p6hIOuAA+2p355wjfeUr9ppPBxwgTZrUBQ1g2l1K9C8wQV5ggrzABHlxp15RfHrggQe0efNmnXHGGcrPz0/YdsEFF0iSrrvuOoXD4X3u66qrrtJbb72lo446Sj/60Y+6pL1ZWVmaOHGislp/0gykQF5ggrzAREJemqbeSWouPg0fLn9AOjBrq6JR6c47u6ddTvGpX7/mx77yFbsIVVBg/ysqkr7xjS6Ycicx8qkN9C8wQV5ggrzABHlxp17xkd7DDz8sSTr66KOTto0YMUJjx47Vhg0b9Morr+gzn/lMm/v54IMPdO+990qSbrvtNnm65IzWXk+qvr5eWVlZ8vl8XfI90HuQF5ggLzCRkJfsbHtoU2GhXdmRpAMOkEfS7KFb5I1IL74oHXOMdPzxXdsuZ4RVy+LTmWfa/7oFxaeU6F9ggrzABHmBCfLiTq4/q9q9e7fWrVsnSZoyZUrK50xtugzOS87qpG346U9/KsuyNG7cOM2dOze9DW2htrZW77//vmpra7vse6D3IC8wQV5gIiEvzsinAw9sHk50wAGSpLzGMn3zq3ambr9d2rOna9vV8kp3GcG0u5ToX2CCvMAEeYEJ8uJOri8+rVq1Kn5/+PDhKZ8zbNgwSfbIprZEo1E9++yzkqTx48fr1ltv1ZlnnqlDDz1Us2bN0uWXX66NGzemseUAAPQgLYtPjry8eAXo/OO3aMIEuzD0k5/Y6y91FWfaXcaKT4x8AgAASCvXf6RXVlYWv996vSdHQUGBJGnXrl1t7mflypUqbzrb3bt3r84880xdf/31isVievrpp3Xuuefqscce04svvqg5c+ak3EdDQ4MaGhriX1c2Xa6nqqoqYQqf85xYLKaqqqqk/Tg/R21traLOCXCTrKwsBQIBNTY2JnwvSfL5fMrJyZFlWap2rlHdQm5urrxer+rq6hSJRBK2hUIhBYNBhcNh1dfXJ2zzer3Kzc2N/yyt5eTkyOfzqb6+PmldrWAwqFAopEgkorq6uoRtHo9HeXl5kqTq6mpZrf6Syc7Olt/vV0NDgxobGxO2BQIBZWVlKRqNpqx4O8ewpqZGMecT7CbtHUO/36/s7GzFYjHV1NQk7TcvL08ejyfle9PeMXTeGyn1MWzvvXGOaTQaTXpty/cm1TF03hvTY9jyvUl1DJ33Jt3H0Hlv2juGncl3qhx29Bi2l+/OHMNU782+jmF7fYTzs4fD4aS80Ec06019RHvHcF/5dtrY2NioRr9fvlhMjUOHKlJVFT+GsWHDZO3dq/DGtbrqqmG66KJsvfGG9O67Ps2Z0zV9REWFR7FYVFlZYVVVNWemu/oIX1WVQrGYYtGoGmtqelUf0ZnzCOdnb/06iT7C0dv6iM6cRzhaf0+J8whHb+sjOnMe4Uj1+0gfYettfURn/tZwpHpv6CNs3dVHpMpbW1xffGr5JgRbXqmnhVAoJEkpD6xj69at8ft//vOfNbbpMtNer1enn366fvazn+niiy/WV7/6Va1duzbl3NLbb79dN998c9Ljy5cvjwdOkvr37y/JPtlfvXp10vPnz58vSVqzZk3Smzlp0iQNHjw4Ybphy/1Onz5d0WhUS5YsSdrv4YcfrmAwqPXr12tPqzkTY8eO1YgRI1ReXp7Upry8PB188MGSpKVLlyb9whxyyCHKzc3VJ598oh07diRsc9bcqq6u1vLlyxO2BYNBHX744ZLs4l/rX4oZM2aoX79+2rp1qzZv3pywbciQIZo4caLq6+uTflaPx6N58+ZJso9h685jypQpGjhwoHbu3KkNGzYkbBswYICmTp2qSCSS8hgeeeSR8vv9Wrdunfbu3Zuwbdy4cRo+fLjKysq0Zs2ahG35+fmaNWuWJKXc76GHHqrs7Gxt2rQpqUg6ZMgQSXZ+W7/nWVlZOuywwyRJK1asSOqwZs6cqcLCQm3evDkh45I9InD8+PGqra1NapPP59NRRx0lSVq9enVSZ1dSUqLi4mLt2LEjaURgcXGxSkpKFA6HU/6sc+fOlcfj0dq1a1XR6tJZEyZM0NChQ1VaWqq1a9cmbCssLNTMmTNlWVbK/c6ZM0ehUEgbNmxQaWniNeHHjBmjkSNHqry8PGG0pGR3+LNnz5YkLVu2LKmDnTVrlvLz87V582Zt27YtYdvw4cM1btw4VVdXa9myZQnbAoGAjjjiCEn2qMvW/8FNmzZNRUVF2r59uz755JOEbYMGDdLkyZPV0NCQ8mdtr48YNWqUJKm8vDzp94Y+wtbb+ohRo0Zp9OjRqqys1MqVKxO27auPmDBhgiT7w5ktU6eqeO9ebSoqUmTJkngfER48WI3vvaetb7+tyhPzNW3aKL399gAtXpyvOXO6po8oL/eovr5B5eWfasmSnQnt7Y4+ot9HH2lsTY2qysu1dfXqXtVHdOY8Ytq0aZKkLVu2JPXf9BG23tZHdOY8YsaMGZKkjRs3JuWb8whbb+sjOnMe4fx/9NFHH9FH9JE+ojN/a4wcOVKSko6DRB/h6K4+or0aS2seq/Vvt8s88cQTOuOMMyTZn8SlKkBdc801uuOOOzRt2jStWLEi5X7+/Oc/62tf+5qKioqSOkvJrlIOGDBAjY2NeuWVV3TcccclPSfVyKcRI0Zoy5Yt8dFXzvNWr16tGTNmJFT6HT3x0wg+sbRlauTTBx98oOnTpycVPXvqpxF8YpnZkU8rV67U1KlTky4/Sx/RrDf1EZ0d+bRixQqVlJQk/f8ZH/l0332yfv97RU49VY1XXql//cunO+4I6eCDfXrooa7pI6680qM33ojq+99v1Oc+1/zzdtvIp1dfVeiWWxQ96CCF77mnV/URnR35tGzZMk2ZMiX+wV7rY0gf0bv6iM6cR1iWpaVLl2rSpEnKbnk1TXEe4ehtfURnziNisZiWLl2qiRMnxrPuoI+w9bY+ojN/azjFu0mTJiXlhT7C1l19RGVlpQ444ABVVFQk1DxScX3xadGiRfGq6Z49e1TkXKGnhcsvv1z33Xefjj/+eL388ssp9/Pkk0/qi1/8ooYOHZpUcXRMmTJFH374oe6++25997vf3WfbKisrVVhY2KE3AgCAHumZZ6RbbpEOO0y6/359+qn0hS9IwaD0739LrWqcaXHBBdKKFdKdd0rHHpv+/e/Tv/4lXX+9dOih0q9/nYEGAAAA9HwmNQ/Xr6Q5efLk+Lzy7du3p3yO83hJSUmb+3Gm2ZWXlydVIx1OYSvV3HUAAHqlpiveacsWSdKIEfZC4I2NUqsR62njLDjer1/X7H+fuNodAABAWrm++FRUVKTp06dLUsr1k6TmK+Idc8wxbe6npKREhYWFqqurS5rz63AWEHfW4NlfNTU1+u9//2s0PxJ9F3mBCfICEx3Ki1N82r5dCofl8UhNS7mo1fIaaeMs0ZCx4hNXu0uJ/gUmyAtMkBeYIC/u1CvOqs4++2xJ0sKFC5O27dy5U2vXrlVRUZFOOOGENvcRCAT0hS98QZL06quvJm23LEtbmj71dRaY21+xWEzV1dVJ8zKBVMgLTJAXmOhQXgYOlHJy7NFATR/ONH3m0yXFp1hMcparKCxM//47xCk+pbi4SF9G/wIT5AUmyAtMkBd36hXFp4suukgDBw7U448/nrQQ1yOPPKJYLKYrr7wyvtjhK6+8oqlTp+rnP/95wnOvvvpqhUIh3X///UlBfu2117R3716dfvrpGjduXNf+QAAA9BQej3Tggfb9pisfOcWnFSukdK8cWVXVPOstY8slUnwCAABIq15RfCoqKtIf//hHVVVV6dvf/nZ8lfjFixfr9ttv12c/+1n94Ac/iD//l7/8pVatWqWbbropYT+TJk3Svffeq6VLl+o73/lOfFX48vJyXXPNNSopKdGDDz7YbT8XAAA9QtO6iGq6ZPSUKXZdZvduqdVVrzvNmXKXm9s1i5l3iFP9YtodAABAWvSas6oTTzxR77zzjmpqajRnzhzNnTtX3/rWt3TLLbfomWeeSbhE/VlnnaX8/Hydd955Sfv55je/qVdffVUbNmzQzJkzdfTRR+vEE0/USSedpHfeeUcDBw7szh8LAIDMc0Y+rV8vScrKkiZOtB9asSK938pZbDxjU+4kRj4BAACkWa+6jMv06dP1+OOP7/N555xzjs4555w2tx999NE6+uij09iyRFlZWZoyZYqysrK67Hug9yAvMEFeYKLDeWlVfJLsRcdXr7bXfTrxxPS1KeNXupMoPrWB/gUmyAtMkBeYIC/u1GtGPrlJIBDQwIEDFcjYfAK4CXmBCfICEx3Oi1N82rJFapqS3nLdp3TK+JXuJKbdtYH+BSbIC0yQF5ggL+7EWVUGNDY2avPmzfE1pYD2kBeYIC8w0eG8DBhgr/4di0mbNkmyRz5J0tq1UqtrfXSKU3xi2l3PQ/8CE+QFJsgLTJAXd6L4lAENDQ3asGGDGhoaMt0UuAB5gQnyAhMdzkuKK94NGiQNHmzXo1avTl+bmHbXc9G/wAR5gQnyAhPkxZ0oPgEAgH1rdcU7qXn0Uzqn3vWIkU9MuwMAAEgrzqoAAMC+pVh0fOZM+/bpp9M39Y6r3QEAAPQ+FJ8AAMC+pSg+nXyyNGSItHWrdM896fk2PWLBcYpPAAAAaUXxKQP8fr8GDBggv9+f6abABcgLTJAXmDDKizPtbtu2+DCn3Fzphhvsh//+d+mddzrfph4x8olpdynRv8AEeYEJ8gIT5MWdOKvKgOzsbE2dOlXZ2dmZbgpcgLzABHmBCaO89O8vFRXZ95uueCdJhx4qnXmmff+WW6Sqqs61iQXHey76F5ggLzBBXmCCvLgTxacMiMViamxsVMz5ZBVoB3mBCfICE8Z5aXXFO8fll0sjRki7dkk/+9n+t8eymHbXk9G/wAR5gQnyAhPkxZ0oPmVATU2N/vOf/6impibTTYELkBeYIC8wYZyXFFe8k6TsbOnmmyWPR3ruOWnHjv1rT21tc92HaXc9D/0LTJAXmCAvMEFe3ImzKgAA0DEpFh13TJ8uHXSQff+VV/Zv986Uu1DI/pcxjHwCAABIK4pPAACgY9opPknSggX27Usv7d/ue8SUO4niEwAAQJpRfAIAAB3jTLvbtSvlyuLHHWfPVFu9Wtq61Xz3PeJKdxLT7gAAANIsbdcmvOWWW9K1q7h+/frpiiuuSPt+AQDAfsjPlwYNsotPGzfac+1aKCqSDjlEeu896eWXpfPPT95FLCbde6+9qwsuSNzWI650JzHyCQAAIM3SVny66aab5PF4ZFlWunap0aNH98riU15eno488kj5OKlFB5AXmCAvMLFfeRk3zi4+ffhhUvFJsqfevfeePfUuVfHp//5P+uMfm587YkTztrVr7dtBgzrenC5B8Skl+heYIC8wQV5ggry4U9qKTx6PR1dffbUmTZqUlv199NFHevzxx9Oyr57G4/HI70/boUcvR15ggrzAxH7lZdo06e23pRUrpLPOStp87LHSHXfYhaRPP5VGjmzetnGjdN99zV+//HLz6KdYzP5akubPN/xB0o1pdynRv8AEeYEJ8gIT5MWd0vaOzZ49W7fffnu6didJevPNN9O6v56itrZW69at07hx45STk5Pp5qCHIy8wQV5gYr/yMmOGfbtiRcrNhYXSYYfZ9amXXpK+8Q378WhUuvFGqbHRnlZXXm5vd4pPH3wg7dwp5eRIRx7ZqR+r8xj5lBL9C0yQF5ggLzBBXtwpbR/pZWdnp2tXcYFAIO377Ami0aj27t2rqHNyC7SDvMAEeYGJ/crL1Kn2iKDt2+3pdymkuurdo4/aC5Hn50sPPij5/dK6dfZoqJbPPfpoKRg0/lHSi+JTSvQvMEFeYIK8wAR5cae0FZ9mzpyZrl116T4BAEAn5OTY6z5J0sqVKZ9y9NFSICBt2CB9/vPSaafZBSdJuvpq6cADpTlz7K9fftme5fbKK/bXTuEqo5h2BwAAkFZpOat65JFHdP3116djVwl+8YtfpH2fAACgk5ypd8uXp9ycn2+v/SRJW7dKW7bY9ZzjjpNOOsl+/IQT7NuXXpKWLpVKS+3XOUWpjIpE7FtGPgEAAKRFWtZ8uvDCC/Wtb31LRx11lL7whS/o85//vEa0vHwNAADoPaZPl/72tzbXfZLs9Z2+/OXmQUQ+nzRhguTx2F/Pn29Pr9u0SXrgAfuxY46xR0xlXMtGAwAAoNPSMvLpueee0/nnn6/Vq1friiuu0OjRo+MLkH/44Yfp+Ba9SigU0rhx4xQKhTLdFLgAeYEJ8gIT+50XZ+TTmjVSQ0PKpwSD9vJQ06fb/0pKEgtLubnSEUfY95cutW97xJQ7iWl3baB/gQnyAhPkBSbIizt5LMuy0rUzy7L01ltv6R//+Ieeeuopbdq0SR6PR+PHj9cXvvAFnX766Zo9e3a6vl2PV1lZqcLCQlVUVKigoCDTzQEAID0sy54/t2eP9PDD0n6u0fjSS9KPfmTfLyyUXnzRXog84y66SFqyRLr99h5UEQMAAOhZTGoeaf1Iz+PxaO7cubr77ru1YcMGLVmyRNdee62CwaDuuOMOzZkzRyNGjNAVV1yh1157TTHnk8U+JhwOa+fOnQqHw5luClyAvMAEeYGJ/c6Lx9M8+qmdqXf7ctRRkvOh5XHH9ZDCk8S0uzbQv8AEeYEJ8gIT5MWdunQ8+cyZM3XLLbdoxYoVWrt2rW6//XaNGDFC999/vxYsWKBBgwbp61//up555hnV19d3ZVN6lPr6eq1Zs6ZP/czYf+QFJsgLTHQqL9On27dtLDreETk50umn21P0vvCF/d5N+lF8Son+BSbIC0yQF5ggL+7UbYsZjBs3TldffbXefvttbdmyRffee68OOugg/fnPf9Zpp52mgQMHdldTAABAZznFpxUr7Gl4++l735PeeEOaNCk9zUoL52p3rPkEAACQFhk5qxo6dKguvfRSvfzyy9q1a5ceffRRLWBNBQAA3GPSJHsF8b17pS1b9ns3Xq898qlHYeQTAABAWqWt+PTYY4/t1+v69eunc889V08++WTa9gkAALpYMChNnmzfX7xYqq62/6XvOiaZQ/EJAAAgrdJWfHr00UfTtasu3WdP4PP5lJ+fLx8ntegA8gIT5AUmOp0XZ9Hx226Tjj7a/veNb7i/AMW0u5ToX2CCvMAEeYEJ8uJOabuuTDQaTdeuunSfPUFOTo5mzZqV6WbAJcgLTJAXmOh0XhYskJ54QqqtbX5s+XKppkbKy+t8AzOFkU8p0b/ABHmBCfICE+TFndJWfFq+fLneeustjRw5stP7sixL7777rrZt25aGlgEAgC4xZYq9WrjzYdFxx9mFqLIyik8AAACIS1vxqbKyUvPnz0/X7iRJo0aNSuv+eoqqqiotWbJEs2bNUn5+fqabgx6OvMAEeYGJtOTF622enta/v118Ki+X0vBhVMYw7S4l+heYIC8wQV5ggry4U9qKT/PmzZPH40nX7iRJQ4YMSev+AABAF+rfX9q61R755GaMfAIAAEirtBWf3njjjXTtCgAAuFFRkX1L8QkAAAAtMJ4cAACkR//+9u3evZltR2cx7Q4AACCtOKsCAADp4Yx8cnvxiZFPAAAAaZW2aXfouNzcXB166KEKhUKZbgpcgLzABHmBibTnxRn5xLS7Xon+BSbIC0yQF5ggL+5E8SkDvF6vsrOzM90MuAR5gQnyAhNpzwvT7no1+heYIC8wQV5ggry4E2dVGVBXV6cPP/xQdXV1mW4KXIC8wAR5gYm054UFx3s1+heYIC8wQV5ggry4E8WnDIhEItq1a5cizierQDvIC0yQF5hIe156y8gnik8p0b/ABHmBCfICE+TFnSg+AQCA9HCKT+XlzQUcN2LaHQAAQFpxVgUAANKjXz/7NhaTKisz2pT9ZlmMfAIAAEizjBWfHnjgAX3+85/XueeeqyVLlmSqGQAAIF0CAamgwL7v1nWfLKv5PsUnAACAtOjSq92NHTtWkjRixAidccYZuvzyyyVJV111le6++25ZTSd4f//73/XWW29p1qxZXdmcHiMYDGrUqFEKBoOZbgpcgLzABHmBiS7JS//+9qin8vL07bM7RaPN95l2l4D+BSbIC0yQF5ggL+7UpWdVmzZt0pe+9CW99tpr8cLT66+/rrvvvlsFBQV68cUXVVVVpZtvvllXX311VzalRwmFQho9erRCoVCmmwIXIC8wQV5gokvy4qz75NaRTy3XqmLkUwL6F5ggLzBBXmCCvLhTlxafhg0bpp/+9KfyNZ28NTY26pJLLpEk3XXXXVqwYIFyc3N11VVXqdytn5Duh0gkorKyMlbnR4eQF5ggLzDRJXkpKrJv3Vp8ajnyieJTAvoXmCAvMEFeYIK8uFOXFp8mTJiQ8PWdd96ptWvX6qCDDtI3vvGNhG3hcLgrm9Kj1NXVaeXKlaqrq8t0U+AC5AUmyAtMdElenJFPe/emb5/diWl3baJ/gQnyAhPkBSbIizt16VlVNBqNLyb+z3/+Uz/+8Y8VCAT08MMPJzxv9erVWrNmTVc2BQAAdAdn5JNbi09MuwMAAEi7Ll1w/JprrtERRxyhfv36affu3fJ6vXr00Uc1c+ZMSXZx6qmnntJ3v/tdhswBANAbuH3Np5YjnzyezLUDAACgF+nS4tNJJ52kt99+W08++aQaGxv1ta99TdOnT49vv/HGG7Vnzx6dfPLJXdkMAADQXdw+7c5ZBiAQoPgEAACQJl1afJKkWbNmadasWSm3/fjHP47f70sLjnu9XmVlZcnLWhLoAPICE+QFJrokL25fcLyx0b4NBDLbjh6I/gUmyAtMkBeYIC/u5LEsy8p0IyRp8uTJ+vDDDzPdjLSqrKxUYWGhKioqVFBQkOnmAADQ9TZskM48UyookF57LdOtMee0v18/6ZVXMt0aAACAHsuk5pG2UuFZZ52136996aWXtHbt2nQ1BQAAZIoz8qmyUnLjeo4tp90BAAAgLdJWfHr99dcVa3mFmA764IMP9JWvfCVdzXCF6upqvf3226qurs50U+AC5AUmyAtMdEleCgokZxi8G6fUM+2uTfQvMEFeYIK8wAR5cae0FZ9KS0t1//33G73mv//9r4499liVuXVdiP1kWZbC4bB6yIxH9HDkBSbIC0x0SV68XnvKmuTORcedkU/BYGbb0QPRv8AEeYEJ8gIT5MWd0rpC11VXXaVXX321Q8994403dOyxx2rPnj3pbAIAAMg0N1/xjml3AAAAaZfW4lM0GtXpp5+u9957r93nPf300/rsZz+r6upqWZalCRMmyMPljAEA6B3cfMU7pt0BAACkXdqKTyUlJaqpqdGNN96oz372s1qxYkXK5z3yyCP60pe+pPr6evl8Pj3wwANas2aNDj744HQ1BQAAZJIz8smNxSem3QEAAKSdP107uuCCCxQMBnXllVcqOztbCxYs0JtvvqmJEyfGn3PXXXfphz/8oSzLUm5urp544gmdcMIJkqRLL700XU3p8XJycjRz5kzl5ORkuilwAfICE+QFJrosL07xyY0LjjPtrk30LzBBXmCCvMAEeXGntBWfvvvd78bvX3rppdqzZ4+OO+44vfXWWxo9erR++MMf6q677pJlWerXr5+ee+45HX744fHXnHfeeelqSo/n8/lUWFiY6WbAJcgLTJAXmOiyvDDtrleif4EJ8gIT5AUmyIs7pXXNp5auv/56feELX9Cxxx6r8847T3feeacsy1JxcbFee+21hMJTX9PQ0KB169apoaEh002BC5AXmCAvMNFleWHaXa9E/wIT5AUmyAtMkBd3Slvx6Ytf/GLSY/fcc4/mzJmjP/7xj5KkgQMH6tVXX9XMmTOTnvvlL385XU3p8RobG7V161Y1Op+uAu0gLzBBXmCiy/Li5qvdMfKpTfQvMEFeYIK8wAR5cae0Tbt75513ZFlW0lXrHnvsMZWVlenNN9/UG2+8ocmTJye9tqamRs8//3y6mgIAADLJmXbnxuITaz4BAACkXdqKT9u3b9eMGTM0Y8YMBVqdsBUUFKihoUE/+MEPVFxcnLCtpqZG7777rqqrq9PVFAAAkElMuwMAAEALaSs+SdKqVau0atWqNrc/99xzKR9PNWIKAAC4lDPyqbZWamiQQqHMtseEM4Sf4hMAAEDapLX4JEkDBgxQbm5uh59fXV2tPXv2pLsZPVogENCwYcOSRogBqZAXmCAvMNFlecnNtaethcP21LshQ9K7/67kjHzyp/0UyfXoX2CCvMAEeYEJ8uJOaTuzys7O1pIlSzRx4kTj137wwQc67LDD0tWUHi8rK0vjx4/PdDPgEuQFJsgLTHRZXjwee+rdrl3uLT4x8ikJ/QtMkBeYIC8wQV7cKW1Xu5s6dep+FZ6c106dOjVdTenxotGoqqqqFI1GM90UuAB5gQnyAhNdmhe3XvGOaXdton+BCfICE+QFJsiLO6Wt+PTMM8906vV///vf09SSnq+2tlZLlixRbW1tppsCFyAvMEFeYKJL8+JcYGTnzvTvuysx7a5N9C8wQV5ggrzABHlxp7QVnwYPHtyp148YMSJNLQEAABk3fLh9u2VLZtthiml3AAAAaZe24hMAAEDcAQfYt24rPjHtDgAAIO0oPgEAgPRzik9bt2a2Haac4hPT7gAAANKG4lMGeDwe+Xw+eTyeTDcFLkBeYIK8wESX5qXlyCfLSv/+u0okYt8y8ikJ/QtMkBeYIC8wQV7cyWNZbjojdJfKykoVFhaqoqJCBQUFmW4OAADdp6FBOvJI+/6rr0qFhZltT0ddfLH0/vvSbbdJJ5yQ6dYAAAD0WCY1D0Y+AQCA9AuFpIED7ftuWvfJmXYXCGS2HQAAAL0IxacMqKmp0eLFi1VTU5PppsAFyAtMkBeY6PK8uHHRcWfaHcWnJPQvMEFeYIK8wAR5cSeKTxkQi8VUW1urWCyW6abABcgLTJAXmOjyvLix+MTV7tpE/wIT5AUmyAtMkBd3ovgEAAC6hhuveMe0OwAAgLSj+AQAALqGG0c+Me0OAAAg7Sg+dcDPfvYzLuMIAICp4cPtWzcVn5h2BwAAkHa9qvi0fv16nXvuuTrooIN0xBFHaNasWXrooYc6tc+PP/5YN9xwQ5paaMvOzlZJSYmys7PTul/0TuQFJsgLTHR5XpyRT7t2SQ0NXfM90o1pd22if4EJ8gIT5AUmyIs7+TPdgHRZtmyZ5s+fr1NPPVXvvfeeAoGAFi1apBNPPFGLFy/Wb3/7W+N9WpalSy65RHV1dWltq9/vV3FxcVr3id6LvMAEeYGJLs9LYaGUmyvV1NjrPo0d23XfK13CYfuW4lMS+heYIC8wQV5ggry4U68Y+VRRUaFTTz1Vfr9fv/71rxVoOmE88sgjddVVV+mhhx7So48+arzf+++/X4cffniaWys1Njbq008/VaPz6SrQDvICE+QFJro8Lx6P+9Z9copPTLtLQv8CE+QFJsgLTJAXd+oVxacHHnhAmzdv1hlnnKH8/PyEbRdccIEk6brrrlPYOaHsgE2bNumxxx7Tddddl9a2SlJDQ4M2btyoBrdMQUBGkReYIC8w0S15cdMV72IxFhxvB/0LTJAXmCAvMEFe3KlXFJ8efvhhSdLRRx+dtG3EiBEaO3astm7dqldeeaXD+7z44ov1q1/9SqFQKF3NBACg73HTyCen8CRRfAIAAEgj1xefdu/erXXr1kmSpkyZkvI5U6dOlSS99NJLHdrnww8/rIkTJ3bJlDsAAPoUN13xruUIaabdAQAApI3rFxxftWpV/P5w5wS3lWHDhkmSPvjgg33ub+vWrbrvvvu0aNGi9DQQAIC+zE0jn1quHeF3/SkSAABAj+H6M6uysrL4/dbrPTkKCgokSbt27drn/i6++GLdddddys3NNW5LQ0NDwrzTyspKSVJVVZU8Hk/88Wg0quLiYnm9XlVVVSXtx/k5amtrFY1GE7ZlZWUpEAiosbExaY6rz+dTTk6OLMtSdXV10n5zc3Pl9XpVV1enSMupBZJCoZCCwaDC4bDq6+sTtnm93vjxSNXenJwc+Xw+1dfXJ62rFQwGFQqFFIlEkq4a6PF4lJeXJ0mqrq6WZVkJ27Ozs+X3+9XQ0JC0mFwgEFBWVpai0ahqa2uT2uQcw5qaGsVisYRt7R1Dv9+v7OxsxWIx1dTUJO03Ly9PHo8n5XvT3jF03hsp9TFs772JxWIqLi6Wx+NJem3L9ybVMXTeG9Nj2PK9SXUMnfcm3cfQeW/aO4adyXeqHHb0GLaX784cw1Tvzb6OYXt9hCQVFxfLsqykvNBHNOtNfUR7x3Bf+fZ4PCouLlYsFkv6vunqIxr79VN2LCZt3qzaigr5g8Ge20fU1ckTi0k+n2qb2tbb+ojOnEd4vV4VFxcrEokk5YU+wtbb+ojOnEc4V6MKh8NJbeY8wtbb+ojOnEc4eUm1hg99hK239RGd+VvD7/drwIABKfNCH2Hrrj4iVd7a4vriU8s3IdjGEHln3aZUB7alP/3pTyouLtaCBQv2qy233367br755qTHly9fnlDMGjRokEpKSlRXV6f3338/6fnz58+XJK1ZsybpzZw0aZIGDx6cMN3Q0b9/f02fPl3RaFRLlixJ2u/hhx+uYDCo9evXa8+ePQnbxo4dqxEjRqi8vFyrV69O2JaXl6eDDz5YkrR06dKkX5hDDjlEubm5+uSTT7Rjx46Ebc6aW9XV1Vq+fHnCtmAwGJ/auHLlyqRfihkzZqhfv37aunWrNm/enLBtyJAhmjhxourr65N+Vo/Ho3nz5kmyj2HrzmPKlCkaOHCgdu7cqQ0bNiRsGzBggKZOnapIJJLyGB555JHy+/1at26d9u7dm7Bt3LhxGj58uMrKyrRmzZqEbfn5+Zo1a5YkpdzvoYcequzsbG3atCmpSDpq1CiVlJSorKxMK1euTNiWlZWlww47TJK0YsWKpA5r5syZKiws1ObNm7W11WK/w4YN0/jx41VbW5vUJp/Pp6OOOkqStHr16qTOrqSkRMXFxdqxY4c2btyYsK24uFglJSUKh8Mpf9a5c+fK4/Fo7dq1qqioSNg2YcIEDR06VKWlpVq7dm3CtsLCQs2cOVOWZaXc75w5cxQKhbRhwwaVlpYmbBszZoxGjhyp8vLyhNGSkt3hz549W5K0bNmypA521qxZys/P1+bNm7Vt27aEbcOHD9e4ceNUXV2tZcuWJWwLBAI64ogjJNmjLlv/Bzdt2jQVFRVp+/bt+uSTTxK2DRo0SJMnT1ZDQ0PKn3VffURJSYm2bt1KH9GH+ojRo0ersrJyv/qIkpISrVu3ruv6iK1bdVB9vTzRqFa++qoKJ07ssX1E5Z49CtTUKBYKaVnTPnpjH9GZ84iSkhJ98MEH9BF9qI/ozHlESUmJFi9ezHlEH+ojOnMeUVJSojfffJM+og/1EdL+/60xfvx4vfPOO0k/K32Erbv6iH3VWFryWK1/u13miSee0BlnnCHJHnmUqgB1zTXX6I477tC0adO0YsWKlPvZuXOnjjvuOC1cuFD9+/dP2OaMWtrXoUo18mnEiBHasmVLfPSVZP+yOf9aV0alnvlpBJ9Y2jLxaUQgEJDH45HH40lqb0/9NIJPLDP3aYTTB1qWldRe+ohmvamP6MwnlllZWYrFYorFYin7nnT1EVlf/aq8W7ao/pe/lHf27J7bR3z8sTxnnSUrP191zz7boWPotj6iM+cR2dnZikajikQiSe2lj7D1tj6iM+cROTk5CofDKS+FznmErbf1EZ05j8jOzlY4HFZDQ0PCjBGJPsLR2/qIzvytEQqF1NDQoHA4nJQX+ghbd/URlZWVOuCAA1RRUZFQ80jF9cWnRYsWxaume/bsUVFRUdJzLr/8ct133306/vjj9fLLL6fczxlnnKEvf/nL+uIXv5i0raPFp9YqKytVWFiY9EZUVVVpyZIl8Son0B7yAhPkBSa6LS9XXCG9/bZ0/fXS5z/fdd+ns9aulb7yFam4WHrhhUy3psehf4EJ8gIT5AUmyEvP0VbNIxXXX+1u8uTJ8eLQ9u3bUz7HebykpKTN/TgjqJwRJi3/OZyvb7rppvT9AAAA9HZuueKd88lgIJDZdgAAAPQyrl/zqaioSNOnT9fy5cu1evXqlAUmZ97lMccc0+Z+Jk6c2Oa2jz76KOE5xcXFnWkyAAB9i3PFu1ZravQ4znB3ik8AAABp5frikySdffbZWr58uRYuXKgvfelLCdt27typtWvXqqioSCeccEKb+2i9aFtLzuin9p4DAADaMGaMfdtq4dUexyk+tXEBEwAAAOwf10+7k6SLLrpIAwcO1OOPP560ENcjjzyiWCymK6+8UtnZ2ZKkV155RVOnTtXPf/7zTDQXAIC+ZexY+/aTT5oLPD0R0+4AAAC6hOsXHHe8+OKLOv3003X22WfrwQcfVCAQ0OLFi3X88cfrqKOO0jPPPCOfzydJOuWUU/Tcc88pLy8v5dUAWkv3guOWZcmyrKQ1pYBUyAtMkBeY6La8WJY0f75UWyv99a/Nxaie5vXXpauukqZPl37/+0y3psehf4EJ8gIT5AUmyEvP0acWHHeceOKJeuedd1RTU6M5c+Zo7ty5+ta3vqVbbrklofAkSWeddZby8/N13nnnZaStHo9HXq+XXxR0CHmBCfICE92WF49HOvBA+/66dV37vTqDaXfton+BCfICE+QFJsiLO/WKNZ8c06dP1+OPP77P551zzjk655xzOrzfdA8Oq62t1dq1azVhwgTl5OSkdd/ofcgLTJAXmOjWvBx4oLRyZc9e98mZdkfxKSX6F5ggLzBBXmCCvLhTrxn55CbRaFQVFRWKRqOZbgpcgLzABHmBiW7NizPVbv36rv9e+8sZ+eTvVZ/NpQ39C0yQF5ggLzBBXtyJ4hMAAOh648bZt24oPjHyCQAAIK0oPgEAgK7njHzasqV5eltPw7Q7AACALkHxCQAAdL0BA6SCAikWkzZtynRrUnOKT0y7AwAASCuKTxmQlZWlCRMmKCsrK9NNgQuQF5ggLzDRrXlxwxXvIhH7lpFPKdG/wAR5gQnyAhPkxZ34aC8DAoGAhg4dmulmwCXIC0yQF5jo9rwceKC0dGnPveId0+7aRf8CE+QFJsgLTJAXd2LkUwaEw2Ft375dYWdhU6Ad5AUmyAtMdHteevoV75h21y76F5ggLzBBXmCCvLgTxacMqK+v19q1a1VfX5/ppsAFyAtMkBeY6Pa89PQr3jHtrl30LzBBXmCCvMAEeXEnik8AAKB7OCOftm2Tamsz25ZUmHYHAADQJSg+AQCA7tGvn1RUZN/viVe8Y9odAABAl6D4BAAAuk9PvuId0+4AAAC6BMWnDPD5fCosLJTP58t0U+AC5AUmyAtMZCQvTvGpJ17xjml37aJ/gQnyAhPkBSbIizsxrjwDcnJyNHPmzEw3Ay5BXmCCvMBERvLSk6945xSfAoHMtqOHon+BCfICE+QFJsiLOzHyKQMsy1IsFpNlWZluClyAvMAEeYGJjOSlJ1/xzrlkM8WnlOhfYIK8wAR5gQny4k4UnzKgurpaCxcuVHV1daabAhcgLzBBXmAiI3kZNcq+3bWrudjTUzjtYdpdSvQvMEFeYIK8wAR5cSeKTwAAoPvk50sej32/qiqzbWmNaXcAAABdguITAADoPl6vXYCSpIqKzLalNabdAQAAdAmKTwAAoHs5xaeeNvKJaXcAAABdguITAADoXoWF9m1lZWbb0RrT7gAAALqEP9MN6Ityc3M1Z84cBTi5RQeQF5ggLzCRsbw4I596WvGJaXfton+BCfICE+QFJsiLO1F8ygCv16tQKJTpZsAlyAtMkBeYyFheCgrs255afGLaXUr0LzBBXmCCvMAEeXEnpt1lQF1dnVatWqW6urpMNwUuQF5ggrzARMby0lOLT0y7axf9C0yQF5ggLzBBXtyJ4lMGRCIRlZaWKhKJZLopcAHyAhPkBSYylpeeWnxi2l276F9ggrzABHmBCfLiThSfAABA9+qJxSfLYtodAABAF6H4BAAAuldPLD61/PSUkU8AAABpRfEJAAB0r554tTtn1JPEyCcAAIA0o/iUAaFQSGPGjGGFfnQIeYEJ8gITGctLYaF925OKT85i4xIjn9pA/wIT5AUmyAtMkBd38me6AX1RMBjUyJEjM90MuAR5gQnyAhMZy0tPHvnk9dr/kIT+BSbIC0yQF5ggL+7E2VUGsDo/TJAXmCAvMJGxvLQc+WRZ3fu928Ji4/tE/wIT5AUmyAtMkBd3oviUAXV1dVq1apXq6uoy3RS4AHmBCfICExnLizPyKRKR6uu793u3xZl2x5S7NtG/wAR5gQnyAhPkxZ0oPgEAgO6VnS35m2b+V1Vlti0OZ+QTxScAAIC0o/gEAAC6l8cjFRTY9ysqMtsWB9PuAAAAugzFJwAA0P2cqXc9ZeQT0+4AAAC6DMWnDPB6vcrJyZGXq+mgA8gLTJAXmMhoXpxFx3vKyCeKT/tE/wIT5AUmyAtMkBd38me6AX1Rbm6uZs+enelmwCXIC0yQF5jIaF562sgn54o5TLtrE/0LTJAXmCAvMEFe3IlSIQAA6H49deQTxScAAIC0o/iUAdXV1XrrrbdUXV2d6abABcgLTJAXmMhoXnrayCen+ORnUHhb6F9ggrzABHmBCfLiThSfMsCyLEWjUVmWlemmwAXIC0yQF5jIaF6cq91VVnb/906FaXf7RP8CE+QFJsgLTJAXd6L4BAAAul9PKz4x7Q4AAKDLUHwCAADdr6cWn5h2BwAAkHYUnwAAQPfracUnpt0BAAB0GYpPGZCTk6NZs2YpJycn002BC5AXmCAvMJHRvPS04hPT7vaJ/gUmyAtMkBeYIC/uxNjyDPD5fMp3rvID7AN5gQnyAhMZzUtPLT4x7a5N9C8wQV5ggrzABHlxJ0Y+ZUB9fb0+/vhj1dfXZ7opcAHyAhPkBSYymhen+FRVJcVi3f/9W2Pa3T7Rv8AEeYEJ8gIT5MWdKD5lQDgc1rZt2xQOhzPdFLgAeYEJ8gITGc2L84mlZUk1Nd3//Vtj2t0+0b/ABHnB/7d33+FRVPsbwN/ZtE2HEFpCKKHXUKUjHQQFsQEiICpwFVERy4WriFhAfiKKilhAFK7KBUURUYp0lN5BwIQWWhqkty3n98c6S5ZNQk6Szewk7+d5eBJ2ZmfP7L57MvvdM2dkMC8kg3nRJxafiIiIqOx5ewNGo+13dzj1jqfdEREREbkMi09ERESkDXea90n99pQjn4iIiIhKHYtPREREpA0Wn4iIiIgqBBafNODt7Y3w8HB48wCXioB5IRnMC8nQPC/uVHxST7vz8tK2HW5M87yQrjAvJIN5IRnMiz5xYgMN+Pj4oEGDBlo3g3SCeSEZzAvJ0Dwv6qTjaWnatUGljnxi8alAmueFdIV5IRnMC8lgXvSJI580YLFYkJKSAovFonVTSAeYF5LBvJAMzfMSHGz7mZKizePnxdPubkvzvJCuMC8kg3khGcyLPrH4pIHMzEwcPnwYmZmZWjeFdIB5IRnMC8nQPC/uNPKJp93dluZ5IV1hXkgG80IymBd9YvGJiIiItOGOI59YfCIiIiIqdSw+ERERkTbcaeQTT7sjIiIichkWn4iIiEgb6sgnXu2OiIiIqFxj8UkDiqLAy8sLiqJo3RTSAeaFZDAvJEPzvKgjn9yh+MTT7m5L87yQrjAvJIN5IRnMiz4pQgihdSPKq9TUVAQHByMlJQVBQUFaN4eIiMi9nDgBjB0L1KgBrF2rbVuGDgUuXwaWLAFatdK2LUREREQ6IFPz4MgnIiIi0oZ6kMKRT0RERETlGotPGsjIyMCePXuQkZGhdVNIB5gXksG8kAzN86IWnzIzAbNZmzaoOOH4bWmeF9IV5oVkMC8kg3nRJxafNGC1WpGdnQ2r1ap1U0gHmBeSwbyQDM3zos75BGg/+okTjt+W5nkhXWFeSAbzQjKYF31i8YmIiIi0YTAAAQG239PStG0LT7sjIiIichkWn4iIiEg77jDvkxA87Y6IiIjIhVh8IiIiIu24Q/HJYrEVoACOfCIiIiJyARafNODr64uWLVvC19dX66aQDjAvJIN5IRlukZdKlWw/b9zQrg3qqCeAxadCuEVeSDeYF5LBvJAM5kWfPLVuQEXk6emJkJAQrZtBOsG8kAzmhWS4RV6qVbP9jIvTrg15i0887a5AbpEX0g3mhWQwLySDedEnjnzSQE5ODs6fP4+cnBytm0I6wLyQDOaFZLhFXmrUsP3UsvikXulOUWyToFO+3CIvpBvMC8lgXkgG86JPPMLSQG5uLi5cuIBc9WCXqBDMC8lgXkiGW+SlenXbz2vXtGuDuv9eXrYCFOXLLfJCusG8kAzmhWQwL/rE4hMRERFpRy0+aTnyyWy2/eQpd0REREQuweITERERaccdik95Rz4RERERUalj8YmIiIi0oxaf0tOBzExt2sDiExEREZFLsfikAU9PT1SrVg2enrzYIN0e80IymBeS4RZ58fMDAgNtv2s17xNPuysSt8gL6QbzQjKYF5LBvOgTXy0N+Pr6omnTplo3g3SCeSEZzAvJcJu8VK8OpKXZTr2LjCz7x1dHPrH4VCi3yQvpAvNCMpgXksG86BNHPmnAarUiKysLVqtV66aQDjAvJIN5IRlukxet531Si0/8BrVQbpMX0gXmhWQwLySDedEnFp80kJGRgb179yIjI0PrppAOMC8kg3khGW6TF62LTzztrkjcJi+kC8wLyWBeSAbzok8sPhEREZG2atSw/dR65BOLT0REREQuweITERERaUsd+aTVhOM87Y6IiIjIpVh8IiIiIm1pfdqdyWT7yZFPRERERC7B4hMRERFpK2/xSYiyf3yedkdERETkUooQWhzlVQypqakIDg5GSkoKgoKCtG4OERGRe8rNBbp0sf3+++9AcHDZPv5HHwFLlwL33w9Mm1a2j01ERESkUzI1D458IiIiIm15ewOVK9t+1+LUu7NnbT/r1y/7xyYiIiKqAMpV8SkmJgZjxoxBmzZt0KVLF7Rt2xaff/651DauX7+O559/HpGRkfD29ka1atUwfPhwnDx5stTamZmZiYMHDyIzM7PUtknlF/NCMpgXkuFWedFy0vHoaNtPFp8K5VZ5IbfHvJAM5oVkMC/6VG6KT4cPH0bbtm0hhMDevXvxxx9/4MMPP8SUKVMwYcKEIm0jMTERnTp1wvz583H58mWYTCYkJCTgf//7H+644w7s3r27VNpqsViQlpYGi8VSKtuj8o15IRnMC8lwq7xoNel4VhZw5Yrt98jIsn1snXGrvJDbY15IBvNCMpgXfSoXxaeUlBQMGTIEnp6eWLhwIby8vAAAXbt2xYsvvojPP/8cS5cuve12nnnmGTRu3BinT59GdnY2kpKS8NFHHyEgIAAZGRl44oknXLwnREREFZRWxadz52w/Q0JunvpHRERERKWqXBSfFi1ahNjYWDzwwAMIDAx0WPbYY48BAF555RWY1Esp5yM2NhanT5/GDz/8gEaNGkFRFISEhGDSpEmYN28eAODEiROIVofmExERUempUcP2s6yLTzExtp885Y6IiIjIZcpF8emLL74AAPTs2dNpWUREBCIjI3H58mVs2rSpwG2sW7cOb775pn3UVF5jxoyBwWB7qpKSkkqn0URERHSTViOf1OITT7kjIiIichndF58SEhLso5GaNWuW7zotWrQAAGzYsKHA7YwYMQIDBw7Md5nRaETVqlUBAHXq1ClJc+3ba9KkCYxGY4m3ReUf80IymBeS4VZ50WrCcV7prsjcKi/k9pgXksG8kAzmRZ88tW5ASZ04ccL+e3h4eL7rhIWFAQCOHz9e4HaCg4MLXGaxWJCYmIj27dujhnpaQAl4eXmhunqQTXQbzAvJYF5IhlvlRW1HfDxgtQKGMvp+jFe6KzK3ygu5PeaFZDAvJIN50SfdF5+uX79u//3W+Z5UQUFBAID4+PhiPca+fftgsVgwZcqUQtfLyclBTk6O/f+pqakAgLS0NCiKYr9dCIG0tDRUqVIl33mo1P3IzMx0msHfaDTCy8sLubm5Do8FAB4eHvDz84MQAunp6U7b9ff3h8FgQFZWFsxms8MyHx8feHt7w2QyITs722GZwWCAv7+/fV9u5efnBw8PD2RnZzvtj7e3N3x8fGA2m5GVleWwTFEUBAQEAADS09MhhHBY7uvrC09PT+Tk5CA3N9dhmZeXF4xGIywWS76X2FSfw4yMDFitVodlhT2Hnp6e8PX1hdVqRUZGhtN2AwICoChKvq9NYc+h+toA+T+Hhb02iqIgJSUFlStXdnrMvK9Nfs+h+trIPod5X5v8nkP1tSnt51B9bQp7DkuS7/xyWNTnsLB8l+Q5zO+1ud1zWFgfYTAYkJycjEqVKjk9JvuIm8pTH1HYc3i7fHt6euL69ev2v5N5lXkfYTTCz2qFwWyGcuMGMn19Xd9HpKfD79o1KIoCQ2RkhegjSnIc4eXlhaSkJAQGBjoc1wDsI1TlrY8oyXGEt7c3EhIS4O/vDw8PD4flPI6wKW99REmOI7y8vJCQkAA/Pz94ejp+RGUfYVPe+oiSHEd4eHggPj4efn5+TtPmsI+wKas+Ir+8FUT3xae8L4K3t3e+6/j4+ABAvk9sUXz55Zfo3bs3Hn744ULXmz17Nl5//XWn248cOWIPHABUrlwZN27cgLe3N06ePOm0/p133gkAOHXqlNOL2aRJE1SvXt3hdMO8223VqhUsFgsOHjzotN3OnTvD29sbMTExTnNXRUZGIiIiAsnJyU5tCggIQLt27QAAhw4dcnrDtG/fHv7+/rhw4QKu3XK6hDrnVnp6Oo4cOeKwzNvbG507dwYAHDt2zOlNERUVhUqVKuHy5cuIjY11WFajRg00btwY2dnZTvuqKAp69OgBwPYc3tp5NGvWDFWrVkVcXBzOqqdb/KNKlSpo0aIFzGZzvs9h165d4enpiejoaNy4ccNhWYMGDRAeHo7r16/j1KlTDssCAwPRtm1bAMh3u3fccQd8fX1x/vx5pyJpjRo1cO3aNTRo0MDpNTcajejYsSMA4OjRo04dVuvWrREcHIzY2FhcvnzZYVlYWBgaNmyIzMxMpzZ5eHigW7duAICTJ086dXbNmzdHaGgorl27hnPqlaL+ERoaiubNm8NkMuW7r927d4eiKDhz5gxSUlIcljVq1Ag1a9ZEYmIizpw547AsODgYrVu3hhAi3+126tQJPj4+OHv2LBITEx2W1atXD7Vr10ZycrLDaEnA1uF36NABAHD48GGnDrZt27YIDAxEbGwsrqiXY/9HeHg4GjRogPT0dBw+fNhhmZeXF7p06QLANury1j9wLVu2REhICK5evYoLFy44LKtWrRqaNm2KnJycfPe1sD6iTp06uHDhAiIiIpzeN+wjbMpbH1GnTh3UrVsXqampOHbsmMOy2/URjRo1QnR0NKpVq+a0XS36iJZeXqhssQBxcTiTm+vyPsI/JgaNMzLgGRYG38BAJCcmlvs+oiTHES1btkR0dDSCg4OdXhv2ETblrY8oyXFEVFQUoqOjYTQanfLN4wib8tZHlOQ4Qv17pCgK+4gK0keU5Diidu3aiFHnbLwF+wibsuojZGosirj13a0z33//PR544AEAtpFH+RWgpk2bhjlz5qBly5Y4evSo1PYPHTqEYcOG4Y8//rCfvleQ/EY+RURE4NKlSw7fKufk5ODEiRNo3bq1fSLzvNzx2wh+Y2mjxbcRJpMJx44dQ1RUlNM3h+76bQS/sdTu2wiz2YyjR4+iZcuWTt8EsY+4qTz1ESX5xtJiseDIkSNo0aKF099PLfoI47/+Bc/Tp6HMnYvMTp1c3kd4/vwzvN99F+jUCR4LF1aIPqIkxxFCCBw6dAjNmze3f7GnYh9hU976iJIcR6gf4Jo2bQpfX1+H5TyOsClvfURJjiOsVisOHjyIJk2a2LOuYh9hU976iJIcR6jFu/zywj7Cpqz6iNTUVNSqVQspKSn5jqR3aLPei0+7du2yV02TkpIQEhLitM7kyZPx0UcfoW/fvti4cWORt52WloYBAwbgo48+sleSZaSmptq/Hcz7QqSlpeHgwYP2KidRYZgXksG8kAy3y8vLLwO//w5MnQqMHOn6x3v3XeC774BRo4DbnFpPbpgXcmvMC8lgXkgG8+I+Cqp55Ef3p901bdrU/u3K1atX8y0+Xb16FYBt+F5Rmc1mjB49Gm+++WaxCk9EREQkSZ08dO9eQL0QSIsWQO3arnk8dcg+JxsnIiIicindF59CQkLQqlUrHDlyBCdPnsy3wKSed9mrV68ibVMIgQkTJmDcuHHo3bt3qbYXsA3pq1y5stMpVET5YV5IBvNCMtwuLzVr2n7u2GH7BwCVKgEbNrjm6ncsPklxu7yQW2NeSAbzQjKYF33S/Wl3ADBnzhxMmzYNkydPxoIFCxyWxcXFISwsDJUqVcKlS5eczjnPz7PPPou2bdti7NixTsvUIX7qJFyFkRmCRkREVOFdv247FU6dIHTfPsBqBdatA6pVK93HSk4G+va1/b59O3DLnBFEREREVDiZmocLvkYsexMmTEDVqlWxYsUKp4m4vvzyS1itVkydOtVeeNq0aRNatGiBefPmOW3r1VdfRf369fMtPMXFxWHMmDG3nXj8doQQMJvNTpONEeWHeSEZzAvJcLu8hIQAb78NfPyx7V9oqO32uLjSfyz1CkRhYSw8FZHb5YXcGvNCMpgXksG86FO5KD6FhIRg2bJlSEtLw9NPP22fJX7fvn2YPXs2Bg0ahJdfftm+/vvvv48TJ05g5syZDtuZN28e3nzzTTz//PPw9PR0+lejRg3cuHEDDRs2LFF709PTsWvXrnxn0Se6FfNCMpgXkuH2ealRw/bTFcUn9RLiPOWuyNw+L+RWmBeSwbyQDOZFn8pF8QkABgwYgN27dyMjIwOdOnVC9+7dMXHiRMyaNQtr1qxxOB90+PDhCAwMdBjd9N133+GFF14AYLv0dH7/AODxxx8v2x0jIiKqqFxZfFJHPkVGlv62iYiIiMiB7iccz6tVq1ZYsWLFbdcbPXo0Ro8e7XDbiBEjMGLECFc1jYiIiGSpV79zRfHp/HnbTxafiIiIiFyu3Ix8IiIionJGLT5du1b6205Ksv0s7YnMiYiIiMgJi09ERETknlw58un6ddvPkJDS3zYREREROVAEp4h3mYIuO2i1WmE2m+Hp6QmDgfU/KhzzQjKYF5Lh9nk5eRIYM8Z21bvffiu97VosQMeOtt83bGABqojcPi/kVpgXksG8kAzmxX0UVPPIT7ma80kvDAYDvL29tW4G6QTzQjKYF5Lh9nlRJxxPSgJMJsDLq3S2m5xs+6koQKVKpbPNCsDt80JuhXkhGcwLyWBe9IllQg1kZWXh+PHjyMrK0roppAPMC8lgXkiG2+elUiVbwUkIICGh9LZ748bN7fMb0yJz+7yQW2FeSAbzQjKYF33iEZcGzGYzkpKSYDabtW4K6QDzQjKYF5Lh9nkxGG5OCF6a8z6p8z1Vrlx626wA3D4v5FaYF5LBvJAM5kWfWHwiIiIi9+WKScfVkU8sPhERERGVCRafiIiIyH2p8z65YuQTJxonIiIiKhMsPhEREZH74sgnIiIiIt1j8UkDPj4+iIyMhI+Pj9ZNIR1gXkgG80IydJEXtfh07VrpbZPFp2LRRV7IbTAvJIN5IRnMiz55at2Aisjb2xsRERFaN4N0gnkhGcwLydBFXlwx8omn3RWLLvJCboN5IRnMC8lgXvSJI580YDKZkJCQAJPJpHVTSAeYF5LBvJAMXeSFp925DV3khdwG80IymBeSwbzoE4tPGsjOzsbJkyeRnZ2tdVNIB5gXksG8kAxd5EWdcDw5GcjJKZ1tqsUnjnySoou8kNtgXkgG80IymBd9YvGJiIiI3FdgIGA02n4vrdFP6ml3HPlEREREVCZYfCIiIiL3pSile+pdbi6QkWH7ncUnIiIiojLB4hMRERG5t9IsPqmn3Hl42EZVEREREZHLsfikAYPBgICAABgMfPrp9pgXksG8kAzd5EWd96k0ik95r3SnKCXfXgWim7yQW2BeSAbzQjKYF33y1LoBFZG/vz/atWundTNIJ5gXksG8kAzd5MUVI594yp003eSF3ALzQjKYF5LBvOgTi09uTggBk8kEq9WqdVOIdMlgMMDLywsKRzgQ6ZdafLp2reTbYvGJiIiIqMyx+KSBtLQ0HDp0CG3atEFgAfNNWCwWJCYmIi0tDSaTqYxbSO7EarUiNzcX3t7eHFpaTF5eXggMDERoaCg8PDy0bo5LFaV/IVLpJi+lOfIp72l3JEU3eSG3wLyQDOaFZDAv+sTik0aEEAUus1gsiI2NRU5ODoKDgxEQEAAPDw+O3KigLBYLsrOzYTQay33hpLQJIWCxWJCeno7k5GRkZWUhIiKi3D+PhfUvRLfSRV542p3b0EVeyG0wLySDeSEZzIv+sPjkhhITE5GTk4PatWvD19dX6+aQxiwWC6xWK4tPJRAQEIDg4GBcvHgRiYmJqK5+kCUifVAnHE9PBzIzAT+/4m+LxSciIiKiMsdzeNyMEAJpaWkIDg5m4YmoFPn6+iIoKAhpaWn8poRIb/z8gIAA2+8lnfeJp90RERERlTkWn9yMyWSCyWRCgHqQTUSlJjAw0P4eIyKdKa1T7zjyiYiIiKjMsfikAT8/P7Rv3x5++Zw2oF7VjqdXkcpgMMDPz4+TjZcC9X1Vnq8eWVj/QnQrXeWlalXbz6Skkm2HI5+KTVd5Ic0xLySDeSEZzIs+cc4nDXh4eMDf37/QdTi5OKkURWExspRUhPdVUfoXIpWu8lKpku1nSkrxtyHEzZFPLD5J01VeSHPMC8lgXkgG86JPHEqhgezsbJw+fRrZ2dlaN4V0wGq1Ijs7u1yP1qHSw/6FZOgqL8HBtp8lKT5lZQE5Obbf1WIWFZmu8kKaY15IBvNCMpgXfWLxSQMmkwnXrl3jvDNUJEIImEwmTpJNRcL+hWToKi9q8Sk5ufjbUEc9+fgAvKiHNF3lhTTHvJAM5oVkMC/6xOITERERuT91pFJJik9553uqAKfhEhEREbkLFp+IiIjI/ZVG8YlXuiMiIiLSBItPRG7s5MmTWLBgAe655x7Mnj1b6+bAbDZj165deO211xAVFYXt27dr3SQiqihKY84nFp+IiIiINMHikwa8vb0REREBb29vrZtSLk2fPh01a9aEoihF/vfoo49q3Wwnv/76KxYvXozp06dj27ZtbnFO82effYZPPvkEs2bNwtGjRzkJuhti/0IydJWX0rjaXd7T7kiarvJCmmNeSAbzQjKYF31i8UkDPj4+iIyMhI+Pj9ZNKZfefvttxMbGokePHvbbfvvtNxw6dMj+78CBA9iyZQsWLFiAmjVratjagt11112YN28e+vfvDwBQ3GB+kqeeegrLli1DJV4lym2xfyEZuspL3gnHi3sBBo58KhFd5YU0x7yQDOaFZDAv+uSpdQMqIrPZjPT0dAQEBMDTky+BK3h6eqJz587208IGDBiQ73o9e/ZEZGQkVq5cWZbNk1L5nw9J7nK1O0VREBwcjOSSzLtCLsP+hWToKi9q0dtsBrKyAD8/+W2oxSeOfCoWXeWFNMe8kAzmhWQwL/rEkU8ayMrKwpEjR5CVlaV1U8o1o9FYpPX69++Pjh07urg1xacWndyl+ETujf0LydBVXoxGQB1eX9zit3raHUc+FYuu8kKaY15IBvNCMpgXfWLxiSo8Ly8vPPnkk1o3g4iIbqekV7zjaXdEREREmmDxiSq0OXPmYOvWrfb/nz59Gg0bNnSYjLxTp04AgJYtW9pva9mypdO2TCYT3nvvPfTq1Qu9evVCs2bN8PDDD+Ovv/5yWjclJQUvv/wyBg8ejGbNmqF27dp48cUXkZmZWaL9+eWXXxAUFGRvZ+XKlfHll1/al//0008ICQmBoiioV68esrOz7cvWrl2Lfv36YcCAAahfvz7atWuH1atXF+lxz507h/r169sfd+bMmfZlffv2hb+/v31Zfr799lsMGTIEPXr0QPXq1TFo0CAcOXLEab29e/eiX79+6N27NyIjIwvdJhGVQyWddJwTjhMRERFpgsUnHRLCNt1FefqnxRllly9fxqeffupwW+PGjXHmzBmMHTsWABAcHIw//vgDALB161Z4eXnhxx9/xLFjxxzul5aWhp49eyI2NhYbNmzAli1b8O233+Lbb79F+/btHdaPi4tDp06d0LZtW/zyyy84efIkxo8fj3fffRf9+/cv0VXtBg8ejH379tkn33vttdcwbtw4+/KhQ4di8eLFqF69Oo4ePWo/NXHevHm45557MHHiRKxfvx5//fUXqlativvvvx+///77bR+3Xr16iI6ORvv27Z2Wbdq0CWvWrCnwvlOmTMHKlSuxcuVKbN++HZs3b8bOnTvRuXNn7N+/377epUuX0L9/f0ycOBGbN2/G2bNnsWDBgiI/N0RUDqiTjhen+CQE53wiIiIi0ghn59KAoijw9vYu9oiN7Gyge/dSbpTGduwAfH1dt/2ePXs6/D8pKQknTpzIdx4lRVGwcOFC7Ny5EzExMVixYgVGjhyJWbNm4eWXX8bQoUOd7jN27FhkZ2dj/vz59tuioqLQsmVLHDt2DCtWrLCPlpowYQKaNGmC4cOH29d96aWXMHfuXOzatQsrVqzAI488Uux9bdy4McaNG4dFixZh165deO655xyWHz58GP/6178QGBhov2327NkAgObNmwOwXb50/PjxWL9+PZYuXYo+ffrc9nEVRUHTpk0dCkaqyMjIfO+zevVqfPLJJ7hw4YK9YNa8eXOMGDECn3/+Of79739j06ZNAIBff/0VKSkpGDRokP3+kydPxjfffHPbtlUkJe1fqGLRXV7yXvFOVloaYLHYfucVO4tFd3khTTEvJIN5IRnMiz5x5JMGAgIC0LlzZwQEBGjdlApj69atDv+OHTuGo0ePolIBH0D8/PzwxRdfQFEUvPDCC9i4cSP++OMPzJgxw2ndvXv3YvXq1XjmmWecli1YsAAjR47EmDFjAAAnT57EmjVrcPfddzus5+Pjg7Zt2wKA0yghtVM1GIr+dn322WehKArWrFmDxMRE++1CCPz3v//F448/7rB+WFgY/Pz84Jfn6lFVqlQBAFy7dq3Ij1tQGwv6wzB79mx06NAB1atXd7i9c+fOAIDff//dfipibm4uAODzzz93WHfEiBFFbl9FwP6FZOguLyU57U69j6/vzYnLSYru8kKaYl5IBvNCMpgXfeLIJx0yGm0jhcqTIl6YrlS1aNECDz74YIHLe/bsiQkTJuDTTz/F3XffjYMHD8LLy8tpPXVepKZNm+a7jbyjrtavXw8A+PDDD7Fs2TKHdRMTE1GnTp1SuapdkyZN0Lt3b/z+++/4+uuv8fzzzwOwFeGaNGmCiIgIh/V3796NzMxMhIaGAgBu3Lhhb6vZbC5xe/Jz/fp17N+/H9WqVXMamZaVlYU6deoAABISElCnTh3cd999mDZtGqZMmYKzZ8/ijTfeQFBQEJ599lmXtI+I3FBJTrtLS7P9DAoqvfYQERERUZGw+KSB9PR0HDt2DC1btixWtVZRXHuKWkXSrl27QpfPnTsXP/30E65du4aTJ0/aT0vL6/Tp0wCAykW4elJMTAwA4P/+7//Qr1+/IrVRLUZZrdYira966qmn8Pvvv+OLL76wF5+WLl2K8ePHO62rjno6fvw4FixYAIPBgMaNGzs8fmk7e/YshBDo06cP/vvf/952/Zo1a2L16tUYOnQoFixYgFWrVuH9998vtIBYEZW0f6GKRXd5Kclpd6mptp8sPhWb7vJCmmJeSAbzQjKYF33iaXcaEEIgNzfXZR/qqegmTpzoNOomr5iYGPvIn6effhpJSUlO66T98236pUuXbvt46qlj+W2ntA0ZMgTh4eH466+/sGPHDqSnp+PPP//E4MGDndZNT0/HuHHj8MADD2Dy5MlYtGgR2rRp49L2Fee56NOnD44cOYLevXvjypUreOihh/Dwww/bt0XsX0iO7vKinnbH4pMmdJcX0hTzQjKYF5LBvOgTi09E/9i6davD/3NycvDoo4/il19+QZcuXRAfH+80eTcAVK1aFcDNU+ryEx8f77Durl27Clw3ISEBV69elWy9M09PT0yYMAGAbZ6klStX4qGHHoKnp+OAR5PJhH79+mH58uVYvXq1fWJ0V1Ofi/379xdaPDp69KjD/+vXr4/ff/8dq1atQo0aNfDtt9/ilVdecWlbichNlGTOJxafiIiIiDTD4hMRgDNnzuCdd95xuO2VV15Bnz59cMcdd2Dx4sXw8fHB8uXLsW7dOof1unTpAgD45JNPcPHiRadtX7x4EXPnzgUAdOzYEQCwZMkSnD171mldk8mERx99FB4eHqWyX+PHj4eXlxdWrVqFhQsXOk00DgA//fQTdu/ejebNmzvMW1WcbxLUCcdT1Q95/0jOM0pB3W6DBg1QpUoVJCUlOVwlMK8lS5bYi4LvvvuuvYgHAPfffz82b94Mg8GAX3/9VbqtRKRDpXHaXZ4rfRIRERFR2WDxicqtos6RJITAM888g169etlv27FjB3744Qe88cYbAGwTeL/22msAbKfqpeT51n3UqFGoVKkSUlNT0adPH2zfvt1hO/feey+mTp0KALjrrrtQq1YtZGZmYsCAAfjzzz/t6547dw733HMPoqKiUK1aNfvt6qggi3qJcAk1a9bEsGHDkJWVhcqVK6NevXpO65w7dw4A7FeVU6lzWeU3KqmgNoWHhwMAVqxYYT8N8e+//8asWbPg/c/Vpf7++28AtivgqcWw//znP3j//feRk5MDAMjOzsa7776LOXPm2Edvmc1mfP311w6P17RpU1SuXBlBHMlAVDGUxsgntYBFRERERGWGxScN+Pr6IioqCr6cNdyl4uLi7L+fOHEi33XOnj2LkSNHYv369ejbty8A4OrVqxg1ahSmT58Of39/+7ovvvgi/P39cenSJTzyyCPIzs4GYJto/Msvv4Snpyeio6Nx5513Ijg4GIGBgejbty/efPNN1KxZEwDg5eWFpUuXwsfHB9HR0ejSpQtq1KiB8PBw1K9fH0IIvP766/bHzMrKwoEDBwAAf/31V7Geh6eeegoA7EWcW7Vv3x6ArSg0c+ZMHDp0CJ9++ik2bNgAADh27Bi2b99u//+ZM2fsz+2tz+sDDzwADw8PXLlyBfXr10d4eDiioqLw3HPP2a8U2L9/f/tIpVdffRVRUVGwWCyYMmUKQkJCUK9ePVSqVAlvv/02VqxYAWOeSyHOmjULO3futP9/5cqVuH79Ol566aViPTflEfsXkqG7vKiFo+xs4J9idZFx5FOJ6S4vpCnmhWQwLySDedEpQS6TkpIiAIiUlJQi3ycrK0ucPHlSZGVlubBl5duuXbvEO++8I4KCggQAAUAYjUbRpk0b0aNHD9GjRw/RoUMHUbNmTfvyKlWqCKvVKtauXWu/X40aNcSRI0fs2x04cKB9fXX5hQsX7Mt37twp+vbtKwICAkRAQIAYNGiQOHDgQL5t3Lt3rxg0aJAIDg4W3t7eomXLlmL+/PnCZDLZ11m4cKEIDQ11eMwGDRqIdevWST0fVqtVDBs2zGHbt3rnnXdEzZo1ha+vr+jUqZP45ptvhMViEYMHDxYBAQGiX79+4vTp02LcuHHC19fX3h6DwSDatGkjrl69at/W999/L5o1ayb8/PxEt27dxO7du4UQQgwYMED88MMPTu1ITk4Wzz//vKhdu7bw9PQUNWvWFI899pjDcyuEELNnzxYAhKIoonHjxqJDhw6iY8eOYv369UV+Lvj+ItI5q1WIO+4Qol07IeLi5O47dartfqtWuaZtRERERBWMTM1DEYJTxLtKamoqgoODkZKS4nBaUE5ODi5fvozw8HD4+Pg43Cc7Oxvnzp1DvXr1HEZ8UMVltVphMpng5eVln1OJiqcivL8K61+IbqXLvPTvD1y/DnzzDdCoUdHvN2ECcPAg8Pbbtm2QNF3mhTTDvJAM5oVkMC/uo6CaR374SVYDubm5iI2N5eXhqUgELyVKEti/kAxd5qW48z7xanclpsu8kGaYF5LBvJAM5kWfWHwiIiIi/SjuFe9YfCIiIiLSDItPREREpB/FHfmUlmb7yeITERERUZlj8YmIiIj0Qx35JFN8MpmArCzb7yw+EREREZU5Fp804OXlhRo1atgvPU9UGEVR4OXlBUVRtG4K6QD7F5Khy7yoI59kTrtTRz0pChAQUNotqjB0mRfSDPNCMpgXksG86JOn1g2oiIxGIxo3bqx1M0gnDAZDub0yG5U+9i8kQ5d5Kc7IJ3XdgACAVw0tNl3mhTTDvJAM5oVkMC/6xCMwDVgsFmRkZMBisWjdFNIBIQQsFguvdkdFwv6FZOgyL8WZcJzzPZUKXeaFNMO8kAzmhWQwL/rE4pMGMjMzsX//fmRmZmrdFNIBq9WKzMxMWK1WrZtCOsD+hWToMi/FOe1OHfnE4lOJ6DIvpBnmhWQwLySDedEnFp+IiIhIP4pztTuOfCIiIiLSFItPREREpB/FOe0uNdX2k8UnIiIiIk2w+ERERET6oY58ysgAzOai3YfFJyIiIiJNsfikEUVRtG4CEZVT7F9Ihu7yEhgIqG1Wi0q3w+JTqdFdXkhTzAvJYF5IBvOiP55aN6AiCgwMRI8ePbRuBumEh4cHAgMDtW4G6QT7F5Khy7wYDLYCVGqq7dS7kJDb30ctPrEvLRFd5oU0w7yQDOaFZDAv+sSRT0RERKQvsle8U4tP6nxRRERERFSmWHzSQEZGBg4cOICMjAytm0I6YLFYkJGRAYvFonVTSAfYv5AM3eZF9op3HPlUKnSbF9IE80IymBeSwbzoE4tPGrBarUhPT4fVatW6KaQTzAoVFfsXkqHbvMhe8Y4jn0qFbvNCmmBeSAbzQjKYF31i8YmIiIj0hSOfiIiIiHSFxSeiPIQQGDhwIOrVq4crV66U2eOmpaVh7dq1mDRpEiIiIsrscQtz9epVLFu2DMOHD8fQoUO1bg4R0U3qCKaiFJ+E4NXuiIiIiDTGq91RubNlyxasWLECS5YsgclkAgA0a9YMQUFBSE1NRVpaGlq0aIFBgwZh9OjRCM5zGkZiYiLWr18PANi1axcefPBBl7c3MzMT8+bNw6ZNm7Br1y6XP15RnDp1CsuWLcN///tfXLhwAXfeeafWTSIiuknmtLvsbMBstv3O4hMRERGRJjjySQNGoxHNmjWD0WjUuinlUq9evbBo0SKMGDHCftvBgwfx559/4sSJE9izZw/q1auHyZMno3Hjxti4caN9vapVq+LJJ5/EgAED0L9//zJpr5+fH2bOnIkPP/ww3+WKosBoNEJRlDJpDwA0adIEb731Fp599tkye0wqHexfSIZu81K9uu3nhQu3XzctzfbTwwPw9XVdmyoA3eaFNMG8kAzmhWQwL/rEkU8a8PLyQtWqVbVuRrlXt25d++8+Pj7232vWrImPP/4Yly9fxk8//YRhw4bh77//Rs2aNQEACxcuLOumAgAqV66c7+0GgwEGgzZ14oLaRO6L/QvJ0G1eWra0/Tx1CsjNBby9C15XPTUvOBgowyJ+eaTbvJAmmBeSwbyQDOZFnzjySQO5ubmIjY1Fbm6u1k0p125XsFFPqcvIyMDPP/9cFk0qFqvVitzcXF7NgYqE/QvJ0G1eatUCKle2FZ5Ony58XXXkEycbLzHd5oU0wbyQDOaFZDAv+sTikwZycnJw9uxZ5OTkaN2UCq1atWr2369fv+603F2KPUII5OTkQAihdVNIB9i/kAzd5kVRgFatbL8fPVr4uurIJ873VGK6zQtpgnkhGcwLyWBe9InFJ6qwzp8/b/+9SZMmAICkpCQsWrQI3bp1w/Lly+3L58+fj+DgYCiKAkVR4O/vj/feew+bN2+23+7v74833njD6XE2bNiA+++/H3369EH16tXRs2dPbNmypcTt7927t709iqKgXbt2DgUzdbmnpyc+/vhj++0JCQl46aWX0K1bN3Tr1g21atXC448/nm8BLj///ve/4evra39c1cqVK9GgQQP77TNnznS679WrVzFp0iQMGjQI9evXR8OGDfH222/DrE4G/I+cnBzMmDEDnTp1QqdOneDv71/gNomogoqKsv08cqTw9dSRTyw+EREREWmGcz7pkRC2q/eUJ0Zjmc7FkZOTYy/INGvWDIMGDcKGDRvw3//+F9999x1yc3PxxBNP2NefMmUKHnzwQXTs2BFXrlzBY489hueffx4AMHPmTCxZsgSbNm1CdXUS3H+8//77WLlyJX755RdUqlQJly9fRpcuXdC3b1/89NNPuPvuu4u9D5s3b8ajjz6Kr776CpUqVcKBAweclkdFRWHUqFGYNGkSANsIrw4dOiA0NBQ7d+6E0WjE1q1b0bt3b0RHR2Pbtm23fdw5c+agW7duuOeeexxuf/DBB/Hggw+ie/fu2Llzp9P9Tp8+jYEDB+Krr75Cjx49YLVaMXHiRPznP//BkSNHsGLFCvu606dPx/bt27Fjxw4YjUZcuXIFAwYMKM7TRETllTry6cgR29/Fgv6GpKbafrL4RERERKQZFp/0KDsb6N5d61aUrh07yuQqRCaTCX/88QdeeuklHDlyBG3atMGPP/4Ib29v9O/fH/3790dycjLWrFnjdN9atWphyZIlGDhwIL777ju89dZbUBQFCxcuxI8//uhUeNq/fz9eeOEFHDhwAJUqVQIAhIeH2wsuzz//PAYPHlyiq9i9+eab+Oabb5CcnIwTJ06gefPm9mXp6emIi4vDk08+ab/tm2++wYULF9CxY0f71SF69uyJ5s2bY/v27YiJiUH9+vVv+7jNmjUrcFlkZKRT8clqtWLkyJG499570aNHDwC2OblmzpyJL774Av/73/8wefJkdOvWDQDw3XffYdSoUfY2hoWF4d1338Wff/5ZxGeGiMq9pk0BT08gKQm4ehUIC8t/PRafiIiIiDTH0+404OnpiSpVqsDTk7W/stK9e3d069YNLVq0wHPPPYewsDAsWbIEu3fvRu3atR3WLewKbwMGDMCjjz6KxMRETJ8+HdOnT8e//vUvh6KPau7cuahZsyai1FND/tG5c2cAwN9//42//vrrtm1XT53Lr0hVq1Yt3H///QCAJUuWOCxbuXIlhgwZgsA8k+yqV/QLDQ11WLdKlSoAgGvXrt22PUDhk7nn187ffvsNhw4dchrpFR4ebn/+8xb8cnNzsXr1aiQmJtpv69evn1O7yRn7F5Kh67z4+AD/nDJd6LxPLD6VGl3nhcoc80IymBeSwbzoE18tDfj6+qJFixbF34DRaBspVJ78M8LFVXaU4vP13nvv4bfffsPChQvRpUsXfPDBB07rCCGwceNGCCHQs2dPh2Umkwl16tQBANy4ceO2j2cwGOBbyKiwSZMm4bvvvsPXX3+N2bNnw/ufS44vXboU8+bNc1j3/vvvR2xsLMLyjBD4888/ERsbCwBOcy+VlvXr1wMA/vOf/zjNi2U0GlGnTh2YTCb7bWPHjsW8efPQuXNnLFq0CH369IHBYMDTTz/tkvaVJyXuX6hC0X1eWrUCjh+3FZ8GDsx/HbX4xKvdlZju80JlinkhGcwLyWBe9InFJw1YrVaYzWZ4enoWOoKkQIpSJqeoUf4qV66MBQsW4KGHHsK5c+eQlpaG4OBgh3WSkpKQnJyMLl26YOvWrSV6PCEEhBBOE3yrunXrhlatWuHo0aNYvXo1hg8fjrNnzyItLQ3t27d3Wr9WrVrIycnBV199hV9//RX9+/dHlSpVcPbsWZddUS8mJgYAsGzZMjRs2PC267/11luIjo7GTz/9hL59++Lhhx/G/PnzHa5QSPkrcf9CFYru8xIVBXzzDXD4cMHrqMWnW/ppkqf7vFCZYl5IBvNCMpgXfeIrpYGMjAz8+eefyMjI0LopVEx79uxBUFAQrly5gqlTpzotz83NBWArQpWU1WpFRkaGw5XsbqXO6/TZZ58BAL766iuHCdPz+u2339CoUSNcunQJ//vf//Dkk0/Cz8+vxO0sjOzz4ePjg9WrV2PBggUIDAzEN998gxYtWmDz5s2ubGa5wP6FZOg+L+qk49HRQGZm/utw5FOp0X1eqEwxLySDeSEZzIs+sfhEJGn79u3Ytm0btm7dCi8vLyxevBibNm1yWCckJAQGgwExMTGIi4srcFtHC5unRMIjjzyCoKAgbNmyBX///TdWrVqFUaNGOa23Zs0aDB48GN27d8esWbPg5eVVKo9/O1WrVgUA7Nq1q8B1zp8/jzT1kuiwzR01efJk/P3333jkkUeQkJCAIUOGID4+3uXtJSKdqFoVqFkTsFptp9/lhyOfiIiIiDRXropPMTExGDNmDNq0aYMuXbqgbdu2+Pzzz6W3s2XLFvTv3x8dO3ZE27Zt0adPnxKfOkXlQ3p6Op544gl8+umnaNOmDaZPnw4AmDBhgkPl3Wg0IioqCmazGTNnzsx3Wxs3bsSyZctKpV0BAQEYPXo0hBB47LHHcMcddzidCggA06dPh9VqxQMPPOBwu+zpdnmHt6aqH+z+kZyc7LTNjh07AgDmzZuX7zxXaWlpePzxx+Hj4wMAePHFF+3LqlevjmXLlmHkyJHIyMgo1fm7iKgcUEc/FVTM58gnIiIiIs2Vm+LT4cOH0bZtWwghsHfvXvzxxx/48MMPMWXKFEyYMKHI21m8eDH69OmDYcOGYc+ePTh48CCGDBmCvn374uuvv3bhHlBpy8rKyvf321Envs47Abbq+eefx9ChQ9G2bVsAtmJOixYtcO7cOUybNs1h3fHjxwMAFi1ahH//+99IT08HAFgsFnz11Vd49NFH8cILL9jXV09NU9eR9dRTTwEAdu7caX/sW507dw4AHAplFosF0dHRTm3I+/9b21OjRg14eHgAgH1Sc4vFggULFuD4P6MP1G0CwMiRIxEQEICrV69iwIABOHnypH3ZsWPH0KtXLwwfPtw+WfrKlSudhtF26dIFABDEK1YRUV7qFUXzKz5ZrYA6opIjn4iIiIg0Uy6KTykpKRgyZAg8PT2xcOFC+6lEXbt2xYsvvojPP/8cS5cuve129uzZgyeffBJ9+vSxz6EDAM8++yy6d++OiRMn4tSpU67aDSplh/NMQLtt27Yi3cdisdiLJ4cOHXJYtnz5cixfvhyvvfaa/TZvb2/76KePPvoIy5cvty+bMGEC+vfvDwB45513EBoainr16iEoKAj/+te/sGTJElSvXt2+/vbt2+2/nzhxooh7eVOzZs3Qs2dPNG/e3F6ouZU6Afmbb76JLVu2YPv27ZgwYQJCQkIAAKtXr8aPP/5oH52kjjKKjo5GTk6Ow34PGzYMADBr1izUqFEDgYGB2LhxIyZOnAgA+PbbbzF69Gjk5OSgatWqWLhwIRRFwb59+9C8eXPUqlUL1atXR6tWrdCqVSuHIvG1a9cwYcIEe9EwLS0Ny5cvR4cOHdCrVy/p54aIyjF15NPhwzdHOakyMgB1FCZHPhERERFpR5QDc+bMEQDEhAkTnJZdvHhRABDh4eEiNze30O0MHDhQABDffPON07Jly5YJAOKhhx4qcrtSUlIEAJGSkuJwu9VqFSaTSVitVqf7ZGVliZMnT4qsrKwiPw45evfdd0W9evUEAPs/T09P0bp1a/H7778XeL/p06eLmjVrOtyvadOm4syZM+Kxxx4TiqIIAGLQoEH2+xw6dMjpPiNHjrQvz87OFrNmzRINGjQQXl5eIjQ0VDz00EPi2LFj9nWysrJEmzZt7NsHIPz9/cXQoUOFELa8qP9u5/vvvxeLFy8ucPnff/8tevbsKXx9fUVYWJiYOHGiuHTpkli/fr0ICQkRderUEXPnzhW7d+8WkZGRDvtVvXp18cYbb9i3lZSUJEaNGiWqVKkiatSoIaZNmyZyc3PF559/Ll588UVx/vx5p8dfv369uPPOO4W/v7/w9fUVd9xxh1i6dKnTej4+PgKAqFSpkujQoYNo2bKlmDRpkkhOTr7tc1CYivD+Kqx/IbpVuciLxSLEffcJ0a6dEK++6rjs8mXb7V26aNO2cqZc5IXKDPNCMpgXksG8uI+Cah75UYRw0bXVy1DDhg0RHR2Nb775BiNHjnRaXr9+fZw9exbr1q3DXXfdle82Ll++jFq1agEArly5gpo1azosj42NRe3ateHt7Y34+Ph859O5VWpqKoKDg5GSklLkU4Wys7Nx7tw51KtXD0ajsUj3IaKi4fuLqJw6dgx4/HHbaXZz5wK9e9tu/+svYPRooFo1YN06bdtIREREVM7I1Dx0f9pdQkKCfW6ZZs2a5btOixYtAAAbNmwocDt//PEHAKBSpUpOhScAiIiIQFBQEHJzc0s8+XhmZiaOHj2KzIIuC02Uh8ViQWZmZrHmgaKKh/0LySg3eWnZEhg71vb77NnA9eu239X5nnjKXakoN3mhMsG8kAzmhWQwL/qk++JT3rlxwsPD810nLCwMAOxz+RS2nYK2UdTtFIXFYsGNGzdYTKAiY1aoqNi/kIxylZfx44EGDYAbN4A33gD27bPNAwVwsvFSUq7yQi7HvJAM5oVkMC/65Kl1A0rquvrtJoDAAr7ZVId/xcfH33Y7BW2jKNvJyclxmJRZvQR9WloaFEVxWA8ArFYr0tRvZf9xuyueKYoCg8EAq9WK/M6Y9PDwgBACVqvVaZnBYICiKPnetyjbLahNRdluQW3SYruF7evttqu2qbivTXH2Vf2/ECLf++rttSnpc1iSfKv3zcjIsF/N0GAwwN/fHwCQnp7udF8/Pz94eHggOzvb6QqI3t7e8PHxsY9Ou/UxAwICANiuLnhrm319feHp6YmcnBynqwx6enrC19fX3tZbqf1UfiPizGYzANvVGm/tXzw8PODn5wchhP3qi3n5+/vDYDAgKyvLvh2Vj48PvL29YTKZkJ2d7bAs73N462MCRXsOzWaz01Up8z6H+b02hT2HXl5eMBqN+b42wM3nML/Xxmg0wsvLC7m5uQ59OnD71yYgIACKouT72hT2HKqvDZD/c1jYa1PYc3i7fKttzM3NdXrcwp7Doua7tJ9D9bUp8DmcNQti9GhYt20D8lxowmI0wtNqvW2+i/Mc6q2PKCzft+sj1H2/9X4A+whVeesj1NdG9jnMe9yb3xWHNesjSvg3kH2E644jVPm9H9lH2JS3PqIkxxGq/F4b9hE2ZdVH5Je3gui++JT3RVAv034rHx8fAMj3ib11OwVtoyjbmT17Nl5//XWn248cOWIPHABUrlwZgO1gP+8l5wFbiKpWrQrANj9Nfp2ZwWCA2Wwu8A9C3v3Jy9/fH4qiICcnp8A3jMViKfSgsbA/CLm5uYW+YQr7g5CVlVXgHwSTyVRgZ2a1Wgv9gyD7HKpvRCFEgZ0ZYDvwLugPQnGew8JeG/XqjVar1am9RX0O83ttSvocqh13QZ1ZSZ7D0s533j+qubm5OHHihP258vPzQ4cOHQDYrpB4a5vatm2LwMBAxMbG4sqVKw7LwsPD0aBBA6SnpztcXRGwPb/qVQePHz/ulImWLVsiJCQEV69exYULFxyWVatWDU2bNkVOTg4OHjzotK933nknAODUqVNOHX6dOnUAAMnJyYiNjXVYVrlyZbRq1QoWiyXf7Xbu3Bne3t6IiYlBUlKSw7LIyEhEREQgOTnZqd8KCAhAu3btANiuEnlrDtu3bw9/f39cuHAB165dc1gWERGByMhIpKen48iRIw7LvL290blzZwDAsWPHnLIWFRWFSpUq4fLly077WqNGDTRu3BjZ2dlO+6ooCnr06AHA9hzeeoDRrFkzVK1aFXFxcTh79qzDsipVqqBFixYwm835Poddu3aFp6cnoqOj7VeNVDVo0ADh4eG4fv2605VTAwMD0bZtWwDId7t33HEHfH19cf78eacvQOrUqYO6desiNTUVx44dc1hmNBrRsWNHAMDRo0ed+oFGjRoBsH2pcut2w8LC0LBhQ2RmZjq1ycPDA926dQMAnDx50uk92bx5c4SGhuLatWs4d+6cw7LQ0FA0b94cJpMp333t3r07FEXBmTNnkJKS4tTemjVrIjExEWfOnHFYFhwcjNatW0O8/DKSPv7YfpU74emJK02aoJnJBB8fH5w9exaJiYkO961Xrx5q166N5ORkp6uNlrc+okmTJqhevbrDtAWq2/URLVu2BABcunTJ6bVhH2FT3vqI1q1bIzg4GLGxsbh8+bLDstv1EVFRUQCAc+fOOeVb0z5CiHy326lTJ/YRKFkfUZLjCPXv0enTp9lHVJA+oiTHEbVr1waAfK9Ezz7Cpqz6iMJqLLfS/YTj33//PR544AEAtg+z+RWPpk2bhjlz5qBly5Y4evRovtuZPHkyPvroI3Tu3Nk+/9OtOnfujN27d2Py5MlYsGCB0/L8Rj5FRETg0qVLDpNv5eTk4MSJE2jdurVDpR+wFaTi4+NRr149e9EhL458Kvl29TjyKSsrC76+vg7fJJZ0uxVx5FNWVhbOnj2LGjVq2PuK8vZthNlsxtGjR9GyZUunPoQjn27iN5Y2FosFR44cQYsWLZz+fupy5BO/sQTg2pFPhw4dQvPmze1fyKnYR9iUtz6iJKMa1A9wTZs2ha+vr8Ny9hE25a2PKMlxhNVqxcGDB9GkSRN71lXsI2zKWx9RkuMItXiXX17YR9iUVR+RmpqKWrVqFWnCcd0Xn3bt2mWvmiYlJSEkJMRpHbWw1LdvX2zcuDHf7bz11lt45ZVXCi1QtWzZEsePH8ebb76J//znP7dtW0Ezv+fm5iIhIQFVq1Z1Otjn1bjoVlarFWazGZ6enk7FSpJTEd5fhfUvRLdiXkgG80IymBeSwbyQDObFfchc7U73p901bdrU/u3K1atX8y0+Xb16FYBt+F5B1CvlqevmpyjbKQpvb+9CJzYnystgMLBTpSJj/0IymBeSwbyQDOaFZDAvJIN50SfdD6MICQlBq1atAMDp/GGVet5lr169CtxOjx49YDAYkJiYiISEBKflcXFxSEpKgoeHh/0c3+IymUyIi4tzGlZHlB+r1QqTyZTvqWZEt2L/QjKYF5LBvJAM5oVkMC8kg3nRJ90XnwBgxIgRAIAdO3Y4LYuLi8OZM2cQEhKC/v37F7iNKlWqoF+/fgVuZ/v27QCA/v375zu6SkZ2djZOnTrldJ4pUX6EEMjOzs53DiSiW7F/IRnMC8lgXkgG80IymBeSwbzoU7koPk2YMAFVq1bFihUrnCbi+vLLL2G1WjF16lT7ZIebNm1CixYtMG/ePId1p0+fDkVR8OWXXzo9xuLFi2EwGDB9+nTX7QgRERERERERUTlTLopPISEhWLZsGdLS0vD000/bh9/t27cPs2fPxqBBg/Dyyy/b13///fdx4sQJzJw502E7PXr0wMyZM7F27Vp88cUX9ts//fRTrF+/Hm+88YZ9cnNX4ygXotLH9xUREREREVHZ0/2E46oBAwZg9+7deOutt9CpUyf4+fkhIyMDs2bNwtNPP22/bDwADB8+HNu3b8eYMWOctjNjxgy0bt0a7733HhYvXgwhBIxGI37++WfcfffdLt8P9Wpm+V2GnohKRn1f8aqBREREREREZafcFJ8AoFWrVlixYsVt1xs9ejRGjx5d4PIhQ4ZgyJAhpdk0Bx4eHggMDHQoiKm8vLzg5eWF9PR0BAQEuKwNpC8slpSOtLQ0+3usvCqsfyG6FfNCMpgXksG8kAzmhWQwL/qkCJ6H4jKpqakIDg5GSkoKgoKCiny/uLg4JCcno3bt2vZ5qoioZLKysnDx4kVUqlQJ1atX17o5REREREREuiZT8yhXI5/Ki9DQUPsH5aCgIHtVV1EUrZtGpCtCCFgsFqSlpSE1NRU+Pj4IDQ3VullEREREREQVCotPGkhLS8PBgwfRtm1bBAYGOi338PBAREQEEhMTkZaWhuTk5LJvJLkNq9WK3NxceHt78/S7YvLy8kKlSpUQGhpa7ofn3q5/IcqLeSEZzAvJYF5IBvNCMpgXfWLxyU15eHigevXqqFatGkwmE6xWq9ZNIo1kZGTgxIkTaN68Ofz9/bVuju4YDAZ4eXlx5CAREREREZFGWHxyc4qiwNvbW+tmkIZMJhOEEPD29obRaNS6OURERERERERSeA4PERERERERERG5DItPRERERERERETkMooQQmjdiPKqoMsOWq1W5OTkwMfHhxNI020xLySDeSEZzAvJYF5IBvNCMpgXksG8uI+Cah754ZxPGjAYDPD19dW6GaQTzAvJYF5IBvNCMpgXksG8kAzmhWQwL/rEMqEGsrKy8NdffyErK0vrppAOMC8kg3khGcwLyWBeSAbzQjKYF5LBvOgTi08aMJvNiI+Ph9ls1roppAPMC8lgXkgG80IymBeSwbyQDOaFZDAv+sTiExERERERERERuQyLT0RERERERERE5DKccNyF1AsJpqamOtyelpaGjIwMpKamghcbpNthXkgG80IymBeSwbyQDOaFZDAvJIN5cR9qraMorwOLTy6UlpYGAIiIiNC4JUREREREREREpS8tLQ3BwcGFrqMIlgpdxmq14sqVKwgMDISiKPbbU1NTERERgdjYWAQFBWnYQtID5oVkMC8kg3khGcwLyWBeSAbzQjKYF/chhEBaWhrCwsJgMBQ+qxNHPrmQwWBArVq1ClweFBTENwsVGfNCMpgXksG8kAzmhWQwLySDeSEZzIt7uN2IJxUnHCciIiIiIiIiIpdh8YmIiIiIiIiIiFyGxScN+Pj44LXXXoOPj4/WTSEdYF5IBvNCMpgXksG8kAzmhWQwLySDedEnTjhOREREREREREQuw5FPRERERERERETkMiw+ERERERERERGRy7D4RERERERERERELsPiExERERERERERuQyLT0REREQViHqtGV5zhoiIiMoKi09ERG7KarVq3QRyc0IIWCwWAMDevXs1bg25OyEErFYrFEUBAPtPooKwQElERKWFxadiUA/0iW6HxQOSlZaWhgEDBmDv3r0wGAzsb6hAFosFiqLAw8MDx44dw8aNG2EymfhhkfKl5sVgMODMmTPo3Lkz5s6dC4AFBnKU99glb4GSOaH88FiXZPHYtuJi8UlSfHw8fvzxRyQnJ2vdFHJj6h9ig8GA3NxcHD58GPHx8Rq3ivQgJiYGGzduxKuvvgoA8PDw0LhF5G7U/sXDwwPZ2dmYNm0aoqKiMHv2bHh5eXE0Czm4NS8vvPACmjRpgj179uD06dMwmUzMDAFwPHbJysrC0qVL8csvv2DPnj0AOFKOHKnFSIPBgOzsbKxfvx4nTpxAQkKCxi0jd8bP0hUbi0+SVq1ahcceewzbtm3jN0BUIIPB9tZaunQp2rdvj8GDB6NWrVqYOHEi/vzzTwD8pojyFxQUBE9PT2zcuBGrV68GAJjNZo1bRe5E7V++/PJLhIeH45133gEATJgwAWazmX0LAbB9MBRC2PPyxRdfICwsDO+99x6MRiNq166N06dPQ1EUHs8QgJt9y1dffYUuXbpgzZo1mDRpEu688048+eSTSEpK0riF5E7UYuTixYvRo0cPvP/+++jevTvuuOMOTJ8+HTExMQA4Yo4c8bN0xcbik4TTp0/js88+Q1paGhYvXowrV65o3SRyQ0IIZGZmYvLkyXjsscdw/PhxeHl5wWw246uvvsJbb72F9PR0+0EeUV7Hjx9HlSpVAABTp04FAHh6evIPNNkJITBkyBA8/vjjuHHjBvr06YM//vgD7733Hjw9Pdm3EADbB0NFUbB9+3a0a9cOEyZMQHJyMoYPH46//voLn376Kfbs2YOkpCQWoAhCCCQlJeGRRx7Bxo0b8e233+KHH37Ar7/+irFjx+LTTz/Fd999x5yQnRACL774ItasWWPPyg8//IAGDRpgzpw59ikEOGKOVPwsTTxCLaLc3FysW7cOnTp1gtFoxNq1a7F27VqYTCatm0ZuRlEUHDlyBAsXLsQdd9yB9evX2//fuHFj7Nq1C4cPH9a6meRm1AP6oKAgvPrqq2jfvj3Onz+Pd999FwBHypEjT09P1KpVC8uWLcPGjRvRqVMnCCE4So7szGYzZsyYgZ49e+LQoUPo0KEDfvvtN3z77beoU6cOMjMzUblyZaxfvx4AT6mq6BRFwZ49e5Cbm4vly5ejSZMmsFgsaNq0KSZOnIhmzZrhxx9/ZKGS7GJiYrBp0ybMmDEDtWrVgtlsRs+ePfHZZ5/hiSeewNmzZ/H4449j48aNWjeV3AA/SxPA4lORXbhwAS1btsSiRYswZ84cAMAnn3yC6OhojVtG7ujnn39G79698eeff6Jfv34IDg7G448/jkmTJiElJQX+/v5aN5HcjPrBb9++fcjMzMTy5csBANOnT0dCQgI8PDw4QSMBsGUlKSkJ06dPx6hRo+yFSUVR4OnpaV+PHxArtuzsbOzfvx8eHh746KOPsGfPHvTv39+eiy5dusBkMuHatWsAmBcCZs+ebb8iotVqtY+ibNq0KUJDQ3Hjxg3k5OSwUEkAgN27d+PIkSPw8fEBcPO0zXr16mH+/Plo0qQJTpw4gffee88+5QRVXPwsTQCLTwBuzotw6+95NWzYEH379gUAjB8/Hq1bt8bRo0fxzTffIDMzs0zbS9oqLC/q7zdu3MDdd98NRVHsIxG8vLzQvHlz9OrVC+Hh4WXfcNJEUfoXdRkAVKlSBREREWjUqBGGDx8Os9mMf//73wDA06kqgNvlRS1A3nXXXYiLi0N0dDR27dqFzz//HE8//TTeffddfPvtt0hJSeEHxAqgoLxYrVYEBAQgMjISI0eOxFNPPQXg5hXvrFYrqlevjjZt2uD333/XrP1UdgrrW6xWK8xmMywWCy5evIjU1FQYDAYoigKLxQJfX1/4+vriwQcftBcaiP766y8AsBew1WMUi8UCf39/zJ8/H4GBgdiyZQuWLl2K1NRUzdpK2uNnaQJYfILVarXPi3D58mX7H1/VrQf+ZrMZvr6++M9//gMA+Pzzz3Hw4MEybTNp53Z5UQ/UTCYTRo4cCcBxvp6wsDDEx8dj06ZNOHjwIM91Ludk+he1UBATE4MLFy4AgP2Uuy+//BL79++HoijIzc0twz2gslSUvKhXP0xJScGqVaswduxYPPzww5g4cSIWLlyIl156CaNGjULfvn2xatUqrXaFykBheVE/BHbq1Mn+tyhvfgwGA8xmM1q0aIGYmBhcvHiRxcpy7HZ9i8FggBACkZGR2LdvH6ZPn24fqaIoChISEpCdnW3Pkoqj5condTTtunXr7EWB/E79z87OBgD7MYuaKbWfGTBgAMaOHYvc3Fxs2LAB69atc3nbqewVNS8qfpau2Cp88clgMCAhIQETJkzA/fffj/bt26Nr165YsmQJbty4YT8YU//Aqqc03H///RgyZAji4+PxxRdf4Pr165rtA5Wd2+UFsP3RHT9+vMP91G8ZV6xYgRMnTuCpp55Cx44dcc899+DgwYM8naqcKmr/AtzsY/z9/dGuXTsAQHh4OGbOnAkAeP755wEA3t7eDutT+VGUvKive6tWrXDixAkcOHAAqampiIiIQKdOnVC3bl0EBQXhwIEDmDhxIjZu3Mj+pZwqLC/qMUlAQACaNm0KAE79jaenJxo0aIDr16/j6tWrmuwDlY2iHLt4eXnhkUceQbNmzbBo0SL0798fvXv3xhNPPIGxY8fCarVi+fLl+P777+3HLSxYlk8GgwHnzp3D7Nmz8dlnnwFw7j8AIDIyEgCwcOFCADeLTsDNQtQzzzyDZs2a4cKFC9i0aRMSExPLZB+o7NwuL7fiZ+kKTlRQVqtVCCHEmjVrRJs2bcTs2bNFSkqKWLhwoejcubNQFEUMGDBA7Nu3z+m+ZrNZCCHEgQMHhNFoFB4eHmLlypXCYrGU6T5Q2SkoLx9//LFDXvbu3VvgNhISEkTHjh2Fh4eHaNy4sQgJCRGKoohu3bqJzZs3l9WuUBkoal7y9i9q//HUU0+JZcuWOWwrPDxcKIoifv31VyGEEAsWLHBYh/StOHn5/vvvxYgRI8Q777wjNmzYIEwmk0hLSxMmk0ns3LlT3H///UJRFNGzZ09x5swZrXaNXKAoeenXr584dOjQbbcRExMjFEURq1atEkLcPL6h8qGofcuePXvs99mwYYO45557RKVKlYSiKPn+8/PzE6NHjxa7du3SatfIhdLT08VDDz0kFEURrVu3FjExMUII4fQ55+jRoyIsLEwoiiJWrFjhtI6avzlz5ghFUUSLFi3EgQMHymgvqKzcmpfo6GghhHNe8uJn6YqrwhafVA899JBYtGiRw20JCQmie/fuQlEUERUVJX777TchRP4HZVOmTBGKoojevXuLCxculEmbSTv55SU+Pt6el9atW+ebl/T0dDFt2jTx9NNPi9jYWBEXFyf27dsn7rvvPmEwGMTkyZNFSkpKme4LuZ5M/5KTkyOsVqt45JFHxIkTJ4QQQmRkZAghhFi3bp1QFEWEhISIOnXqCEVRxKhRo0RCQkLZ7hC5VFH6l3Xr1gkhhEhMTBTnz58XOTk59nVNJpPD/aZOnSoMBgMLleWUTP+SNxt5nT17VjRp0kSMHj3a5e0l7RQlK2rfIoQQ2dnZIiYmRnz77bfizjvvFJ07dxYPP/yw6NGjh4iMjBQ+Pj5CURTRtGlTcfjwYSFE4R80SV927Ngh+vXrJyIiIoSiKOLFF1/Md70LFy6I++67TyiKInr16iUyMzOFEDeLTmomkpOT7dtSC93MS/lR1LwUhJ+lK5YKXXzau3evUBRFrFmzRghh6wjVgsEff/whBg8eLBRFEZGRkSI9Pd3hvmqnGRcXJ2rXri0URREffPCBwwcBKl8Ky8uuXbsKzYvZbBZxcXEO/xdCiHPnzomhQ4eKunXrOt2H9K24/cu//vUv8csvvzhs69y5c6Jy5crC29vbXngqbFQD6U9J+peCHD9+XLRp00b06tXLZe0mbZTk+OVWXbt2Fb179xZJSUkubzeVvaJmpV69evas5Obm2u8/bNgwsXXrVvvxbWpqqli9erUYNmyYUBRFjBw5soz3iFzp3LlzYtGiReLw4cNi6dKlwt/fX4SFhYmdO3cKIZy/iP/ggw9EaGio8PX1FQsXLhRC3Cw+5V3/7bffFoqiiIcffriM9oTKgmxe8uJn6YqpQs/5dObMGQBwuPqHer5y586dMWnSJDRt2hTnzp3DtGnTHO5rMBhgtVpRrVo1vPjiiwCARYsW4dSpU2W4B1SWCstLly5dMGnSJDRr1izfvHh4eKBatWoAbJPwqferW7cuHnvsMVy9etW+fSofitO/pKen4/Tp0+jYsSMA26TS//rXvxAZGYnk5GSYTCYAwPvvv4/WrVvbr6RI+leS/qUgjRs3Ru/evZGYmIiUlBTXNJw0UZLjF5U6J0vfvn1x6NAh+3xyVL4UNSvnz5+3Z8XLywuA7QIYx44dQ+3ateHt7Q2LxYLAwEDce++9WL58OSIiIrBr1y6cPXtWgz0jV6hbty4mTpyIqKgo9OjRA0OGDMHVq1fx8ccfA7Adz4o8V0scPHgw2rdvj+zsbHzyySc4f/68/eI7wM2LHwwcOBCBgYEAbMfBgvNWlgtFzUt++Fm6YqqQxSf1TaBepeHnn38GcHOiPHV59+7dMWHCBADARx99hD/++APAzRn81cnUJk2ahI4dO+LUqVNYtmwZ0tLSymhPqCwUNS89evRwyMuuXbsAOF/xQf1DrKpcuTJq1KiB4OBgF+0BlSWZ/mXixIkAbHnZsWMHAgIC0KxZM6SmpmLBggUIDw/HZ599hoiICCxZsgTjxo0DADz77LMO2yT9Ku3+RWWxWODp6YlKlSrBarWyfyknitu/3Hr8kvc+TZs2RXp6OrZu3eqwDdK3kmYFAH777TfExcXBaDQ6FK0sFgv8/PwwceJE5OTkIDw8vGx2ispUvXr1MHLkSISFheGnn37Cd999B8CWHfUzUP369TFq1Cg0atQIx48fx5tvvgngZs7U9QICAuDj4wOr1QqDwcDJ6suhwvJSEH6WrngqZPFJDXp4eDiMRiPOnj3rUGXN21EOGzYMgwcPBgC89dZbAG4WD9TKvqIoePXVVwEAS5Yswfbt2wEAhw4d4miWcqCoefH398e9995rz8vs2bMBOBebVOq3QoqioHnz5ggLC3PZPlDZkelf8ubl3XffRW5uLrZs2YIePXrgueeeg9lsxjPPPINt27bh0UcfxQcffACj0Yhvv/0WW7ZsgaIohV7Oltyfq/oX9Xaz2YwHHnjAZe2nslXc/uXtt98GkH9eIiIiYDQacfToUYdtkL6VNCuA7ThFLUyqf2/yXuXu/PnzaNu2LTw8PPi3qJxRCwadO3fG8OHDkZWVhU8++QQ3btywj1hR1xk6dCjGjRsHf39/LFmyBN9++619O7m5uQCAqlWrIj09Ha1bt3bYPpUPRclLfvhZuuIpV8WnrKwsqc4sMDAQRqMRhw4dwtGjR/O9b3h4OMaMGQMfHx/8+uuvTt82q5X9QYMG4Z577sGNGzcwefJkRERE4LnnnmPn6sZcnZd169YVOjpBzc7u3bvx5JNP2r9ZJPfk6rz8/PPPuHz5Mh566CFcvnwZw4YNw7Zt2/D++++jbt26yMnJQUBAAGbOnAkA+PDDDwEUXHwgbZVl/6IWsvNSFAVmsxnHjx9Hnz59ir8jVCa0/HvUpUsXVK1aFdHR0QDyzxO5j7LIyo4dOwDYTt0FgH//+984f/48DAYDPDw8YDAYcOHCBcTFxeHZZ5+Fp6cn/xa5Kdm8qNQCY2hoKO6//35ERUVhx44d+OKLLwDAYfRSYGAgxo8fj5dffhkAMHXqVCxfvhwA7Kfz7tu3D926dcMjjzzisH1yL67MS0H4WbpiKRd/KUwmExYvXoyVK1dKDdPr2rUrWrVqheTkZKxduxbx8fFO63h4eOCOO+6wfyO0evVqAI5vIvVATj3Aj4uLw1NPPYVt27bZ/3CT+9A6L8nJyYiJicHly5fx5ptvIi4uDr179wbAP8buqCzzsmTJErz66qtYuXIlvv/+e/vcT1ar1X4A99JLL2HJkiX44YcfSmHvqLRp0b+ocyqcOnUKMTExOHjwIK5evYpZs2ahZcuW6N69e+nsHJU6rf8eAbZiU8eOHfHjjz/a70fuR4usDBgwAI888ghiY2MxatQovPPOOzh58iRefvlljBkzBgMGDMCAAQNKZwepVBU3L/mJiorCqFGjoCgKlixZYh9Bl7eQHRISgldeeQUvv/wyTCYTxo0bh6FDh2LDhg144403MHPmTIwcOZKnaLqpss7LrfhZuuLQffEpMzMTb731FpKSkvDAAw8gKCioSPdTv9mbPn06AOC7777DH3/8ke83frVq1ULXrl3h7e2N+Ph45OTkOCw3GAz473//i5deegljxozBlStXijwhLJUtLfKiDjnOycnBpEmT0KhRI3To0AFNmzbFlStXMGPGDPj5+ZXSHlJpKuu8nD17FhaLBffff7/DdtRvGNU/zo8++mhJd41cQMv+5cSJExg3bhzatm2L9u3bIzIyEleuXMHUqVNLae+otLnD8QtgKzxUqVIFI0aMgMlk4rfMbqiss5KYmIiMjAwAttPw3n//fVy9ehXLli3DuHHjcOPGDaxZswZPPfVUKe0hlabi5qUg/v7+GDRoEPr164fTp09j4cKFAPL/Iv6NN97Apk2bMHnyZGRmZuKjjz5CSkoK1q1bZ5+3ktyLFnm5FT9LVyCleOU8TXz55Zdi9OjRIjU1VQjheHnPolIvM9u/f39x5swZh2Xq9rZv3y6MRqNo3ry50/0zMzPF119/Lfbu3VuMPaCypGVeLBaLGDJkiPD19RV33XWXOHDgQAn2hMqClnkpzmORtrTMy6+//io6duwoqlSpIoYMGSIOHjxYgj2hsuAOxy/qZbB5aWv35g5ZycjIEGlpaeLq1avF2AMqS6WRl1uZzWbx9ddfi+DgYFGtWjWxadMmIYTt2DavWx8rLS2txI9NrqVlXlT8LF1x6Lr4dPz4cVGzZk2xZMmSYt1fPejav3+/UBRFKIoiZs2aJRISEoQQzm++qKgo0bBhQ5GamsoPhjqkVV5SUlLs983IyHA66CP3xP6FZGiVl+TkZPv9U1JSxKlTp0qwF1RW2L9QUblTVpgd91fSvBT2GsfGxopHH31UKIoi7r33XmEymYrbTHITzAuVNV2fdrd48WKYzWYMGzZM6n7qcGN1nox27drhlVdeAQB89tlnWLVqFQDb/DtCCJhMJpjNZnh7e6N27doIDAzk3Dw6pFVegoKC7HNo+Pn5oWHDhqW4V+Qq7F9IhlZ5CQ4Ott8/KCiIcyPoBPsXKip3ygqz4/5Kmpe8r/Gtp2fWqlULw4cPR506dbB+/XosW7YMgO2Uu8zMzBK2nLTAvFCZ06bmVXJZWVmidu3a4t5777XfdrtvaCwWi8Ntv/zyi5gyZYoQwvbN0IgRI4SPj48IDw8Xy5cvd9pG586dxa+//lrq+0Kux7yQDOaFZDAvJIN5oaJiVkhGaeXlhRdecNq2uk5iYqJ48cUXhaIoolq1amLKlCmibt26Yu3ataW5K1QGmBfSgm6LT/v27ROKooinnnpKmM1mkZuba1+W93eVOuxYCCFOnTolHnvsMfvw499//10IIcT58+fF66+/LhRFEUajUcydO1ecPXtWHD16VNx3331i5MiR4vr16xx2rEPMC8lgXkgG80IymBcqKmaFZJRmXrZt2+a0vjpfz5dffmlfr23btvZskb4wL6QFT61HXt3KarUWOhu+av/+/QBss+N7eHjAw8MDiYmJ+OSTT3D16lWkpaWhc+fOuOeeexAREQEPDw+kpqZi3rx5+PTTTxEfH4+wsDC8/vrr9svc16lTBzNmzEDt2rXx3XffYc6cOfj555+RnZ2NqVOnYvjw4S7dd5LHvJAM5oVkMC8kg3mhomJWSIYWeenRo4fT9g0GA7Kzs/H1118jJCQE8+fPx+jRo0t9f6lkmBdya1pXvwry/fffi507d4rjx487VF/Vyco+++wzoSiKGDx4sEhPTxfLly8XXbt2FcOHDxc9e/YUiqIIg8Eg2rZtKw4dOiSEEGLevHn2yuu0adMcKrhWq9VpBv7U1FRx6tSpAmfmJ/fBvJAM5oVkMC8kg3mhomJWSIYWebnVjBkzxAsvvMDJo3WAeSF35HbFp59++kn07t1bDBgwQDRr1kz4+/uLIUOGiI0bNzqspw4Z7tmzp/jwww/F66+/Li5fvmxfvmLFCtGtWzehKIpo3769yMnJEZcuXRLjx48XZ8+eta9X0JuBw431gXkhGcwLyWBeSAbzQkXFrJAMd8iLWpzMyclx0V5SaWFeyJ25VfFp+fLlolu3buLAgQNCCNt56dOnTxfe3t5CURSxcOFCkZGRIYQQYvPmzfbK6/Dhw0ViYqIQ4uY5qrm5uWLbtm2iZs2aQlEU8f777zs8ltls5rc8Ose8kAzmhWQwLySDeaGiYlZIBvNCMpgXcnduU3zKzMwU/fv3F//3f/8nhLgZ/JycHPH5558LRVFEYGCgeOedd0RaWpo4c+aMiIqKEoqiiKFDhwoh8v8G54MPPhCKoojw8HD7Njn0T/+YF5LBvJAM5oVkMC9UVMwKyWBeSAbzQnpw+9nIysiVK1ewceNGVK5cGQDsE6V5e3vjiSeewBNPPIH09HR8/PHHWLVqFerVq4dGjRpBURQkJibi/PnzUBQFQgiH7Q4bNgytW7fGlStXsGvXLgCAp6fbzbNOkpgXksG8kAzmhWQwL1RUzArJYF5IBvNCelBmxSer1QoAToFWRUdHAwAuXrwIs9kMDw8PAIDFYgEATJ8+Hd27d0dsbCzef/99XLt2DWPGjIGfnx+io6Oxfv16AICiKA7bDQ0NRa9evQAAQUFBpb9j5BLMC8lgXkgG80IymBcqKmaFZDAvJIN5ofLA5cUn9Y1iMBgQFxeH+Ph4ZGRkOK1nMpmgKAouXrwIq9Vqf2N5eHhACIG6deti/PjxqF27No4ePYqPPvoIgwcPxqBBgxAfH4/ly5fbq7HqmwwAfH19YTQaERAQAD8/P1fvLpUQ80IymBeSwbyQDOaFiopZIRnMC8lgXqhccf2ZfbZzTl999VURFRUl2rdvL8LCwsTUqVPF8ePH7evs3r1bKIoifH19RWxsrBDi5kz56vmnmZmZ4rHHHhOenp6iWbNmIjo6Whw5ckT06NFDKIoiBgwYINLT0+3bVO8/b948MWrUqLLYVSoFzAvJYF5IBvNCMpgXKipmhWQwLySDeaHywuXFp+PHj4tOnTqJqVOnirS0NLF161bx+OOPC0VRRL169cTixYvtk5d1795dKIoinnvuOSGEcJhBX/19w4YNom7dusLf318sWrRICCHEjh07RJcuXewTpu3du9d+P/Uykb/99psQgpeVdXfMC8lgXkgG80IymBcqKmaFZDAvJIN5ofLE5cWnWbNmiccee8zp9hdffFEEBQUJo9Eo5syZI4QQYs6cOUJRFGE0GsWpU6eEELbLON5q1KhRQlEUMWnSJPttFy9eFCNHjhRBQUFCURTx0EMPia5du4rhw4eLI0eOuGjvqLQxLySDeSEZzAvJYF6oqJgVksG8kAzmhcoTlxafUlNTRUREhHjyySeFELaKq1p1vXz5snj11VeFoihCURSxc+dOsWvXLtGpUyehKIp45JFHnLan3nfLli1CURRRp04dp0s97t+/XyxdulR88MEH4ocffnDl7lEpY15IBvNCMpgXksG8UFExKySDeSEZzAuVNyUqPuUdypefv//+W/j7+4spU6YIIZwrrxcvXhT33XefUBRF9OnTRxw/flzMmDFD+Pr6CkVRxLp16/K9nxBCtGvXToSFhYnz58+XZBeoDDEvJIN5IRnMC8lgXqiomBWSwbyQDOaFKppiX+3OarXCYLDdfc+ePdi1axdOnjyJtLQ0+zqZmZnIzMzE2rVrkZaWZp9tXxUREYGXX34Zfn5+2Lx5M7Zs2YK7774bAwcOBABMmTIFJpPJfqlIVW5uLurWrQuj0YjQ0NDi7gKVIeaFZDAvJIN5IRnMCxUVs0IymBeSwbxQhVSSytWxY8fEwIEDhbe3t/D39xcBAQGif//+4uzZs8JisYiUlBTRuHFjERoaKlatWlXgdmbMmCEURRENGzYUsbGxYvPmzaJhw4ZCURTx7LPPioSEBCGErWqrVm47d+4s7rrrLofbyL0xLySDeSEZzAvJYF6oqJgVksG8kAzmhSoa6eKTOjxwxYoVws/PTyiKIoKCgoS3t7cwGo1CURQxZMgQsX//fpGSkiL69u0rDAaDmDJlikhOThZCOM+Sf+HCBVG/fn2hKIpYsGCBEEKItWvXCkVRhJeXl3juuedEYmKiff2LFy+K/v37i40bNxZ7x6lsMC8kg3khGcwLyWBeqKiYFZLBvJAM5oUqsmKNfMrJyRHt2rUTiqKI6dOni7/++kv8/vvvYsGCBcJgMAgvLy/xxhtvCCGEmDlzplAURbRp00Zs3rw53+1ZLBYxd+5coSiKaNu2rcjIyBBCCLF8+XLRtWtXeyV34cKFYv78+eLOO+8UM2fOvO15suQemBeSwbyQDOaFZDAvVFTMCslgXkgG80IVVbGKTz/99JMIDQ0VO3bscFo2Z84c4efnJ3r06CGEEOLSpUv2Sza+9NJLIi4uTgjhXLHduXOniIyMFA0bNhRHjx61356cnCy++OIL8dBDD4mxY8eKCRMmiHPnzhWn2aQR5oVkMC8kg3khGcwLFRWzQjKYF5LBvFBFVazi06pVq0Tfvn1FVlaW/ZKP6rmiCQkJok+fPsJoNIro6GghxM2KbWRkpFi5cmW+27xy5Yro3bu38Pb2tt/v1vNPc3JyitNc0hjzQjKYF5LBvJAM5oWKilkhGcwLyWBeqKIq1tXuLly4gNatW8NoNEJRFBgMBvvs+6GhoejXrx+MRiM8PT0BADNmzECjRo1w7tw5LF++HAcPHlQnO7dvs2bNmmjatClMJhNSU1MBwGlmfm9v72JNqk7aYl5IBvNCMpgXksG8UFExKySDeSEZzAtVVMUqPt11113Izc1FdnY2FEWx366+AYYNGwYhhP0NoygK3nvvPVSqVAm//fYbPvnkE9y4cQOKosBqtSInJwcAEBQUhMqVK6Nu3bol3C1yJ8wLyWBeSAbzQjKYFyoqZoVkMC8kg3mhCqs4w6WysrLEtWvXCly+detW0a1bN2E2mx0mMnvvvfdE3bp17Zd9vNXDDz8s3nrrreI0idwY80IymBeSwbyQDOaFiopZIRnMC8lgXqiiKtbIJ6PRiOrVq+dXyAIA1KhRA/Xq1YPVaoXBYIDVagUAjB07Fp999hmCg4OxYMECjBkzBr/99hvOnz+PJ598EleuXMF9991XglIauSPmhWQwLySDeSEZzAsVFbNCMpgXksG8UEXlWZobU4cN7tmzB40aNYKXlxeEEDAYbDWu/fv3o3Xr1ti8eTOWL1+OFStWIDo6Grm5uRg7diw++eST0mwOuTnmhWQwLySDeSEZzAsVFbNCMpgXksG8UHlXqsUnIQQURUF8fDxatWoFADCZTPDw8ICHhwf27duHkJAQtG/fHm3atMHbb7+N5ORk+Pv7IyAgoDSbQjrAvJAM5oVkMC8kg3mhomJWSAbzQjKYFyrvinXaXUHUoYLx8fH2oYTe3t7w8PDA3r17MXfuXFy4cAEAYLFY4OPjg2rVqvHNUkExLySDeSEZzAvJYF6oqJgVksG8kAzmhcq7Ui0+GQwGJCQk4Nq1a+jYsSMAICEhAU888QQ6deqEtLQ0nDt3DsDNSz/mneGfKhbmhWQwLySDeSEZzAsVFbNCMpgXksG8UHlXqsUnALh06RI6deoEAHjrrbdQq1YtLFmyBAAwY8YMvPDCC6X9kKRjzAvJYF5IBvNCMpgXKipmhWQwLySDeaHyTBHq+L4SUs9R/fnnn/Hee+/h2rVrOH36NADg4Ycfxty5cxEWFlYaD0XlAPNCMpgXksG8kAzmhYqKWSEZzAvJYF6oIii1CcfVIX/r16/Htm3bAAAdOnTA/Pnz0aVLl9J6GConmBeSwbyQDOaFZDAvVFTMCslgXkgG80IVQamNfAKA9PR0NG3aFNnZ2Zg7dy7GjRtXWpumcoh5IRnMC8lgXkgG80JFxayQDOaFZDAvVN6V2sgnwDZc8JlnnsHkyZNhNBpLc9NUDjEvJIN5IRnMC8lgXqiomBWSwbyQDOaFyrtSHflERERERERERESUV6lf7Y6IiIiIiIiIiEjF4hMREREREREREbkMi09EREREREREROQyLD4REREREREREZHLsPhEREREREREREQuw+ITERERERERERG5DItPRERERERERETkMiw+ERERERERERGRy7D4RERERERERERELsPiExEREZEbGj9+PKpXr44jR45o3RQiIiKiEmHxiYiIiMgNffPNN4iPj8eGDRu0bgoRERFRibD4RERERKSxa9euOd02bdo0dO/eHQ899JAGLSIiIiIqPYoQQmjdCCIiIqKKKjU1FcOGDcPvv/+udVOIiIiIXIIjn4iIiIg0NH78eMTExGjdDCIiIiKXYfGJiIiISANCCLzwwgv43//+V+h6Vqu1jFpERERE5BosPhERERFp4Ouvv8amTZsA2OZ86tmzJ3r27Ik1a9YgPT0dy5Ytw8CBA/H222/b75OZmYmff/4ZTz75JOrUqYMzZ85gy5Yt6NOnDwICAhAaGopXXnkFAGCxWPDxxx+jbdu28PPzQ/369bFmzZp827Jv3z6MGDEC/fr1Q1hYGO644w6sWrXK9U8CERERVQic84mIiIhII1u3bkWvXr1Qp04dnD9/HoCtEPTZZ59h5cqVSElJwWuvvYaZM2fal+3atQtTpkwBAEycOBEAMHz4cAghMHbsWFy6dAnz58/H3r17cffdd6Np06b2+3h6euLcuXOoUaOGvQ2rVq3Ca6+9hvXr16NWrVpITk5Gnz59cPDgQXz88cd46qmnyvQ5ISIiovKHI5+IiIiI3EiHDh3w+eefY+zYsfkue+6551CtWjUAQNOmTbFo0SL06tULvXv3xnPPPQcAeOWVV/DWW2/h4YcfRps2bfD0009j4MCByM7Oxo8//mjfXmxsLMaNG4e3334btWrVAgBUqlQJU6dOBQBMnz4dGRkZrt1hIiIiKvdYfCIiIiJyQ5UrVy5wma+vLwAgKirK4fYmTZoAAEJDQ1GvXr18l506dcp+24cffoicnBz079/fYd3OnTsDAFJSUrBt27Zi7gERERGRjafWDSAiIiKi0uHv73/bZampqfbb1q9fD4PBgLvuusthXSEE6tSpAwBIS0tzQUuJiIioImHxiYiIiKgCejy//wAAAqtJREFUyXv1vJiYGFSpUgVbt27VrkFERERU7vG0OyIiIqIKKjc3Fzdu3ACvP0NERESuxOITERERUQVVtWpVZGVl4eDBgwWuc/To0TJsEREREZVHLD4RERERacRgsB2K5T0Vrix17NgRAPDqq6/mO/rp2LFj+L//+7+ybhYRERGVMyw+EREREWlEvaJdUlISLBYLgJuFKJPJ5PAzL7PZnO/21Pvm5uYWeJ+8Rabx48cDAH799VeMGzcOiYmJ9mVr167FwIED8fLLL8vtFBEREdEtWHwiIiIi0kjDhg1RuXJlZGZm4t1338WmTZvw/PPPAwCOHDkCADh8+LBDwejatWuIi4sDAFy4cMFhe+fOnQMAxMfH49KlS/bbhRA4fPgwACA6Otp++1133YXHH38cAPDVV1+hZs2aqFevHoKDgzF06FC8+eabaNGiRSnvNREREVU0iuAMk0RERESa+e677zBlyhTk5uZixIgRaNSoEebPn+9QWKpXrx6++uorbN26FfPnz8eNGzcAAN7e3ujTpw/WrVuHQYMGYfPmzcjJyQEABAUFYeLEiXj22WfRpUsXXLx40b69+vXr49NPP0WfPn1gtVqxcOFCfPrpp/j7779hNBrRrVs3TJs2DV27di3bJ4OIiIjKJRafiIiIiIiIiIjIZXjaHRERERERERERuQyLT0RERERERERE5DIsPhERERERERERkcuw+ERERERERERERC7D4hMREREREREREbkMi09EREREREREROQyLD4REREREREREZHLsPhEREREREREREQuw+ITERERERERERG5DItPRERERERERETkMiw+ERERERERERGRy7D4RERERERERERELsPiExERERERERERuQyLT0RERERERERE5DIsPhERERERERERkcv8Pws+G6s461uyAAAAAElFTkSuQmCC", "text/plain": [ "<Figure size 1400x700 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABJ8AAAKyCAYAAAB7b3+jAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gTV9YG8FfVvWCbZmN675hmSqgJJEAgpJFkP0qSDem9VxLSNpveeyeFkA0JG5YUWui9mBKqDZgONu626v3+GI9sIdnW2JJG5f09jx/JmtHM1czRWDo+916NEEKAiIiIiIiIiIjIB7RqN4CIiIiIiIiIiEIXk09EREREREREROQzTD4REREREREREZHPMPlEREREREREREQ+w+QTERERERERERH5DJNPRERERERERETkM0w+ERERERERERGRzzD5REREREREREREPsPkExERkZdZLBYcP35c7WZQiDl37hzy8/PVbgYRERGRYkw+EREReUF+fj7mzp2LqVOnomnTpvjoo49c1lmwYAGSkpIwduxYmM3mWrd39OhR3HzzzRgwYAAiIyORmpqKm266CQUFBfVaL9A88cQTiIuLwxNPPKF2U7xq/fr1SE1NRd++fXHu3LkGby8nJwdvvfUWRo8ejSZNmmDDhg2Kt2Gz2bB69Wo89NBD+PPPPxvcJgoc586dQ79+/dC8eXOsX79e7eYQERHViMknIiIiL/jss88wb948zJkzp8akw0cffYRz587hjz/+wI4dO2rc1v79+9GrVy/0798fGzZswA8//IBTp07hk08+wT333KN4vUD0xhtvoKSkBG+++abaTfGqr7/+GidOnMCWLVuwdOnSBm2rqKgIH330Eb766issXboUVqtV0fNXrFiByZMnIyUlBUOHDsXLL7+MY8eONahNFFiWLFmCzZs34+TJk5gzZ47azSEiIqoRk09ERERe8MADD2DevHlISEiocZ3p06cjISEBo0aNQvfu3Wtc7/rrr0dZWRlmzJgBAJg4cSKeeuopAEDr1q0VrxeIbrnlFsTExOC2225TuyleNWXKFDRp0gS9e/fG8OHDG7St+Ph4vPjii/jggw/q9fzMzEzMnTsXjz/+eIPaQYFr+PDh6NGjB5o1a4ZrrrlG7eYQERHVSCOEEGo3goiIKFS0bt0ahw8fxqxZs/D0008rfv7mzZvRr18/pKen48iRI07LCgsLHcktT9ej4Hfo0CG0adMGALBo0SJcfPHFip6/d+9edO7cGQDw+eefO5KVRERERP7CyiciIqIAsmzZMgCAVuv6J7p6QsnT9YgiIiLUbgIRERGFOSafiIiIAkhubq5X1yMiIiIiUhuTT0RERH529uxZ5Ofnu11WWlrq0TY8XS/Q7d27V+0m+ERxcTFOnDihdjMoTFitVmRnZ6vdDCIiohox+URERFQP33zzDS644AK0bt0arVu3xhVXXFHrDHalpaX45ptvMH78eDRv3hxZWVmOZefOnUP79u3Rvn17/PDDDwCAY8eOOR5r3749XnnlFY/X84ZTp07hlVdewciRIwFISaKLLroIMTExuPjii2E2m53W//bbbzFmzBj06NED0dHRaN++Pe69916cPn3aZdsnTpzA66+/jn79+jnGIvJUr169oNFonH7S09Nhs9kc66xatQqxsbGO5b1793baRkVFBT7++GMMHToUPXv2RHJyMlq3bo3bb7/dbXsBYNeuXbj//vtx1113AZDGXurRowdiY2PxxBNPAADMZjN++eUXXH311WjatCl+//13t9s6deoUnn76afTp0wddu3ZFQkICevTogZdeesmjGe1Onz6Nu+++G61atUJkZCTat2+PRx99FEVFRZ4cwhopOYeeWr9+Pa699lp07twZ7dq1Q/v27TFjxoxa3ysnT57EI488gn79+qFbt25ITExEp06dcNddd+Hw4cNun2OxWPDzzz9j0qRJeOmllwAAK1euxMSJE5GcnIzExERcd911TknfnTt3Ytq0aUhLS0N0dDRGjBiB3bt3u2xbCIFVq1bhhhtuwN133w0AWLx4McaMGYPExEQkJCTgkksuwYYNG2p8TYsWLcLEiRPRo0cPpKWloUmTJrjiiiuwbds2t+t7+v5bu3Yt7rzzTqSmpmL27Nlut7VlyxZMmjQJHTt2RPPmzR3vi8TExBrbu3XrVtx4443o2bMnOnTogEaNGqF///548cUXUVJS4vY5+/btwxNPPIE2bdrAZDLBbDbjxRdfRIcOHRAZGYmMjIwGzwBJRERBTBAREZHHzGazuPLKK0ViYqL4+eefhd1uF0II8eeff4rWrVuLyMhIAUDMmjXL8ZwlS5aIK664QqSkpAgAAoBYtmyZ2+1Pnz5dABCtWrWqtR2erqfU0qVLxaWXXip0Op0AIJo2bSpycnJEs2bNHI8BEBs2bBBCCFFRUSEmTZok/vnPf4rCwkIhhBDnzp0TkydPdjx/9+7dju2/++67Yvz48UKv1zu2pYTdbhf33Xef47njx493u965c+dEXFycGDdunLBarY7H8/PzRa9evYRerxe//vqrEEIIm80mnnjiCQFAdOjQQRQVFTnW/+CDD8TAgQMd+5syZYpYsGCB4zwDENHR0WLr1q1iypQpIj093fH4559/7tKujRs3iqSkJNGyZUuxb98+IYQQBQUF4pJLLhEAxDXXXOPynJycHMc2P/74Y9GqVSsBQMTExDgeByA6duwojh8/Xuvz3bVJ6Tn01MMPPyxatGghFi5c6HiffP755wKA0Ol04ssvv3R5zvz580VsbKyYMmWKOHv2rBBCiOLiYvHkk08KACIyMlJ89913Ts958sknRZMmTRyvcdasWeLtt98WWq1WJCcni+TkZMeycePGCSGkOIyKihLp6ekiPj7esTwtLU2UlJQ4tv300087ndPp06eLWbNmCa1WK1q0aOF0DvR6vViwYIFT2+x2u+O9+uSTTwqLxSKEEGLhwoVCr9eL6OhosXnzZsf6nr7/VqxYIa6//nqRkZHh1Lbz/fXXX0Kv14t77rlHmM1mIYQUD8OHDxcJCQku69vtdvH4448LrVYrXnrpJVFRUSGEECI3N1dMnDhRABAtW7YU27dvdzxn7969YsqUKUKr1Tracvz4cTFw4EARHx/vdG4iIiLEnj173AcMERGFNCafiIiIFPjnP/8pAIh58+a5LFu6dKnTF+DzffHFFwGffCopKRF2u11cfPHFAoBITk4Wl156qcjKyhL79+8XgwYNEh06dBAFBQVCCOl4DBw4UNhsNqftnD17VhiNRgFADBs2zGU/M2bMqFfySQghysvLRVpamgAgevTo4XadgoICodPpxNatW50ef+ihhwQA0bp1a6fHbTabaN68uQAg3n33XcfjxcXFori42JE4HDhwoJg4caLIy8sTixYtEq1atRJXXnmlY/3ly5fXmugZMGCAACBmzJjh9Pjff//teN6uXbucllVPHjVr1kw8+eST4ty5c0II6Yv/8OHDHctHjhzpSPS4e767NtX3HNbmkUceEZGRkS6vxWq1OpJBCQkJTvtctmyZ0Ov1onPnzk4JQ9msWbMEAKHVasUff/zheDw/P19s2rRJaDQaAUB0795dTJgwQWzZssWxzv333+84BrfeequYPHmyOHr0qGP5Cy+84Fj+2WefOR43mUxi27ZtjsRPcnKymDp1quO5FRUVYvbs2Y7nJiYmipMnTzqe/7///c+x7NChQ06vZ8qUKQKAuOqqqxyPKX3/lZeXOxKh7pJPclJTjhfZmTNnRMuWLV3Wf/bZZwUAcdNNN7kss1qtYvTo0Y6k2LFjx5yW33vvvY7XOmTIEPHuu+86km3ffPONY9ldd93lsm0iIgp9TD4RERF5SE4utW/f3uWLuiwxMbHG5NOSJUsCPvkke/zxxx1tXbRokdt1Nm7cKACI9957z+3yCy64wLGN7Oxsp2VyJUt9i7BfeeUVlyqs6t5//30xePBgl8evvfZaAUDExcW5LBs6dKgAIG6//XaXZUOGDBEARGxsrDh9+nSN7Tp48GCtiR45wXXppZc6PW61Wh3POz+xWT15dOONN7pss6SkRLRt29axzm+//Vbj889vU0POYU02b94stFqtuO2229wul5MUaWlpjiSTzWYTnTp1EgDEhx9+6PZ5ZrNZtG7dWgAQ7dq1cyQ2ZM2aNRMAxIgRI1wScGfPnnUkp4YMGeKS3LJYLCIpKanGxEtqaqoAIC644AK3bbvhhhscx+mpp55yPP7hhx86Hq9e4SSEcFTbdevWzWV7nrz/ZHJllrvkk3xM3VWuPfLII06/5+TkOCoS9+7d63Zfe/fudRzHadOmOS37+OOPHW1euHChy3N79uzpSOASEVH44ZhPREREHnr11VcBABdffDG0Wvd/QhMSEmp8fk3PCUR6vd5x/6KLLnK7zieffAIAePHFF9G5c2eXn4MHDyI5ORnJyck4fvy403MbeixuuukmxMbGAgDef/99l+WffvopbrnlFpfHZ82ahalTp+Kzzz5zWabT6QAAZWVlLsvk49G7d280bty4xnbV9bo++ugjTJ06Fc8995zbfde0f9ngwYNdHouJicEjjzzi+H3evHm1tqG6hpzDmrz++uuw2+2YMGGC2+Uvv/wylixZgq1btzpe9/Llyx2Dz/fp08ft8wwGA6ZOnQoAOHjwoMv4QREREQCAVq1aQaPROC1LTk5Go0aNAADt27d3Ot6AdH5bt24NADh69KjbfQNA27Zt3bZNHvcLkMZ3kl133XW4/fbb8eyzz7q8Lk/iDaj5/SerLea6dOkCALj++utdxu568cUXnX7/7LPPYLVaER0djY4dO7rdXseOHTF06FAAwHfffec08UH1Nnft2tXluZ06dQIgTbhAREThR1/3KkRERGQymbBkyRIAQHp6usqt8a/zv6jLVqxYAUD60nrhhRf6s0mIj4/HtGnT8N5772Hu3Ll47bXXHAMoZ2VlIScnB1dddZXL8zp16oSvvvrK8bvdbsfvv/+Ob7/91jEItt1ur3G/NR0LT02YMMEpKVNWVobvvvsOCxcudGpTTWpKNEyaNAkzZ84EAGzfvt3j9vjiHP72228AgDZt2rhdrtPpMGrUKKfHVq5c6biflpZW47aHDBniuL9mzRqMGTPG43bFxcXVOMukvBwAysvLPd6mrE2bNujcuTP27NnjNINjbGws3nnnHad1t23bhs8++8wxIH1t5xtoWMw99dRTWLhwIdavX4/OnTvj+eefx8033+w2juRzUNvxB6RzsHLlSlgsFmzcuBEjRozwqC3R0dEA4NGg+kREFHqC51+wREREKjpw4AAqKioAAElJSSq3JjDk5uYCgFP1gz/deeed0Gg0KCsrw5dfful4/OOPP8aMGTMQGRlZ43PLy8vx9ttvY8SIEdi/fz/effdd9OjRwx/NBiDN+Pfggw/isssuQ6NGjRyzF9ZXkyZNkJKSAgAoLCz0+HnePoclJSWOypbzq49qc/LkScf982dSrK565VH153iTEKJez5Orhdwlr4QQWLBgAcaMGYNvvvkGDzzwAK699toGtdMTffr0wfz58xEVFYVz587htttuQ79+/bB+/XqXdeXjWdvxB/xzDoiIKPQw+UREROSBgoICx30lX+5DmclkAgAcOXJElf137tzZ0SXpww8/BABUVFTg22+/xc0331zj83777Td07NgRa9aswaJFi3DXXXchPj7eL20GpG5n7du3R2pqKn7//XdcfvnlTl2W6ktOitbW9fN83j6H1d8bx44d8/h51StxauuWJVcnAYDRaFTYOt+SY0ju3ic7ePAgBg8ejCeeeAIfffQRXn75ZbRs2dJv7Ro/fjyysrIc1WZbt27FkCFD8NRTTzmtJ5+DvLy8WhNwgXwOiIgocDH5RERE5IGYmBjH/Z07d6rYksAhf8letmxZneuuXbvWJ2248847AQB///03li9fjp9++gl9+vRBhw4d3K7/n//8B+PHj0dCQgK+/PJLp/PqD/fccw8eeughXHfddbj33nsVVQfVRe7OJI+t4wlvn0O566On25RVT8ZkZWXVuJ6cLAOksZ0CiTx2U/fu3R2PHTx4EAMGDMDWrVsxf/58x7hS/ta+fXssWbIE8+fPR/v27WGz2fDss8/iX//6l2Md+RyUlJQgJyenxm0F8jkgIqLAxeQTERGRB6oPUrxw4cI6u6aEA7mb2n//+1/s2bOnxvW2bt2Kt99+2ydtGDduHNq1awdAGnj8k08+wa233up2XbPZjNtvv90xGLa/qza2b9+ON998EwBwxRVXeHXbNpsNJ06cAABccsklHj/P2+cwJibGkfj79NNPUVxcXOO6v/zyC/744w8AcBoDavHixTU+59ChQ477o0ePrrM9/nTgwAEAzsf/gQceQH5+Pnr37u2IU3+68cYbnX6/7LLLkJWV5Rjf67333nMsU3oOkpKS0Lt3b+81loiIQhqTT0RERB6IjY11fDk7c+YMXnnlFZd1bDabY+wcdzNYeTKWjLxOXet6up4vTZ48GYBUcTNt2jS34wbl5ubi8ssvx7333uv0uLfardVqcfvttwMA5s+fj71792LSpElu1925cydOnToFwP0gz3K1h8ViqXd7antd8oD17vafnZ3tuF+f/a9btw7l5eVo27Ytrr76ao+f15BzWJNrrrkGgDSu1fXXX+92gOl169bhzTffdCRB+vfvj8zMTADAggULkJeX53bbcjXVBRdcEFCJj2PHjmHHjh1ISEhwSvjI59xdvMnnvCHxBtQec+vXr3ckJWVRUVF4/vnnAUjXMtkNN9zgqAT8/PPPa9ymfA5uv/32Bg/AT0RE4YPJJyIiIg899dRTjnFRnnzySbz88suOwYULCwsxffp0FBUVAQB++uknzJs3zzGDGgCnKpCaKkLkMXPqGlfK0/Xqq/qgyTXtY8aMGY5uRBs3bkT//v0xd+5cZGdnY/v27XjjjTfQt29fjB8/Hv3793d6rifHwlPyl2aLxYIbbrihxvGT5Nm2AGDOnDmOL//FxcW49957HecuKysLdrvdqcqm+nmuTW2vq/r+X3vtNZSUlAAADh8+jHvuucfR7q1btwKoqjCp3jWvepcnmRACzz33HIxGI7799lsYDAan5efOnXPcPz8p2pBzWJN77rkHqampAKRujgMGDMCcOXOwbds2rFixAo899hjGjx+PN954w2msp48++gjR0dEoLS3FE0884bLdoqIifPjhh4iJiXGM8VWdnDirafY4ecKAms6hfD5qSwbVNDbWs88+CyEE3nrrLacxn+RzvmnTJseMhjabDV988YWj6uvUqVM4ceIEzp4963gNnrz/ZHKcuXsfWa1WvPTSSy6Py8dCTvgBQHJyMt566y0AUnJw7ty5Ls/bsGED/vrrL3Tv3h2PPPKI0zJ3sVmdfHxtNlut6xERUYgSRERE5LE333xTaDQaAUAAEFFRUaJly5ZCq9WKZ555RrRq1crx+PXXXy+ysrKEEEJYrVbxz3/+0/G866+/XlgsFqdt5+bmiuTkZMc68+fPd9sGT9err9zcXNGzZ0/H9t94440a1928ebNISkpyrHv+zzXXXCPMZrPTc4qKipy2/8knnzS4zbfccovQ6XTiyJEjNa5jtVpFjx49HPvV6XSiZcuWIjo6Wrz22mvi/vvvdyxr0qSJuPDCC4UQQqxbt05ERUUJAMJgMIj169fXuI9nnnnGsY0xY8aIsrIyx7KcnBwRHR3tFDvp6ekiKSlJ/PXXX6Jv374CgNBoNKJp06bimWeeEUIIYTKZHO3u2rWr2Lx5s2Obp0+fFtOnTxcpKSli+fLlLu0xmUxi5syZjn2OHz9elJeXO61Tn3NYl40bN9a4zaioKPHzzz+7fd6yZctEo0aNBADxzDPPOI7f0aNHxahRo0RKSopYtWqVy/OWL1/u2H7Xrl1FaWmp0/J9+/YJrVYrAIjk5GRx+PBhp+Xbtm0TkZGRAoBISEgQR48edVouv68NBoO47rrrxMGDB4UQQlRUVIjnn39eaLVa8dJLL7m067bbbnN67ampqSI+Pl5cffXV4qeffnI8npiYKFJTU8W5c+cUvf+qv+5mzZq5tLtTp05Co9GIWbNmOY5Jbm6uGDBggEhISHBcn6p77bXXhE6nE3FxceLHH38UdrtdCCHE+vXrRcuWLUVGRoY4fvy4y/PuueceR1uWLVvmtMxut4v27dsLAMJoNIqioqIaXxMREYUmJp+IiIgUWrFihbj00ktFcnKyiIyMFBkZGeKbb74RQggxduxY8frrr4tz58451n/kkUdEXFycy5fw2NhY8dVXX4kTJ06IFi1aOL4cV/9p1KiRuPPOO4UQwuP1GuL+++93Sq7JPwkJCeKFF15w+5xjx46JO+64Q7Rp00YYjUaRkJAgRo8eLX744QeXdYcNGyaMRqPL9ps0aSL27NlT73bv2LFD3HTTTXWul52dLSZOnCgSExNFo0aNxMSJE8WaNWuEEEIcOXJE9OzZU8TExIjrrrtO5OXliX79+rlNoDRt2lQsXbrUsd133nlHJCYmuqwXGRnpdNyWLl0qBgwYIKKjo0VaWpqYOXOmyM3NFUII8ccff4imTZuKxo0bi1mzZgmbzeZ4XkVFhfj888/F5MmTRcuWLUXz5s1Ft27dxIABA8Ts2bNFQUGBy2v94osvHAmV89t03333Oa2r5Bx66tixY+K2224TLVu2FAaDQTRr1kxMnz5d7Nu3r9bnnT59Wjz00EOic+fOIikpSXTt2lX069dPzJo1S+Tn57us37JlS5eYjYyMFLfffrsQQojevXsLnU7ntFyn04mRI0cKIYSYPHmyyzHSarVi1KhRjn3Iyadp06aJN998U3To0EGkp6eLNm3aiMsvv9wRQ+crKSkRd955p2jevLmIiYkRmZmZ4uuvvxZCSMnQyZMni6ioKDFkyBCxfft2j99/mzZtEs2aNXPb7gkTJjjW69Spk9Nrbt68uUhOThZXX3212L9/f43nICsrS0yfPl20aNFCNGnSRHTr1k2MGjVKfPTRR26T5tdff70wGAxOSbb7779fVFRUiL/++ksMHz7cqZ29e/cWX375Za1xQEREoUUjhIqDRRARERERBbjWrVvj8OHDmD59Or744gu1m0NERBR0OOYTERERERERERH5jPsROYmIiChoTZs2DRs2bKjXc7/66isMGDDAyy0iIiIionDG5BMREVGIOXLkCPbu3Vuv554/GxoRERERUUMx+URERBRili9frnYTiEJKaWmp0y0REREpwzGfiIiIiIhqsGTJEpw9exYAsGLFCuTm5qrcIiIiouDD2e6IiIiIiNxo27YtcnJynB7TaDRo3rw55s2bh8GDB6vUMiIiouDC5JMP2e12HD9+HHFxcdBoNGo3h4iIiIiIiIjIK4QQKC4uRmpqKrTa2jvWccwnHzp+/DjS09PVbgYRERERERERkU/k5uaiRYsWta7D5JMPxcXFAZBORHx8vOPx4uJibN++Hb169XKsQ1QTxgspwXghJRgvpATjhZRgvJASjBdSgvESOIqKipCenu7ReWC3Ox8qKipCQkICCgsLnZJPdrsdJpMJERERdZamETFeSAnGCynBeCElGC+kBOOFlGC8kBKMl8BRU87DHVY+qUCr1SIqKkrtZlCQYLyQEowXUoLxQkowXkgJxgspwXghJRgvwYlpQg+88sorXh0wvLy8HH///TfKy8u9tk0KXYwXUoLxQkowXkgJxgspwXghJRgvpATjJTiFVPLp4MGDmDZtGvr06YPBgwcjIyMDH3/8cYO2uX//fjz11FNeaqHEarXi9OnTsFqtXt0uhSbGCynBeCElGC+kBOOFlGC8kBKMF1KC8RKcQqbb3bZt2zB8+HBMnDgRGzZsgMFgwOrVqzF27Fhs3LgRH330keJtCiFw6623MqNKRERERERERFRPIVH5VFhYiIkTJ0Kv1+O9996DwWAAAAwZMgQPPvggPv74Y3zxxReKt/vuu+9i0KBBXm4tEREREREREVH4CInk0wcffIDc3FxceeWVLlP83XDDDQCAJ554AhaLxeNtHjp0CF999RWeeOIJr7aViIiIiIiIiCichETy6ZNPPgEAjBgxwmVZeno62rZti2PHjmHx4sUeb/OWW27Bm2++iYiICG8108FoNKJVq1YwGo1e3zaFHsYLKcF4ISUYL6QE44WUYLyQEowXUoLxEpyCPvl05swZHDhwAADQtWtXt+t0794dAPDHH394tM1PPvkEnTp18lmXu4iICLRu3doniS0KPYwXUoLxQkowXkgJxgspwXghJRgvpATjJTgFffJp165djvtpaWlu10lNTQUA7Ny5s87tHTt2DO+88w5eeOEF7zTQDavVivz8fI7OTx5hvJASjBdSgvFCSjBeSAnGCynBeCElGC/BKehnu8vPz3fcP3+8J1l8fDwA4PTp03Vu75ZbbsHLL7+MmJgYxW0xmUwwmUyO34uKigAAxcXF0Gg0Tuvt2rULvXv3hlbrmv+TX0dZWRlsNpvTssjISBgMBpjNZqd9AYBOp0N0dDSEECgpKXHZbkxMDLRaLcrLy13eqBERETAajbBYLKioqHBaptVqHcejuLjYZbvR0dHQ6XSoqKhwGVfLaDQiIiICVqvVZdZAjUaD2NhYAEBJSQmEEE7Lo6KioNfrYTKZYDabnZYZDAZERkbCZrOhrKzMpU3yMSwtLYXdbndaVtsx1Ov1iIqKgt1uR2lpqct2Y2NjodFo3J6b2o6hfG4A98ewtnNjsViwY8cO9OrVCzqdzmlZ9XPj7hjK50bpMax+btwdQ/ncePsYyuemtmPYkPh2F4eeHsPa4rshx9DduanrGNZ2jbBardixYwd69OjhmHxBxmtElVC6RtR2DOuKb5vNhh07dqB79+4upeu8RkhC7RrRkM8RQgjs2LED3bp1c/lvM68RklC7RjTkc4QcL126dEFUVJTTcl4jJKF2jWjI5wi73Y4dO3agc+fOjliX1XYMDQYDtFqt2/bKbQLg9jhEREQ44vD87er1ese5Ob+91bdbVlbmcs6NRqPjGJ6/XZ1Oh8jISNjtdrczqkdHR0Oj0aC8vNzlnBsMBscxPP+ca7Vax/vM3WuNioqCVqtFRUWFyzmXt2u1Wl2OoUajcZwPd9uNjIyETqfz+jGs7dzodDrYbDbs2rULbdu2dbm+1HYM5XNT2zEUQrj9u+DrY2gymVzeN/J2fXEMq8ehVquFTqdz5CyUXCPc/U2qSdAnn6oHRk19PuUPSO5OdnVz5sxBSkoKLrroonq15cUXX8Qzzzzj8vj27dudklmNGjUCAJjNZuzevdtl/eHDhwMA9uzZ43IyO3fujKZNmzp1N6y+3Z49e8Jms2HLli0u2x00aBCMRiMOHjyIvLw8p2Vt27ZFeno6CgoKXNoUGxuLvn37AgC2bt3qEtj9+vVDTEwMDh8+jJMnTzotk8fcKikpwfbt252WGY1GR9fGHTt2uFwAevXqhcTERBw7dgy5ublOy5o1a4ZOnTqhoqLC5bVqNBoMGzYMgHQMz//j2LVrVzRu3BinTp1Cdna207Lk5GR0794dVqvV7TEcMmQI9Ho9Dhw4gHPnzjkta9++PdLS0pCfn489e/Y4LYuLi0NGRgYAuN3ugAEDEBUVhUOHDrkkSZs1awZAit/zz3lkZCQGDhwIAMjKynK5sPTu3RsJCQnIzc3FsWPHnJalpqaiQ4cOKCsrc2mTTqfD0KFDAQC7d+92uQB369YNKSkpOHnyJHJycpyWpaSkoFu3brBYLG5f6wUXXACNRoN9+/ahsLDQaVnHjh3RvHlznD17Fvv27XNalpCQgN69e0MI4Xa7mZmZiIiIQHZ2Ns6ePeu0rE2bNmjZsiUKCgqcqiUB6Q9U//79AQDbtm1zucBmZGQgLi4Oubm5OH78uNOytLQ0tG/fHiUlJdi2bZvTMoPBgMGDBwOQqi7P/4PRo0cPJCUl4cSJEzh8+LDTsiZNmqBLly4wmUxuX2tt14hWrVoBAAoKClzeN7xGSELtGtGqVSu0bt0aRUVF2LFjh9Oyuq4RHTt2BCD9c+b87fIaIQm1a0RDPkf06NEDAHD06FGXc8NrhCTUrhEN+RzRq1cvAEBOTo5LfPMaIQm1a0RDPkfIf4/27t3r8TXCYDAgNjYWBoMBdrvd5Rqg0Wgc3wNNJpPbJJFWq4XVanX50q/T6WrcLiC9dwDp+5y7JJFOp3O7Xa1WC6PRCCGE22RZREQENBqN2+3q9Xro9XrYbDaX96q8XQBukxTydi0Wi0uMytttyDF0t11Pj6G77dZ2DHU6HXQ6HeLi4nDmzJkaX2tt56a2Y1jXuantGLrbbvVj6O7c1PcYeiO+5dcqhHC03WKxKLpG1JVjcWqzOL+VQeY///kPrrzySgDSQXeXgHr00Ufxr3/9Cz169EBWVpbb7Zw6dQqjR4/GypUrHckhmZwBrOtQuat8Sk9Px9GjRx3VV/J6rHzifyyrY+WThP+xlDS08ikrK4uVT2F0jWho5dP27dtZ+RRG14iGVj5t3bqVlU9hdI1oaOXTli1bWPkURteIhlY+bdmyxaPKJ7vdjtOnT8NqtSIhIQHx8fHQarVuv6vJn53Pf53yfjUaDex2u8tzNRqNY5vnH/u6tis/tz7bldukdLtqvVa1tiuEQEVFhSPB4u659T2GdZ2bUDmG1bdrtVpRWlqKwsJC6PV6tG3bFjqdzqNrRFFREVq0aIHCwkKnnIc7QZ98Wr16teO/r3l5eUhKSnJZ584778Q777yDCy+8EH/++afb7Vx55ZW49tprccUVV7gs8zT5dL6ioiIkJCS4nIji4mJs2bLF8Z8QotowXkgJxgspwXghJRgvpATjhZRQEi+nTp1CQUEBWrZs6ZLYpPAgJ2zlxCR5R3l5OY4cOYLExEQ0bdrUo+fUlPNwJ+gHHO/SpYsjOXTixAm368iPd+vWrcbtyBVUGo3G5Ucm//700083qM1arRaRkZFuq56Izsd4ISUYL6QE44WUYLyQEowXUsLTeBFCoLi4GAkJCUw8hbnq39PJO6KiohAfH4/i4mLFhTeeCPoxn5KSktCzZ09s374du3fvdptgkvtmjxw5ssbtdOrUqcZle/fudVonJSWlIU1GTEyMo389UV0YL6QE44WUYLyQEowXUoLxQkp4Gi/ymDRyl0QKTzqdjjHgI3FxcSgoKIDFYqlxTO36CvrkEwBcc8012L59O1auXImrrrrKadmpU6ewb98+JCUlYcyYMTVu4/yBHauTs6q1rUNERERERES+I497w65WRL4hv7fcjTHVUCFRBztz5kw0btwYc+fOdRms7/PPP4fdbsf999/vKM1cvHgxunfvjldffVWN5qKkpARr1qxxO1Af0fkYL6QE44WUYLyQEowXUoLxQkoojRd2uQpvNpsNJSUlbgfapobx5XsrJJJPSUlJ+Prrr1FcXIw77rjDMZPExo0b8eKLL2LcuHF4+OGHHeu/8cYb2LVrV4PHbqovIQQsFotP+lFS6GG8kBKMF1KC8UJKMF5ICcYLKcF4IaUYK8EnJJJPADB27FisW7cOpaWlyMzMxAUXXICbb74Zs2fPxoIFC5xKM6dMmYK4uDhMnz5dxRYTEREREREREYW+kBjzSdazZ0/MnTu3zvWmTp2KqVOnerxdZlWJiIiIiIiIiOonZCqfiIiIiIions6cAYqK1G4FEZHHdu/ejTfffBOjR4/GCy+8oHZzYLVasXr1asyaNQu9evXCihUr1G5SQGHySQXR0dHo3bs3oqOj1W4KBQHGCynBeCElGC+kBOMlhJ09C1x5JXDTTYCXKv4ZL6QE48V/HnvsMTRv3hwajcbjnxkzZqjdbCdarRZ//fUXPv/8czzyyCNYunQpzGaz2s3CRx99hPfffx+zZ89GVlaWT2aMC2ZMPqlAp9MhISGBU4SSRxgvpATjhZRgvJASjJcQtmoVUFoKHDwo/XgB44WUYLz4zwsvvIDc3FwMGzbM8dhvv/2GrVu3On42b96MZcuW4a233kLz5s1VbK17Go0GEyZMwGuvvYYxY8ao3RyH2267DV9//TUSExPVbkpACqkxn4KFyWRCbm4u0tPTERERoXZzKMAxXkgJxgspwXghJRgvIWztWuf77ds3eJOMF1KC8eJfer0egwYNcnQLGzt2rNv1RowYgbZt22LevHn+bF6d7HY7zGYzjEYjGjVqpHZznGg0GiQkJKCgoEDtpgQcVj6pwGw249ixYwFRGkiBj/FCSjBeSAnGCynBeAlRNhuwfn3V79UTUQ3AeCElGC/+FxkZ6dF6Y8aMwcCBA33cGmWEELBYLJwYLMgw+UREREREFK527QJKSgCjUfp961agvFzdNhFRwDAYDLj11lvVbgaFACafiIiIiIjClVzpNHw40Lw5YLEAmzer2yYiCgj/+te/sHz5csfve/fuRYcOHZwGI8/MzAQA9OjRw/FYjx49XLZlsVjw2muvYeTIkRg5ciS6du2K6667Dn///bfLuoWFhXj44Ycxfvx4dO3aFS1btsSDDz6IsrKyBr2ehQsXIj4+3tHORo0a4fPPP3cs/+WXX5CUlASNRoM2bdqgoqLCsezXX3/FRRddhLFjx6Jdu3bo27cv5s+f79F+c3Jy0K5dO8d+n376aceyCy+8EDExMY5l7nz33XeYOHEihg0bhqZNm2LcuHHYvn27y3obNmzARRddhFGjRqFt27a1blMNTD4REREREYWrNWuk20GDpB/Aa13viNQghFS8F0o/avQuO3bsGD788EOnxzp16oR9+/Zh+vTpAICEhASsqbyGLF++HAaDAT///DN27Njh9Lzi4mKMGDECubm5+OOPP7Bs2TJ89913+O6779CvXz+n9U+dOoXMzExkZGRg4cKF2L17N2666Sa88sorGDNmDCwWS71f0/jx47Fx40bHuGKzZs3C9ddf71g+adIkfPrpp2jatCmysrIcXRNfffVVXHrppbj55pvx+++/4++//0bjxo1xxRVXYMmSJXXut02bNjhw4AD69evnsmzx4sVYsGBBjc+99957MW/ePMybNw8rVqzA0qVLsWrVKgwaNAibNm1yrHf06FGMGTMGN998M5YuXYrs7Gy89dZbHh8bf+CA4yowGAxITU2FwWBQuykUBBgvpATjhZRgvJASjJcQVFgI7N4t3c/MBOLigJ9+8kryifFCSngzXioqgAsu8EKjAsjKlUBUlO+2P2LECKff8/LysGvXLrdjKmk0Grz33ntYtWoVDh48iLlz5+Laa6/F7Nmz8fDDD2PSpEkuz5k+fToqKirw+uuvOx7r1asXevTogR07dmDu3LmOaqmZM2eic+fOmDJlimPdhx56CP/+97+xevVqzJ07F9dddx0MBkO9qno6deqE66+/Hh988AFWr16Ne+65x2n5tm3bcMsttyAuLs7x2IsvvggA6NatGwDAaDTipptuwu+//44vvvgCo0ePrnO/Go0GXbp0cUoYydq2bev2OfPnz8f777+Pw4cPOxJm3bp1wzXXXIOPP/4YjzzyCBYvXgwAWLRoEQoLCzFu3DjH8++88058++23dbbNX1j5pILIyEh06NDB40HeKLwxXkgJxgspwXghJRgvIWj9eqmkol07oEkToH9/QKsFjhwBjh9v0KYZL6QE40Vdy5cvd/rZsWMHsrKykJiY6Hb96OhofPLJJ9BoNHjggQfw559/Ys2aNXjqqadc1t2wYQPmz5+Pu+66y2XZW2+9hWuvvRbTpk0DAOzevRsLFizAhAkTnNaLiIhARkYGAGDBggXQarWIjIyEVlu/dMbdd98NjUaDBQsW4OzZs47HhRD45ptvcOONNzqtn5qaiujoaERHRzseS05OBgCcPHnS4/3W1N6akmgvvvgi+vfvj6ZNmzo9PqiySnXJkiWOrojyYP0ff/yx07rXXHONx+3zNVY+qcBms6GsrAzR0dHQ6XRqN4cCHOOFlGC8kBKMF1KC8RKC5AonubtdbCzQsyewbZu07Ior6r1pxgsp4c14iYyUKoVCiRo5ue7du+Oqq66qcfmIESMwc+ZMfPjhh5gwYQK2bNnitnJNHhepS5cubrdRverq999/BwC8/fbb+Prrr53WPXv2LFq1agUhBIQQsNvt9U4+de7cGaNGjcKSJUvw1Vdf4b777gMgJeE6d+6M9PR0p/XXrVuHsrIypKSkAADOnTvnaKvVaq1XG+qSn5+PTZs2oUmTJi6VaeXl5WjVqhUA4MyZM2jVqhUuv/xyPProo7j33nuRnZ2NZ599FvHx8bj77rt90r76YPJJBWVlZdiyZQsyMjKcyvmI3GG8kBKMF1KC8UJKMF5CjBDAunXS/cGDqx4fPFhKPq1Z06DkE+OFlPBmvGg0vu2iFk769u1b6/J///vf+OWXX3Dy5Ens3r3b0S2tur179wIAGjVqVOf+Dh48CAB4+eWXcdFFF9W4XvVkZX3ddtttWLJkCT755BNH8umLL77ATTfd5LKuXPW0c+dOvPXWW9BqtejUqRMAuO2a6A3Z2dkQQmD06NH45ptv6ly/efPmmD9/PiZNmoS33noLP/74I954441aE4j+xuQTEREREVGosNul2erqmhUqLw84cwaIiAB69656PDMTeO89YONGYPly6Zt8PejKypCwbx90ZWVAXV8Qu3UDKisKwpbNBuzaJR0LVopRgLj55ptrXX7w4EFH5c8dd9yBUaNGObqjyYqLiwFIA2J36NCh1u3JXcfy8vLq22SPTZw4EWlpafj777+xcuVK9OnTB2vXrsWnn37qsm5JSQnuvPNOrF27FvPmzUOPHj2cZgH0hfoci9GjR2P79u2YOXMmli5diquvvhrXXnstvvjiCxiNRl811WNMPhERERERhYr//Ad46SXP1+/bF6j+paRzZyAxESgoAB54oN7NiLDb0a60FBExMdI4UrVp0QKYP7/eia6QMHcu8NprwG23ATfcoHZriFwsX77cqfuXyWTCjBkzsHDhQtx7771Ys2YN7rnnHpfuco0bNwYgdakbOXKk222fPn0aTZo0cay7evXqGscqOnPmDEwmExISEhr0evR6PWbOnIlZs2bh448/xsiRI3H11VdDr3dOkVgsFlx00UXYtGkTsrKy3HYf9AX5WGzatAlms7nG5FFWVhZ69uzp+L1du3ZYsmQJ/vOf/+COO+7Ad999hxYtWuDf//63X9pdGw44TkREREQUKpYtk25btgR69Kj9p29f4J//dH6+Vgvcd5809lNdz6/lx961K0rbtoW9a9fa1zUYgKNHgf37/X+sAok8XbuCwYuJ/GXfvn146byk9hNPPIHRo0djwIAB+PTTTxEREYE5c+bgf//7n9N6gyu79b7//vs4cuSIy7aPHDniSIwMHDgQAPDZZ58hOzvbZV2LxYIZM2Z4bRy5m266CQaDAT/++CPee+89l4HGAeCXX37BunXr0K1bN6fEU32628ljVBUVFTk9XlBQ4LLd9u3bIzk5GXl5eU6zBFb32WefOSqwXnnlFZw+fdqx7IorrsDSpUuh1WqxaNEixW31BVY+qUCj0UCn09VrakgKP4wXUoLxQkowXkgJxksQKC8Htm6V7r/+OlA5IK1i48ZJPw1gKinBgW3bENu7NwyxsTWvePfdwOrV0vhTHTs2aJ9Bq7gY2LFDul/Z1Sbc8Prif3a73aP1hBC46667MGrUKMdjK1euxE8//YSsrCwA0gDes2bNwmOPPYabb74ZO3fudFQm/eMf/8CTTz6JgoICjB49Gp9++imGDRvm2M7dd9+NhQsXAgAuueQStGjRAkePHsXYsWPx1VdfOWZ2y8nJwa233oqMjAw0adLEZZY3m82m+Bg0b94ckydPxg8//IBGjRqhTZs2Luvk5OQAgGN/MnksK7Ob92xNbUpLSwMAzJ07F/fddx9atGiB/fv3Y/bs2TAajTCbzdi/fz86duwIjUaDG2+8Ef/+97/x+OOPIyIiArfeeisiIiJQUVGBd955Bx999JHjHFitVnz11Vd4oFrFapcuXdCoUSPEx8crPjY+IchnCgsLBQBRWFiodlOIiIiIKNStWiVE375CTJgghN2udms88913UptvuUXtlqhnyRLpGPTtK8Sjj6rdmoBWXl4udu/eLcrLy9VuStCbOXOmACAAiJ07d7pd5+DBg2LKlCkCgNi8ebMQQojjx4+L9PR08cknnzita7FYRExMjAAgJkyY4HSO5s+fL/R6vWN/8fHxIjY2VhiNRrFw4UKn7SxevFhEREQ41m3atKlITU0VGo1GjBkzRpjNZse6ZWVlokOHDgKAmDx5cr2Ow/LlywUAMW/ePLfLly5d6mjLrFmzxJYtW8QHH3wgJk+eLACI2NhY8ddff4nff/9dCCHE3r17hVarFQDEm2++6bStbdu2CZ1OJwAIo9EoUlNTRVRUlPjrr78cx65Vq1bif//7nxBCiOLiYtGrVy/H/qOjo0Xr1q1FRESEaNSokdiyZYtj2y+++KKIi4sTK1eudDz2ww8/CI1GI37++WePj4fS95iSnAe73RERERERhYI1a6TbQYOCZ/wkeaa9rVvrHiQ9VK1dW3XfYlGvHRQW1qxZg3//+9/4/vvvHY/169cPGRkZGD58OIYPH44BAwYgNTUV7dq1w9y5c5GcnIw+ffpg4cKF6Ny5M3Jzc/HEE084qm4A4NJLL0VpaSkA4Ndff0WbNm0c3ewuu+wyLF++HBdeeCFiY2Nht9sxbNgwrF27FuPOq7IcPXo0Vq5ciXHjxiEhIQHnzp1DcnIyXnvtNSxcuBAGgwGA1I2vZcuW2F/ZZXf+/Pno0KGD4i5mw4YNw+TJk3HZZZe5XT5y5Ei89NJLaN68Of7973/jtttuQ3x8PH788UeMHz8eAPDcc8+hdevWuOGGG9C7d29HVdm9996LjIwMnKzsTturVy/88MMP6Nq1K/R6Pdq2bYtly5Zh2LBhGDp0KH766SccOHAAl1xyCQAgNjYWf/31F+677z60bNkSZrMZJpMJ//jHP7Bt2zb06dPHqa3FxcUYNmwYOnfujAEDBuDVV1/Fb7/9hkmTJik6Jr6iEcJHcwMSioqKkJCQgMLCQqdSt9LSUuzevRtdu3ZFTEyMii2kYMB4ISUYL6QE44WUYLwEgcsvB44cAV5+GahhYF9/8ThehAAmTQKOH5e6Cl5wgf8aGQiEACZMAE6dkn4fMgR4801126QCT+OloqICOTk5aNOmDSIjI/3YQgokNpsNFRUViIyM9Nr4TyRR+h6rKefhDiufVGC321FWVuZxP1sKb4wXUoLxQkowXkgJxkuAO35cSjxptUD//mq3xvN40WiAzEzpfvUKoHBx6FBV4gkI28onXl9IKcZK8GHyiYiIiIgo2MmJm549gdoG+A5Ecte7cEw+ya+5chascB1wnIhCH5NPRERERETBTk5iyImcYNK/P6DTAbm5wNGjarfGv+TzlpEh3TL5REQhisknIiIiIqJgZrUCGzZI9+UubMEkJgbo1Uu6H07VTyYTsHmzdL9y6nkmn4goVDH5pIKoqCh069YNUVFRajeFggDjhZRgvJASjBdSgvESwLKypJniEhOBzp3Vbg2AesRLOI77tHWrlGxq0qTqvIVp8onXF1JCq9UiMjISWi3TGcFEr3YDwpFer0dKSorazaAgwXghJRgvpATjhZQIuHgRQvry3q0bEBHh+fOys4GoKKB5c9+1zResVmDNGqByKnMnK1ZIt5mZVWMHqUxxvAwaBLz3HrBpkzToduV06kFj1y5pwHclli6VbgcNqorhMB1wPOCuLxTQNBoNDMF2jSAmn9RgNptx8uRJNGvWDEajUe3mUIBjvJASjBdSgvFCSgRcvPz8M/D888CUKcCDD3r2nNOngalTgYQE4L//lcYZChY//gi88krt6wwa5J+2eEBxvHTqBDRqBJw7J1Vy9e3r+0Z6y5EjwPXXA/WdfWvQoKpkW5hWPgXc9YUCmt1uh8VigcFgYPVTEGHySQUmkwk5OTlo1KgRL65UJ8YLKcF4ISUYL6REwMXLkiXS7dKlwAMPABpN3c9ZvVoaZ+f0aalSpWdP37bRm5Yvl247dACSklyXN2kCXHihX5tUG8XxotVKlVuLFkld74Ip+bRqlZR4SkkB2rVT9tzmzYHhw4Fjx6Tfw7TyKeCuLxTQhBAwm83Q65nOCCY8W0REREQUXEwmYMsW6f6ZM1JXOk++9FcfT2jt2uBJPpWVAdu2Sfdfeglo2VLV5vjMoEFS8mnNGuCOO9RujefkuJo6FfjHP+q3DTnhEqaVT0QU+lijRkRERETBZfNm5y/pa9bU/RybrWpGOE+fEyg2bZLGfEpLA9LT1W6N78iDju/bB+Tnq9sWT1Wfsa4h3R7DvNsdEYU+Jp+IiIiIKLisWyfdRkdLt57MkLZzJ1BSUvWc3buBwkLftM/b5Nc7aJBn3QuDVVKSNPYTUPWaA92WLVUz1rVpU//tyJVPdruUKCUiCjFMPqlAns2BfVTJE4wXUoLxQkowXkiJgIoXuWppxgzpdutWoLzcs+cMHSp10RMCWL/eZ030KrntATSgeF3qHS+DB0u3wVKZJic+G5oYrD5zVxhWPwXU9YUCnkajgV6vhyaUk/EhiMknFURFRaFbt26IiopSuykUBBgvpATjhZRgvJASARMvJ08Chw5JA1RfdZU0YLPFUjUGVE3kJEFmZlUSx5OKKbUdPSr96HRA//5qt8Zj9Y4X+dysW1f/2eP8SY4hOWlWX9UH2Q7DQccD5vpCQUGr1SIqKooz3QUZni0V2O12mEwm2IPhDyqpjvFCSjBeSAnGCykRMPEif9nv0QOIi/MskVRQAPz9t3R/0KCqRMG6dVIFVCCTX1evXlVdBoNAveOlRw/pdRYUAHv2+KRtXnPyJJCTIyVCG5oY1Omk7QBhWfkUMNcXCgpCCNjtdohAv36TEyafVFBaWop169ahtLRU7aZQEGC8kBKMF1KC8UJKBEy8VO/mVP22tm5a69dLSab27YHGjYHevYGICGmmvIMHfdrcBjv/9QaJeseLwVCVyAn0cZ/kc9O9OxAf37BtaTRhPeh4wFxfKCjY7XaUlpYyWRlkmHwiIiIiouBgtVaN0yQnY/r3lypGjhwBjh93/7zzEzhGI9C3r/OyQGSxABs3SveDLPnUIMHSLbJ6V05vkLvehWG3OyIKfUw+EREREVFw2LkTKC0FEhKALl2kx2JjgZ49pfvukhVCuK8ekrveBXKCY/t2aSD1pCSgY0e1W+M/8nnavl2aoTAQ2WzAhg3S/YaO9ySTK59MJu9sj4gogHA6ASIiInIif1fv2VP6Xk/BwWoFliyp+bt6cjIwfHjDJuTypr1ztyF/k7Iub0n716PJOeBUy4HYNb/qf6itjIPR7tw2FL7zX5w4r6eWobQQ7Q7kwWaMxIrs3hC5Uq+7dnKCY+tW4Mcf3R+YPn2Atm0VvjKFzGZg6VIpqXY+uSthZmbVeEBe3O2SJUBZmfvlTZoAF1zg1V16Li0NaNlSqmb78EOgdWuVGlKL06elN1t8PNC1q3e2yconIgphTD4RERGRk2XLgIceAi6+GHjuObVbQ56aPx946aXa13nzTWDIEP+0pzZndp6C5cabkSBsip5nA3ACwMeaQVh5pOrx1uWDMPvke8DJnUjYsNPleScAbI/ti1dfkb7cJyYCvy1qCX1qqtRV71//cr/DxETgt98AX07//sMPwBtv1L6Ot7p1VfP998Bbb9W+zkcfARkZXt+1ZwYNkpJP332nUgM8NHCg9xKDcvIpDMd8ouAghMAll1yCvXv3YvXq1UhNTfXLfouLi/HXX39h0aJFWLBgAQ4dOuSX/dbmxIkTWLx4MX799VdUVFTgl19+UbtJAY/JJxXExsbiggsugCZQ/vVIAY3xQkowXkiJmuIlO1u6XbFCqqbx5fdu8p4VK6Tbrl2Bpk2dlx06JE3K9ddf9U8+efP6cvCr1YgXNpRFpaCkTQ9Fzy2NboyIvmMxUlftQdEZu3bcgsb5e90+x6Yz4Ei3GRiZJA0ZVVAA7NipQZ9HH5Wydu5mTHKsuEOqgPIV+cR16yaVG52vcWPgwgt9ttvu3aVdVHfwoJT3+euv+iefGhwv06ZJlUU1lWYFgogI4J//9N725G53YVj5xM8v/rNs2TLMnTsXn332GSyVsda1a1fEx8ejqKgIxcXF6N69O8aNG4epU6ciISHB8dyzZ8/i999/BwCsXr0aV111lc/bW1ZWhldffRWLFy/G6tWrAQBarRaxKpZm79mzB19//TW++eYbHD58GMOHD1etLcGEHydVoNFoeGEljzFeSAnGCylRU7zk5Um3ZWVAVpaKlQ/kMZMJ2LxZuv/00649xVatAu65R5o8TIj6db3z5vWlYtlaxAMoH38lRnyp/Mv7eJdHNABq387oytvHHwd+/13qWtrntkE1D+TttKKPkk+lpdK4RgDwwgtSdzM/KCmR3tvybs8vXvjzT+DRR6WXfu+99dtHg+OlaVPgmWfq//xgFBEh3YZh5RM/v/jPyJEjMXLkSJSVleHrr78GAGzZsgURlfF34sQJPPfcc7jzzjvx3HPP4euvv8ZFF10EAGjcuDFuvfVWZGdnY8yYMX5pb3R0NJ5++mlMmjQJGZUfSNSOlc6dO+P5559HSkoK7rvvPlXbEkw44LgKysrKsG3bNpQF8n9yKGAwXkgJxgspUVO8yMknIPBnOifJli3S99UmTYA2bVyX9+0rFVUcPw7k5tZvH966vlgrrEjcLw3U3Pxy/8/g5vFEavKKvnwTbNokDVydnu63xBMgjZNtt0vDKrnrNSP3JMvOloY2qg/+PaoHufIpDJNPjBf/a11tLDU58QQAzZs3x7vvvotJkybh1KlTmDx5Mk6cOOFY/t577+G3335zqojyh0aNGjnu22w2lJWVwWZT1nXb26q3ierG5JMKbDYbCgsLVX+zUHBgvJASjBdSoqZ4OXu26n4gTwRGVapP5ubuH8JRUVXFO/IY1kp56/py8JedMFpKURGRgLbjuzRoW/UhD5/0999Afr6HK54755vGyCejpuorH5HzaTVN0hYfL/UCBOp/DeDfo3oI4wHHGS/+p61jrDK5S11paSn++9//+qNJijBWgg+TT0REROSkeuVTnV/QKSBUTz7VRM6lqJ1QPDlfSrgUdR4Ird7/H0VTUoCOHaX769d7sKIQdaxYT/K0koBfk09CeJbz8rhCjLwnjCufKPA0qTYGXb6bDwJ2u92fzaEQwOQTEREROZE/Y8bHS7e++N5N3nPqlDSYuFYLDBhQ83pyMmHzZnW/2+o2SmU30aP93+VO5nEizpcZu9xcqR+kXi/1i/STw4eBkyelPEdt47nJL33DBqlnIPkBZ7ujAFJ9RrnOnTsDAPLy8vDBBx9g6NChmDNnjmP566+/joSEBMfYXTExMXjttdewdOlSx+MxMTF49tlnXfbzxx9/4IorrsDo0aPRtGlTjBgxAsuWLWtw+0eNGuVoj0ajQd++fZ0SZvJyvV6Pd9991/H4mTNn8NBDD2Ho0KEYOnQoWrRogRtvvNFtAs6dRx55BFFRUS7jmM2bNw/t27d3PP7000+7PPfEiRO4/fbbMW7cOLRr1w4dOnTACy+8AKvV6rSeyWTCU089hczMTGRmZiImJqbGbQYSJp+IiIjIoawMKC+X7l98sXTLyofAJp+f7t2rEobutG8vFfNUVADbtvmlaS4Kcs4h6eTfAIB2/6de8knubrZunTT2UY2ql/94+7/88onr0weIjvbutj3cbVRUzet16ybFU1ERsGuXf9oW9ph88g4hpD9kofTjbkZOHzKZTI6ETNeuXTFu3Dj88ccfuO+++3D33Xdj9erVTomce++9F7t27UJq5SByN9xwA+677z6MGjUKTz/9NLp3747s7Gw8+eSTTvt544038Mwzz+DTTz/FkiVLsGXLFuTk5ODCCy/Er7/+2qDXsHTpUkyfPh0AkJiYiM2bNzt1NVy6dCl69uyJF154AbfffjsAqcKrf//+WLp0KRYvXoxVq1Zhzpw5+PzzzzF58mSP9vuvf/0L8+bNc3n8qquuwoEDBzB06FC3z9u7dy8GDx6MKVOm4H//+x/279+PESNG4PHHH8c//vEPp3Ufe+wxLFq0CMuXL8e6deuwf/9+dO/e3aP2qYmz3akgMjISHTt2RGRkpNpNoSDAeCElGC+khLt4kbvcRUYCo0cDP/xQ9QW9juEhSCVyFyq5UqUmGo2US/nvf6UERG1VUu544/py4Jv1iIZAQUoHdO2UUu/tNFSvXlLiJT8f2L8f6NTJgxUPHKjqr+cNKnS5U7JbnU6KkcWLpWtAz57K9sO/R/Ugd7sLwzGfvBovFRXABRc0fDuBZOXK2rPFXmKxWLBmzRo89NBD2L59O/r06YOff/4ZRqMRY8aMwZgxY1BQUIAFCxa4PLdFixb47LPPcPHFF+P777/H888/D41Gg/feew8///wzmjZt6rT+pk2b8MADD2Dz5s1ITEwEAKSlpeHmm2/G448/jvvuuw/jx493O7OdRqNBREREnbPePffcc/j2229RUFCAXbt2oZs8mB2AkpISnDp1CrfeeqvjsW+//RaHDx/GwIEDHbE4YsQIdOvWDStWrMDBgwfRrl27Oo9j165da1zWtm1brFq1yukxu92Oa6+9FpdddhmGDRsGQBqT6+mnn8Ynn3yCH374AXfeeacjcfX999/jH//4h6ONqampeOWVV7A2wP9byI+RKjAYDGjevDkM8h8YolowXkgJxgsp4S5e5ORTcrL0ZTM6uuoLOgUem03qFgXUPHh0dXLCoT6Djnvj+lLyp/TB2NJPvaonQPqO37+/dL/Wz+pGI9Cvn3S/viO1u2M2SzPdAX5NPpnNUrdLwLN4kddRK17CjjzjWBhWPjFe1HXBBRdg6NCh6N69O+655x6kpqbis88+w7p169CyZUundWub4W3s2LGYMWMGzp49i8ceewyPPfYYbrnlFqekj+zf//43mjdvjl69ejk9Pqjymrh//378/fffbvej1WphNBrrHDS9RYsWuOKKKwAAn332mdOyefPmYeLEiYiLi3M81rx5cwBASorzP0eSk5MBACdPnqx1f9XbVxN3CbPffvsNW7duxYQJE5weT0tLcxz/6gk/s9mM+fPn42y1GWIuuugil3YHGlY+qcBiseDs2bNISUnhBZbqxHghJRgvpIS7eJGHNEhOlr6g9+sHrFghfUGvsTqEVLNrF1BSInWPquUfrQ4DB0oVUAcPAqdPA9XGk61TQ68vdqsdcTulTE/jieomnwCpUkyO7Rkzallx0CCp6qDOFRXYtk2qzkhJkfpD+snWrYDJJJ33tm3rXl+uptu9W+p+V1u3zvPx71E9hPGA416Nl8hI6T0bSnxcQbjSi8frtddew2+//Yb33nsPgwcPxptvvumyjhACf/75J4QQGDFihNMyi8WCVq1aAQDO1TDTqN1uh9VqhV6vrzMBdfvtt+P777/HV199hRdffBHGyu6tX3zxBV599VWnda+44grk5uY6ug8CwNq1a5GbmwsALmMvecvvv/8OAHj88cddxsWKjIxEq1atYKlWETl9+nS8+uqrGDRoED744AOMHj0aWq0Wd9xxh0/a5y1MPqmgoqIC+/btQ2xsLP8YU50YL6QE44WUcBcvZ88CGmFHZslSoLA/Bg1KwIoVwP/+J3XDAYBGjYBx49gNz5eOHweWL697oOetW6XbzEzPzkdCgjSWz86dwLvvKst7lJdbcfhwAVq1SkRUVNX1RWs1I23bQuhNJbU+31ZQjMYV+bDoo9Dlil61rusPclXPtm3AV19JSTmjERgzRopxB7kyafv2qhUbauPGqm17YXtHjkjftesalkquksvM9Gy3TZoA7dpJycq33gIqvw96pKZ4qUvTpsBFF3nnMAcdecynMOx259XPLxqNX7qokXuNGjXCW2+9hauvvho5OTkoLi5GQkKC0zp5eXkoKCjA4MGDsXz5csX7EELAZDJBJ38wqcXQoUPRs2dPZGVlYf78+ZgyZQqys7NRXFyMfnJlazUtWrSAyWTCl19+iUWLFmHMmDFITk5GdnY2hI/G3jp48CAA4Ouvv0aHDh3qXP/555/HgQMH8Msvv+DCCy/Eddddh9dff91phsJAxOQTEREROeTlAQOKF+PSNY8BL4zG4LteAgBkZwPV/3kpf0kn33jySSnX4SklPbcGD5aSTwsXKmuT3W5EaWkLxMQYnRJdF+fNQ5/Tr3u8nXPt+8MYa1S2cx9o0QJIT5cmnXvrrarH9+wBZs2qtmJ6urTy0aPOK3qDl7rcPfIIsG+f5+t70uWu+roHDwI//6ysTTXFiycaNarqFhlWwrjyiULL+vXrER8fj+PHj+P+++/HJ5984rTcXBnjeXJffx+79dZbceutt+Kjjz7ClClT8OWXX+Kf//yn23V/++033HzzzZg+fTp++OEHGAwGzJ0716ftq348PEk+RUREYP78+XjnnXfw+OOP49tvv8Wff/6J77//HqNGjfJpWxuCySciIiJyyMsDUk2HoNcDWLMGac9Z8OijBmRlSctzcqQuOCtXMvnkK4WFcBzvcePqrgBJTgbGjvV8+1OmSPsoqb1QyYXJZMXJk3lo1syIiIiq/zZPWLgSCSbgRPMMlMQ2r30jRiPaPXmdsh370JNPSgOw2+1AcbHUDW/VKjcD7D/1VNWK3tKkCeCFLwmnT0uJJ61WmqGyrnhp2hQYOdLz7U+dKnXVKy1V1q6a4qU2e/ZIia6VK8M0+cTZ7igErFixAn/99ReWL1+OgQMH4tNPP8U111yDCy+80LFOUlIStFotDh48iFOnTrkMRi7LyspCT6WzHbjxf//3f3j44YexbNky7N+/Hz/++CPWuBnMbsGCBZg8eTKuvfZazJ49u8H79VTjxo0BAKtXr0ZmDbOHHDp0CMnJyY4xqjQaDe68805cffXVeOCBBzBnzhxMnDgR2dnZAVsBxeQTEREROeTnA21s+dBHQpreeft2XHFFP1SO14ktW4CZMzkDni+tXy/Nqt2uHeCLz74JCcCDDyp/XnGxGVu2HEZGRjLi4ioHRi4rA37fBqQCaT89AZw3MG2gy8iQfgCpp9Po0cC5c1Iyp3PnGlYMMOvWSbddu/omXpKSgIceUv48t/FShz//BB59tOo1hR0mnyjIlZSU4J///Ce+//579OnTB4899hieeeYZzJw5Ezt27EBMTAwAaRyjXr16YevWrXj66afx/vvvu2zrzz//xB9//IGXX365we2KjY3F1KlT8e677+KGG27AgAEDXLoCAsBjjz0Gu92OK6+80ulxpd3tqo9DVVRUhPhqA+YVFBS4bHPgwIH49ttv8eqrr+KGG25wGdS9uLgYN954IxYtWgQAePDBBx3HpWnTpvj6669hs9nw3XffYeXKlY5B1gMNPzKqQKfTISEhwaM+qkSMF1KC8UJKuIuXs2eBBGueVPkEuEwF1qOHNAPeuXPA3r1+bGwYkQ+5kq5R/uD2+rJpE2C1AmlpUve0ICYPsA/UMQNegJH/eR8U8VKHgQOlhHZ2NnDqlA8bF6jkbndhOOYTP7/4X3l5udv7dZEHvra4idP77rsPkyZNQkZlsv6xxx5D9+7dkZOTg0cffdRp3ZtuugkA8MEHH+CRRx5BSWU5rs1mw5dffokZM2bggQcecKxvrpaUtdlsimPltttuAwCsWrXKse/z5eTkAABKq5V62mw2HDhwwKUN1X+3nTdAY7NmzRztkwc1t9lseOutt7Bz504AcGwTAK699lrExsbixIkTGDt2LHbv3u1YtmPHDowcORJTpkxxDJY+b948pzYCwODKPwLxSmaG8DMmn1QQHR2N3r17Izo6Wu2mUBBgvJASjBdSwl285OUBidY86OXPdOd9C/d4inqqFyGqjquXhgPyGrfXF7lExUsDZ6tNPubBEts2m/Mg4oGkPn+P4uOlAfGB4DkHXhVRWSEWhpVP/Pzif9u2bXPc/+uvvzx6js1mcyRPtsozXlSaM2cO5syZg1nVBs0zGo147LHHAADvvPMO5syZ41g2c+ZMjKnsv//SSy8hJSUFbdq0QXx8PG655RZ89tlnTt3xVqxY4bi/Z88eREdHK0pAde3aFSNGjEC3bt0ciZrzyQOQP/fcc1i2bBlWrFiBmTNnIikpCQAwf/58/Pzzz45Z+ORZAg8cOACTyeT0uidPngwAmD17Npo1a4a4uDj8+eefuPnmmwEA3333HaZOnQqTyYTGjRvjvffeg0ajwcaNG9GtWze0aNECTZs2Rc+ePdGzZ0/MnDnTsf2TJ09i5syZjqRhcXEx5syZg/79+2Okkn7VfsbkkwqEELDb7T4bLZ9CC+OFlGC8kBLnx4sQcvLpbFXl07590oPVBNsX9GBy4IBUfRYRAfTurXZrnLm9vshlN4GWKasn+fvI9u3KxzhSw65dQFEREBdXlbQJFPX9eySHkpvhWEJfGA84zs8v/vPqq6+ibdu2+OOPPxyPXXrppejTpw+WLl1a4/Mef/xxpKenI6tyUML3338fXbt2xf79+3HjjTdi2rRpKC8vx5QpUxzP2bZtG+6//34A0jmeOnUqrrtOGvdPp9NhwYIFmD17Ntq3bw+73Y6SkhJMmDABGzduxNjKwQwrKiqQkZHhlHwZPHgwLrvsMsXxcuedd+K+++6rcfmnn36KESNG4PDhw/i///s/fPvtt5g9ezZeffVVJCUlYdGiRdi/fz/27duHdu3aOZJpJ0+eRKtWrfDcc885tvXhhx/iH//4B5KTk6HRaHDPPffgp59+QqNGjfDggw8iJycHX3/9NSIqk85Tp07Fb7/9huHDhyMmJgb5+flo3bo1vvjiC3z22Wcubf3222+RmpqKAQMGYMiQIejXrx/+/PNP6PWBO7KSRvAd7jNFRUVISEhAYWGhU/lbcXExtmzZgoyMDMeAYUQ1YbyQEowXUuL8eCkqAkaNFPhk7wXo2akC2qRGUv+6Z54Bxo93PO/YMWDSJECnA5YuBSqHcCAv+OoraUK1wYO9P7FaQ7lcX44eBS67LOQCYfJkaQa8V18Fhg9XuzW1++gj6Wf0aOCll9RujbP6/j3asQO4/nogNhZYskQKr7Dx++/A449L5aVuxsAJZZ7GS0VFBXJyctCmTRtERkb6sYUUSGw2G8rKyhRXP1HdlL7Hasp5uMPKJyIiIgIgFThFiHJEaSqg1QC45BJpwXklCGlp0rjSNhuwcaP/2xnK5F5sgTZ+j1ty6VuvXiGTeAKCq/ImUMcHa4hu3aTudyUlUmVXWAnjyiciCn1MPhERERGA87rcRUVVzce+fr3LFPPy+DLB8AU9WJSXA/IQGkHRiy1QB6dqoOrdSgO5f0BRUVVyJpROgVYrDTwOhOH1hbPdEVEIY/KJiIiIAFQbbFwPIDm5amq7ggJgzx6ndeUvu+vWBfYX9GCyebM0yVXz5lJlWUCzWKrK3kIp8wGgb19ArweOH5e63wUqOSfcti3QpInarfGusB1XjsknIgphTD4RERERACn5lGDNg05OPun1VSUI530L7NtX6iFy/Dhw5Ij/2xqKqo/dHfATx23fLpVqJSUBHTuq3Rqvio4G+vSR7gdy8iNEC88AVFVW7t4t5b7Dhtztzs0U9kREwS5wh0IPYTExMcjMzIRB/gNDVAvGCynBeCElzo+XvDwg3ppfVfkESN9sly0DFi4ErFbpsUaNEH3FFejdW4eNG4G33wY6dJAW9ekDDBjg/9eitsOHgT/+cOmdqMjy5dKt15IJy5cDe/d6aWNAjN2OwTYbdLt3S6NCA1KWQBt6/8scNEgq7Jo/37Pkx4ABVQmrhlqyRJr1sC6VM3wHbPKpIX+PmjQB2rUDDh6UBn5v0UJ6fNAgoGdPLzc0kFTOehWOlU/8/EJKaLVaxMTEQBPw/6mh6ph8UoFWq3VMqUhUF8YLKcF4ISXOjxenMZ9SUqQH5W+2R44AH39c9eTYWAwePA4bN0o5DjlxYjRKSZjYWH+8gsDxzDNA5ezTDaLXSxNdNdjx48CDD3q1T6QWbkrmQ2mk62rk2QYPHPAsEfTtt8Cff1b1mqqvQ4eAhx/2fP3ISO8lvbytoX+PhgyRkk+LFlU9NneudJxDdnKrMB5wnJ9fSAmNRsPEUxBi8kkF5eXlyM7ORtu2bREVFaV2cyjAMV5ICcYLKXF+vOTlAV1tedBHoKryqXlzYPbsqkqX/fuBbduAVatwxRPjUFwMFBdLi5YulRJYGzdWjVUeDgoKqg7P5Zc37IvxgAFeStytXi0lntLSvJYgslgsyM/PR1JSklSdkJwMXHSRV7YdaNq3Bx57TAr3uvz+uzT49/btDU8crl4t3bZsWdXjtTZDhlQVywSahv49mjZN6n5aVib9vmiRdJx37pQmWAxJcvYyDLvd8fMLKWG322EymRAREQFtCFbfhiomn1RgtVpx9uxZtAz40UQpEDBeSAnGCylxfrzIYz7pdZDG8pGNGyf9ANI37BtvBNatQ3SkHbfdVvWhT6cDvv9eGosmnJJP69dLeZ4OHaSERUCQBwS67DLg+uu9ssmK4mLs2bIFGRkZMMTFeWWbgezyyz1br7wc+PVX6ZA3NPkkj/t15ZXAddc1bFtqa+jfo8RE4M47q34vLJSqKtesCeHkUxhXPvHzCykhhIDVaoWxoeWm5FdMExIREREA4OxZIOH8MZ/O1727VJpTVAT8/bfTomCZot7bAm7gZ4sF2LRJuh8wjQpd3pqZraIC2LrVeZtUJSxmwKs+2104XUSJKCww+URERESw26XuYy5jPp1Pp6saUfy8b4EZGdI/7k+cCJ8Z8IQIwORTVpbUVykEZ6ILRAMHSt3D9u8Hzpyp/3a2bJFyDs2aAa1be615IUOeAe/vv0N4Bjw5+SQEYLOp25YAJ5icI/IJX763mHwiIiIiFBQAwmZHvC0futoqn4CqLIvcR6hSVFTV4MfnLQpZ+/dL3RUjIwOoK5CcDQvRmegCTWIi0KWLdH/duvpvp3oSk+PoumrcWOraKoTU1TUkVZ/pLQy73nlCHt/HxuQckU/I7y1fjKXFTyQqiIiIQJs2bTijA3mE8UJKMF5IierxcvYsEG0vRoTWCg0ANGpU8xPl5NPOnVL3OzeLQrprTDVysqFfv4bPdOY1cuZPLhXxEl5fauaNuA+4CroG8kW8hPz1pfpFJMwGHfc0XgwGAwwGA0pKSvzUMgpEGo0GRqORM975QHFxseN95m1MPqnAaDSiZcuWHCCNPMJ4ISUYL6RE9XjJywMSrXlSl7v4+NozKXK/ILtdmtquGvnL4ebN4fGPeznP46UJ5RouPx/Yt0+67+XkE68vNZPjft066W2h1IkTwKFDUqFaQwctDxS+iBc5pEN2XDmdrqpaMRwuoNV4Gi8ajQZxcXEoLCxEeXm5n1pHgUar1XKmOx8oLy9HUVER4uLifJLY42x3KrBarSgoKEBiYiL0ep4Cqh3jhZRgvJAS1eMlP18vzXRXV5c72eDB0rfltWuB0aMdD7drJ3WPOXNGGjzZk+nig1VZGbBtm3Tfy3me+pNLsTp3dp6x0At4falZjx7O4/B366bs+XIlT48eQKhMJOiLeOndW+rimpcndXkNySHNjEZp9Pkwq3xSEi8pKSkoLy/HkSNHEB8fj7i4OOh0OlbBhBF5tju9Xs/z3kBCCNhsNhQXF6OoqAgRERFIqWnczwbiJwcVlJeXY9euXcjIyEBcqHzCIJ9hvJASjBdSonq85OXFIcGaV/d4T7LMTODbb6XSHyEcg9RoNFIVyIIF0qJQTj5t2gRYrUBaGpCernZrKvmwFIvXl5rJ4/AvXSqdgvomnwKmgs4LfBEvRqPUxXXVKumYhXTyKcwqn5TEi06nQ3p6Os6ePYvi4mIUhOwI9FQTu90Os9kMo9HI6icvMRgMSExMREpKCnQ6nU/2weQTERER4exZKKt8ysiQviSdPg3k5ABt2zoWZWZKyae1a4F77/Vdm9UmFxkFzADRdntVowKmFCt8ZGZKyae1a4GbbvL8eVYrsGGDdD9UxnvypUGDqpJP06er3RofkMdZCbPkk1I6nQ5NmzZFkyZNYLFYYK9Pf1cKWqWlpdi1axe6deuGmJgYtZsT9LRaLQwGg8+ryJh8IiIiImnMJ5uC5FNkpJSAWrcOeP31quRT374YOHAYtFogOxt45RWpKuR8ffsCw4Z59SXU6Y8/gF27vLe9JUukW1WrVfbtA377TZqWvbRUmrYwOhro2VPFRoWn6uPwv/aa5wnJoiLp1CUmSr0lqXbycd62rebjPHRo8I2dVVYG/PILcIXGCCPA5JOH5IGnKbxYLBYIIWA0GhEZGal2c8hDTD4RERERzp0DWlnzoI+AZ8knABgyREo+rV1b1W9o3jwkLF+O7t2NyMoCvv/e/VPnzpWSQfHxXml+nY4fBx57zPvblbsBqeaZZ4C9e50fy8wEOCaT3zVvLuVgs7OlHqlKDRpUNdY01Sw9XfrJza35OP/yC7B4cXC9DT7+GPj6a2CAxYB2BjD5REQhJ4guyaFDq9UiOjqa/VPJI4wXUoLxQkpUj5fycmm2O60WniefLr9c+oJUVCT9PneuNFbJsWN48sk2WLRIKsg536JFUm+9jRudxir3KXkopJYtgZEjvbfdfv2kQiNVnD1blXiaNk0qATEYgEmTfLI7Xl/q9txzwJ9/Kp/xzmgEJk/2TZvU4qt40WiAF16Quji6O87z50uXpKwsqTgzWKxaJd2WWo2AAWE34DivL6QE4yU4MfmkgpiYGPQPtlpgUg3jhZRgvJAS1eOlokIa80mjJPkUEeE86Mq6dVIyJDcXbYa1wW23uX+axSJVLJw3UZ5PyYVZEyYAN9zgn336nDy+U5cuwF13+Xx3vL7UrWPHEB0Eux58GS9dukg/7pw6JfVEXbcueJJPp05JQ+cBQIWtsgtZmFU+8fpCSjBeghNThURERORIPimqfDqfPOXb0aO1riaP2SJPlOdrFotUZQWE1mxijowaR6kmcpDf43K1YzCQ38oAUC4nn8Ks8omIQh+TTyooKSnBqlWrUFJSonZTKAgwXkgJxgspUT1eTOV2xNkKoNUASEmp3wZbtJBu60g+nT9Rnq/t2CEN5tuoUQhVpVSf2c5PySdeX0gJteJFnuhxzx4gP9+vu6636omy8jCtfOL1hZRgvAQnJp9UIISAzWaD8Me/eynoMV5ICcYLKVE9Xgwl56CBHRq9Vpp2qz7kyqfc3FpXi4iQZrsDnP/j7yvyF7vMzBAa0HnPHqCwEIiJAXr08MsueX0hJdSKl6QkoFMn6b6cnw1kNhuwYUPV72UWg3QnzJJPvL6QEoyX4BQqH8GIiIioAYzFeQAATWJi/TM0Hna7A6qKdfyRfArJ3mnyixowILim9CLyA/m9HgzJp127gJISaa4AQBpwXABhl3wiotDH5BMREVGYs1qBONNZAICmcT273AFV3e6OH5c2Wgu5a8yWLYDJVP9d1iU/v2pCOHmfIUEu5wqpjBqRd1RPPimdedDf5LfykCHSrQUGqc1MPhFRiGHyiYiIKMyZTNJg4wCgbVzPwcYBaawoo1HqR3LyZK2rtmkDNG0qfb/avLn+u6yLXPnQqZPUHScklJRIA1kBIZZRI/KOnj2B6Ggp+bxvn9qtqZ1cxDhsGBAZCVg1Rths4IDjRBRymHxSQXR0NDIyMhAdHa12UygIMF5ICcYLKSHHi1YbjXhbPjRoYPJJq/V40HGNxj9dY0Kyy92GDVI5R6tWQGqq33bL6wspoWa8GAxAv37SfX907a2vwkJg927pfmYmEB8PWOTkU5hVPvH6QkowXoITk08q0Ol0iIuLg06nU7spFAQYL6QE44WUkOPFYtEh0ZoHjRbQJDewPEhOPtUx6Djg+ynR7faqL57yvkKCSi+K1xdSQu14kd8egZx8Wr8eEAJo1w5o0gRISKiWfAqzyie144WCC+MlOHGEShVUVFQgNzcX6enpiIyMVLs5FOAYL6QE44WUkOPFbG6JBOtZaDWQus41hIcz3gFA//5SsdShQ8Ds2YC3P0OWlQEFBVL3Gz9NCOcbxcXA559LtwCwbJl06+dyLl5fSAm140V+e2zfDjz3nFRtGWh27pRu5URZfDxg0YZn5ZPa8ULBhfESnJh8UoHFYsHx48fRrFkzvlmoTowXUoLxQkrI8RIZmYp46zlotAAaNWrYRhXMeBcXB/TuLQ06vmBBw3Zbm8zMqpmkgtIPPwBffeX8WFQUkJHh12bw+kJKqB0vaWlA69ZScvvnn/2+e0WGDpVuExIAq8YQlsknteOFggvjJTgx+URERBTmKiqASHsZtFoAMTEN25iC5BMAPPUU8OefvpuRymAALr7YN9v2m9WrpdsxY6T+OYCUeOIHbqJavfQS8NdfUte2QNW8eVUeOT5eGnDcHobJJyIKfUw+ERERhTmTSYMIUS51u2vo4J3VBxy326V+dXWsfv31DdtlSCsqquqbc9ddQLNm6raHKIi0a1eVrw0G8fFAnsYAmxVMPhFRyOGA40RERGFOrnzSaNHw5FOzZtLgTWYzcOaMV9oX1jZulJJ4bdow8UQU4pxmuwuzAceJKPQx+aQCo9GItLQ0GI1GtZtCQYDxQkowXkgJOV6sVkNVt7uoqIZtVKeTBlsBPO56R7WQp+ry8+Di7vD6QkowXpRzSj6FWeUT44WUYLwEJyafVBAREYH27dsjIiJC7aZQEGC8kBKMF1JCjhebzYAIu5e63QFVXe88mPGOaiEEsGaNdD8Akk+8vpASjBflEhIqk092hF3lE+OFlGC8BCcmn1Rgs9lQWFgIm82mdlMoCDBeSAnGCykhx0t5sRl6YZG63TW08glg8slbcnKA06cBo9HvM9u5w+sLKcF4US4+HrBow7PyifFCSjBeghOTTyooKyvDtm3bUFZWpnZTKAgwXkgJxgsp4YiXvEIA8E63O6BqxjsmnxpG7nKXkQEEwH93eX0hJRgvyiUkAFaNISyTT4wXUoLxEpyYfCIiIgpz1uJy6Y5ODxgMDd9g9RnvqP7k5NPgweq2g4j8Ii4OsFaO+STCLPlERKGPySciIqIwZy+Rkk/2SC+M9wRUVT4dPSqNW0TKmUzAli3S/cxMddtCRH4hVz4JAdjLmXwiotDC5BMREVGYq0o+eaHLHQCkpgIaDVBWBpw7551thpvNm6VuN02aAG3aqN0aIvKDqCjAppNm77KWh9eA40QU+ph8UoFGo4HBYIBGo1G7KRQEGC+kBOOFlJDjRZRXAACEtyqfjEagaVPpPrve1c+6ddLt4MFSIi8A8PpCSjBelNNogMj4yuRTWXhVPjFeSAnGS3Bi8kkFsbGxGDx4MGJjY9VuCgUBxgspwXghJeR40Zsq/8Me7aXKJwBo1Uq63bPHe9sMJ/J4T4MGqduOanh9ISUYL/UjJ59sFeFV+cR4ISUYL8GJySciIqJwV1454Hi0lyqfAKBvX+lWruAhz508CeTkSNMP9u+vdmuIyI+qkk/hVflERKGPyScVlJaWYv369SgtLVW7KRQEGC+kBOOFlJDjxVZcBADQeDP5JM/QtmkTYAmv/+A3mFz11L07EB+vbluq4fWFlGC81E90gjTjqAiz5BPjhZRgvAQnJp9UYLfbUVFRAbvdrnZTKAgwXkgJxgspIceLprwMAKCN8WK3u44dgUaNpEHHs7K8t91wEIBd7gBeX0gZxkv9RCVIlU92kzmsZgtlvJASjJfgxOQTERFRmNOapAHHtbFerHzSaquSJ3IyhepmswEbNkj3Ayz5RES+F9tIqnyy2wBYreo2hojIi0Iq+XTw4EFMmzYNffr0weDBg5GRkYGPP/5Y8XY+/fRT9OnTB1FRUUhLS8OVV16Jffv2+aDFRERE6tNUSGM+6WK9WPkEAJmZ0i2TT57buRMoKZG623XtqnZriMjPYhpVjvlkA7ssE1FICZnk07Zt25CRkQEhBDZs2IA1a9bg7bffxr333ouZM2d6vJ0HHngA//znP3HkyBEkJCTg+PHj+M9//oO+fftiD2fsISKiEKQz+Tj5tHcvkJ/v3W2HqjVrpNvMTKl6jIjCSmxSteSTObzGfSKi0BYSn2oKCwsxceJE6PV6vPfeezAYpHLVIUOG4MEHH8THH3+ML774os7t/Prrr1i4cCFWrVqFvLw8nDx5Etu2bUN6ejpKSkrw+uuve6W9UVFR6NGjB6KivPwhn0IS44WUYLyQEnK86C1Stzt9vBe73QFAUhLQubN0n7PeeSZAx3sCeH0hZRgv9ROfqIUdOtjsCKvkE+OFlGC8BKeQSD598MEHyM3NxZVXXom4uDinZTfccAMA4IknnoCljtLV7777DitXrsSQIUMcj/Xq1QtPPvkkAODIkSNeaa9er0dSUhL0er1XtkehjfFCSjBeSAm9Xo+EhCQYrVLlkyHeBx/i5CSKXNFDNSsoAP7+W7ovV40FEF5fSAnGS/3ExwMWrTHsut0xXkgJxktwConk0yeffAIAGDFihMuy9PR0tG3bFseOHcPixYtr3IbNZsMTTzyBlJQUl2VpaWkAgK5eGnvBZDLh0KFDMJlMXtkehTbGCynBeCElTCYT9u07jAi7NNudIcHLlU9AVfJp3TqAs9LUbv16aXar9u2Bxo3Vbo0LXl9ICcZL/cTHA1aNIey63TFeSAnGS3AK+uTTmTNncODAAQA1J4e6d+8OAPjjjz9q3I5Op0OXLl3cLtu8eTOSk5Nx9913N7C1ErPZjMOHD8McRn9QqP4YL6QE44WUMJvNOHDgqCP55PVudwDQsycQHS1V9ezd6/3thxK5y93gweq2owa8vpASjJf6iY8HLBpj2CWfGC+kBOMlOAV9ndquXbsc9+UKpfOlpqYCAHbu3Kl4+/v378d///tf/Pnnn2jZsmWt65pMJqfsa1FREQCguLgYGo3GaT0AsNvtKC4udtmO3HWwrKwMNpvNaVlkZCQMBgPMZrNLplen0yE6OhpCCJSUlLhsNyYmBlqtFuXl5bCeN3VrREQEjEYjLBYLKioqnJZptVrExMQ4Xsv5oqOjodPpUFFR4dK10Wg0IiIiAlarFeXl5U7LNBoNYmNjAQAlJSUQQjgtj4qKgl6vh8lkcrmwGAwGREZGwmazoayszKVN8jEsLS2F/bz/tNd2DPV6PaKiomC321FaWuqy3djYWGg0GrfnprZjKJ8bwP0xrO3cyMfUZrO5PLf6uXF3DOVzo/QYVj837o6hfG68fQzlc1PbMWxIfLuLQ0+PYW3x3ZBj6O7c1HUMa7tGyK/dYrG4xAuvEVVC6RpR2zGsK75tNhtMJi1ibGXQaATKhB32yv178xoR0asXdKtXw7xsGdC6Na8R8jE0m4E33oDl3DkIIaDdtg0aux0VPXogwmr1yTWiIZ8j5Nfu7j/NvEZIQu0a0ZDPEbLz9wnwc4TM3TVCqwUsMMBuA6xlZujh388Ran3XkLl7P/IaIQm1a0RDvmvI3J2bUL9GyNT6rnF+fLuLt5oEffIpv9rsOeeP9ySLj48HAJw+fdrj7ZpMJnzxxRd45JFHYDAYsHr1avTp06fW57z44ot45plnXB7fvn27I+AAoFGjRgCkjO3u3btd1h8+fDgAYM+ePS4ns3PnzmjatKlTxVf17fbs2RM2mw1btmxx2e6gQYNgNBpx8OBB5OXlOS1r27Yt0tPTUVBQ4NKm2NhY9O3bFwCwdetWlzdMv379EBMTg8OHD+PkyZNOy+RujyUlJdi+fbvTMqPRiEGV3TF27Njh8qbo1asXEhMTcezYMeTm5jota9asGTp16oSKigqX16rRaDBs2DAA0jE8/+LRtWtXNG7cGKdOnUJ2drbTsuTkZHTv3h1Wq9XtMRwyZAj0ej0OHDiAc+fOOS1r37490tLSkJ+f7zIzYlxcHDIyMgDA7XYHDBiAqKgoHDp0yCVOmzVrBkC6qJx/ziMjIzFw4EAAQFZWlssFq3fv3khISEBubi6OHTvmtCw1NRUdOnRAWVmZS5t0Oh2GDh0KANi9e7fLxa5bt25ISUnByZMnkZOT47QsJSUF3bp1g8VicftaL7jgAmg0Guzbtw+FhYVOyzp27IjmzZvj7Nmz2Ldvn9OyhIQE9O7dG0IIt9vNzMxEREQEsrOzcfbsWadlbdq0QcuWLVFQUOCUsAakC37//v0BSLNmnn+BzcjIQFxcHHJzc3H8+HGnZWlpaWjfvj1KSkqwbds2p2UGgwGDK6sXdu7c6fIHrkePHkhKSsKJEydw+PBhp2VNmjRBly5dYDKZ3L7W2q4RrVq1AgAUFBS4vG94jZCE2jWiVatWaN26NYqKirBjxw6nZXVdIzp27AizWYtGtlIIYcffhw+jtHLSDm9eI1IaN0bL0lKU/O9/yB8+nNcIVF4jtm8H/vc/mEpLISo/NFpjYrDDZkP3oiKfXCMa8jmiR48eAICjR4+6nBteIyShdo1oyOeIXr16AQBycnJc/gbyc4TE3TXCbgfMdq30pbDAggT493OEWt81OnbsCADYu3cvrxFhco1oyHcNuSjE3Wz0oX6NkKn1XeP8a4S75FVNNOL8d3eQmTNnDqZOnQpAqiSq/p8W2VNPPYVnn30W7dq1c7mIurNv3z7MmjULu3fvxu7dux2ZzTvuuANvv/12jc9zV/mUnp6Oo0ePOhJg8nq7du1C7969nTL9skD8bwT/YylRq/Jpx44d6NWrF3Q6ndOyQP1vRDj/x1KmZuVTVlYWevTo4Zj5U8ZrRJVQukY0tPLp55/3o+OdjyNFm4fUZR9DdOgAwLvXCM2JE4i65hpAq4V50SJENW7Ma4RGg9jbbgN274Z50iTYKo+7rWtXiDZtArKqQQiBrVu3olu3boiIiHB7DHmNCK1rREM+R8hf4Lp06eIyIxU/R0hqukasb3cTUksOoNE376D55MywqHyy2+3YsmULOnfu7Ih1JceQ14jgu0Y05LuGnLxzFy/hcI0AAqfyqaioCC1atEBhYaFTzsOdoE8+/ec//8GVV14JQErqGI1Gl3UeffRR/Otf/0KPHj2QlZWlaPvHjh3Do48+iq+//hoajQa7d+9GZ3na6DoUFRUhISHB5USUl5fj0KFDaF3Z9YCoNowXUoLxQkqUl5dj4cKTaDtjOhKMZWiX9TPQooVvdnb55cCRI8DLLwMjR/pmH8Hk3DlgzBhpgPHffgPcTHgSaHh9ISUYL/W3NH06muXvQsQ7r6Hd9cPUbo5fMF5ICcZL4Kgp5+FO0A84LndJAuA2Q1n98aZNmyreflpaGr766iuMGjUKQggsXbq0fg2tJioqyu1/gYjcYbyQEowXUiIqKgrNm7VGhCiHVgNpYHBfkWe9kwfVDnfyzHYdOwZF4gng9YWUYbzUnyZS+md6WaGljjVDB+OFlGC8BKegTz516dLF0dXuxIkTbteRH+/WrVu99zNt2jQA0jgqDWW321FeXu5SGkfkDuOFlGC8kBJ2ux1FZ4qggYBGCyAy0nc7k5NP69ZJSZdwJyfhMjPVbYcCvL6QEoyX+tNFSN3mywvDZyYvxgspwXgJTkGffEpKSkLPnj0BwO3g3UDVjHgjG1Dm37hxYwA1z6inRGlpKTZs2KBocC4KX4wXUoLxQkqUlpZiz5YdgJBmWPJp8qlvX8BgAI4fl7rfhTO7vSr5VDlYaDDg9YWUYLzUny5KqnyqKAqf5BPjhZRgvASnoE8+AcA111wDAFi5cqXLslOnTmHfvn1ISkrCmDFj6r2Pffv2wWAwYOzYsfXeBhERUaARZdKXG5shqjID5SNRUYA8a2y4d707cADIz5eOSeWMYEREMl20lHwyFYdP8omIQl9IJJ9mzpyJxo0bY+7cuS6jwH/++eew2+24//77HX1CFy9ejO7du+PVV191WnfLli0u0xAC0kDm77zzDh5++GGnMaaIiIiCXpk0i4wtwg/jJshd79as8f2+Apn8+vv1k6rBiIiqMURJ14WK4vAZ84mIQl9IJJ+SkpLw9ddfo7i4GHfccYdjisKNGzfixRdfxLhx4/Dwww871n/jjTewa9cuPP30047HcnNz0bdvX7Rr1w4zZ87EgQMHAACHDh3CVVddhcsuuwyzZ8/26+siIiLyuXLpb6YtwoeDjcvk5NPmzYA5jP+jL1d+yceDiKgafWXlk7kkjK+TRBRyQiL5BABjx47FunXrUFpaiszMTFxwwQW4+eabMXv2bCxYsAA6nc6x7pQpUxAXF4fp06c7HktLS8Ptt9+OlJQUfP755xg4cCCGDBmCt99+Gy+99BJeeeUVx8DmREREIaOy8klE+iH51K4d0LgxYDIB27b5fn+BqKys6rUz+UREbhhipeSTpZTJJyIKHRohOOWMrxQVFSEhIQGFhYWIj49XuzlEREQu5t68FD3mPARNr17osuZT3+9w9mxgwQLg//4PuOce3+8v0KxYAdx3H5CWBvzyi9qtIaIAdPC2V2H68jts6n49pq2/Xe3mEBHVSEnOQ++nNhEREVEAspeWAwBElB8qnwAgM1NKPq1dGx7JJyGAt94C5Bl5T5yQboNoljsi8q+IWANMAKxlrHwiotARMt3ugklZWRm2bNniMjg6kTuMF1KC8UJKlJWVoeD4cUBAmnnNHwYMkG4PHpS6oIW6ffuAr7+WxrnavBk4flx6fMQIVZtVH7y+kBKMl/qLaSR1uysrsqCiQuXG+AnjhZRgvAQnVj6pwGazobi4GDabTe2mUBBgvJASjBdSwmazwV5aAgDQxPip8ikxUfopKACOHgU6dvTPftUiz2zXqxdwzTXS/eRkICNDvTbVE68vpATjpf4SmxhxVg/orCZs2RIehZKMF1KC8RKcmHwiIiIKY9oKacBxbYyfKp8AoEWL8Ek+yTPbXXwxcNFF6raFiIKCxmhAbCygFxasXRseySciCn3sdkdERBTGdGYp+aTxZ/IpPV26PXrUf/tUQ2kpsH27dJ/fHonIU0YjYmIBg93syF8TEQU7Jp+IiIjCmM4iJZ90sX7qdgdUJZ9yc/23TzVs2gTYbNLrTUtTuzVEFCyMRsTEAEaYcehQ1TwFRETBjMknFURGRqJz586IjIxUuykUBBgvpATjhZSIjIxEDOyABtDF+TH51KKFdBvqySe5ZGHQIHXb4SW8vpASjJcGMBqh0wJNkiwAEBbVT4wXUoLxEpyYfFKBwWBA06ZNYTAY1G4KBQHGCynBeCElDAYDImzSVN76OD+P+QSEdrc7IaoGGw+R5BOvL6QE46UBKo9ZWmPp+rxunZqN8Q/GCynBeAlOTD6pwGw249ixYzCbzWo3hYIA44WUYLyQEmazGSiXZrvTx6vQ7e7UKSBUYzU3Fzh+HNDrgb591W6NV/D6QkowXhrAaAQANKusfFq/HrBa1WyQ7zFeSAnGS3Bi8kkFJpMJBw4cgMlkUrspFAQYL6QE44WUMJlM0FYUAwIwxPux8ikxEYiOlqqDjh3z3379SS5V6NNHeq0hgNcXUoLx0gCVyafEKBPi46W5C3buVLlNPsZ4ISUYL8GJySciIqIwZbcDRpv0wc2Y6McEiUYT+jPehViXOyLyo8quRBqrBZmZ0kPhMO4TEYU2Jp+IiIjCVEUFECnKAPg5+QSE9ox3ZrM00x0AxzdHIiJPVVY+wWx25K+ZfCKiYKdXuwFERESkjooKIMpeDgAwJvix2x0Q2oOOb9smHdzkZKBDB7VbQ0TBRk4+nTyJi76eBm0OcPpYCxSceQaJjTnAMhEFJ1Y+qUCn06FRo0bQ6XRqN4WCAOOFlGC8kBJWqx6RqIBGC2ii/Zx8CuXKJ3m8p0GDpC6GIYLXF1KC8dIATZsCOh1gtSIyezc62nZjYNEfOLl0t9ot8xnGCynBeAlOrHxSQXR0NHr27Kl2MyhIMF5ICcYLKaGxGWDU2KDVwv+DYofymE9y/5gQG++J1xdSgvHSAElJwLx5juR88ZUvINJyCsISulPeMV5ICcZLcGLySQVCCNhsNuh0OmhC6D+i5BuMF1KC8UJKmAqk8Z60WgBRKnW7O35cmkNcHyIfSc6cAfbvlyqeBg5UuzVexesLKcF4aaCWLaUfACZ9DCIB2C02ddvkQ4wXUoLxEpzY7U4FJSUlWL16NUpKStRuCgUBxgspwXghJQpP5sFus8Ou1TlmV/KblBRpXBObDTh50r/79iW5y12XLkBioqpN8TZeX0gJxov3CK3UtUjYhcot8R3GCynBeAlOTD4RERGFKUthhXRr8HOXO0AqtwrFQcflLneDB6vbDiIKHZWVHcIaupVPRBT6mHwiIiIKU9YiqdudzRCpTgPk5FOoDDputzsPNk5E5AX2MKh8IqLQx+QTERFRmLKWSJVPVqMKlU9A6M149/ffQFEREBsLdO+udmuIKFRopK9srHwiomDG5BMREVGYspeUAwBsEX4ebFwWajPerVkj3Q4YIE2TTkTkBUJbmXxi5RMRBbEQmVomuMTExGDQoEHQh8rMPuRTjBdSgvFCSuhMVmh1WiAqRp0GhNqYT/J4TyHa5Y7XF1KC8eJFYVD5xHghJRgvwYlnSwVarRZGo1HtZlCQYLyQEowXUkKUSt3uRJTK3e6OHpXGS9IGcUF2URGwc6d0P0STT7y+kBKMF+8Jh8onxgspwXgJTkH8KS94lZeXY+fOnSgvL1e7KRQEGC+kBOOFlLAUFsFut8Ou1ge4Zs2k7mlmM3DmjDpt8JaNG6UEWps20usKQby+kBKMFy8Kg8onxgspwXgJTkw+qcBqtSIvLw9Wq1XtplAQYLyQEowXUsJeWgYIwB6p0phPOh2QmirdD/ZBx0O8yx3A6wspw3jxojCofGK8kBKMl+DE5BMREVG4Kpe63SFapeQTALRtK93u2qVeGxpKiKrBxkM4+URE6nB0uwvhyiciCn1MPhEREYUpTXmZdCcqUr1GDBwo3cqVQ8EoJwc4fRowGoGMDLVbQ0ShRk4+2ewqN4SIqP6YfCIiIgpTmgqp8kkTo9KA40BVpdC2bUBZmXrtaIh166TbjAwgIkLdthBR6NEw+UREwY/JJxVERESgbdu2iOAHVPIA44WUYLyQEjpTOTRaDQzxMeo1Ij0dSEsDrFZg0yb12tEQcpe7wYPVbYeP8fpCSjBevEieCdQeusknxgspwXgJTkw+qcBoNCI9PZ3TQ5JHGC+kBOOFlNBZTNBoNDAmxqvbELn6Sa4gCiYmE7Bli3Q/M1PdtvgYry+kBOPFe0QYdLtjvJASjJfgxOSTCiwWC86cOQOLxaJ2UygIMF5ICcYLKaGtKIUQApoYlf9zKFcMBeO4T1u2AGYz0LQp0KaN2q3xKV5fSAnGixdpdQBCO/nEeCElGC/BicknFVRUVGD37t2oqBxrg6g2jBdSgvFCSuhMpRB2AXuETt2G9OsH6HRAbi5w9Ki6bVFKTpgNGgRoNOq2xcd4fSElGC9eVHltESHc7Y7xQkowXoITk09ERERhSm+WPrTp46PUbUh0NNCrl3Q/2KqfqiefiIh8QVf5D4IQrnwiotDH5BMREVGYMlil2eUM8ZEqtwTB2fXu5EkgJ0caDHjAALVbQ0ShSq58YvKJiIIYk09ERERhymAtBwAYE1SufAKqKoc2bQKCZQwHOVHWvTsQF6duW4godMmVTyHc7Y6IQh+TTyrQarWIjY2FVsvDT3VjvJASjBfylN0mYLRVABogolG02s0BOnQAkpKAsjIgK0vt1ngmzLrc8fpCSjBevCgMKp8YL6QE4yU46dVuQDiKiYlB37591W4GBQnGCynBeCFPVRSaoIGARqtFo9QUtZsjdV3LzAT+9z9gzRogEOM4Oxt45BGgpET6/exZ6VbuMhjieH0hJRgvXhQGlU+MF1KC8RKcmCokIiIKQ6ZzZZX3NIhICIAxn4CqCqJAHffpp5+kBNTp09KP3Q60aAF06aJ2y4golIVB5RMRhT4mn1RQXFyMFStWoLi4WO2mUBBgvJASjBfyVNnpEkAAZRojSstL1W6OJDNT+pK1bx+Ql6d2a1zJSbH77we++Ub6+fZbqWorDPD6QkowXrwoDCqfGC+kBOMlOIXHp6UAJIRQuwkURBgvpATjhTxRfkbqOmbWB8B4T7JGjYDOnaX769ap25bzHT8OHD4sJZomTAA6dZJ+ogPo+PkBry+kBOPFSyoT3KFe+cR4ISUYL8GHySciIqIwZD4nVTuZjQGWPAnUrndyMqxHD85sR0T+JVdXhnDlExGFPiafiIiIwlBV8ilK5ZacR04+rVsXWF+05GRYmAwuTkQBRK58CqRrIhGRQkw+ERERhSFzvtTtzhoRYMmnHj2krmwFBcCePWq3RmK1Ahs2SPfl5BgRkb/oKr+yhXi3OyIKbUw+qSA6Ohr9+vVDdJiNE0H1w3ghJRgv5ClrYSmgASKTUwIrXvR6YOBA6X6gjPu0YwdQWgokJFSNSRWGeH0hJRgv3qMJg253jBdSgvESnJh8UoFOp0NMTAx08swVRLVgvJASjBfylK1I6nanjU8IvHiRq4vWrFG3HTK5y11mZtjMbOcOry+kBOPFi8Ig+cR4ISUYL8EpfD9BqaiiogJ79+5FRUWF2k2hIMB4ISUYL+Qpe5HU7a5E2AMvXjIzpdusLKCkRN22AFUVWGHe5Y7XF1KC8eJFYTDmE+OFlGC8BCcmn1RgsVhw8uRJWCwWtZtCQYDxQkowXshTorgEEEC5ThN48ZKaCrRqJf2XXx5rSS3nzgF//y3dl5NiYYrXF1KC8eJF8phPVpu67fAhxgspwXgJTkw+ERERhaNSqdsdYiLVbUdNqs96p6b16wEhgI4dgZQUddtCRGHJMeaTEOo2hIioAfRqN4CIQtPZv89g/5jbIa68EoNfv1rt5hDReTRllcmn2ABOPn3/vTTekhCARuOf/VqtwF13Abt2Sb+bzdJtmFc9EZGK5OSTLXQrn4go9LHyiYh8IueHjUjIz4Z10Z9qN4WI3NCWVY6lFBOhbkNqkpEBGI3AiRPA4cP+229WltTVr7RU+rFYpC9+Y8f6rw1ERNVodKx8IqLgx8onFRiNRqSnp8NoNKrdFAoCwRovlrwiAIDGzv/S+VOwxgv5n66iFNAAKa2aBWa8REUBvXtLiaC1a4HWrf2zX3lmu5EjpQooAEhIAOLj/bP/AMbrCynBePGiMKh8YryQEoyX4MTKJxVERESgbdu2iIgI0P82U0AJ1nix5lcmn0L4g1IgCtZ4If/TmaRud2kd2wRuvAweLN3KCSF/kPc1YgSQni79MPEEgNcXUobx4j3hUPnEeCElGC/BicknFVitVhQUFMBqtardFAoCwRov9nOFAFj55G/BGi/kf0aT1O3OFiUCN17kQcc3b64ae8mX8vOBPXuk+xzjyQWvL6QE48WLwqDyifFCSjBeghOTTyooLy/H9u3bUV5ernZTKAgEbbwUF0u3wq5uO8JM0MYL+ZWwCxgtJYAAck7nBm68tG0LNGkCmEzA1q2+3588s17HjkBysu/3F2R4fSElGC/eEw6VT4wXUoLxEpyYfCIin9AUSZVPWhv/I0EUaExFJmgqE8OGRgE8XoJGU1WBtGaN7/cnJ5/kiisiokAQBpVPRBT6mHwiIp/QlnLAcaJAVXZGGu9JaDQwxBtUbk0d5ESQr8d9sturkk/yWFNERAFAow/9yiciCn1MPhGRTxhKpcondrsjCjxlp6Xxnsz6aGi0GpVbU4eBA6X/+mdnA6dP+24/+/dLYz5FRwM9e/puP0RESrHyiYhCAJNPKtBoNDAajdBoAvwDPwWEYI0XYwUrn9QQrPFC/lWRJ1U+mY0xgR8v8fFAt27SfV9WP8nd+vr1AwwBXg2mEl5fSAnGi/do5TGf7KH7Dz3GCynBeAlOerUbEI5iY2MxiONJkIeCMV6EXSDCLCWftEw++VUwxgv5nymvBBoA9sggiZdBg4AdO6Tk06RJvtmHnNgKhuOhEl5fSAnGixfJlU8hXE3OeCElGC/BiZVPROR1ZWfLHIMZs/KJKPCYz0mVT9aoWJVb4iH5A+aGDb7pdlJWBmzf7rwvIqIAodHrpNsQrnwiotDH5JMKSkpKsHbtWpSUlKjdFAoCwRgvxUcLHfc1IfxfukAUjPFC/mc5J8WHNSIqOOKlWzep+11REbBrl3e2+dln0kx6AwYAw4dLSa30dKBFC+9sPwTx+kJKMF68SO5aFMLJJ8YLKcF4CU5MPqlACAGz2QzBGSvIA8EYL2Unixz3tXarii0JP8EYL+R/1kKp8skeFR0c8aLVSkkioGpGuoaw24FvvwWsVum+/PovvbTh2w5hvL6QEowX79EapMqnUE4+MV5ICcZLcPLamE+jRo3y1qYcmjdvjm+++cbr2yUi3yo/VQR5+D+NYLc7okBjK5KSTyI6RuWWKDB4MLB4sTQw+MyZDdvW3r1AQYE0s92PPwI6HaDXAwkJXmkqEZFXyZVPrCYnoiDmteTT8uXLvbUph9atW3t9m0TkexWnChFVeZ/d7ogCj71YSj4hNoiST5mZ0u3u3VL3u/j4+m9LHly8f3+gSZOGt42IyIc45hMRhQKvJZ9iYmLw448/onPnzl7Z3t69e3HnnXd6ZVtE5F/mvCJH8omz3REFHlEsjZGgjQui5FOTJkDbtkB2NrB+PXDRRfXfFme2I6IgotGG/phPRBT6vJZ86tOnD8aOHeutzaFVq1ZITU312vYCSVRUFHr16oWoqKi6V6awF4zxYj1bfcBxJp/8KRjjhVRQOUCnITEePYIpXgYPlpJPa9fWP/lUWgpkZUn3mXxShNcXUoLx4j1y5VMod7tjvJASjJfg5LUBx3U6nbc2FfL0ej0SExOh13st90chLBjjxV5Y7LivZfLJr4IxXsj/NGVStztjUnxwxYucLFq7tmqQcKU2bpRmtmvZEkhL817bwgCvL6QE48V75MqnUO52x3ghJRgvwclryacZM2Z4a1M+3WYgMJlMyM7OhslkUrspFASCMV5EQaHT73Zr6H5YCjTBGC/kf9pyKfmkiYsIrnjp0weIiADOnJEqoOpjzRrpVh5DijzG6wspwXjxnnCofGK8kBKMl+DkteTT9OnTG/T8V1991evbDFRmsxm5ubkwm81qN4WCQFDGS1GR0682M6uf/CUo44X8Tlcuj/kUEVzxYjQCfftK9+UkkhJCAOvWSfcHD/Zeu8IEry+kBOPFezQ66SubJoTH0WS8kBKMl+DkteRTQxQVFeHll19WuxlE5CXaUiafiAKZ3lTZ7a5RtMotqYfqXe+Uys0Fjh8HDIaqJBYRUYCTk0/17m5MRBQAfN5JcsGCBfj++++xZ88eFBUVwX5eX2UhBM6cOYPy8nJfN4WI/ERfym53RIHMYJaSTxHJMQCC7O/v4MHAq68CW7cC5eWAksFG5WqpPn2UPY+ISEXhUPlERKHPp8mnZ599Fk8//TSEB1l6jUbjy6YQkR8Zyp0rn6wVVpVaQkTnE3YBo0XqdheZHA2UqtwgpVq2BJo3B06cANavVzZ2E8d7IqIg5Eg+sfKJiIKYT5NPb731Fpo1a4b7778fnTt3RkxMjMs6VqsVmzdvxmOPPebLpgQUg8GAZs2awWAwqN0UCgLBGC+RFc6VT8LGyid/CcZ4If+qKKiApnLQ2rhmCWhWGmTxotFIXe9++gl44IH6bUPuukeK8PpCSjBevEerD/3KJ8YLKcF4CU4+TT6ZzWZ89tlnuPTSS2tdb/To0fj999992ZSAEhkZiU6dOqndDAoSwRYvpiITdHbnwf845pP/BFu8kP+VnZFKnYRGi0apjZCkTVK5RfUwYQKwcCFQn1luevcG2rf3epPCAa8vpATjxXs0ei0EENJjPjFeSAnGS3DyafJp4MCBSE9P92jdJUuW+LIpAcVms6GiogKRkZHQ6XRqN4cCXLDFS/Exqcud0GghoIFW2Jh88qNgixfyv/KzUvLJbIiBXdhRURqE8dKzJ/DXX4DFovy5kZFS9RQpxusLKcF48R6NVko+hXLlE+OFlGC8BCefznZ3//33Y/HixR6tO2rUKF82JaCUlZVh06ZNKCsrU7spFASCLV5KT0jJp4qIBAiN9MfAbgndD0uBJtjihfyv4qw03pPFGBPc8aLXS4OGK/1h4qnegjpeyO8YL94jd7sDQrfyifFCSjBegpNPK5/Gjh2LxYsX4z//+Q/69+/vdh2z2YxNmzZh9erVvmwKEflJ2QlpvCdLRBz0VqkLHpNPRIHDlF8KDQBrhOs4jEREFIC0oT/mExGFPp8mn0pKSpCXl4err77al7shogBiOlMEIwBLTAIiys8BAOxWDjhOFCjM+SWIAGCLjFW7KURE5AGdQQsr4JgsgogoGPk0+TRjxgzMnz8fwoPB8TQsgycKCXLyyR4TD5En/afOZrKq2ygicrAUlCICgD2KlU9EREFBrnxi8omIgphPx3z6/fffceGFF2LTpk0oKSmB3W53+bHZbNi/fz+SkoJwtp0GYLKNlAimeLHmVw44Hl815pOw8cOSPwVTvJD/WQukMZ9EjFT5xHghJRgvpATjxTu0BunzlMYe2p+nGC+kBOMl+Pi08ikqKgrPP/88MjIyalxHo9GgXbt2uO2223zZlIASFxeHYcOGqd0MChLBFi/Wc1LyCfHxsGulD0uc7c5/gi1eyP9sRdJsd4iJYbyQIowXUoLx4j0arfQlO5QrnxgvpATjJTj5tPJpzJgxOHbsmEfr3nTTTb5sChH5iTgnDTiuTYyH0HK2O6JAYy+Wkk+aOI75REQUDByVTyGcfCKi0OfT5NOzzz6LOXPmeLTuhAkTfNmUgFJaWorNmzejtLRU7aZQEAi6eCmSKp/0yQkQGukSw+ST/wRdvJDfiWKp2502LobxQoowXkgJxov3hEPlE+OFlGC8BCefdrtbunQp9Ho9rrzySvTs2bPG9Q4fPowdO3b4sikBxW63O8bAIqpLsMWLtliqfDIkxcGmlS4xwsrkk78EW7yQCio/qOniYxgvpAjjhZRgvHhPOFQ+MV5ICad4EQI4d867O4iLAwwG726TfJt8evfdd7F9+3YIITB//vwa1xNCcMAwohChK5UqnyKaJKBU7nZn5QcJokChKZUqn3TxnO2OiCgYaHWhX/lEVG933w2sWePdbTZuDPznP0B0tHe3G+Z8mny65JJLcOzYMYwcORJRUVFu17FarcjKysLOnTt92RQi8hN9uZR8imwSj5LKqYHtZquaTSKiarTlUuWTMYljPhERBQONPvQrn4jqQ3PmjPcTTwBw5gxw9CjQsaP3tx3GfJp8Gj9+PLp27Yp//OMfta5nt9vRtm1bXzaFiPwkokJKPsWkJuBMZeWTsPHDElGg0FVIlU9MPhERBQdWPhG5p924UbrTrRvw5Zfe2ejEicDx44DJ5J3tkYNPk0+ZmZlIT0+vcz2tVouHHnrIl00JKJGRkejatSsiIyPVbgoFgWCKF5vZBqNF+mIbm8rZ7tQQTPFC6tCbpMqniKQYxgspwnghJRgv3hMOlU+MF1JCjpeI//1PemDQIO9tPCJCujWbvbdNAuDj2e60Wq1HyScAeP/9933ZlIBiMBjQuHFjGDiIGXkgmOKl5ESx435s8zhArnzigON+E0zxQuowmKXkU2RKLOOFFGG8kBKMF+/R6qWvbBqEbvKJ8UJKGAwGNE5Ohk6ufBo82HsbNxqlW1Y+eZ1PK58AwGw2Y/ny5dizZw+KiopcZjAQQmD//v3YvXu3r5sSMMxmM06dOoWmTZvCKAc3UQ2CKV5Kjktd7syGWOiMOgh5zCdWPvlNMMUL+Z+wCxgtUvIpKiWG8UKKMF5ICcaL9ziSTyFc+cR4ISXMZjPyV6xAk8JCaOPipG533sLKJ5/xafJp3bp1uOKKK3Dy5Mla1wu32e5MJhOys7ORmJjIiyvVKZjipfR4IQDAFBkPABA66RLDyif/CaZ4If8rzy93fHmJbhzDeCFFGC+kBOPFe+TkEyDNIFz991DBeCElTCYTin77DY2FAAYMAHQ6721cjj8mn7zOp8mnm266CSdOnED37t3RuXNnxMS4TutstVqxY8cO7Nixw5dNISI/qDhdBD0Aa5SUfAIHHCcKKGVnpKonodEiMjESJaUlKreIiIjqotFVJZuEXajYEqLAESf3nPJmlzuA3e58yKfJpwMHDuCZZ57Bk08+Wet6FosFLVu29GVTiMgPTGek5JMtprLySe52Z7aq2CoiklXkScknsyEWGm34VBwTEQWz6pVONrMNOqMXqzyIglFREWJycoCoKO8ONg6w250P+bRms02bNrj00kvrXM9gMODXX3/1ZVOIyA8sedKYT/a4BOkBVj4RBRQ5+WQxulYiExFRYKqefGLlExGg27wZGrsd9latgKZNvbtxVj75jE+TT//3f/+HI0eOeLTu6tWrfdmUgKLX65GcnAy93ufjvVMICKZ4seZJYz4hvrLbnY6z3flbMMUL+V/FWambnTVCSj4xXkgJxgspwXjxnvMrn0IR44WUMGzaJMVKZqb3Ny5XPlks3t92mPPpu/u+++7DjBkzMGLECMTLX0bdKC0txfPPP4+77rrLl80JGFFRUejevbvazaAgEUzxYi+QKp80jaTKJ6Fl8snfgileyP8sBaWIAGCLlJJPjBdSgvFCSjBevCccKp8YLwQAKCkBCgrqXM2waRMMUVHAsGHebwMrn3zGp8mnyMhIjB8/Ht27d0f79u3drmM2m7F3717k5+f7sikBxW63w2q1Qq/XQ6sNvdkqyLuCKl6KpOSTLjFO+r2yvUw++U9QxQv5nTmvGBEA7FFS8onxQkowXkgJxov3hEPlE+OFcPw4cPXVQEVFnasKAMJgAHr39n5XLs525zM+TT69++67uOuuuyCEwNGjR2tdV6MJn4FPS0tLsWXLFmRkZCAuLk7t5lCAC6Z40RRISeSIZknSA5Wl00w++U8wxQv5X/mGHYgDIFq3BsB4IWUYL6QE48V7wqHyifFCWL5cSjzpdFVd32pgs9uR07cvmlmt8Hq0cMBxn/Fp8unFF19EXFwcpk2bhs6dOyMmxnWAU7vdjuzsbLz00ku+bAoR+YGhMA8AEJlamXzSccBxokAh7AIxWWsAAMnjfDBGAhER+UT12UntFv5Dj0LUGukzCu6+G7juulpXLS8uxvEtW9DMF+1gtzuf8Wny6dy5c5g7dy4mTJhQ57q//fabL5tCRH4QUSIln2JbJUsPyN3uLFa1mkRElXJX5CCm9DRsWiM6XttX7eYQEZGHNFoNhEYLjbDDbuU/9CgEmUzAli3SfV8MIq4EK598xqcdanv27ImUlBSP1l0jZzqJKCjZrXZEmgoAAIntK9/3lZVPsPODEpHacn9YCwDIb5OBiPjay9mJiCiwCEjVT0w+UUjaskVK9jRtCrRpo25bDAbplpVPXufT5NODDz6I+fPne7Tu7bff3uD9HTx4ENOmTUOfPn0wePBgZGRk4OOPP1a0jfz8fNx3331o27YtjEYjmjRpgilTpmD37t0Nbh9RKCvIOQeNsENotEholSg9qONsd0SBwrpKSj7phw5SuSVERKSU0HAoAwpha6XPKBg0CFB7LGhWPvmMT7vdXXrppVi5ciX++9//olevXjWud+jQIcydOxcfffRRvfe1bds2DB8+HBMnTsSGDRtgMBiwevVqjB07Fhs3bvRo22fPnsXgwYOxf/9+GI1GWCwWnDlzBj/88AMWLlyIxYsXI9MLZYCxsbEYMmQIdHJVCFEtgiVeCv+fvfeOb+wq8/8/96o3F7mMx2WqPb04nmZPekISCJBsSIAECBCWZfNaylKWusA3sNTdZeEHLLALu7CQEEoChBIgCUmYJNPH07unuveiLl3d+/vj6MqyLdu60i2S/Lxfr3lZo3t1zrH86Nyjz/08z7nIUu7CtrLJwpgkPulOocQLoS+RiQi8l5idveFNk+ITxQuhBIoXQgkUL+oiccXtfKJ4WeCkik8ZoGm80G53mqGp+LRkyRIMDAzgm9/8ppbdYHx8HHfddRfMZjO+853vwJKwyl177bX46Ec/ikceeQQ7d+7EO9/5zjnb+cAHPoDVq1fj97//PZqamjA6OorHH38cn/jEJ+D3+/Hud78bJ06cyHm8HMfBbNb0rSeKiEKJF//lIZgAhD0pqbbyVrlxEp/0olDihdCXc48fgkmMIuCqxtobJu3sFC+EEiheCCVQvKhLsTufKF4WMH19wKVL7HvD9u0ZvUTTeKGC45qhadrd7bffDkmSMvqXC9/73vfQ2dmJ++67b8bWnO9617sAAJ/+9KcRi8VmbaOzsxNnz57Fr371K6xatQocx8Hr9eK9730vvva1rwEATp48iY6OjpzGCgDBYBDHjh1DMBjMuS2i+CmUeAl1jwAAhJKKySct7KJAzif9KJR4IfRl+Om9AIDApp1Tdk2ieCGUQPFCKIHiRV2K3flE8bKAkV1PGzYA077Lz4am8UJpd5qhqfj0ute9Dp/61KcQDAYhimLaf7FYDAcOHIDL5cq6nx/84AcAgJtuumnGsYaGBqxYsQLd3d147rnnZm3j6aefxhe+8IWkayqVt7/97eATDo7h4eGsxykTj8cxOjqKOLlBiAwolHiJ9rLPhuSdFJ84KjiuO4USL4S+2A6xTT1K7phqZ6d4IZRA8UIogeJFXYrd+UTxsoCRxaedOzN+iabxQs4nzdDc+XTbbbfBbrfPeo7JZMKWLVvwtre9Las+BgcHk26kdevWpT1nw4YNAIBnnnlm1nbuv/9+vPrVr057zG63o6qqCgCwdOnSrMZJEMWOMMDEJ64yxfmUEG0lQTBiSARBABg41ofS0cuQOB5Nb83Mzk4QBEHkF8XufCIWKPE4sH8/e5xhvSfNIeeTZmiaWFtaWoobb7wxo3O/853vZNXHyZMnk4/r6urSnlNbWwsAc9ZrKi0tnfVYPB7H0NAQtm7dipqamqzGSRBFz+AQAMC8KEV8MiecT0V6l44gCoGLj+1BCYCR2g1YX5uZnZ0gCILIL4rd+UQUGZIEdHYC4fDc5128CPj9QEkJsHatPmObDyo4rhmqiU+33HILnn/+ebWay7jNkZGR5OPp9Z5kSkpKAAADAwNZjePAgQOIx+P40Ic+NOd5kUgEkRR73sTEBADA5/OBS9kyUj5HFEX4fL4Z7ci/RzAYnGEltNvtsFgsiEajU/oCmIvM6XRCkiT4/f4Z7bpcLvA8j1AoBGGaE8VmsyV3+AtPmyR4nk+mRaYbr9PphMlkQjgcnlFXy2q1wmazQRAEhEKhKcc4joPb7QYA+P3+GbW/HA4HzGYzIpEIotM+/BaLBXa7HfF4PG2ur/weBgIBiNNSvuZ6D81mMxwOB0RRRCAQmNGu2+0Gx3Fp/zZzvYfy3wZI/x7O9beR39N4PD7jtal/m3Tvofy3Ufoepv5t0r2H8t9myns4PABIAF/FPm+iKEIQRUAChEgkOfa53kP5bzPXe5hLfKeLw0zfw7niO5f3MN3fZr44nGuOkH/3WCw2I15ojpikmOaIud5DnucRfoGJT7EtW2e0LY8xGo3OOKb6HJEgl/eQ5ghGLnNELusI+Xef/jqA5giZQpwjtFpHyEzvE6A5QkbRHAEOkAD/hA8+ny8v54hc1hEy6T6PNEcwCmmOMP/iF7B95zvgOQ4SMOM9AgBT4u8eF0UILS2Iprwf880RMun+NjnPERYLRFGEFAgglPJe5v0cYdA6Il28zYZq4lOuRcOzbTP1j2CVVcpp2BLWuXRvbCb88Ic/xC233IK3vOUtc5735S9/GZ/73OdmPH/06NEpNa0qKyvR2NgIAGhvb59xvuwWO3PmzIw/5po1a7Bo0aIp6YYy5eXl2LRpE+LxeNp229raYLVaceHChRm1q1asWIGGhgaMjY3h1KlTU4653W5s2bIFAHD48OEZf5etW7fC5XLhypUr6Ovrm3JMrrnl9/tx9OjRKcesVivaEvbK48ePz/hQbN68GWVlZeju7kZnZ+eUYzU1NVi9ejXC4fCM35XjONxwww0A2Hs4/eK4bt06VFVVob+/HxcvXpxyrKKiAhs2bIAgCGnfw2uvvRZmsxkdHR0YHR2dcqyxsRF1dXUYGRnBmTNnphzzeDxoaWkBkP5vvn37djgcDly+fHmGSFpfX4/GxkZEo1GcPn16yjG73Y4dO3YAAI4dOzZjwmpubkZpaSk6OzvR3d095VhtbS2ampoQDAZnjMlkMuG6664DAJw6dWrGZLd+/XpUVlair68Ply5dYk+ODDBB1TopfoyMj2GRKMI3Nprs4/rrrwfHcTh37hzGx8entLtq1SosXrwYQ0NDOHfu3JRjpaWlaG5uhiRJad/D1tZW2Gw2XLx4EUNDQ1OOLV++HEuWLMHY2NgUtyTAJvxt27YBAI4cOTJjgm1paYHH40FnZyd6enqmHKurq0NjYyP8fj+OHDky5ZjFYsHORO76iRMnZlzgNm7cCK/Xi97eXly5cmXKserqaqxduxaRSETxHNHY2JgcU/Jvk4DmCEaxzRFLly7FsmXLMDExgePHj085ZuEtKDvH7OyBzdUz2t6wYQMaGxsxPDyM3t7eKcdUnyMSVFZWYv369YjFYml/V5ojGFrNEbmsI7Zu3YrGxkb09PTMiG+aIxiFNkdouY7Yvn07Ghsbcfny5RlfxmiOYCiZI+JxVi+34+x5DHkn8nKOyGUdsXHjRjQ2NuLs2bM0RxTBHLH6F79AWTQKe1UV4jyfNGXIcByH8vJyAMBEOIwLa9cikDLu+eaIpqYmLFu2bMb7AKgwR1itCAYCEAAcSxlTvs8RRq0jlGgsnKSSarRx48YZwZoL0WgUO3bswOHDh+c878knn8R9990HgN2JSydAffKTn8RXvvIVbNy4EceOHVM0jsOHD+Oee+7B7t27k+l7s5HO+dTQ0ICurq6k+woozLsRdMeSUSx3IwD1XQ3nG+6CPeqD9alH0XjbGoiiiBff/t+o+dUP0LPttdjx+3+a9z0s6juWBeBqoDmCUUxzxKXfnIL54fciYi3Byku/AWfiphzX1R2ZgFwNDJojJqE5grHQ1xEyNEcwpr+HJ5a/CR5/P+I//B6W3bma5ogENEcw8mqOGBuD8+67wXEc+D/+EfGKisKaI3p6IL7udYDViuCzz2b0HubDHGHUOmJiYgL19fUYHx+fonmkQzXxied53HLLLViyZEnObUmShCNHjmB8fHyGWjydV155JXn3dXh4GF6vd8Y573//+/Htb38br3rVq/BsSgDNh8/nwx133IFvf/vbSSVZCRMTEygtLZ3xh4jFYhgZGYHX6027ux5BpFII8RL1R9GxiCnv9WefR0k9i/eX3/NjeB/7Jga2vQ43vfiIgSNcOBRCvBD6seuB76Lyt/+Dgc2346bdX5pxnOKFUALFC6EEihd12VdzFzy+Hlge/RGa7tlg9HBUh+KliHjmGeBTnwIaG4Gf/UyTLjSNl5ER4PbbAY5jxdA5bv7XLGBm0zzSoWrBcbVrPi1btmzec9auXQuO4yBJEnp7e9OKT3Iqwfr16zPuWxAEPPjgg/jCF76QlfA0F+FwGGfOnEFLSwtNrsS8FEK8jF1ktdfivAWelILGnFxwPE2eN6ENhRAvhH7w+9n2xc5b0+8gQ/FCKIHihVACxYvKcIkdhIu04DjFSxGxezf7qeHudZrGi5xJJUmAIAAUj6qhmvj0wgsvqNVUErvdPu85Xq8XmzZtwtGjR3Hq1Km0ApOcd3nzzTdn1K8kSXjPe96Dhx56CLfccouyQRPEAmTiEsvrDzu84PjJuwOcKVFAcpo1lSAI7Rm/MgZvH6sTt+ItrQaPhiAIgsgFqcjFJ6JIkCRg7172WEPxSVNSy/hEoyQ+qYhq4pNclMoI7r//fhw9ehQvvfQS3vjGN0451t/fj3PnzsHr9eL222/PqL0PfvCDuPHGG3H33XfPOObz+dDe3m7o70sQ+Ubg6jAsACKeiqkHyPlEEIZx/tF9cELCWGUT1q2tMno4BEEQRA5IiZ3BRIHWVEQe09EBDA0BdjvQ3Gz0aLIjVWyKRICUjcOI3ODnPyX/ec973oOqqir8/Oc/n1GI64c//CFEUcRHPvIROBwOAMBzzz2HDRs24Gtf+9qMtj7zmc9g5cqVeMc73jHjWH9/P97+9rfPW3icIBYaoS7mfBLKKqc8n0y7m1aojiAI7fE/y1LuYlsL9M4jQRAEMQk5n4hCYA9be2DLlqkOokKC4ybHPq1QN5EbRSE+eb1e/OQnP4HP58P73ve+ZJX4AwcO4Mtf/jLuvPNOfPzjH0+e/41vfAMnT57EI488MqWdr33ta/jCF76AD3/4wzCbzTP+1dTUYHR0FE1NTTmN12QywePxwGQy5dQOsTAohHiJ9SW20y2fWnONTzqfSHzSi0KIF0J7JFGC+wRbAFbdNbv4RPFCKIHihVACxYu6FHvaHcVLkSCLTzt3atqN5vFC4pMmqFpw3EjuuOMO7N27F1/84hfR2toKp9OJQCCAz3/+83jf+943JTDf/OY3Y9euXXj729+efO5nP/sZ/umf2Fbw07cTTOVv//Zvcx6r0+lUvYg5UbwUQrzEB5j4xFdNS7tLWMQ5cj7pRiHEC6E9l589D2doGILJjjX3bp71PIoXQgkUL4QSKF7URU67K1bxieKlCAgGgSNH2GON6z1pHi+y+BSJaNfHAqRoxCcA2LRpE37+85/Pe96DDz6IBx98cMpz999/P+6//36thkYQxc0wE5/MNVPFJ96amGLI+UQQutL95F54AYw2boPVXaC2d4IgCGKSInc+EUXAoUNALAbU1gINDUaPJjdsNvaTnE+qUlTiU6EgFy1vaWmBx+OZ/wVE8ROPA/39bLKehq+7G8fa27HpppvyNl5MY0x8ctSnr/nEUcFx3aD5ZWEiiRI6d11CqH+C/T+xA63lxrnvPFK8EEqgeCGUQPGiLsmC47HivKFH8ZLHBALA+fPzn/enP7GfbW2sbpKGpMYLz3syGp4S1kpW2AByPqkMiU8EkQ/8138B//u/wL//O3DTTZPPiyLs73kP1nd3A88+C+TpxdjqY+KTs2Gq84kzJcrKxQW9h0QQC4pj33kZlo9/KPl/+ZO49E2txgyIIAiCUJeE8wmSZOw4iIXHww8Dp09nfr7GKXfT+bu/A86dU7fNL1224ZYGwEzOJ1Uh8YkgjEaSgKefZo//+Mep4tOpU+B7e2EKhcCNjwNV+blduj3IxCfP0mkFxy3kfCIIPRj95XOoBhCylyNmYyJ1eNN2rN1R4LZ3giAIAkDxO5+IPKW7mwlPPA/U189//tKlmhcbT6Wri8O5c5kPLxO6u4EIrIjFSHxSm7wRn771rW/h/e9/v9HDIAj9uXwZ6Otjj/ftYyl4coH83bsnz8vTyS84FIRFCAEAylZOcz7RbncEoTmiIMKT2NnO8fUvY8vbtxo8IoIgCEJ1yPlEGIG8e11zM/Df/23oUNKxfz/7rtHSAnzve+q0ef/9QOyilX19obQ7VeGNHgAABINB/Mu//IvRwyAIY5AndQDw+4GTJyf/v3fv5GMhP1PXxi4w11PM7ICz0jnl2KTzicQngtCKK3/pgCM8gpjZgab7Zt/ZjiAIgihcyPlEGIL8PaU1P9P4ZfFJzUw/lwuIcTbERbAC6oRqqOJ8+r//+z888cQT+MAHPoDbbrsNACBJEu6++274/f45XxuLxXD+/HkMJ3bLWgi4XC5s374dNrmKPrGwkQUmi4VNcLt3A5s2ARMTwIkT4HkeLpcLMOeNUXEKvisjAICws2LGMbnmExenhZJe0Pyy8Oh+Yk9yZzuL06LotRQvhBIoXgglULyoDF/czieKlzwkFgMOHGCPda7jNB8ulwvNzdvx6U+zdY/64pMVoghyPqmMKt9mP/CBD8Dv92NwcDApPnEcB6/Xi9///vcZtcFpXBE/n+B5Hg6Hw+hhEPlAJAIcPMgev/nNwKOPsjsMDz8M7N8PiCI4ABzPs3S8PCTYOQwbgKjHO+MYb2VTDDmf9IPml4WH+DJLz7XeoPyuJMULoQSKF0IJFC8qwxW384niJQ85fhwIBoHycmD1aqNHMwWe53HunAOhEFBRATQ1qde22w1EeRv76pWnZU8KFVXEp2984xt48skn8Q//8A9Tnn/rW9+KPXv24Ktf/SrKy8vTvjYWi+Hw4cP4xCc+ocZQCoJQKITLly9j2bJlNMkudA4fZpNadTXwlrcw8enUKWBsLGlzFUURkWgUnM8Hu7GjTUuoawg2APGyyhnHks4niQqO6wXNLwuL4FAQ3s6jAIBl9yu/7UfxQiiB4oVQAsWLyhS584niJQ9JTbnj86JaT5JQKIRf/3ocoliN1lYeavpY3G5AIOeTJqgiPj300EN46KGHZjx/66234s4778Tf/M3fzPn6V73qVfjJT36ixlAKAkEQMDAwgHq1SvIThUvqpF5dDTQ2Ah0drPB44pgEQIjFwIfDxo1zDoS+RMpsxcy0O95iggiAi+dnvapihOaXhcX5xw/CIgnwldRjXRY721G8EEqgeCGUQPGiLlLC+SQJxel8onjJQ+SNj/Is5Q5g8bJvHw9AUn14U9LuyPmkKppKmDzP41Of+lRG5/53HlbPJwjNkcUnedaUfz72GDAwAFitEJcvBwBweVrwThxk4pOpOr34BJDziSC0YvRpNoeEmvNvYUgQBEGoSGInZEksTucTkWeMjABnz7LHeVhsfHiYQ1cXc8jt2KFu2y4XS7sTKe1OdTT3z1VVVQEAwuEwOjs7k88fP34c3/72txFN/EFb8zCoCUJT+vuBixeZjVWeNWXx6dQp9nPLFkguF3ucp+ITN8LEJ0vNHOIT1XwiCE1wHGHiU/mdJD4RBEEUM1Iir6hYnU9EniFviLR6NeCdWdfVaPbvZzLG6tUiZqnukzUs7c7CdrujtDtV0Vx8am9vx+233w6Xy4Wbbrop+fzGjRvhcrmwadMmHDt2TOthEET+Ibue1q8HSkrY4+ZmwJ5S2amtDbBa2eM8FZ9M40x8ctTP5XyihRJBqE3Pvk54JrogcmY0PbDV6OEQBEEQWsLLzidykxM6MD07I8/Yv599HrZtU/87Bku7s1HanQZounf7sWPHcMMNNyAYDAIApGkF8h566CEMDw/jlltuwZEjRxZMjq/VasXSpUthlUUFYkESen4P4n6gv7oN/bvlZ61YVrsFJcdeAQCctbRi0cgrKOdtULaBun7YfEx8ci2ZKT4lC46T80k3aH5ZOFz+2R6UARhp2IwNlc6s2qB4IZRA8UIogeJFZeSKyvHiFJ8oXgxgfBw4eTL9Mdn5pLH4JAjAsWOA0tK2hw5ZYLMB116rYqXxBMmaT3GQ80llNBWfPvnJT8JkMuHv/u7v0NbWhv/6r/+acc773/9+fOYzn8HnP//5BVP3yWazYdmyZUYPgzAQSYjj/E/3wxwCPvf7Nlz4y+Sx20Z24sH+VzBiXoQPfmU5Pthlx9agFcvD+ZfjL4QFOIJMfCpZPlN8MtnYFMOT+KQbNL8sHGJ/ZXcl+et2Zt0GxQuhBIoXQgkULyoj13wqUvGJ4sUAHn4YOH9+9uNOJ7Bpk6ZD+OEPgTQSQQbwKC+3YcsWtUfE0u6ivI3pvOR8UhVNxadDhw5h7969WLt2LQDgxz/+8YxzbDYbFi9ejKefflrLoeQVgiBgYmICJSUlMJs1/RMQecr47pMwh3wImEpgbV6PNSmi/UDsteg4eRQnF92CNYs5CN1mxOMSfKMR2IwbclrOP3kMvCQgbCtD5brqGcd5c8L5RAXHdYPml4VBLBhD2YWDAIC6+7K/K0nxQiiB4oVQAsWLyvCJxWKRpt1RvOhMZycTnngeWLVq5nGOA+66C7Bom3vx/PPs55IlTOvKFEkScdttAQAOqC1psJpPtNudFmj6yV69enVSeJqNaDSKgYEBxPK0no0WhEIhHD9+HC0tLfB4PEYPhzAA3zPMsXC5egd+8tj00mtuAF/CXYn//WiJBZIoITwR0HOIGTHwu72oAjCxrjUpNKUi13ziRUHnkS1caH5ZGJx/4igsQgghuxdrbm3Muh2KF0IJFC+EEiheVIYvbucTxYvOyDWdrrkmW+tRzgwNMf2L44D//V+grCzz1/p8AbS3tyMUUj9eKO1OOzQtOF5WVjavqPTd734XwWAQtbW1Wg6FIPKLxIQ/1DS/Y0EyMY04Hs4/gda8jxWrct2WPu1nsuB4cS6UCMIoBp9inz3fhra0wi9BEARRZMi73RWp84nQGbmm087sU/fVGsLatcqEJ61xuYBoouC4FCHnk5poumJ94IEH8MADD2BoaGjGMUEQ8G//9m/46Ec/Co7jcN9992k5FILIH8bHYetgxf0i17TOe7poYYUXpWh+uYdGL4ygfOAMAKDxbel/D5OVdrsjCC0wH2IrNvdt+bkLDUEQBKEyiZpPxVpwnNCRWAw4cIA9NnA3u927DR9CWtxuIMZbIQGIB8n5pCaapt3df//92LdvH5YsWYJt27bh/PnzePDBBzE8PIyDBw9ieHgYkiShubkZn/3sZ7UcCkHkD/v2IRqV0GVbCe+amXWSZmDOT+dTx2P74AIwWrUK61Z6056TTLsj8YkgVGP47BDKB88B4ND41h1GD4cgCILQA555Boo17Y7QkaNHgVAI8HqBxuxT93NBFIF9+9jjfBOfbDZA4FmlXSEU01YwWWBo7tX/+te/jsceewzhcBj9/f147LHH8Kc//QlDQ0Pwer342Mc+hpdeemlB5fbyPA+73Q6ep1SJBcmePYhFgeOuNjQ0ZHC+xQJw+ed8CjzHUgeFbbPbdVMLjkti/u3WV4zQ/FL8XHiMuZ5GataibHl5Tm1RvBBKoHghlEDxojLy+1ikaXcULzqSajky6P0+fRoYH2cuo40blb9ey3jhOMDiYpkn5HxSF82FvMHBQdxzzz245557MDo6iosXLyIajaKqqgqNBimtRuNyubBjB92tXpBIErB3L6Ix4Jh7J+7OQHwyJSZWcx6tNURBhOck+wJcfffstytMtskpRhTEZBoeoR00vxQ/wb/sgRtAfNv8abvzQfFCKIHihVACxYvKyM4noTjd5BQvOiIXWzLQciTXO9++fTKjVAlax0tSfApRzSc10VTqfN3rXoeamhrce++9AIDy8nJs2bIFbW1tC1Z4IhY4Fy4g3jeIsGjDWUcz6urmf4mUqPkkRvIn7e7yM+fgCI8gZnai8Q2bZj0vtRByPFqciyWC0BNREFFymi0aa+4xrkgoQRAEoTOyw0MiJzmRA0NDwLlzzN5joNiXr/WeZCxulnYnhkl8UhNNxadXXnkFALBmzRotuyk4/H4/du/eDb/fb/RQCL3ZvRvRGHDKtRVl1VY4HPO/JM5zEOMiooGg9uPLkO4n2O2K0catsDgts56X6nQi8UkfaH4pbi4+fQb2yDiiFhdW3r0h5/YoXgglULwQSqB4UZlkzafiXE9RvOhE6hZz5bml7meLzwecOMEeZys+aR0vVnfi5n+Y0u7URFPx6eGHH0ZlZSW++MUvznuu7I5aCEiShFgsBonuXCw89u5FVEm9JwCwMnEnn7b6lBJeWduNc18xUsUnUcijvMEihuaX4qb3V+yzN7ZqB8z23DPnKV4IJVC8EEqgeFGZZM2n4nw/KV50Qs53a809dT9bDhxgpcuWLQNqarJrQ+t4kZ1P+fT9qxjQtObTl7/8ZZSUlOBb3/oW3v/+9896ns/nw4svvqjlUAjCeEIh4PBhRKPAMU8btmcoPnGWhPgUy487XYGBALydRwEAyx7IXHwi5xNBKEcSJZz6vwOIDE4AAPgX/wIAsN9k3KKRIAiCMABTQnwqUucToRHRKLB/PxAOs//Lzqed2qbuR6NsN7tIGuPQ736nyxBywl7CnE8g55OqaCo+ffCDH0RPTw9OnTqF73znO1i8ePGMcwRBwJkzZzA2NqblUAjCeA4dAmIxjNhq0Wddgvr6zF7G2fLL+XTx10dhkuLwldRj3ba5f4kpNZ8i+bVbH0EUAu1ffRaOL3wK9sT/5Z/L35KnRRIIgiAITeCo5hORDT/6EfDf/z31OZcL2JB76v5c/M//sH9zYaD5al5snkTaXVxkgm82VdGJGWgqPlVWVuKb3/xm8v9nz56d9VyO47QcCkEYT8LmesLTCoDLXHyyJD6msfwoOO7v6EUpgFDdynnP5XgOEseDk0RKuyOILPD97kU4AEyULkG0tJI9uW0b1jXPvJlDEARBFDFFXvOJ0IgXXmA/V60C3G5WaPx1rwPM2m56P73b6SxbZmi983lxlMriE5h9y+k0dkBFgqZR9/DDD+OrX/0qPv7xj6NhlgI3oiiivb0d3/nOd7QcSl7hdDrR3NwMJwXxwiIhPu0FcyxkWvPJ4nKA5zlwYn6IN7HeYfbAW5HR+SJngkkSIeZJ2mCxQ/NL8SAKIkoTO9uVf+P/YfWbNqveB8ULoQSKF0IJFC/qwpmKu+YTxYsGDA4C588zwek73wHKynTpdmAAuHiR6aXf/S5QWqp+H1rHi5x2FxfBcggpLlVBc+fTu971Lnz605+e87yHHnoIf/zjH7UcSl5hMplQqsWnkMhfenqAq1cR50zYK2wDTMjY+WSy2wCOAxfLj7Q1cZCJT3xVZuKTxLHFEtV80geaX4qHC787BVt0AlGLGxv/Rht7PMULoQSKF0IJFC8qwxd3zSeKFw1I3dlOJ+EJmKxpvm6dNsIToH28uEt4xDkzRFFg4hOhCprudgcAX/nKVzI6769//Wvy8Yc//GGthpMXRCIRdHR0IJKuAhtRnCRmYf/yTQiZ3CgtBTyezF4qmTlIogQpEtZwgAoYZuKTpSZT8YnlSJPzSR9ofikeen8t72y3fUrxfjWheCGUQPFCKIHiRWXkmjNFWvOJ4kUDZBVI58reenSrdby4XECMs0IUkb5qOpEVmotPDocjo/Pq6uqSj48cOaLRaPKDaDSK7u5uRElFXTjs3g0A6FmqLOUOACQzD0mSIOVJvJjGmfhkr8sw7Y5nBkuq+aQPNL8UD9xetnqz36xdcXGKF0IJFC+EEiheVIZP1MctUucTxYvKiOKk86lNv01K4nG2uR6gbUFxreOFiU82VvOJYlI1NBefCGLBIwjAgQMAgHMVbPLPNOUOAHg7yznmhPxIu7P6mPjkWqIs7Y6cTwSRORNdE/D2nAAArHgr7WxHEASx0OFk51Oe1AAl8pzTp4GJCVbtW+Od7VI5eZJ16/EA69fr1q3qyM6nODmfVIXEJ4LQmmPHgGAQKC/HidhqAMqcT7yNOYc4wfjd7iRRgiPIxKeSFZUZvUbk2WIpHskP8YwgCoGOxw+Ak0SMly9H9aYao4dDEARBGI28MziJT0QmJLIusH37ZMqmDshmqx07dO1WddxuIMqT80ltSHwiCK2RE59bW9HZzT5ySsQnk90CAOAE4ye+4FAQ5jhT/8tWeDN6jZQQn6Q4LZYIIlMm/sQWjZEt5HoiCIIgAM5MzidCAfL3Dx1T7gzsVnXcbkCQaz6R+KQaJD4ZgMViQW1tLSwWi9FDIfQgZRbu6mIPlaTdWV02cBwHPg9y/McuMNdTzOyEvcye0Wuo4Li+0PxS+EiiBNdxNm9U3KlhwQRQvBDKoHghlEDxoi4cX9zOJ4oXFZmYAE6w1H09VaCJCZZ2p0e3WsdLatqdGCbxSS3MRg9gIWK329HU1GT0MAg9GBkBzpwBAERbWtHfz55WIj7ZPG5wPAdT3Pi0u4mLQwCAkCuzlDsAkHiq+aQnNL8UPp27LsEVGECct2LVA1s07YvihVACxQuhBIoXlSnymk8ULypy4ACLk+XLgRr9Uvf37WPdrlgBVFdr25fW8SKn3QFA1B9FZrfcifkg8ckA4vE4gsEgnE4nTIWcDEvMj5z4vHo1ukNeSBLgdALl5Zk3wVs5QAK4PBCfgp3DcACIlmRWbBwg55Pe0PxS+HT+Yg/KAYwsb4GtxKZpXxQvhBIoXgglULyoS7E7nyheMqCnBzh0CJCkuc975hn2Mwf70cGDrDsl/PnPOXebMVrHi9UKxHm26VN4PELik0qQ+GQAwWAQ7e3taGlpgcfjMXo4hJYcPMh+trXh0iX2sL5+smZkJsRNEkRRBASJLTh447JlI70jcAAQyxSITyY2zVDNJ32g+aXwEV5mKXfm67RfvVG8EEqgeCGUQPGiMkVe84niZR4kCXjve4HOzsxf05pd6v7p08DDD2f1UgD6iE9axwvHAZKV3QCM+CjtTi1IfCIILbl8mf1cswb797OHzc3KmjA7WC6zJAEQBCbFG0Ssn9V8gjezYuMAIHGUdkcQmRIeC8N7qR0A0PCmAq/WSRAEQagGJ998LFLxiZiHS5eY8GSxsK3k5mPJkqzFp1272M/aWpZCp4QlS9gGe8UAZ2ffuSITEYNHUjyQ+EQQWpKoMC7V1WP3N9lTSq8DJjv7mIoS2G4LBopP0gCr+WRapKTmUyLtLipoMiaCKCbO/7wdJjGKgKsaa29YbvRwCIIgiDyBM5H4tKCRS3m0tADf+IamXcl7Jb373cBdd2naVV7D29h3rqifnE9qoUr+jt/vx7e//W1cuXJFjeYgzZfHShCFQCDACo4D6EI9enoAsxnYulVZMxZHIm1NAhAztu4TN8KcT9bFStLumPhEaXcEMT/Dv2crvsCmnZP1PQiCIIgFT1J8kmg9tSCRFaGdOzXtZnwcOHWKPc7SOFU08HYSn9RGFfHpfe97H/7xH/8RX/nKV9RoDs1K85IKDI7jYDKZwCkp/EMUHgnXE8rLsee4GwBLuXM6lTVjc5ggcKa8EJ9ME0xMc9QrEJ94KjiuJzS/FDa2w2xxWXKHPil3FC+EEiheCCVQvKhMIu2OK1LnE8XLHEQirNA4oHlBJXnHupUrtd+xLhf0iBdZfIr5Ke1OLVQRn373u99hw4YN+MQnPjHl+S984QtZtff1r39djWHlLW63G9dddx3cbrfRQyG0RBafGhpyullRWuqEZLYD4AwXn2x+5nxyLclcfEKi5pMkkPikBzS/FC79R3pROnoZEsej8YFtuvRJ8UIogeKFUALFi7oUe9odxcsctLez0hvV1cBybVPy5ew+PYqG54Ie8WJysoLjQpCcT2qhivhUXl6O3bt3Y+nSpVOef/755zNu484771RjKASRPyR2o4gvrseBA+ypbOyrVisgcBbmso4aN/mJgghHkIlPJcuVp92R84kg5ubST5lKPVK7ASX1JQaPhiAIgsgnKO1uASPfxW5rU7ZltkIkaWpXCx2TgzmfhAA5n9RCFfGpubkZpsQXzGwQBAGHDx9WYygFQSAQwIEDBxAIBIweCqElCfGpU6pHOAxUVABNTcqbEYQgIiLPCo4b6HzydU+Al5iAVLa8PPMXmhI1q6jmky7Q/FK4hF9ktxulVv1WfBQvhBIoXgglULyoiyw+FWvaHcXLHOikCF24AAwOAjYbcM01mnaVM3rEi9mVcD6FyPmkFqrsdvfmN78ZTU1N2LlzJ1wuV/L5M2fO4F3vetecr41Gozh8+DAGBgbUGEpBIIoigsEgxCK9eBAJEml3R0caAGR/s8JkEhGD2fCaT2MXmOspbCuFxWnJ+HUST2l3ekLzS2EihAWUndsHAFh8j37iE8ULoQSKF0IJFC/qUuxpdxQvs9DfD1y6xGp+bd+uaVe7d7OfW7YYurl2RugRLxYXexPilHanGqqIT2984xsRCATw8Y9/HIODg1OO/ehHP8qoDSouRxQdCefTK1fqAWR/s8JikRDjrIAIxMMxZO8xzA3/lWFwACIuBfWeAEAuOB4V1B8UQRQJF546AWssgIi1BGtev87o4RAEQRB5BqXdLVBk19OGDUCJtin5hVLvSS8sbiY+iWFKu1MLVcQnAHjnO9+JBx54AC+++CLOnj0Ln8+HH/zgB3jnO9855+ui0SgOHTqEZ599Vq2hEITxRCLAwABiArC/twGcBdixI7umrFYgnvioxgJRw8SnYOcwXABipZWKXifXfCrWO3UEoQb9v9mDSgDja1vBm1XJiCcIgiCKiGJPuyNmQRafsikcq4BQCJCr4GSzQVIxYnWztDsxbOyGT8WEauKTz+eDx+PBHXfcgTvuuAMA8Nxzz+H//b//N+9rJUnCsmXL1BoKQRhPdzcAYDzuht9ainVrgbKy7JqyWoEYx9Lc4hHj3EPRXiY+iWVeZS+UnU+UdkdowLknjmFo16nk/22LvWj+yK0wWY2SabOD388Wl85b6XYjQRAEMRNyPhUxly4B+/ezit/T2cdS8tVShHbtAnp6Zj7f3c2qeyxeDCxZokpXBY814XySIuR8UgtVxKcf/OAHePjhh/HP//zP+NznPpd8/s1vfnNGr+c4Dh/84AfVGEpB4HA4sH79ejgcDqOHQmhFot5Tp1QPcFxO9lW32wFY7EDc2K0+hX5W8wmVStPuqOaTniyk+WWiawKRhx5GmTj1c3HM9m+45sM3GzQq5YxfGYO37zQAYMVbtL2zOZ2FFC9E7lC8EEqgeFGXYnc+Ldh4kSTgH/8xvSIkU1ICrMs9Jf/kSeDDH577HI031FMNPeLFVmJDHAAiVPNJLVQRn7761a+C53msX79+yvNbt27NuI0PfehDagylIDCbzaisVJa6RBQYnZ2QAJz2NwD23HKnzWYzJIsNCANCyDjbpzTExCdztULxSU67I/FJFxbS/NLx0/2wi1GE7OXwrd4Gx6WT8Ex0I3Cm0+ihKeL8o/vghISxikasW1ula98LKV6I3KF4IZRA8aIuxe58WrDxcvEiE56sVuCmm9Kf8+pXJ2/m5sKuXeznkiXAmjUzj9vtwEMP5dyNLugRLzaPFUGAlVMhVEEV8amvrw9//vOfcfPNU+80f+xjH8Pzzz+fURv/+Z//ife+971qDCfviUaj6OvrQ01NDaz5vpUAkR1dXQiHgKtiA9xuYOPG7JuKRqMQwC44RopP3CgTn2x1Cif6hPgkxYtzsZRvLKT5ZeJPu2EH4LvuNbjpqQ/jr2/4/+D5808g9A8ZPTRF+J/ZDSeA2Db9iywspHghcofihVACxYu6JJ1P8eK8mbdg4yV1i7kvfUnTruTyUQ89BLz+9Zp2pTl6xIu9JCE+xcj5pBaqVDW9+eabZwhPAKvllCnf+9731BhKQRCJRHDp0iVESEUtXjo74Q8AA9Z6bN8+af7JhkgkgojEAZKx4pNlnIlPjvrsnE+UdqcPC2V+kUQJrhNsW5bK1zPRxrwoEZsJl14hIAoiPCfYarDydfqm3AELJ14IdaB4IZRA8aIuSecTMv9+VUgs2HiRFSGNt5gbGwNOn9alK13QI14cZazgOB+L0r5JKqGK82nNmjX48Ic/jNtuuw0ulyv5/Pj4OF566aU5RahoNIq9e/fi1KlTs55DEAVHZycCfqC/uh73qTDBiyb2URUjxolPtgD7Qu9eorDguCw+xYwrlk4UH527LsEVGECct2LVm64BAFgXM/GJHxsxcmiKuPKXDjjCIxBMdqx5Y7PRwyEIgiDylMmaT3Qzr2hI3WJOY0Vo3z5WXqqpCViI2Y3Z4ChljiqLGEEoBKTIHESWqCI+PfLII3j961+Pb3zjG+CmVSi7abbcVYIoVgQB8a5ehEJAv6VBlWuJaGYf1XjIGNtnPBqHIzwGAChdkWXNJ7plQKhI5893oxzAyPItsJWwO1POBhablonCcT51P7EHXgCjK7cmd1UhCIIgiOnwZh4SAE5BZgmR57S3sy3mamoAjXd+l7P7isH1pBcWlxUcB1ikKAIBEp/UQBXxyel04rnnnsOvfvUrPPHEEzh79ix8Ph+6urpQU1Mz52uj0Sj6+/sVpegRRF7T24uAX0SUs6GssRLzfAQyQko4n+JRY9xDY5dGAUiQOB6lS8uUvZjS7ggNEF5mNnXz9ZOrKM/ySvgB2P2FU/NJfIX9HpYbaDVIEARBzAFPzqeiIzXlTsMt5kRRt+y+ooKzWcHzgEWKwO8HqquNHlHho4r4BAAcx+Hee+/Fvffem3zu5ptvxgsvvDDvazs7O2fslFfMyNX5zWbV3n4in+jshN8P9FvrsfPa3C8kZrMZvN0OABANcj6NX2ROkpDdC96ssFRcYrEkFWmBzHxjIcwv4bEwvJeZTX3JmydXUaXLvfADsEUnEPVH895JFBwKwnv1CABg6f3GrAYXQrwQ6kHxQiiB4kVdeDPPtn0v0hv2CzJedLIjdXQAIyOAwwFs3qxpV7qhS7zYbEx8EqLw+7XrZiGh6ae7tLQ0o/MaGhrQ0tKi5VDyCofDsaDEtoWG1NnF6j05GtCqQv1gh8MBu9sDcMbVfApcHYYJQMStMOUOAMyJtDtyPunCQphfzv+8HSYxioBrEdZetyz5vKeuBCJnAi/FMX55FFUbFhk3yAw4//hBWCQBPk8t1u5oMGQMCyFeCPWgeCGUQPGiLsmaT1JxrqcWXLz09ABXr7KbtNu3a9qV7HrauhUolo0EdYkXqxUmE2CKCRj3iVBpr7YFjabv4G9+85uMz33xxRc1G0e+IYoiIpEIRKqBU5SMHOtCTACGHQ1QQ1MVRTFZ88ko8Sl4laUxCaXKxSeOaj7pykKYX4Z/z1ZRgc07wfGT7kLezCPkZDEqu/XymdE/st36QpvbpvweerIQ4oVQD4oXQgkUL+rCWxLrqSJ1Pi24eNnL1gDYuBFwuzXtqhhT7nSJF6tVTuBAaNyY7JNiI2/ku7e//e1GD0E3AoEA9u7di0AgYPRQCA0YbO8EALjWNCCRLZcTgUAAE6EgIBknPkV72Rd5yZuF80mu+URpd7qwEOYXezuzqZe+euYqSnbnBa7mv/jkOMx+j7I7dxo2hoUQL4R6ULwQSqB4UZlETSC+SGs+Lbh4kVPudmq7BggGgSNH2ONiEp90iRebDQnDIYJjJD6pgeFJtfF4HO3t7XjyySfx4x//2OjhEETOhM53wQagoa1etTalhPNJihi0290g27qeq8zC+SSn3cWMKZZOFBf9R3pRMnYFEsej8YFtM47HSyuAfiDcra34dO6JYwCAVfdtyur1Pfs64ZnogsiZ0PTAVjWHRhAEQRQhSecTitP5VJScOwe88kp6t9r+/eznPIrQM88AXV3ZD6G3FxAEoK4OaDAmw79wMZnAmXkAIsLjEaNHUxSoIj695z3vweOPP47PfOYz+NjHPgYAkCQJS5YsQU9PjxpdEERBEJmIwNLPrhBrb1NPfIIlkXYXNcb5hGH2Rd5c7VX+Wkq7I1Tk0k/3oATASO1GrK/1zDgulbMYld16WjB2aRSRhx6GyJsQftWzsJcptzhe/tkelAEYadiMDdW0dy9BEAQxN3J6Nu12VyBIEvChDwH9/bOfU1YGrFkz6+Fjx4BPfUqd4WhssCpaJIsNQAhhn0HfwYoMVcSn3/72twgEAvjDH/6QFJ84jsP999+Pr33taxm1wWm4vSRB6MW5n7XDJMYQcFVj7Y7FqrUrJcQnGCQ+cb5xAIC1ukz5a2XnE6XdESoQfoGJT7PdKeSqKwEA8QHtxKfzP9kLlxiFSQT627ux9JaVituI7mK1Hrhi8sATBEEQmiE7nziJbuYVBOfPM+HJZgNe85qZxzkOeNWrkrtCp+Pll9nPFSuATdkZrQGwXe4WUIUbVZEsVgAhxIPkfFIDVcSnZ599Fn/+859x3333TXn+wQcfxP79+/HUU0+hrKws7WsFQcDhw4dx0003qTEUgjCU4T/sQTWAwEaVCwgnxCfJIPHJFJgAANiqSpS/WL6okvhE5IgQFlB2ntnUF9+b/haeZVEiNXRYO/Ep8NweyF6l0WOdisWnWDCG8o4DAIC6+0h8IgiCIOYn6Xwi8akwkAuKb9sGfPrTWTUhl4V6xzuA175WpXERihCtNvYzTDWf1EAV8Wnjxo3YuHHjjOc3bdqEW2+9dVbhCQDMZjO2bdu2oLbWdLvduP7668ntVYTYDrHtJEperZ631e12o7puMcABUtSYic8SYuKTvVq5+ETOJ30p5vml49fHYY0FELaVYs2d6W3q9jomPpnGtBGfREGE5+Te5P/9ZzoVt3H+iaOwCCGE7F6suX2VmsNTTDHHC6E+FC+EEihe1KXYnU9FFy85bjE3MgKcOcMet7aqNKYiQq94Yc4nABFyPqmB5rvdffazn533nN7eXuzatUvroeQNHMeB5/nimVwJAMDgiX6Ujl6atRBytnAcB5Odqe6SQUW7rWEmPjkXlyp+bVJ8oppPulDM80v/U2whN7FmB3hz+suXs4GJTxafNuLT5WfPwxEeSf5fuKS8Cujgb9nv4VvfOuvvoRfFHC+E+lC8EEqgeFEX3lTczqeiipdgEDh8mD3OUnzat4/9XLUKqMhis+liR7d4SYhP5HxSB2NXvQn+7d/+beFsqwkgGAziyJEjCAaDRg+FUJGLj7EvlCO1G1BSn0V62iwEg0EMTYwDEsAZ4HwSBRG2qA8A4K4l51O+U8zzi+kAcxw5XzW7s9CzjK3QHAFtxKeeJ9nnXOSYcZjvVu58Mh9kbbhuNf5WZjHHC6E+FC+EEihe1EVeTxWr+FRU8XLoENtirrY26y3mcjROFT16xYucdmfUjuPFhippd//6r/+KcDic1Wv9fj8effRRbNq0Ce985zvVGE7eE4/HMT4+jjh9GS8qQn/ZDQ8AqVXdq0Q8HkdUSjieYvrXfPL1+JKPPXU5iE+CMa6thUaxzi9jl0bh7TsNAFj51tlFm7KVFRgHYBGCCI2E4PA6VB2H+AorwDC06RZUH30GtiFlzqeR88MoHzwHAGh8m/HiU7HGC6ENFC+EEihe1EV2yhar+FRU8ZKqHGXhzBHFyZJRtEtdevSKF85KaXdqoor49Morr+D3v/89AECSpCnHUq1wcx176qmnFoz4RBQf8WgcZecShZDvUf8WBWdNfFQF/cUnfzfb6S5qccFkNSl+PaXdEWrQ8dg+OCFhrLIJ61ZXznqes9IJwWSDOR7B2MUROLx1qo0hOBSEt/MoAGDxP74J8Xc9A7e/D7FgDBanJaM2Ljy2Fy4Ao9VrsG6lV7WxEQRBEMVNsYtPRUWOtqXz51nNJ6czt13uCBVIiE/kfFIHVcSnu+++G/v27cM73vEOOJ3O5POhUAhf+9rX8JrXvAbNzc0wmWZ+ce3u7sauXbtw7bXXqjEUgjCEjt+cgDXmR8RagjWvX6d6+1xC9OEMcD4F+1i9p4hdeb0nIMUmLhbBnSzCMPzP7IYTQGzr3As5jucQclbA4+uB7/IwFm9VT3w6//hBWKQ4JkobsOONm3H87+wwx8MYONqLurYlGbUReHY3XACEbeSjJwiCIDKHM5H4VBB0dQGdnYDJxHa6ywJ5l7utWwFLZve2CK2QnU9Rcj6pgSri05133omOjg586UtfmvL8xz/+cXz729/G3//938/5+o9//ONoyDIfliDygf7f7EElgPG12hQQTopPgv6qe3hgAiYAgt2T1evlxRLVfCKyJXWHuaq75hdtoiWVgK8HgStDqo5j9A+7UQ0g3NwGjufgL6tH2XAHho90ZiQ+iYKIktOsgmj13SQ+EQRBEJkjry95Ep/yG9n1tHkz4HLl1ATVe8oDbKzmE8j5pAqqfEuuqanBBz7wgRnPv/zyy/MKTwBw77334l//9V/VGEpBYLfbsWrVKtjtdqOHQqgEv49dJRw3q1/DxW63o7puMcABnAFpd5FB5nyKu3NzPoGcT7pQjPPLlb90wBEegWCyo/HezfOeHy9h6WzhbvWKjkuiBMcRdiuy/DXscx5dxG6a+M9kVvfp4tNnYI+MIWZ2oune/PDRF2O8ENpB8UIogeJFXSZvbkqQRGnOcwuRookXWTlqze47QTAIHGUZ/iQ+zYFe8cLZmPOJi5H4pAaqOJ8AJkBNJ12aXTrGxsZw+vRptYaS91gsFixevNjoYRA5MHiiH6e/8hTL/xVFVPWdAgCsfJv6VwmLxQJvTRUAY8Sn6PAEnABEd3Y7+E2m3WV2p+7E/+zD8J8OzNrWive+BvXXLctqLAuBYplfjn77JYz9NbH6OncOVQBGG7fB6rbO/+LEnsSx/hHl/X5rF8Z2HZvxvBSOoNrXA5Ezo+mBrQAAbkkDcAqIXph9x7sp7Z09w36Ppu0w21W7/OZEscQLoQ8UL4QSKF7UJekkB7shwvEabzGvMwUbL6OjwJNPAvLmWwcSa9idO3H8OLBrFyAp0Ar7+1myQEMDUF+v/nCLBb3iRRafqOC4Omi6+jWZTDh8+DCuueaaWc+Jx+P4yle+Ao8nu5SeQiQWi2FoaAiVlZWwUCJvQXLyb/8D1Sf+MuW50apVWLe2SvW+YrEYfGE/KgDwBohPwjArOI6S7MQn3pK580kURMQ//E+oEkKznnPh1GnUH/1mVmNZCBTD/DJ6YQTmT3wEVdNSC6w3ZbblC1/FxCdxUJnzafTCCMyf/KcZ/aYysqwFGypZbUPbSrYq5LrSi0/DZ4fStme/JX+2rimGeCH0g+KFUALFi7qklnWIR+OalHkwkoKNlx/8APj5z6c+5/VCbFyFj74OGMqyAgDtcjc3esULZ2dpd+R8UgdNxaePfexjuO222/C5z30O73jHO+B2u5PHJEnC7373O3zpS1/CgQMH8OCDD2o5lLwiHA7j3LlzcLvdhTW5EgAAISyg7CyrPzOw/fVAiQccz2PJw3dq0l84HEb/yACWSQAf13/iE0dZ2h1XlmPB8bgw77n+Pj8sCeFp4JYHgNS7er19qD75PCxjg1mNY6FQDPNLx2P74JJEBFyLEGi7FQBgKi/Fjs/fndHrrbWJ3fCGla34Oh7dC5ckwu+uQbD1lhnHObMZKz90V/L/nrVMfLINpk+7u/DYXrglEX73YgRbbwYAmLxl2PHZ1ykal5YUQ7wQ+kHxQiiB4kVdTJapzqdio2Dj5ZVX2M/bbgOqEjehb74Z5zp4DA0BDgdwzz3KmrTbgfvvV3eYxYZe8cLbEm0bYAAoRjQVn17zmtfgk5/8JD7wgQ/gIx/5COrr61FTU4Ph4WF0dnYiFApBkiQsWrQIX/jCF7QcCkGoRsevj8MaCyBiLcENz35GlztPvC1zAUd1xpnzyeTNzfmUSdqdv5v1FTM7cdPvPjLlWMdvTyH6wPOwhMazGgdROASe2wMXgOANr8ZNT7xf8evtdcz5ZB5T5nySd6IL3fga3PSL9857fuU1DRgG4B7vhiiIM+aC4HO74QYQuvk1uOln/6BoLARBEASRSmraXTxKdTTzgs5OtrudyQR85jNAyq7vu/+X/dy2Dfjwhw0aH5EzsvjEk/NJFTT/1vyRj3wEzz//PLZs2YKLFy9i9+7dOHv2LILBIAAmUO3Zswf1lNRKFAj9T7FCglrtbJcO3s4EHFM8qixxXAU4H3M+WbIUn5QUHA/2sb4i9pl9uWqZ88oWnshqHERhkLqzXfXfZOc5d9azguNWf+bikyiIKDmV6DfDneiqNixCnLeAlwQMHOub2d4ZtrNdzT3knScIgiByo9idTwWJXFy8uXmK8AQAe9mSgtLnChxZfJJiBhgAihBdKp7eeOONeOWVV9Dd3Y0jR45gfHwcJSUlaGlpQW1trR5DIAjVMB1gVxPnrfptQWGysQWHJIFVITTrV6yYDzCxx1qZpfiUuFPHZSA+hfrGYQIQc8zsy11bglEA5ngYUX80s8LTRMFx+dnzcIRHEDM7se4N2e0IV7K8AiMAHMGRjIuypu5Etz7Dneh4Mw9/aR1KRy9j+GgXalomr2esvXFELS5suHtDVr8HQRAEQciQ8ykPkRWmadvSBQK0Y12xwNvZ9w1eIOeTGui63U5dXR3q6ur07DIvMZlMKC0tzXg3QCJ/GLs0Cm8f25lRi53t0mEymeCpKAMASCKAaFRX8ckcZOKTfVF2NZ8m0+7mXyhFBtnOenHXzL5c1S5IHA9OEuHrnkDF6sqsxlPsFPr80v3L3agAMNq4FRZndjn85Y1MfDKJUfj7/PDUzr+hRe+v97J+Fe5EF62qB0Yvw3e6C8D2yfaeZL/HWB7tbJeOQo8XQl8oXgglULyoi8k6+T4Wo/Op4OIlFpuys10qBw5M7lhHX321Qa94MdnYGs6IHceLkeLaJqFAcDqdaG5uhnOaPZPIfzoe2wdAwlhlk27ih9PpxKYtmwAu4XwS9LV9WkNMfHLWaF/zKTrM+hLdM/vizTwiViYiBHop9W42Cn1+kRIWdtuN2Yu7thIboha2wcX4xcxS75L93qysX6m+AQAQ6Zi2412iPbvC9vSm0OOF0BeKF0IJFC/qkuriFWPF53wquHg5ehQIhQCvF2hsnHJIzsYj15N26BUvvIM5n7g4iU9qQOKTAUiSBFEUIelcu4fIHf+z7GoS26rf1USSJJisHCTwECUw55NefYsSbBFW4Dt38Wn+hZIwnCgmXpK+r6idOaKCvVR0fDYKeX4JDgXh7WQ+9WUP5PYZC7tY0XHf5fnFJ3+fHxVdrN/lCvu1NjLxSbo6KT75enzw9hxn7b0lv1eehRwvhP5QvBBKoHhRFyY+MQGqGJ1PBRcvu3ezn21tAJ9Sj0si8UkP9IoXU6LmEzmf1IHEJwPw+/146aWX4Pf7jR4KoQBREOE5wa4mVXfpdzXx+/04dGgPBM4ESQKkqH6TX2gkBF5iolFJQ3Zpd3LBcU6c37EljvvYuaXpxSfBwZxPkSFfVmNZCBTy/HLusQPgpTgmShuweFtum1BES5j4FOycX3w6/9MD4CQRE6VLptRtygTPGjZO60BX8rmOxxPtlS3FoubFitrTm0KOF0J/KF4IJVC8qI/EMfGpGGs+FVy8zFLvqbMT6OlhFTK2bDFgXAsEveLFZGfik1mMIoMkDmIeSHwiiAy58pcOOMIjEEx2NN67Wde+LRYJMY7ZPuNh/cQnXxdzGMV5K2wltqzaSDqfpAxm7DHWn8mbXuiKu9nzkQFyPhUjY39k4m64OXdxVyxj4lOkZ37xafxPiX6vUd6vdxMTn9xjnck70cn2WmiLG4IgCEI9RI6tqaQ4fQs2lKEh4Nw5gOOAHTumHJJdT9dcM2MDPKIAMTsS4pMUQ4zMTzlD4hNBZEjXL9nVZHTlVt13WjObRQgcm/xiQf1mvmA/cxhFbNml3AHK0u44H6vlZKlI35/kYc/HhqnmU7EhiRIcR5iFvfw1rbk3WMHEp1jf3OKTJEpwHmWfbe/rlItF1ZsXQ+J4mOMRDJ8dgiRKcB1lv0fF68hvTxAEQagJcz6JAolPhiK7ntauBcrLpxxKzcYjCh9TouYTiU/qkL9b8BBEniG9wq4mlpv0dzNYLFJSfBKC+tV8CvUxh1HMkYP4ZGYaN5+B+MT7WX/Wyln6S9SCEkbI+VRs9OzrhMfXA5Ezo+mBrTm3Z6pm4pM0NLf41L37Ctz+XsR5C5re3KK4H4vTAr9nMTwT3Tjxrv8AnE5UB/oR561ZtUcQBEEQsyHyJphEEp9UQ5KAp54Cli8HNs+e1SCJEna//3HELrEU+0U9h1E+BBxraMWRf5167sGD7GerCvfRCONJdT7pWHa3aCHxiSAyILUQ8tI36X814XkY4nwKD0zADiDmyq7eE5Cadje/+GQOMkeTfVH6/vhy9rw0Rs6nYuPKL/aiDMDIkmZsqMzdp25dzMQnbmRu8anrd4dRAmC0YTMcXkdWfYVqV8Iz0Y3qY88mnxtZvgX2MntW7REEQRBEehIFxyntTh0OHwa+8AW2Y92f/jSlcHgqZ37ajvIf/Ufy/xKAEQD/e/Y6TN/sFgCqq4GmJm2GTOgLZ7WA4wCLGNV7w/GihMQnA3C5XGhtbYXFYjF6KESGnH/8ICySAF9JHdbuaNC1bzledpttQAwQQvqJT9HBcdgBiG4V0u4yqPlkDTFRybEofX9mb+L5CRKfZqNQ55fYi8xZyF+njrPQUc/EJ/P43OJTJLFqFFc0znneXKz+3ofR8e11kGJsVcJZzFj9j3dm3Z6eFGq8EMZA8UIogeJFfUSeramK0flkSLy8/DL7OTICnDkDrFuX9rSBX7+CKgAjizdA3M5uQvvL63HTxk24adq5HAdcfz37SWiHbvFiYeKTCQI5n1SAxCcD4HkeNlt2xZsJYxh9eg+qAYQ2tyW2utUPOV5EUyLtTkfxSRhJiDwl2TufTFa2UJov7U4SJdgirD/X4vTik6WSjYPzUdrdbBTi/BL1R1F+gfnU6+5Vx1noXlqBMACbf56aT53MQm9dkf3ueou31WPx/70769cbSSHGC2EcFC+EEihe1EfimDOnGJ1PhsSLXB1cfjyL+GQ5yM6zP/QAtv7zHXqMjJgH3eLFak06n6jmU+5QwXEDCIVCOHnyJEKhkNFDITLEcYRddMpeo3/1QDle4iamFcdD+snu8VEmBnGluTufeHFur2poJAReYue4a9P3Z63wAABMQV/W4yl2CnF+Of/LIzDHwwg6KrDsNnV86iXLmfPJER6Z8w6xtZ85n9xr9XU05guFGC+EcVC8EEqgeFEfWXwqRueT7vEyOAicPz/5/1QhKoWh04MoGzoPgEPT23akPYfQH93ixWwGx1HBcbUg8ckABEHA0NAQBEocLQh69nXCM9EFkTNh1Vu36d6/HC9iQnwSwvrFjTTGHEZ8mfZpd/4eJnTFecustXIcNcz5ZAmS82k2CnF+Gfo92zXGv0E9Z2HZ8nIAHDhJxPiVsbTnSKIE1xhzPlU0L0zxqRDjhTAOihdCCRQv6lPMzifd40XesW7RIvbz2DHA759x2sWfsvNGataidGmZPmMj5kW3eEk4n0h8UgcSnwhiHi7/jN0JGWnYDKcKhZCzRTSzrT71dD7BxxxGyVpLWZBMu5un4Higl4lPEVvJrAKEs4aNwxqmmk/FhGxnd9+mnrPQbDcjZC8DAIxfTJ96N3phBBYhBInjUb15sWp9EwRBEIQWFLPzSXdkp9PrXgcsXQqIIrB//4zTgn9h54nb9c9+IPKARM0n2u1OHUh8Ioh5iO5idzz4nQZfdOS0u7B+sjufqK1krczB+WSWpxlpzsVSqI/1FXPMXl9KrgVli/po4VUkaGlnj7i8AAD/1ZG0xwfbWcqd310Di5MK4hIEQRB5ThE7n3RFFIF9+9jjtjb2D5iReicKIkpPs+8Bi+5RZ0MUosBIiE8WiWo+qQGJTwQxB7FgDOUdBwAAtfcZe9FJOp90FJ/MQeYwslVnX3BcTrsD5r5TFx5gfQnO2YUuT93kMV8P1X0qBrS0swslrO5TqCu982n8BBOfIpXZFxsnCIIgCL0o5rQ7XTl9GhgfB1wuYMMGYGdijb9nDyBJydMu/uE0bNEJRC1uNP7NBoMGSxhKivOJxKfcIfHJAGw2G5YvX047gBQA5584CosQQsjuVa0QslLkeOGszJmhp/hkCTE3kmNR7ml3wNziU3SQ9RV3z96X2W5GzMxSH/3dVPcpHYU2v2hpZxe9lQCASPdQ2uPhDlbvSaxbmPWegMKLF8JYKF4IJVC8qI/EJ9LuYnOXMihEdI0X2eG0YwdgNgMtLYDVCvT1AVeuJE/r/RU7b2zV9inrWcJ4dIsXqxU8B3AQEYuQ6JsrJD4ZgNVqxZIlS2C1Wo0eCjEPg0/tBgD41rempI/pixwvnJVNrmJYv4RjW6K2kqs2e+dT6sV6rmLpwmjCyeSZW+iK2NlYgn1U9ykdhTS/aG1n5yqZ80kYSO98Eq8w55N5+cJ1PhVSvBDGQ/FCKIHiRQNk55MozXNi4aFrvOxm63u0trKfdjtwzTVTjwHAHvbYfjPVe8o3dIuXhPMJYBkxRG6Q+GQAtPtH4WA+xL4Yu15l3EUnududmdV8EqP6THxRfxTmeBgA4KrxZN1OqvgUj85+py4+knAylc4tPsUcbCxymh4xlUKaX7S2s5sXMfEJQ+nFJ3M/cz651yxc51MhxQthPBQvhBIoXtQnWXC8CJ1PusWLzwecOMEet6Ws7+XHiV3wJrom4O1h5614K4lP+YZu8ZIiPulpAChWSHwygFAohJMnTyIUChk9lKJCFES8/O4foeOpk6q0N3x2COWD5wBA9ULISpDjRTIxEUeM6CM++XuZE0nieLiqXVm3k2nanTTOxCRT+dwuq7iLHY8MkviUjkKaX3qeZHcUtbKzW2tYwXF+LH3BcdcIE5/KNy1c8amQ4oUwHooXQgkUL+oj8YlrpVR8zifd4uXAAVZwfNkyiIsW43/+B3jkEeD/O7ATPT1A568P4sWbHsHh134anCRivHw5qjfVaDsmQjG6xYvZnBSfhBA5n3LFbPQACEItjn/3ZXgf/zaG/rgUjXc/mXN7XU/shQXAcPVarFvhzX2AOSJZWM0nSS/xKVFTKWL15JRyyPFc8vGcd+ommJhk9s7tfBITNaGiwyQ+FTrcXlZLQSs7u3MJq/lkGZ9Z82miawK2KIuhRS11mvRPEARBEGoiJb4FF6PzSTfktLq2Nhw4AHz3u4nnpeW4JliLylgPqkd+nzw9uv06/cdI5A8cB9FkARBDPEIuzlwh8YkoGnzHL8MLoGTsCvrae1DTUptTe/IX47E1+WG15Szs4ypF9LF8hvrZF/OoPft6TwATnySOByeJc6bd8T4mdlmr5umvlB0XhqngeCGjh53dvbQCAQC2wMy0u4FDrN5TwFkFe5ldk/4JgiAIQk1k51Mx1nzSBUmaLDbe1pbUoZqbgRtu4DDU/3Xw519Jns677Njy8Tv1HyeRV0jmhPgUorS7XCHxiSgahEudyceXHt+DmpZ7s29MFOE5tRchANEt+SE+IVFQT4zqo7qHByZgASA4s9/pTkbkzDBJ0Tnv1JmDTOyyVc3dH5eoCSWOkvOpkOl4/ADsCTv7Oo3s7GUrmfhkj4xDCAsw2ycveWMnuuAEEKpcuCl3BEEQRKHBnE+SQM6nrLh8GejvZ2vqlhbs+QZ7+k1vAm6/HQBWJv4RxCSimWWf6FX6pJihmk8GwPM8nE4neJ7efjXhuyfFp8gLe3Jr7MwZ8BPjCPNOOHdszHFkuZGMF1vC+RTVR3WPDDBnUdyVu/iULJA5R80nS4j1Z6+euz9TeeL4ODmf0lEo88vEn9lnNKKhuOupK4HIsbvEoxem1n0KnWPzhbh44e50BxROvBD5AcULoQSKF/WR638Wo/NJl3iRXU/XXIP+cTsuXgR4HthhXGlXIkv0nF+khPgUD5P4lCt0NZiDeDyO//mf/8GZM2dUbdflcmHbtm1wubIv4kzMxD7clXxcfn4/hHAODqE9exCNAidd21G/zFiDoBwvFqeTPaHTbnexRE0lqSS3tDsAEBM28blypa0RVuDctXhu8clSycbD+cj5lI5CmF8kUYLrGPO6V9zZqlk/vJlHyMHqtU1cmpp6F7/MxCfT0oUtPhVCvBD5A8ULoQSKFy0oXueTLvEii087d8qb2mHdumRFB6KA0HN+kcws+4TEp9wpKvHpwoULePvb345rrrkGO3fuREtLC77//e9n1daTTz6JDRs24N3vfjf6+vpUHimhNlF/FG5/PwAgZnbAIgRx/sljWbcXf3kPYgJwzLUT9Xny3ZSzJgqOx/SZ+ISRhLPI48m5LSnhPpkt7S7qj8IisN0q5hOfrBVsPHyAxKdCpXPXJbgCA4jzVqx6YIumfUXdFQCAwNWp4pOpl4nVztWUdkcQBEEUBsXsfNKcSAQ4dIg9Tqn31JYn1TWIPEbnurvFTNGIT0eOHEFLSwskScL+/fuxe/dufOtb38KHPvQhvOc978m4nVOnTuGRRx7Bs88+q7rjScbv9+Pll1+G3+/XpP2FSH97NwAJMbMToxtvBAAM/G5vdo35/Yi1M+HqQlUrysrUGWO2yPEiyJ9WnZxP0jhzIvHl6jmfZku78/f6Eo84uGvcc7ZlX8TGI9eIIqZSCPNL5y/ZZ3NkeQtsJTZN+xJKmfgU6poqPjmHmfOpfNPCFp8KIV6I/IHihVACxYsWFK/zSfN4aW8HolGguhrxJcuxfz97msSnwkTP+UWyJOruUs2nnCkK8Wl8fBx33XUXzGYzvvOd78CS2JL+2muvxUc/+lF8//vfx49+9KOM2lq7di0eeeQRfO9738OiRYs0Ga8kSYjH45AkumuhFiPHmIvBX14P1207AQDmfbuza2z/fsQiIvqsS+BsrEViV1vDkOOFsybS/2I6qe6Jmkpmrxo1n+Z2Pvm7WV8Rqwe8ee5pybGIjccaIvEpHYUwvwgvsc+m+TrtV3ySl4lP0d5J8Sk4FIQjzGpAVbfkibXRIAohXoj8geKFUALFi/oknU/x2WtoFiqax0vKLncnT3Hw+Zi5f/16bbojtEXX+YUKjqtGUYhP3/ve99DZ2Yn77rsPnmkpQu9617sAAJ/+9KcRyyBdiUtRGux22n67UPCfZi6G2KIGNL6N1ZApHzgzo8hwRiTqPeVTyh0AmOxs4uN0Srvj/EzckWss5YKUKAY4m/gU6md9RRzz9+WqZefYIuNkOy9AIhMReC+1AwAa3qS9+MRVVwIA4gOT4lP/ISZWh21l8zrtCIIgCCJvSHxPKUbxSXNSxCf54Y4dQELPI4jZSRhbJJ2yT4qZohCffvCDHwAAbrrpphnHGhoasGLFCnR3d+O5557TeWSEXsQusS+TXEM9yld6MVq1CgDQ8dg+ZQ1JUlJ8Ou5uQ0MeZeTwNjbxQSfxyZSoqWSryt35JPLMtTWb+BQeYH0JjvnrS3nq2Hh4KY7QSCjnsRH6cu5n7TCJUQRc1Wi4Ybnm/VmqWcFxDE+KT2Mn2HwRqMijDzhBEARBzAdfvM4nTenvBy5dYlvbbd+eqkMRxPzIdXep5lPOFLz4NDg4iI6ODgDAunXr0p6zYcMGAMAzzzyj27gIfeG62ZdJexP7MilsY6l3gef2KGvoyhWgrw+huBVnnC15JT5xCfGJE/QRnyxBlgpnr85dfALHpprZFkuRQSY+xV3zO59sJTbEeZZ77esaz31shK4M/4F9JgObdoLjtc9ptdWytDt+bFJ8CpxhTsn44jz6gBMEQRDEPMhOchKfFCKrTRs2YFwqwalT7L8kPhEZIdd8iuawkzoBADB2D3kVOHnyZPJxXV1d2nNqa2sBACdOnNB0LJFIBJFIJPn/iQn2hdrn801J5+N5Hi0tLbDb7fD5fDPakVMHg8Eg4vGpThG73Q6LxYJoNDqlLwAwmUxwOp2QJClt8TWXywWe5xEKhSAIUz88NpsNVqsVsVgM4XB4yjGe55PbWKYbr9PphMlkQjgcnpHaaLVaYbPZIAgCQqGpLhWO4+B2s5QXv98/I2fX4XDAbDYjEokgGp2qNFssFtjtdsTjcQSDQVj7rwASYFlRCZ/Ph+q72yA9/SO4T+zB+Oj4lDpCc72HthdfhBXAGdtmhGBFeXkAPt/kBd7tdoPjuLR/m7neQ/lvM9t7ONffxmw2o6WlBcf2twMSIEYjyTZS/zbp3kP5b5PJe5gKx3Gwhln8cqWWGWOW/zbp3kOz2QyHwwFRFBEIBAAAcY4DJMA/5oMkSTPew0DfENwSEE/Ew5zvIQeErR64QsMYutgL50r3vO+h/LdJF4eZvodzxfds76Ec34FAAKI4daE4V3ynew9TmWuOsFgsaGlpgcUy8++WD3OE9eArgATYbroGPp9P8znCXlfG5obxweTYwh2X2biX1Kf928w1R8z3tzFijpjrPZwvvm02G1paWmAymWb0O98ckUl8q/0eyn+bud7DXOJ7IcwRuawj7HY7WlpawHHcjHgp9HXEdOT3cKHPEbmsI5xOJ1paWtKOmeYIhtI5Ii5JgASEg2yM+TZH5LKOkONFFMUp8cL19sL5xBPg3/52hCsrs5sjdu9GXBQRa27GCy8EIQg2LFsmwuvlANAcYdQckcs6wul0orm5eUa8AOrPEXGefY+REuPI5zki3Xuo9RyRLt5mo+DFp5GRyZo+0+s9yZSUMOfGwMCApmP58pe/jM997nMznj969Ggy4ACguroaa9euRSgUQnt7+4zzb7yR7dZ25syZGX/MNWvWYNGiRVMcXzLl5eXYtGkT4vF42nbb2tpgtVpx4cIFDKekoADAihUr0NDQgLGxMZySbwckcLvd2LKFbYd++PDhGR+YrVu3wuVy4cqVK+jr65tyTE579Pv9OHr06JRjVqsVbYlbDsePH5/xodi8eTPKysrQ3d2Nzs7OKcdqamqwevVqhMNhHNh7AJXj3RAlEX3mMfgPH0bbG9pw6r1O2EPDeOG//ozytsni8evWrUNVVRX6+/tx8eLFKe2ue+klVErAfm47AoEghoePo719chK49tprYTab0dHRgdHR0SmvbWxsRF1dHUZGRmbslOjxeJILsHR/m+3bt8PhcODy5csz4nTp0qVYtmwZBF6CKIoQgoFkG3a7HTt27AAAHDt2bMaE1dzcjNLSUnR2dqK7u3vKsdraWjQ1NSEYDM4cUxyoirJJtyfQj572qWNav349Kisr0dfXh0uXLk05VllZifXr1yMWiyXblQQRoiji8oWLaJbawHEczp07h/FEUfPhC5dRJYqIOhwAgKGhIZw7d25Ku6WlpWhuboYkSQiY7HCIIs4dOImhCvYZaW1thc1mw8WLFzE0NDTltcuXL8eSJUswNjY2RbAG2IS/bds2AGzXzOkTbEtLCzweDzo7O9HT0zPlWF1dHRobG+H3+3HkyJEpxywWC3buZA68EydOzLjAbdy4EV6vF729vbhy5cqUY/IcEYlEsp4juru7826OOPrnwygZvgSB4+BbY0Z7e7vmc4StrgRhUYTVNzD5O59lNyKca5bgzJkzMxbQc80RFRUV2LBhAwRBSPseGjlHTExM4Pjx41OOZTpHdHR0KJojTCYTrrvuOgBsl9jpCyKlc0Qq119//Yw5QmbVqlVYvHjxvHNEunZpjmDkuo7weDw4ceJEUa0jpv+uHMfhhhtuAACaI7JcR8hzhMfjwYEDB2iOUGmOCIYjEEURfT09mJiYyMs5Ipd1hMfjwa5du6bMEUt+/GMsOXwYcLlw5dWvVj5HbN8O7N+PUCiE0x4PfvvbAQQCFait7YffX0lzBIydI4Ds1xF2ux17987c3VztOcIW8MMtihAT15h8niNS0WsdkU68mg1OKvAtKB599FE8+OCDAABRFKc4jGQ++9nP4l/+5V+wcuXKGZPoXCxbtgxXrlzBCy+8kLae1HTSOZ8aGhrQ1dWVFMAAIB6PY3BwEHV1dTOCD8jPuxH5fMfy8isXEHn1WyCYLFh69U/gzTw8Hg9e3PJhVJ/ehb77/g7b/vMtGb2Hjr/7O4inOvDeyNdwvPw6/PnPQfApyalG3I2QJAn9/f0Y+sswSj/8Pvi9dVh7+lEA2t2NGDk7hMCNb4TE8VjS/ZcZCbpK71geXfdueIcvIPhv/44t/3DjjPdw3xu+idpXfo2Bu96Fm372D/Pejdi16m9R1X0M45/6HDb84w3zvocL6W4Ex3Ho7e1FTU3NjNcZPUe8/JFfwvvdr2KwdgNaDn8LgPZzxETvBLpW3gIAqDr7R0TGwxjf8QZwkLCo/U+w1zsW9B1LnufR09OD6upq8PzUDzo5nybfo2KaI3JZR5hMJnR3d6OqqgqmaVV6C3kdQa4GbVwNZrMZnZ2dqKioSO5ELUNzBEPpHHHg+k+j5twrGHr4o9j5r/fm3RyRyzrCZDKhs7MTXq8XVitLc4IkwXHffTCNjIC76y6EP/Yx5XPEhQvA3/4tBJcLwad+i3vf6MLwMId///cwbrjBRnPEPO9hvjqfOI7D1atXUVFRMRkvCdSeI3re9QXE//AX7G77EN79l7fm9RyR7j3Ueo6YmJhAfX09xsfHp2ge6Sh455Mj4ZQAWKrO9OCTnweQ/EBqhc1mg81mm/G8x+OZ4sry+Xzo6elBTU3NrG4tYO7xWq3WtL8rwAJxrnZT37PpWCyWGQuEVOZq1263z7pDoNlsnvO18gcnHbO9rwCbJELnRsBzQKCsAaXlkzWDbDe2AWd2wXzgEDyev5/x2hnvoSQBPT3wR4F+6xIsXWpCaWn6Mc/1t8nlPUz3t5HjxW5zARxgjgtp28jlPZze3uAgU91Ddi88s7wHwNxxyPN8sl3ObAE4wGa2JgXi1PfQHAgAHGCpKAMw93vIcRykkjKgB+AmIjPGPld85xKHc8V3uvcwlVTn43Tm+tukvofpSBeHmcwvRs0RwksHAA7gdl474zyt5gjPIg/iJitMYhTxwRj6/ngKTkgYq2zCutWVs7YJZB7f6dBzjpDJ5j3MJF5yiW8j3sNc4nshzBEy2awjMomXQlxHFFJ8A/rOETLZvIeZxAvNEYxM45BPrKesZgvMZvY1Lp/mCJls1hFp4+XiRUDOcvH7s5sjEvWezDt3YmCoFKOjgMMBXHedC4m3kOaIBIU0z/p8PvT29mLx4sWztq3WHGF1uxDiACRqPuXzHJEOrecIJV6mgi84nnp3P50Cn/r8okWL0h4nChvfKWaTjVTXT3l+2VuYDdHbeRSBgQzsgKOjQDCIaIzDgKUO9fXzv0RPLE42QfJx7QuOB64yq3TEXaFKe3KBzNl2u+P8rL6UpSLD4uYlTGQURiZyHxyhC/FoHGXn9gMAau/dqVu/HM8h6GIi08TFIfif2Q0AiG2lKqMEQRBEgbHQCo7LhcIBQEFqT9o22tqSD7dsAWbRhAhiBryVqZS8QLvd5UrBi09r165NOil6e3vTniM/v379et3GRehH5CLb6W66WrR4ax0mShvAS3Gcf/zg/A11sXbGbNUQeGte7XQHACYHu0rqIT4Fr7I8ZqFUJfHJxCZtSUgvPpkCTESyVWUoPpWy8+KjJD4VCh2/OQFrzI+ItQQrXrtW176jHhbHgStDcJ9ktQGq7iLxiSAIgigwZPFJXCDi0+7dk4+zEZ/GxpDc2q61NVWHIoiM4WzsO5gU1WfH8WKm4MUnr9eLTZs2AcCM4nUyctGvm2++WbdxETqSKBBoWzlTLQo3s6vL2NO7ZxybQUJ86jOzdvJOfLInVHcdxKdoL3M+SV51xCdwc9+pswSZiGRfVJr2+HRMifRKaWx8njOJfKH/1+wzOL62dcruk3oQT4io48/sgzM0DMFkR+O9m3UdA0EQBEHkjFybbyE4n8Jh4PDhyf/PkuEyJ/v3s7IaK1ci5KlONkfiE6EEzsqyTziBxKdcKXjxCQDuv/9+AMBLL70041h/fz/OnTsHr9eL22+/Xe+hpcVqtaKurm7WHGBCGbYBJhp51s1Ui8rvZFcXx9E9kMR58lETItYVkbWTL2l3crw4S1l+sUnU3vIZH2T59VylWml3rDCtGBXSHreGmfjkrMnM+WT2Js6bIOfTdPJ1fuH3s9uNzlsNWPFVsDgu3f8MAGC0cRus7vx6f4wiX+OFyE8oXgglULxoQBGn3c2Il/Z2IBqdFNyycT7JVqedO9HeDsRiQE0NsHSpOmMmjEPP+cVkT9SGIvEpZ4pCfHrPe96Dqqoq/PznP59RBf6HP/whRFHERz7ykWRxsOeeew4bNmzA1772tTnblSvVT68cnys2mw2NjY2zFv4iMkcURLjHmPhUsXmmWtR0/xaInBkeXw969nXOOD6Fri5IADrCrJ18cT7J8eIsTRSoE0X2T0sS2+NaalRyPiV2RUpX80kURNiibFcOd11mzidrJROfeD+JT9PJx/ll/MoYvH2nAQAr3tKqe/98FYtjOc4sN9ItT5l8jBcif6F4IZRA8aIBshBThGl3M+IltUAToFx8kqQp9Z7kDL6dO4E0m6MTBYae8wtvS9TdjVHNp1wpCvHJ6/XiJz/5CXw+H973vvcld7c7cOAAvvzlL+POO+/Exz/+8eT53/jGN3Dy5Ek88sgjs7a5Z88eDAwMAAD++te/qjreeDyO8fHxGdsWEsoZPjsEkxiFyJlQvXnxjOPOSidGljQDAK78bM+M41Po7IQQA7r5BpjNQL7Up5fjhbczAUeStM855kdZzSdbrbrOp3SLJX+fHwBzpbkXz77bQipybShzkMSn6eTj/HL+0X0AJIxVNKJybZXu/VsWT43jpW/SXwDLV/IxXoj8heKFUALFiwYUsfNpRrzIwtGrXsV+BoPKRLeODmBoCLDZgObmZHOttAQoCvScX2TxCUL6DA4ic4pCfAKAO+64A3v37kUgEEBrayuuv/56/P3f/z0+//nP47e//S1MCecFALz5zW+Gx+PBO97xjhntHDp0CJs2bcJ1112XfO7zn/88VqxYgS9+8YuqjDUYDOLIkSMzXFqEcoYOMzeTv6QWJqsp7Tn8dWxnrdiu+cWnaBQYsNajtjZp1jEcOV5i0qTaLoS0FZ+sE8z55Fwy91b0GTOH88nfzeo2xczO5I5+82GvZuKTJUQ1n6aTj/OL/1n22Ytt02+Xu1QcdZPik6+kDrU78sTWmAfkY7wQ+QvFC6EEihcNKGLn05R46e0FLl9mv29qzV4l7idZbdq6FT1DVly9yprbvl3VYRMGoef8ktz0iXa7yxmz0QNQk02bNuHnP//5vOc9+OCDePDBB9Me27JlC44dO6b20AiNmDjVBQ+ASOXsBZrq7m1F6LFvovzCQUT90fS1Xnw+YHwc0RjQ76jHljyp95SKzT0pzMQCUVjKtevLHmDik2epV5X2JPlOXZrd7oJ9zL0UtWXmegIAV20pogBsYXI+5TuSKMF9gi0AK19nzO1GZ0MF5HtVoc1t4Hjy2xMEQRAFSBE7n6YgC0cbNwJeL2CxsIJNgQDgyXC9mJJyJz/ctAlwu9UfLlHcmGxMMqGC47lTNM4nori49OdzePGWz2P0wsic54XPM+eTVD+7k2HZbU0IOipgjodx/pdH0p+U2OnOZ/Yiwjvzpt5TKhYrhzjHJr9YSDvbZ9QfhTXGdhQpXaFWzSc27nTiU6g/IT45M6v3BADu2kTaXTyMqJ/uQuQDr7z3p3jlHx6b8fzlZ88nd5hremOz/gMDULJ8Mo7LX2uM+4ogCIIgcqaInU9T2LuX/ZS3pZMVo0ydT8EgcOQIe7xzZ6oORRCKSTqf4jFI8+xfRcwNiU9EXnL1o99C9b7f4tg//XjuE8+eAQBYm2bftoLjOfjXMo/tyIuzuNoSO911cUx1ysddMHgeEHg2+cUC2gkuox3M9RTnrXDXqHR7SL5Tl2axFO4bY/25MhefXNWu5ONAfxZb7xKq0tfeg/If/QfK/+/rMwr7dz/JFpCjK7catsOcd1UlwrYyRKwlaHpgqyFjIAiCIIicWQjOJ0EA9u1jj3cmbhi5Eus+f4ZrvrNnmVOquhrC4gbs38+eJvGJyAZ5tzuzFKOyTzlC4pMBcBwHi8UCjrZaSEtkIgLvpUMAAMuh2es0sfPaAQD192ybs01T43IAQPxKV/oTurogisApHxOfts3dnK6kxovIJ5xPQe1snxOXmPgUclaol56UqPkkRWfO2NFe1p9YlnmKH2/mEU8IcZHxsAoDLB6MmF8uPT75Ob08rbC/+DLbXsZyg3ErPqvbipo//hCL/vR/cFY6DRtHPkLXI0IJFC+EEiheNKCInU9yvJhOn2YOp9JSYM0adlAWnzJ1PiVuKmP5chw7ziEYBMrKJpsjCh895xezg4lPFimKGGXe5URR1XwqFNxuN3bupNSP2Tj3s3aYRObsKRu+gMGTA6haXz3zvMcPwSRGEXAtwtobls/ZpnMVK+Jk6ulMf0JXF4JBoNdcj5oaYNmynH4FVUmNl7jJCsS0LTgeuDoMK4CoR6WUO2BSfEqzI4UwkEitrFTWn2C2wxSNIuaP5Dy8YsKI+SXyU+nqlQAAf9NJREFUwqTgFN21F8CbAADBoSC8V48AAJbeb+ztRioynh66HhFKoHghlEDxogFzOMkLnWS8fPe77InW1kmxTU67y9T5lCingYaGZAbfjh2TzRGFj57ziyw+maUYiU85Qh9BIu8Y/sNU58TFn+5Nf97T7PnApvkLCJeuZ+KTY2QW51NnJ/wBoN/SgLY2IF9v0okmNvlpKT6Fu5kTSShVp9g4gMmtA9PYxKXBIQCAeZGynfUEsw0ASHwyGCEsoPz8/uT/yzsOJJ155392CLwkwOepJfGHIAiCIHLFlPjqlqaGZtGQrkCTUueTLD7V12M3M2CDdFAiW3i7FRxIfFIDEp8MIBAIYN++fQgo2S50AWFLpNqNVTQCAELPp0+9k88ruWN+R0V1CxOfnKFhBIfSbMnZ2Qm/H+i3NuRdPnhqvEiy+BTUruZTtI+JT6hQJgbNiex8SrNY4kZZf7ZaZc4nkcSntOg9v5x/8hgsQhBhWxlCdi8sQgjnnzgKABh9mn1GQ807aYe5PIWuR4QSKF4IJVC8qA8nW3eKsOpxIBDAweeeQ/zkSfZEa8oOuUqdT4m0u4nSBpw5M7M5ovDRdX6xWMBxTHyK0j5HOUHikwGIoohwOAyxCC2zuTJwrA+lo5cgcTzcn3w/AKD0zD6IgjjreU1v3T5vuyX1JQjbWEHr/kPT3E+hEKK9Q4hGgSF7fV7VewKmxotoZuJTPKyd7C4OMDGIr1Ix7S5ZIHOm+GQZZ/056pX1F7cw8UkIkPiUit7zy8DvmANxYl0rfOvZym7wt0x0sh9hP8tek2eKLpGErkeEEiheCCVQvGjAHOupQkcURVgPH2bC2qpVQGXKTVAlzidJSopP7YPMdb1qFVCh4rKWMB5d55ek+BSlguM5QuITkVdcfIx9WR2p3YD1f9uKiNUDW3QCHU+dnPU8T60no7aD5cz9NHZimvjU3Y1AAAiYSrCiuQSezJozBNHMimxrmXaHYSYGWWpUvEqbE+Xl0jifbAHWn3upQueTLD75qeC4kZj3MT+761VtcN/OPO3mg3vQe6ALJeOdEDkT7TBHEARBEGoglzEoQucTAJSkcz0Bk86nTMSniYmkQ+qvHXUAaJc7IkeS4pNAzqccIfGJyCvCicLFUmsbTFYTxlcxV1Pfr/ekPQ9tmSdwC4vZ3Y/A2WniUyLlbsBSn/f54HLanZbOJ1PCiWSvVbHmk3ynbpr4FI/G4QiPAQBKVygUn6x21kaIrgJGMXphBOUDzM++8q2taHzrDgAcygfP4fzXfw8AGGnYDFe1y8BREgRBEESRIKewF2PNJ1GcFJ+mq0VKnE8J15NUVY1XDtrSNkcQirBak84nqvmUGyQ+EXlDPBpH2TlWuHjxPewq4biVqUHcvj3pz3tD5lcTfikTn4RLU3e8i1/uRCCQn/WepiNZEuKThoKLdYIVAHctVbHmk1kuOD51sTR2aRSABInjUbq0TFGTUsL5FA9S2p1RdDy2DwAwWrUK3qYKlC0vx0jNWgBA2e8fBQBw+f6hIgiCIIgCgSti5xN34QIsExOQ7HZg8+apB2XxKZOaTwnxadxTj5ERwOGY2RxBKMJsTtZ8IvEpN0h8MgCHw4GNGzfC4XAYPZS8ouM3J2CN+RGxlmDl69cBAFa8lX1x9faexETXxIzzVrx2bcbtO1Yx8Ynvmep86j/UBVEEJkrqsWaNGr+JuqTGiyTXfIpok3AsiRIcwREAgGeZeml38mJpeo2C8YvMZRWyl4M3K5uOJCtLQSTxaSp6zi+B55goLGydFJji25hV3hxn6ZB195H4lM/Q9YhQAsULoQSKFw2Qt2MuwppPjiNH4HA4wG/bBiTWeEmUFBxPiE8XY2zdv20bkLh3SxQRus4vVis4nsQnNSDxyQDMZjO8Xi/Mch0cAgDQ/xv2RXZ8bWtSiKhaX41x7wpwkojzjzKXRf+vd884LxNK17OaT/ahqc6nkWNMjPJubpCzw/KKKfFiYRdjMayN8yk0EkqKBmUrVEy7k+/UxacWBQxcZeJTxJ2F0GVNOJ8CVPMpFb3mF1EQ4TnJio1X/81kvmrNPZOPQ3Yvlt2+StNxELlB1yNCCRQvhBIoXtSHMxev88m0fz/MZjP4a6+deVBJ2l0XW9cfG2HrftrlrjjRdX6h3e5UIw+/ahc/kUgEly9fRiRCjo1U+EThYsfNU68SkS3MOSH+x9fx0qp3wfOnXwIAnLcqc1RUXcMuQm5/P6L+yZkjdpGJUUuvb8hu4BozJV4SE6wY0UZ2Hz3PUu5iZiccXvXuJHCzpN2Fupj4JJRmkeJnZzWfxBB9jlLRcn45/l+7sWvte/DSqndh9+p3whEeQczsROMbNiXPWXn3BkQtbJHoW69MICb0h65HhBIoXgglULxoQLE6n4JBiIcPIxKNItLSMuVQZyfwrR+6EYkiM+dTVxfiInCwn63r872eK5Edus4vKeJTLFp8wq+e0LcCA4hGo7hy5QqiJJ0mGb8yBm/faQDAyrdNFZUWP3AzAMAVGEBF9zHYohOI81Y0vl3Z1aRseTliZicACQNHegAAoxdHYRvtBQBsuHNpjr+FNkyJl8SdH2HUp0lfvsuJNDiXyvvRypayaYulaC/rTyrPwmVlY84nKUyL2lS0nF8mvvyfqLzajoruY/D2nQIAjK6/DhbnpJ/dbDdj7JpbAADlb3yV6mMg1IWuR4QSKF4IJVC8qE/ROp/OnoUUi8HvciG6aNGUQ9//PvDiARdGR5BxwfFgAOg1N6C+Hqiv12bIhLHoOr8kxCcAEMLalD5ZKJAPlsgLzj+6D05IGKtoxLq1VVOOrX5zM85bf4TAlaHkcxUtS+FtUiaQcDwHf3k9ygfPYfhIJ+qvW4aOR/fCBVYwed3KMhV+E20xLakD9gPxK13zn5wFwc5h2AHEPOqKT5wlMdVME5+EfiY+cZXK++PsJD7pyeiFEZQPngUABD/1RZhdNnBmE7bfv2XGuTue/Bh6992Pda9ZrfcwCYIgCKJo4fgidT4l6jSFa2qQWu1JFIG9ewET74YgYH7xKRAARkfhDwD9VfW4i1xPhBokdrsDACEUA0BFxLKFxCciL/A/uwdOALGt6VPpmu7ZoEo/sUUNwOA5+E+zi1zguT1wARC2FEZCeLJoeq824lO4dwR2APEylcUnU3rnE4aZ+GReROJTvjMp1K7Gtf98x5znOrwOrCDhiSAIgiDURa6hKYpzn1doJOo0Raqm3oA+dw4YGQHcvAtCHEAoxH732Yq0dnVBAtAfKUfY5KJ6T4Q6pDqfQlRxPBco7Y4wHEmU4D7Bio1Xvl7bnbG4JUy8iV3qmlIwueruwrg1UraBeYcd04qmq0WsN+Euq1A57W6Wmk/8KOvPXq+85pMsPiFMBcf1ILmz3TbavY4gCIIgjCB5M69Yxafq6ilP72FLD4RMLuZ8Auau+9TZiWgUuCo1wGwGtm7VYKzEwoPnk4KnVnV3FwokPhmA2WxGdXU17f6R4PKz5+EMDUMw2dH0xmZN+7I3MvGG6+7C5WfPJwomO9B032ZN+82F1Hip3sLEM1dwEOEx9UUXaZA5kUyLsigAPgecKb34ZPGNAACcDcrFLt7JCo6DCplOQYv5RRREeE7N3NmOKHzoekQogeKFUALFiwbwRSo+dXaCA+BYvXpKvMjiU5yzIBxPJOTNlXrX2YlAAOi31qO5GXA6NRsxYTB6zy+SiaXaCUGqYZcLJD4ZgMPhwNq1a+FwqLebWCHT/ST7Uju6Ygusbus8Z+dGyXom3tgGO9HzJLuija3cOqVgcr6RGi8l9SWIWEsAAP3t3ar3xY0w8clak0UB8LnaNae3idsDrD/3EuX98c6E84nEpyloMb9c+tNZOMKjbGe7ezaq1i5hPHQ9IpRA8UIogeJFfYrS+SRJQGcneJ7HsmuvTcZLIAAcPTp5mh9u9mvPJT51dcHvBwYs9Wgjo3ZRo/f8IprZd9R4hAqO5wKJTwYgiiJCoRDEYrpw5ID4ChOBLDdq76iovIaJT+6JHkgvvZzoN7+vTtPjJeBl7q3RY+qn3pnGmRhkr1O55lOatLuoPwpblO3aV7pCeX8mBxOfuCiJT6loMb/IQu1oY34LtYRy6HpEKIHihVACxYsGFKP4NDEB+P2QAIS83mS8HDzIlo0NDWyD45ApUfdpDvEpfpntdNdvbSDxqcjRe36RzGz9K4bJ+ZQLJD4ZQCAQwP79+xHIZLvQIic4FIT3ymEAwNL7tb9KVKyuRJy3gpfiqOg6AgBYpkO/uTA9XoRFTHzyn1FffLL5mfjkWqJRwXFxUnwa7WB9xXkLPLUexW2aEs4nLkbiUypazC9Swvduu4lS7ooNuh4RSqB4IZRA8aI+nJx2JxWR+JTY6S7u9WL/0aPJeNm9mx1ua2OlSEN8ou7THDWffGe6IEpAuKoBTU1aD5wwEr3nl6T4RDWfcoLEJ8JQzv/sEHhJgM9Ti9odDZr3x5t5+Mvqk//3ldTp0q+a8Esni6ariSiIcARZDabSlSrXfLKwfGwuxfnku8L6CjkrJrcOVoDZxcQnnpxPmhIYCMDbdQwAsOyB/BZqCYIgCKKYkW/mccXkfEqIT2JdXfIpSZqs99TWBlRWAiHezcSn2cSGSASRzgEAwPLr65O7kxGEGsjiUzxM4lMukPhEGMro0+zKEtrclpUAkQ2R6knxKdRceE4OuWi6qVtd55OvxwdeYnnMZcvLVW076XxKEZ8CV5nzKerOzmVldrOC4zw5nzTl/E8PgJfimChdgsVb6+Z/AUEQBEEQmlCUNZ8SO91JKeJTZyfQ0wNYLMCWLRk6n7q7EfAzkarl5lIdBk4sJCQLq/lEzqfcIPGJMBT7ESY+lb1GR0dFw6TTqfzOwnNylG5IFE0fUtf5NH6RiUERa4nqdX3kmk9cStpdqHMIACCUZSk+OdlFgBdIfNKSsaeZ7z3c3GrwSAiCIAhiYVOU4pPsfKqfvDksu57kHesqKhI1n+YQn8aOdyIcYfWedrSS7YlQmUQWB6JU8ykXSHwiDKP3YDdKxjshciY0vWWbbv3aVrCLm8iZ0fTAVt36VYuqlkTRdH8fYkH11HffJSYGhd3qptwBAG9JU3C8j4ld8GYpPiXS7kwkPmmGJEpwHGO7URaiUEsQBEEQRYXWNZ+iUeBTnwIefVSb9tMhO59qa5NPpabcAYDXyxxN8TnS7i7+NVE7anE9ysq0GiyxYCHnkyqQ+GQAHo8HN954Izwe5UWWi4meZ08CAEYXr4Or2qVbv4tf0wyJ4zG07gY4K5269Zst0+OlfKUXMbMDnCRi4Givav2EulkNpliJusXGgZTd7lIWS+IAE5/4quz6s7iZ+GSOhXMbXJGh5vzSs68THl8P4rwFTfdvUWF0RL5B1yNCCRQvhBIoXtSHN2tc82nPHuCZZ4Af/1ib9tOREJ+cq1fjxhtvhM3mwcGD7JAsPlVWAsF5aj5N7D0FAPBsXq71iIk8QPf5xUIFx9WAxCfCMILn2MUmXrdU136X3daEil2/wY4/fU7XftWC4zkEEkXTh4+oV/cp0sPEILFcA/EpWSBz0vmEESZ2WWqy689awmo+meLkfNKKK4+zlLvRJc0FIdQSBEEQRFHDz9w9WFVky1FYpxt7gUByPYhE2t2RI6z7ykqgsZEdSqbdxZFWfBIFEaWnmVN78V3bdRg4seBIiE9SlMSnXCDxyQCCwSDa29sRDAaNHoqhxC8z4cS0TP/d5mpaauHwOnTvNxvSxUt0EXvP/KfVE5+E/kQaXIVXtTZl5LS71N3uTGMszc9el6X45Ek4n+IRSKKU4wiLBzXnl9gutgjlr6WUu2KFrkeEEiheCCVQvKhPsoyBpMG6R5KA3eymE8JhbfqYTsL1hPJyBDkO7e3t2LWL1dRpbUVyxzpWcNw9a82ni78/BVt0AlGLG433bNR+3ITh6D2/cNZEPVyq+ZQTJD4ZQDweh8/nQzyu0V2LAsHUw4QT52r9xadCIl28cA3s7lD0onpFx6VBJgaZF2lQ88nKivSlOp+sPiZ2uZZm158sPgFQtfZVoaPW/BL1R1F+8RAAoP6NJD4VK3Q9IpRA8UIogeJFAxJqDKeF80neYg5gBc1jOqytEsXG0dCQjJc9e9jvuDNlQ+rU3e4k/0znU++v2M2ysVXbYbKaNB82YTy6zy/WRM2nqKBPf0UKiU+EYTiG2QWndH39PGcS07GtZO8Z16We84kbZWKQrVaftDtHgPXnWZqd08pWMik+hceo7pPanP/lEZjjYQQdlVh6a6PRwyEIgiCIBY+mzqe9e6f+X4/UO9n5lEi5Gxuz4NIlHhwH7NgxeZosPkkSIIyl2e1uLxOf7DfRzryENnA2cj6pAYlPhCGERkJwhpj4UN1C4pNSStYzt5htQD3xyTLBcu4d9eqLT8m0u4T4FBwKwhxni5rS5dmJT2a7GRLHprCoj+o+qc3Q79hCzr+xDRxPWxYTBEEQhOFo6XySU+5k9BCfZOdTQnw6daoEALBuHVBaOnma1QpwbrY5UXRsqvPJ1z0Bb88JAMDyt5BTm9CGZNqdHo7AIobEJ8IQ+g+xOx0RawlK6ksMHk3hUbGZXaTdEz0QBXV2PLH5mRjoXqrdbnfyYmnsAusrZnZmXcia4zkIJuZ+ivlJfFIby0G2CPXcTgs5giAIgsgHNHM+RaNIbjEno6f41MBuqp48yb4TtKVZetgq3ABmOp86Hj8AThIxXr4Mi5oXazdWYkHDk/ikCiQ+GYDdbseaNWtgt9uNHophjB5jF5uAl+o9zUe6eKnasAhx3gJeEjBwrC/nPuLROBzhUQBA6QrtnE+QmFDmu8zEp5Art77iCfGJnE+TqDG/DJ4cQNnwBQAcGt+6Y97zicKFrkeEEiheCCVQvGiAVs6no0eZ2FRRwf4B+qbdNTTAarXj8uUacByXVnxyVDHxSfRNdT6N/5HdLIu07JzxGqJ40Xt+4Wys5pNE4lNOkPhkABaLBYsWLYIlsWXjQiRwll1shBpKuZuPdPHCm3n4S+sAAMNHcy86PnZpFIAEieNRurQs5/amM73mU+BqwvnkyVF8MpPzaTpqzC8Xf8rqPozUrEPpktJ5ziYKGboeEUqgeCGUQPGiPskyBmo7n/awVHu0tgKOxG7QWotPkQgwMMAe19fj/HkLwmErPB4eGzbMPN1VzdLuxGAYSBSZlkQJruNs7BWvpXpPCwm95xd58yQ+RjWfcoHEJwOIRqPo7u5GdAEXLBMuM8GEX0rOp/mYLV6iVUy4mziVe92n8YsJJ5K9HLxZ/WlBXizxCfEp3MP6i5dmV+9JRhafhACJTzJqzC+h59lCTtxBKXfFDl2PCCVQvBBKoHhRH7kGo+rOJ1l82rkTkJ0koZC6fUynu5v9dLuB0lK89JKAWCyKLVviMKXZsM5Tw8QnQQAQYO6nzl2X4AoMIM5b0fTmFm3HS+QVes8vvJ05nyjtLjdIfDKASCSCjo4ORCIL9wsz380EE8cqEp/mY7Z4kerZexe9kLvzSXYiRdzqp9wBgMnG7hbIiyWhj/WHysqc2o1b2QKJxKdJcp1fREFE6Zl9AICaN5CFvdih6xGhBIoXQgkUL+oj19CUyxiowuAgcP48klvMyeKT1s6nlJQ7cBx275YQDkewdWt6McFbbUaMsyEuAPCzuk9dv2Si2cjyFtjLKL1zIaH3/MIndrvjBBKfcsFs9ACIhYl9iF1wStZR2l22WBsbgOcB6WruzqdQ1zDcAITS3MSg2ZDdVJzExCdxkIlPpurcxC7JzO5CkPikHhd+dwq26ASiFjdW37Xe6OEQBEEQBJGAN/OIA+DEHMWn//s/4Fe/YoXL5S/va9cCZWX6iU8pO91NTACnTrG14vbt6V1dFRVAiHdBiEeSzifhJSY+ma8jpzahLSQ+qQOJT4TuRP1RuP2sSHb1FnI+ZYtrRQ0AwDw6kHNb0V4mBknluaXBzcb0tDvzxbMAAPuK2pzaFS0s7S4eJPFJLXqf3I1KAGOrtsNkTeN7JwiCIAjCEJI1NHNxPkWjwPe/P1Ncuu029lOvmk8nTrCfK1bgwAGmgy1eHEZ1dXoHU2UlEDS5IQgjQCCAyEQE5ZfaAQANbyLxidAWk4OJT7xAacS5QOIToTsDR3oASIiZnShbXm70cAoWq9cNCYA5HJj33PkQ+pn4xFVqk3Y3WSAzjrFLo/D2nwEArHxge07tStZEzSe/DjuyLBC4/azYuONWSrkjCIIgiHxCFp9ySrs7coQJS5WVwL//O3vOZgNWrmSP9XA+iSKwj6X4Y8cO7H6KPVy/fgJAevHJ6wUu8G5W88nvx7mfHYJJjCLgqsbaG5ZrN1aCAMAndrtjAUhkC4lPBmAymVBeXg5Tump6C4DhI52wAPCX1ycLJxKzM1u82LwuhAGYI7mLTxhm4pN5kdbik4iOx/bBCQmjVauwrinHtDsbW6CIIXI+yeQyv0x0TcDbw+5Erngr3UVcCCz06xGhDIoXQgkUL+qjivNJLi7e1oa028rpIT6dPAlMTAAeD6R167HnE+zp1lZp1nipqABO8C7EBUD0BTD8h5OoBhDY2EbfJxYges8vZnI+qQKJTwbgdDqxadMmo4dhGIGzXSgDEKumek+ZMFu8OCqZ+GSN+nPugx9l4pO9XtuaT7wYh/+Z3XACELaqIG7YmPOJxKdJcplfOn66H3ZJxHj5cqzbsEjlkRH5yEK/HhHKoHghlEDxoj6TNTRVEp/Socdud/IYduzApasmDAwAdrsJb3pTo7y0m0F5ORA2uSABCAwEYD+0GwDguYOc2gsRvecXefMkkxSDKAI8bduWFfS2GYAkSRAEAZIkGT0UQ4heYAUGuSVU7ykTZosXZ7UbAGCOhxGP5rblrsXHxCdHncY1nyQBnpMsravqLhKftCCX+WXiz2wxGNlCrqeFwkK/HhHKoHghlEDxoj5J51O2BccHBoCOjsmd7dKhh/MpRQCTH7a0SDCZZo8XsxkQnWztO7S3AyWjlyFxPJresk27cRJ5i97zi8nB0u7MUgwxqjmeNSQ+GYDf78crr7wCvz93x0ohwnWzne7sTSQ+ZcJs8eKocCYfBwZyS72zB5j45FmmTdqd2c7uFnCSCEd4BDGzA033bc69YVl8CpP4JJPt/CKJElzH2Qqw4rUkPi0UFvr1iFAGxQuhBIoX9cnZ+bSX3QDEunVAaWn6c7QuOD4xwdLugCni0zXXhOeNF77EBQCI/ekvAICR2g0oqS/RZpxEXqP3/CKn3ZmlGKKUeZc1JD4RumMbZOKTZy2l3eWC1W1FnGcqfGgoe/Ep6o/CFvUBAEpXaFTzyTx1qhlt3AaL05Jzu5ydiU9SiAqO50rnrktwBQYQ561YdX+L0cMhCIIgCGIaOdd8ksWnnXOkqmntfNq3jxUcX7ECkdJqtLMN67B9+/wufnNCfIoPJnZpbqWbZYQ+mOzse4tFjJLzKQdIfCJ0JR6Nwz3RDQCoaiHnU65Ercx+HBrMXvUf7WAX8DhvgafWo8q4piOn3clYb2hVpV3OIS+QyPmUK52/YLceR5Zvga1kloILBEEQBEEYRk7OJ1GcFJ9mq/cEaC8+paTcHToERKPAokXA0qXzp09Zytm6V860WnwPiU+EPnBWCziO0u5yhcQnQlcGjvWBl+KI81ZUrKkyejgFT8zG7gBFRrJ3PvmujAAAQs4KzXYLMVmnik/L7ldnscA7EiJJhMSnXBFeYoU7zdfTQo4gCIIg8pGcnE+nTrGUN7cbWL9+9vO0LDguSVPcV6laGJfBEtRW4U4+jlhLsPL169QfI0Gkw2oFxwEmCCQ+5QCJT4SuDB9lKXf+0roZqViEcuIqiE+Bq8z5FHVrU2wcmCo++UrqUbtDHddbUnyi5OucCI+F4b18GACw5M0kPhEEQRBEPpKT8yllhznMtT29ls6nixdZ0XObDbjmGuxm973mzAJMxVHpSj4eX9tK3yUI/bAw55NFjNLXjhwwGz2AhYjL5UJbWxvM5oX39vtOdaIUQGQRpdxlylzxErcnCi+OZS8+hTqHYAEglFVm3cZ8pC4OQs3qiRuTzieq+SSTzfxy/uftMIlRBFyLsPa6ZdoNjsg7FvL1iFAOxQuhBIoX9cnJ+ZSS7jYnWopP8hi2bEHfiBWXL7Mt67dtyyxenFWT4pPjZnVKOBCFie7zi2Uy7U4Q9OmyGKGrgQHwPA+r1Wr0MAwhcqGTPainYuOZMle8iC5mP46NZl/zKdrHnE/walNsHJjqfCq/Uz3xyeRk4hMXpbQ7mUzmF0mU8NdrP4WSswcAAGaBLTADm3dqlnpJ5CcL+XpEKIfihVACxYv6ZO18mpgATpxgj/NBfErZ5W7DBsDjAYD548WzeDLtbuXbyKm9kNF9fpHFJ5F2u8sF8ioaQCgUwokTJxDSIpc6zzGdOg4AcKxfafBICoc548XJ7gAJY9mLT+Igq/nEV2knPvFmHuPeFQg6KtD0wFbV2pXFJ57EpySZzC9XX7iA6mPPwh4Zgz0yBnOcLTCr33a7XsMk8oSFfD0ilEPxQiiB4kV9snY+dXSwguN1day691xoJT6Fw8BhluKfKj7JKXeZxEvDdUshWBwYWbEVlWupduxCRvf5JVHziQqO5waJTwYgCAKGh4chLDDP3kTXBLw97K7L8vt3GDyawmHOeHGzO0CiL/u0Owwz55OlRjvxCQCuOf5jbOh4Cs5Kp2ptml0J51OMxCeZTOaXzl+yFd/Q0q1w/+EXcP/hF6g++Eese8c2vYZJ5AkL9XpEZAfFC6EEihf1STqfoFB86kxkHixdOv+5WhUcb29nNTprahCvX4r9+9nTshErk3gpXVaONReexo7931Z3bETBofv8Yjazmk9SlMSnHKC0O0I3Oh4/ALskYrx8OdZtqjF6OEUBV5IQnyaydz6ZxoYAAPY6bcUne5ld9TZl8clE4pMixJeZ+GS+9UYsuWmFwaMhCIIgCCITsk6761RQ9sLhYD/Vdj6lVBc/cZKD3w+UlgJr1yprxlrhUXdcBJEJKc4nP4lPWUPOJ0I3Jv7ELjqRLZSjrRYmT6LwYiB755PVx5xPzgZtxSctkMUnPkYFxzMlNBJC+ZXEznb3Z7i9DEEQBEEQhpO6gYsoKBCguthu0xmJT6lpd5KkYHTzIOfZtbYmdagdO1jBcYLIeywW8BxzHUbDWRT8JwCQ+ETohCRKcB1nF52KO2l3CrUwleQuPjkCTHwqWV544pPFwxZIJoGcT5nCdraLwe9ejLq2JUYPhyAIgiCIDJFrPgFsbZ0xsvOpIYPdpmXxSRSh2rZePT3AlStMadq+PeON9wgib0gUHAcAIUTWp2wh8ckAbDYbVqxYAZvNZvRQdKNz1yW4AgOI81asemCL0cMpKOaKF3MpE5/4UHbiU3AomCw2Xbrcm/0gDcLiZu+JmcSnJPPNLyN/YCu+4OY22tmOWJDXIyJ7KF4IJVC8qI/JMvnVLR6NZ/YiSVKWdmdPKZOgVurd3r3s56ZNGBPcOH2a/TdVfKJ4IZSge7ykiE/xEG13ly1U88kArFYrGjK581BEdP5iD8oBjCxvga2ELipKmCterF5W84kPZVfzaewCcz3FzE5VC4HrhdWTqPkUJ/FJZr75xd7OvO6lr6bbjcTCvB4R2UPxQiiB4kV9snI+jY0BwSDAcWy3u/kwm5lDSRSZ+ORRocZSitVp3z6mhzU1AZWVk6dQvBBK0D1eEgXHASAeJudTtpDzyQBisRgGBwcRW0Cl8gW5wPH1VGNGKXPFi7WcOZ/MWYpPvstMfAo7C8/1BKSIT2JMWe2DImaueOlr70HJ+FVIHI+mt9DOdsTCvB4R2UPxQiiB4kV9TFZT8nHGzifZ9bRoEWC1zn8+x00WHVdjxztBQOrWdrOl3FG8EErQPV44DqLZAoDS7nKBxCcDCIfDOHXqFMJq7yKRp4THwvBeagcANLyR6j0pZa54sVcy55M5ml3aXeAqE5+insKr9wRMik8AEJkg9xMwd7xcepyt+IbrN8Nd49Z7aEQestCuR0RuULwQSqB4UZ/UdPmMb7opKTYuk1p0PFeOH2e1ScvKIK1eM6v4RPFCKMGIeJFMTHwSIyQ+ZQuJT4TmsALHUQRc1Wi4YbnRwykqHFVMQLBmKT6Fe5j4FC8rTPHJXjZZlyDqp/zr+Yi8wFZ8HFX4JAiCIIiCI9X5lLH4pKTYuIya4pOsNu3YgfMXeAwPs+Y3b869aYLQEynhfKKaT9lD4hOhOcNPsyKDgU07qcCxyjgqE2l38TCEsPIdSYQ+Jj5NSbovIHgzD5FjpeuiPnI+zYUQFlB+ntneF99DDkSCIAiCKDRS19FSXKHzyWjxaefOZN3xbdsyywAkiHxCNLOgFaMq7QK5AKGC44Tm2A6xAscld5DbQm1Si4QHh4IoqS9R9HpxkIlPpqrCrPkEAILZBmtMQHSCbNpzcf7JY7AIQYRtZVhz5xqjh0MQBEEQhEJ486RvQLHzKSXt7utfB554ghX+ng7HAf8dsWM9kLv4NDoKnDnDHre2Yvc/s4dkwCYKEcmSSLsLk/MpW8j5ZAA8z8PtdoPni//t7z/Si9LRy5A4Ho0PUIHjbJgrXixOC+I8U+GDA8qLjnMjTHyy1BRm2h0AxE2s7lPMT84nYPZ4Gfgdu904sa51yuKVWNgspOsRkTsUL4QSKF60QeLY+5mt+BQKAb/4BRCJANHozH+RCHChN1FwPFfxSd7abtUqBB0VOHKEPd2axoBN8UIowZB4MVPNp1wh55MBuFwubNmyxehh6MKln+5BCYCR2g1Yr9CVQzDmi5eo1Q1HeAShQeXik2mciU+O+gIWn8wkPqUyW7yY9jPbu+tVdLuRmGQhXY+I3KF4IZRA8aINEnhwEDMTn3w+YHycPU6IT+3tQCwGLF4MfP/7U08fGwPe9jYgINghAeByFZ92s+wHtLXh4EG28V1dXfoMQIoXQglGxEvS+UTiU9aQ+ERoSvjFvSgBILXSF16tiNmY+BQZUV503OYbAgC4lhZmzScAiFuY+CQESHyajdELI/D2nwYArHwr1XsiCIIgiEJF4nhAyrDmk1zvyesFnKxUQ4oehJqaqad7E1UYIpwdYhww5SI+iSKSRZ7a2rD3+cl+OSoBSxQilkTNJxKfsoZ8jQbg8/mwa9cu+Hw+o4eiKUJYQNm5fQCA2nt3GjyawmW+eBHsrOh4dFSZ+CSJEhzBEQBA6YrCdT6JZhKfUkkXLx2Psc/haNUqeJsK929NqM9CuR4R6kDxQiiB4kUbFKXdpdnpTq7/na7uktUKOBxAlLcjHkduaXcdHcDICGtw8+bUuuNpoXghlGBIvFgSvp0o1XzKFhKfDEJKV+GvyLjw1AlYYwFErCVY8dq1Rg+noJkrXkSHG4By8cnX4wMvsd0aSpeVZz84gxGtCfHJTwXHZabHS+A5tuITtpEITMxkIVyPCPWgeCGUQPGiPrL4pMj5lBCfenqAq1cBk4ntOJeOkhIgwtsRF5Gb+CRbrLZtQ1e/BZ2drN+tW2d/CcULoQTd44WcTzlD4hOhGf2/YV94x9dSgWMtER3M+RQbU1bzaayDpdxFrCWwugt3v1vJyrYDJudTekRBhOcks71X303prwRBEARRyChyPsniU6Lek+w+2rQJcLvTv6S0FIhwjtydT3Jnra3Jh5s3J7P/CKLwsLKaT1KUxKdsIUWA0Aw+UeDYeSt94dUUFxOf4uPKnE/+K6zYeNhV2GlYUsL5JIZIfErH5WfPwxEeQczsROMbNhk9HIIgCIIgckCR82la2t1cKXcyJSUpaXehUHaDDAaR3Npu5855U+4IohDgLCQ+5QqJT4QmjF8Zg7ePFThe8RYqcKwpsvg0ocz5FOxk4lOspDjEp3iQxKd0dP+S2d5HG7fC4rQYPBqCIAiCIHIh25pPggDs38/+O5/4FMm15tPBg0A8DtTXI7aoHgcPzt8vQeQ7XML5RDWfsod2uzMAp9OJrVu3wm63Gz0UzTj/6D44IWGsohHr1lYZPZyCZr544UqYb1pSKD5FekfgBCCWF7b4BBs5n1KZHi9S4naj7UZa8REzWQjXI0I9KF4IJVC8aEPGzqdQCBhiJRZQX49jx5ghqbwcWL169peVlAABLkfxKcViJffr9QJNTbO/hOKFUIIh8WJL1HyKCfr1WWSQ+GQAJpMJroRbpVjxP7MbTgAxKnCcM/PFiykhPiGgLO1O6EssSCqLRHwKUsFxYGq8BIeC8HYeBQAsewt9FomZLITrEaEeFC+EEihetCFj51N3N/tZUgKUlGAvK/+IHTsAfo7cl5ISYJS3Ix5D9uKTXGy8rS35sLV17n4pXgglGBEvfML5xJHzKWso7c4AwuEwzp49i3AuRfzyGEmU4E4UOK58HaXc5cp88WIqTUy8CsUnaYil3ZmrC1x8ciQcPhHjLwSiICIejSf/SaL+u7akxsu5xw6Al+KYKG3A4q11uo+FyH+K/XpEqAvFC6EEihdtkPgMnU9yyl2i2LgsAs1Xd6m0FAjzDojZOp86O5nwZTYDW7dmVGcKoHghlGFEvHC2RNpdjGo+ZQuJTwYQi8XQ19eHWJEG7uVnz8MZGoZgsqPpjc1GD6fgmS9eLGXM+cSHlIlP3CgTn6yLC1t84hLOJylsbNpd565LOFr1Kpwt35H89/Kav82sJoOKpMbL2B/Zii/cTCl3RHqK/XpEqAvFC6EEihdtyNj5lCI+jYwAZ86w/7bOc1+4pASIcjkUHJfVpuZmDIecOHcO4Lj5+6V4IZRgRLzIzicSn7KHxCdCdbqfYBed0ZVbYXVbDR5N8WMtZ84nPqSs5pNlnIlPjvrCFp94BxOfEDFWfLr47adhi05Mea6i+xiGTg0YMh5JlOA4wm5zlt9J4hNBEARBFAMZ13ySd5trakqm3K1axWovzUVpacpud9m4SlKsTnK/a9awWlMEUci4vex7rW8klnVG6kKHxCdCdcRX2EXHcgN94dUDWXwyh5U5n2x+Jj65lxa2+MTJ4pPBVwHzARb3E+/9FOrPPo+Aq5r9/9KwIePpO9ANj68HImdG0/1bDBkDQRAEQRAqk4n4FIshucVca2tSBJov5Q4APB4gwtkRF6F8bRWNInVru0xT7giiECivMsNiBrhYFO3tRo+mMCHxiVCV4FAQ3qtHAABL76crjR7YvEx8skQydz6Jggh7ZAwAULqisMWnfHA+jV4YQfkA87Ov/vubUFJfgoinEgAQuGqM+NTz60MAgJElzXBWOg0ZA0EQBEEQ6pKR8+n48eTWdmLT6qT4lIkIlJPz6ehRlqpXUQFxZZOifgki3+FsVrjdgFmKJYVVQhkkPhmA1WpFQ0MDrNbiS0k7//hB8JIAn6cWtTsajB5OUTBfvDiqWM0nSyxz59PYpVFwkgiJ41G2vLB90KaE+MRFjROfOh5lq6vRqtUoX8n87PFSJuqFOod0HYscL9Ir+wEA/HW0yx0xO8V8PSLUh+KFUALFizZIvAnAPDWfUraYO9fBY2QEcDqBTZvmb7+kBIgkxCdJqfgkfyNvbcWZsxzGxli/GzfO/1KKF0IJhsSLxQJXQnySP2KEMsxGD2AhYrPZsGLFCqOHoQmjf9yLagChzW3geM7o4RQF88WLs9qNEQDmeARCWIDZPv/Hevwic+OEbWXgzYWtQZucxotPgb/shQuAsG3y1p7kZeJTrH9E17HYbDbUV9fDf5H5gevupR0nidkp5usRoT4UL4QSKF40gmPra0mIz35OSr6b/HDrVsBimb95ueC4JAFSIARFq/kUq5P8cPt2tvHdfFC8EEowJF4sFrhcgMUXw5UrQE8PUFur7xAKncL+1lmgCIKAsbExCIJg9FBUx3GYycBld5LbQi3mi5fUlKrAQGbuJ/9l5sYJJ1LDCpmk+BQzRnwSBRGek2xlV333pPjEVzHxKT6gb9qdIAg4+uPdMMfDCDoqsOy2Jl37JwqLYr4eEepD8UIogeJFG2TnkyRK6U8YGQHOnmWPW1sV111yOIC4xQ4AiEfjQKZ/v6EhJLe227Ej6QzJpM4UQPFCKMOQeLFYYOKBxZVstztZYCUyh8QnAwiFQjh69ChC2Wxfmsf0HuiCZ6ILImdC0wNbjR5O0TBfvJjtZggmtkgIDWUmPoW6mRtHKJlny5MCwOxi4hMfNabg+OVnzsERHkXM7ETjGyb97OaaRC2tYX3Fp1AohCs//wsgAf4N5EAk5qZYr0eENlC8EEqgeNEGKeF8EmOzOJ/kb8SrVyNg8+LoUfbfTMUnjgPsZQnxSUndJ7nftWvht5Tj2DH239YMDdgUL4QSDImXRIpfQw0Tn6juk3JIfCJU4/Lj7BM40rAZrmqXwaNZWESt7P0ODWZWdDzaywQRqbywi40DgNnNFkgmg5xP3U+wuB9t3AqLc9LPbq9l761pTN+aTwDgPXMCAOC+jSp8EgRBEEQxITufIM3ifJK/Ee/ciYMHmYDU0ADU12feh6vMAgm8sh3vUixWBw4AoggsXUppSUQRkchbra1i4tP+/ZkbAwkGiU+EakT+yi46HG1poTtCQnwKD2UmPgmJVDCusvDFJ4s74XwSjBGfpMRiy3bj1Lh3LWHvrdWnb82nkbNDqB6/Aonj0PS2Hbr2TRAEQRCExszlfBLFKSKQnPqmdGnuKeGSRcczEp9EcUq9J6WpfgRRECTEp3JXFGVlQCDANpYkMofEJ0IVYsEYyjsOAADq7qMrjd4IDrbjXXQ0wx3vBpkbx1xT+DWfZPHJZID4FBgIwNvJ/OzL3jK1qIFnGROf7EF90+6u/vIQAGC4ejVKl5bp2jdBEARBENoyp/Pp7FnIW8xJGzZmLQKVlrKi4xmLT2fOAOPjgMsFaf0GEp+I4iQhPnFCDDsS93cp9U4ZtNudAXAcB6vVCo4r7FoskijB38ecNpd+cxQWIYSQ3Ys1t68yeGTFRSbxIibEp9hYZuITP8oEEVtt8TifzAaIT+d/egBWKY6J0gas21o35VjZygqMAbAIIQSHglMKw2tJ9MUDAAcI28j1RMxPsVyPCH2geCGUQPGiEXM5n+Rvwtu2obPPgp4ettPcli3KuigpAaKy8ymDmjrSK7shikD8mh240GFGby8rj9PSknmfFC+EEgyJF3m7yHAY1zf78NLTQPtfAd/f5NYsb+YXTMkaEp8MwO12o60IbgW8tPEfUHmZuZ3kQPKtbwVvJkOdmmQSL6KDTVix0czS7iyJVDBnfeEXHE86n+L6i09jf9yDagDh5pl/H2elEzGzAxYhhLELw7qIT6IgwnvuAHieR919N2jeH1H4FMv1iNAHihdCCRQv2jCn8ynFciQ/bG4GnAqXIKWlUJR21/6fe+A4D/xwvBUvvDzZr8OReZ8UL4QSDIkXWXw6dw6v+uLNWHIewDmg8/e5NTvuXYG2zl/kPLxCgFQCIit69nUmhScZwWRH9bvvMmhECxwXE5/iE5k5n+wB5nxyLy1855OtlBUc56U42xJYJyRRguMoW9mV35n+4hd2MnHPd1mf1LuLfzgNW3QCUYsbjX+zQZc+CYIgCILQEY59fZvhfPL7kdxiLkV82jm1KkBGlJSwtDsxA/HJ1+ODvYMVvjnmZushiwV4wxuU90sQec2aNcCiRQCYo7CkxODxFCDkfDIAv9+P48ePY+PGjXC73UYPJysu/2wPygAMLWnBzsPfAcAsg+R6Up+M4iXxfNw3v/gU9Udhi04AAMoaC7/mk63ElnwcmYjolt7Ws68THl8PRM6MpvvT+9mjngpgohvBLn2Kjvf+ag8qJKCrdi0aoyG4rYU5vxD6UQzXI0I/KF4IJVC8aASfWGtPdz4dOMC2tluyBNGqOhw8yJ5ubVXeRUkJEOEdGTmfOh4/AJskYrxsGf5waHFyiLzCrwQUL4QSDImXkhLgd79jBfYB1IN2u1MKiU8GIEkSotEopNm2SC0AYomd7fjrroXZTmGkJZnEC+9hzidpYv60u7GLTAgROTM8tR51BmkgVrc1+TgyHtZNfLqSEGBHljRjwyx9xssqgW4g1DWky5iwh21rE2peU9DzC6EfxXA9IvSD4oVQAsWLNkj8LM6nlJS7I0eYZlRRATQ1Ke+jpAQYzTDtbuyPe7AIQKSlDeYcvhJQvBBKMCxepimrucT8QoRsKoRiov4oyi6w2ym0s11+IItP8M8vPk1cYilgIWcFOL7wizpyPIc4zwSoqE+/uk+xXbIAO4efvYKlNQp92qfd+Xp88PacAAA4b12heX8EQRAEQRhAIu1Odl8AYC6oFPFp797kQ2RTj1lOu4uLmLPguCRKcB1j/Va8jr4TEAQxNyQ+EYrpeJLtbBd0VGDZbVncTiFUx1yWsJsG50+7C1xlQkjEU/j1nmQEM0u9i/n1EZ+i/ijKZQH23tn97HwVq/kkDmovPnU8fgCcJGKsfCncjZSEThAEQRBFScJ1IcVTxKerV4HeXlZsacsW7GZGaGRbjznTguNdL1+GO9CHOG9F05sVbG1HEMSChMQn4v9v787jm6jz/4G/JknT9KalILYUyinlvuQU5BDwRFFXBFQWFVivVRaPlZ8i6qroKngiouDFrvIVXUVEEeQQUblvOWzLUa4e0CM9c71/fwwJDT3ItE3SpK/n47GPxcxk8pnk1U9m3vnMZzTLXqb+wlHYqV9QjJwJBiGxavFJ50HxqeS4WgixxwRP8cmuV4tPvhr59OcXO2Gwl160AGtsdu49zvX+nE/536tHmsXd+3j9tYiIiMhPKis+OUc99eiB7MIwpKaqI5769q3ZS7hGPl2k+HRsifq6Z5N7wNTIVLMXI6IGg8UnPwgLC0O3bt0QpuX+o/WIYZs6ljdyBIfX+oIneQlppF52py+5+GV31nOXgElcEBWfQtTik63IN8WnnG/PFWA796+2ABuWpE7obsjz7pxP5Ye9x18/IKD7F/KtQP8+It9iXkgL5sU7pLLik3OoU79+rjpUSgrQqFHNXkMd+RQGhwOwF1VdfLJtUF9MX90UBB5iXkgL5iUwcYosPzAYDGhU028DPztzMAex2YcAKGg7oYY/p5AmnuQlNC4CdgD6souPfLJnqcUnXZPgKT45nJfdmaufFLOuhGxVD7YuVoCNaNEYFgChZu9ednf8lyOIKMqEXWdEyoQ+bncAJKpOIH8fke8xL6QF8+Il5+Z8EuecTxYLsG2b+u8BA/D7IvWfNb3kDlBvomzRqSOZyvJLUdltVcoKyhB3WH3dFmNr/4M080JaMC+BiSOf/KCsrAzp6ekoK/Pd5Mh1Je0/6qins81S0KhVrJ9b0zB4khdTvHrZXYgHxSecUQshhmbBU3yyG9UDJF+MfMrZn41GZ1IBKGh3R/UF2OhW6nscVnwG4vDe3Thcw95b9QRCEbD9C/leIH8fke8xL6QF8+IlzjttOUc+7dgBlJUBTZrA0aqN22TjtXkJXfj54lNlDi3ZAb3DgqKIpkga3KrmL3YO80JaMC+BicUnP7BYLMjIyIDFYvF3UzQr/kk9ybVfXvUky1S3PMmLqbF62Z3RcvHL7vR5avHJlBA8xSfHucvu7MXe/wJKW3yu0NMsBTEtG1W7bqPW6oTjOrHBfNLstTY5h70bBg0I6P6FfI95IS2YF9KCefESvR5AucvunNfZ9euHP/YrKChQRy516VLLl4lQi09VjSo/s1y91K+oS/VTEHiKeSEtmJfAxMvuyGMOmwPR+9WfU5qNqf213VR3wuLPzfnksMBabEVIeEiV6xrPXQIW0SJ4ik9iVItPJUezkL03E4peh8aXxdfZhPhFWUUozlILeyU/bkAUAEefi/+kaIw0oswYhVCLGfnpZxDdXNtd6Mq/LqAWsy78bMsPe0/6C4vCREREQU05d2xz7rI7+8bf4LAChR36Y80adVGfPq4aVY0ZItXik6WK4lPodvWcIHoU54AlIs+w+EQeS19xAKayfFhCItD5xs7+bg6VE9E0wvXvwlNmxLaJq3Q9h82BsCJ18uuo5OArPsV+NAfZH80BAOwdMhZDvnus1ttOX3EAxbf9FTqxAQCannv8kps8O9gqjWiMUIsZ5iNnAA3D0lOX/YHS8Xe7XhcA0qMT0ePPL2CMNLoeO/T5dtew95TBrVBYdPHRb0RERBSgyo18yj2YhayVabDZFdw/uy+KzhWc+tXBb1Eh0epEzvbCisWn7L2ZiDmbDlF0aDued9klIs/wsjvy2Kkv1eG1ee36wGBi3bI+0Rv1MEcnAgCOrdhb5XpHf0qFwV4KqyEMTbo081XzvC782qGwGsJh14XAoajZjPl1BewWe623nfH+D9CJDaLoYNeFwK4LQU6Lnmg7xrPx7NYotchXnKFt0vHjC91fFwCiCk7gzy92uq135jt1uH1R1wF1NtKLiIiI6qlzI5/EZsehT36H3Q4cDusEiykGISFAixbAsGG1fxljtHM+zYrFp/T/nJuCIKGz5lHdRNRwsfjkByEhIWjWrBlCQqq+NKpeOndNuWkoh9f6kqd5Kemq/syV+/3vVa5z4otzBcQ2vau9NC/Q9HnuenTL/xldzL8h5exGlBmjEWoxI23ZvlpvO2SbmvvS//cvdDH/hi7m3zB4/wLojZ6NZ3fEqsWnspPaik/O4exlM19EF/NvyLr8egBAznL3zzf0XPucw94Dtn8hv2BeSAvmhbRgXrzEeT2dCErWqMd10aP647ff1EP1r74C6uImYKExavHJUUnxqWSNeuwhferucn/mhbRgXgITi09+YDKZcNlll8FkMvm7KR4znzQj7uQeAECr8Sw++ZKneWl0rToPl2nnb1Wu49ioLgu5Mng/Q71Rj/zL1CHgp7+uuhDniex9WWh0Jg2AgrYTqr+zXZUaq8UnW6bnxafKhrNHjjhXXNryq/t6uYchig7tJqjrBWL/Qv7DvJAWzAtpwbx4iXPkk8WKmAObAQDNxtT9cZ2pkfq5SUmJ2+N2ix2NDm4CAFx6S93NAcu8kBbMS2Bi8ckP7HY7ioqKYLfX/pIgX0n9bAsUcSA/NhmXdL/U381pUDzNS7txveFQ9IjOz8CpLccrLC/OKUZcxi4AQPLtwVt8AoCw4erBkO73Xy+yZvXS/6sWr84264iYFjE12obhErX4JDmeF58qG87e7o6+ABQ0OpOKnP3ZFdaLSogCEJj9C/kP80JaMC+kBfPiJedGPjl270WopQBlxii0Gd2pzl8mLPbcSX2J+8intGX7YLQWoswYjTY3dKyz12NeSAvmJTAFVfEpLS0Nd911F3r06IEBAwagZ8+eeP/99zVvZ+3atRg5ciT69u2Lnj17Yvjw4Vi3bl2dtbO4uBhbt25FcXFxnW3T2/J/UE9yy3oEd9GiPvI0LxFNI3A2qRsA4MhnFUc//fnZVujEBnN0IhL6JnmlrfVF6/HqMPDY038g/1h+jbfjHFbu6FfzX/aMl6rFJ+Ws58Wnyoazx7RshLPNUgCcL4qV/KQW16Tf+b/LQOxfyH+YF9KCeSEtmBcvOTfyKTZtCwAgv30fj6cC0CIsTp1wXClzLz6d+p96jJLfoS90hro7lWReSAvmJTAFTfFp586d6NmzJ0QEmzdvxq+//oq33noL06ZNw5QpUzzezsKFCzF8+HCMGTMGmzZtwvbt2zF69GhcddVV+OSTT7y4B/WXOAQRu9ST3MbXs/hUnyn91c+nbH3F4lPuCvWxku51N0S6vmrSqSnyGreBIg6k/mdTjbbhsDkQc0B9bm2Gs4c1V4tPhgLPik/lh7Nf+LqOvupnV/zTb+p6h9Th9gl1OOydiIiI6rFzI58M9jIA50d717WIxurIpwuLT/pzo8rDhvGcgIi0CYriU35+PkaPHg2DwYB58+a5Jh4bOHAgHnvsMbz//vv46KOPLrqdTZs24b777sPw4cNx3333uR5/+OGHMWjQIEydOhUHDhzw1m7UW8d/OYKIokzYdUa0G9vT382haiTeqh4IxKZuhbXY6rYs7NxcULHXNoyDBWsvdT/Nq2o271PqN/sQaimAJSSyVsPZI5PjAQAmc45H65cfzt72RvfXveQmdZ9i9v+OP7/c7Vqv9XUpNW4fERERBRDF/c62rSd457jOWXyCzQqcu7Qp/1g+4k7/ob7u+LqbbJyIGoagKD7Nnz8fGRkZuPXWWxEVFeW27O677wYAPPXUU7BarZU93WXWrFmwWq2u55R3zz33oLS0FM8880zdNTxAHFtybl6Z5B6uyQepfkoe2R4lpjiE2IqR+tVu1+MnN2UgquA4HIoB7cb19mMLfcc5Si9iz28Qh2h+/ulzw8rzLutbq+Hs0clxAABTWR4cNofHr1vZcPa2N3WGJSQSoZYCZL60SF0vpV+dDnsnIiKiesxw/pgkP641mnRq6pWXiYxXj/ntdgCl6ugndTS5IK9xW6+9LhEFr6A4Y/nggw8AAEOGDKmwLCkpCa1bt8aJEyewevXqKrdx4sQJ/PDDD1Vu58orrwQAfP3118jPr/kcMk7KBb9a1Ge2DerJsOGKhjFipj7yNC86gw7mTuovUVnfnL/07sjn5wqISd0QHh9e9w2sh9qP7QGbPhQRxdk4tjZN8/OVTep7Vtth5Y1axQJQ1An7j+ZddH1dNcPZ9UY98tqrd7Vrkqa2L3x4xfUCqX8h/2NeSAvmhbRgXuqeojt/+lbWy3vH5jHxIRAosNsBR7FafDL/qB57WHt753WZF9KCeQk8AV98ys7ORmpqKgCgY8fK77jQuXNnAMCPP/5Y5XZ+/VU94WvUqBEuvbTi3dySkpIQHR0Ni8VS68nHo6KiMHjw4AqjtOqjsoIyxB3eBgBIGst5ZfxBa14ihqvFJ8OW88Uny8/qpWe6gQ2ngGiMNCK3VS8AQMYXFefAqk7B8QLEndoHoPbD2fVGPUpMsQCAvNTqL73zZDi7aah7ey5cL5D6F/I/5oW0YF5IC+bFS8oVn+K9OBdrVLSCMp066XjRmVKIQxC5Rz2eir+h7l+XeSEtmJfAZPB3A2pr3759rn8nJiZWuk5CQgIAYO/evRfdTlXbcG6noKAAe/fuxY033liT5gacQ59vh95hQVFEU6QMbuXv5pAH2t7RD6deAWKzD+LQl3sQGhuO2FT1jiiJf2lYBcSQKwcAqb/Cse5nZPx8hcfPy/jfFjQSB/LjWqNj50tq3Y6yyMYIKz2LwqPVTzqe+p9NCIMgr3EbdKxiOHvrCf2R87b677z4duiY0qTW7SMiIqIAca74ZNOHosPt3puL1WgEbAYTYCnGsbVpsK85jPCSHNj0JnT4S3evvS4RBa+ALz6dPXvW9e+qKp/R0dEAgKysrItup7rq6cW2U1ZWhrKyMtd/FxQUAADMZrPbsECr1YrDhw+jffv2lW7H2Ybi4mLYz03w52QymRASEgKLxeL2WgCg1+sRHh4OEUFhYWGF7UZERECn06GkpAQ2m81tWWhoKIxGI6xWK0pLz9/VIvObn5EgQFHnflB0Csxmc4XthoeHQ6/Xo7S0tMK8WkajEaGhobDZbCgpKXFbpigKIiMjAQCFhYUQcZ+XJywsDAaDAWVlZbBYLG7LQkJCYDKZYLfbK73FpvM9LCoqgsPhPs9Ode+hwWBAWFgYHA4HioqKKmw3MjISiqJU+tlU9R4C5z8bAJW+h9V9NjabDenp6WjXrl2F4aU6nQ4REREAzr+HhqYhOBPfHo2zD8F21yTYAIQAKA6NRWKfS1yvX917WP6zqew9dH42df0eOj+b6t5DLfmOv6ErbB8A8Rk7YL7mL+qKlU3/5Hxbzy1rdO4/i7r2gt1uv2i+L/YelkXGAtlAXtpJ1/tfWb5zV2xAmAClPdRL6yp7D8NaRSA/thVicg+jpMflFfLkcDiQmpqKNm3aQK93n6vKG30E4J5D9hG+7yOqew8r6yPKExH8+eefaN26NQwG90OChtBHODk/m5q8h57kuzbvYWX5vth76K3jCAA4dOgQkpOTYTQa3R5nH6EKtj7C+dlofQ8VRYGiKDhw4ABatmyJ0NBQt+XsI1Q16SNsDjsgwNnknjBGGr3aR9gNoUAZoEz/h+ukMbd1L4REhGjO4cX6CAA4cOAAWrRoAZPJfY5Z9hGqYOsjanMc4XA4sH//frRo0QJhYWFuyxt6H+Hkq+OIyvJWlYAvPpX/EC48EHJyfuFV9sZeuJ2qtuHJdl566SU8++yzFR7ftWuXK3AAEBsbi8LCQpSWluKPP/6osL5zfqkDBw5U+DA7dOiASy65xO1yw/Lb7dq1K+x2O7Zv315hu/3794fRaERaWhrOnHEfgdG6dWskJSUhLy/PrU0FZ86isRKC6KvVETM7duyo8AfTu3dvRERE4OjRozh9+rTbMuecW4WFhdi1a5fbMqPRiP791WG7e/bsqfBH0a1bNzRq1AgnTpxARkaG27JmzZrhsssuQ2lpaYV9VRQFgwcPBqC+hxd2Hh07dkSTJk2QmZmJ9PR0t2WNGzdG586dYbPZKn0PBw4cCIPBgNTUVOTm5rota9u2LRITE3H27NkKd0WMiopCz57qr1OVbbdPnz4ICwvDkSNHKhQ3mzVrhsLCQpjN5gqfuclkQt++fQEAu3fvdnVYWSMGwfBFJow6gaIosAlw9MqRKNq90/XchIQEtGvXDsXFxRXapNfrccUV6kihP/74o0Jn16lTJ8THx+P06dM4fPiw27L4+Hh06tQJVqu10n0dNGgQFEXBoUOHKsyf1r59e1x66aXIycnBoUOH3JbFxMSge/fuEJFKt9uvXz+EhoYiPT0dOTnq5W1iEOS36YfEjH3Q6XQQhwP2CzpmBYD+3El3+S+S0pBIFI9Q35+oqChkZGTg5MmTbs9NTExE27ZtUVhYiJ07d7otCwkJwYAB6t9NQXg4mjgcOL3jD2zfrt79rkuXLoiLi8OpU6dw9OhRiEMQsftXOBwO2Pu0AaAWtCvb1/ApdyN30WLobulSYXnLli1RWFiIs2fPVvi78UYfAahf8r16qZc4so/wfR/RsmVLJCcno6CgAHv27HFbVlUf4dS+fXsUFhbi9OnTFbbbEPoIp1atWqFFixbIy8tzG1ENqAeFl19+OQBg586dFQ7CevbsWes+Yu/evRUOgi/sI8pr2rQpUlJSquwjvHUc0aVLFxQWFiIjI6PCZ8M+QhVsfUT37t0RExODjIwMnDhxwm3ZxfqIbt26obCwEGlpaRXyzT5CVZM+oqBrU+g3JML019EA4NU+4njPvtD9thrKuV/n7AYT4u6/3SvHEc7vo/3797OPaCB9RG2OI1q0aIGioiLs37+/wr429D7CyVfHEdXVWC6kyIV/3QHmyy+/xK233gpAPVGrrHj05JNPYvbs2ejSpQt2795dYTkAPPTQQ3j77bfRv39/1/xPF+rfvz9+//13PPTQQ3jzzTcrLK9s5FNSUhKOHz/uGjXlXG/fvn3o3r27q9JfXn0a+QQAtmIbIiIiYIw08hdLP/waYbVasWfPHnTr1q3CSJb6+msEf7F0fw/XTnwfl3zxHk52H4m+K590ew+dn03GmjRg3L2w6Y1omf49YprE1OjXCJvNht27d6NLly4ICQmp8/eQoxrqXx9Rm18s7XY7du3ahc6dO1f4/mQfoQr2XyzLu9h7KCLYsWMHOnXqVGEkC/sIVbD1EbU5jnCewKWkpFQYmcA+QhVsfURtjiMcDge2b9+ODh06uLLuxD5CFWx9RG2OI5zFu8rywj5C5as+oqCgAM2bN0d+fr5bzaMyAT/yqVmzZq5/FxYWIi4ursI6zvBccknVc7c4t1PVMHNPthMaGlrhYAxQP7zKLufT6XTVXuZ34R9SeUajscpRWoqiVLvdCw8AygsJCalwwopym6puuyaTqcIwWSeDwVDtc51/OJWp6n0F1E6iuu2WH3F2oerew9p8NpW+h+Vo/WycXyAX29eG8h7WJt+1yWF1+b7YexjTuTWwFAjNOV1hPednc/a73YhTgNw2l6NrkxgANXsPy19WWdVz67yPKId9hMqXfYRTTd5DZ16MRmOVzw209zAQ+4jq3sPq8u3r4whnXkJDQ6t8XfYRqmDpI5xq8h6Wv8y8qtdlH6EKlj7CqSbHEc68hIeHV7lt9hGqYOkjnGryHnqSF/YRKm/3EVrGMgX83e5SUlJc8+CcOnWq0nWcj3fq1KnK7TjvlFfVNjzdDhHRhRp1bg4ACD+TUeU6jo3qHWRCBjecOxISEREREVHDEPDFp7i4OHTt2hUAKp0/CTh/J7uhQ4dWuZ3BgwdDp9MhJycH2dnZFZZnZmbizJkz0Ov1rmt8a8pkMqFjx45VVjaJymNeAt8lvdTiU1hpLoqyKg5tLTlbgthjOwEALcfV7o6EzAtpwbyQFswLacG8kBbMC2nBvASmgC8+AcDtt98OANiwYUOFZZmZmTh06BDi4uIwcuTIKrfRuHFjjBgxosrt/PzzzwCAkSNHVnppnxYhISFo0qRJtcMliZyYl8AX0TQCJSa138jcdrzC8j8/3wa9wwpzVAIS+ibV6rWYF9KCeSEtmBfSgnkhLZgX0oJ5CUxBUXyaMmUKmjRpgiVLllSYiOvDDz+Ew+HA9OnTXddnrl69Gp07d8Zrr73mtu6MGTOgKAo+/PDDCq+xcOFC6HQ6zJgxo9bttVgsyMjIqDDxF1FlmJfgUNxYHf2Ut6fipXdnl6s3OSjp2g+KTqnV6zAvpAXzQlowL6QF80JaMC+kBfMSmIKi+BQXF4dPP/0UZrMZDz74oGuW+C1btuCll17CtddeiyeeeMK1/uuvv459+/Zh1qxZbtsZPHgwZs2aheXLl+ODDz5wPf7ee+9h5cqVeP755123hKyNsrIypKenV5i5n6gyzEtwsDdTi09FByoWn0w7fwcANLq2dpfcAcwLacO8kBbMC2nBvJAWzAtpwbwEpoC/253TqFGj8Pvvv+OFF15Av379EB4ejqKiIjz33HN48MEH3W5RP3bsWPz888+46667Kmxn5syZ6N69O+bMmYOFCxdCRGAymfDtt9/i+uuv9+UuEVEQ0SUnAdsA+1H3y+5ObT2B6PxjcCh6tBt/uZ9aR0RERERE5D1BU3wCgK5du2LJkiUXXe/OO+/EnXfeWeXy0aNHY/To0XXZNCJq4MLaqiOfdCfdRz4d+ew3xAA4m9QNnZtWfZtUIiIiIiKiQBUUl90REdV3jbqoE4mHnXEf+VS2/jcAgNKvn8/bRERERERE5AssPvmBwWBA48aNYTAE1cAz8hLmJTg07aUWnyKKslBWoF6fbi22IvbPLQCAhFv618nrMC+kBfNCWjAvpAXzQlowL6QF8xKYFBERfzciWBUUFCAmJgb5+fmIjo72d3OIyI/EIdjZeBhCLWZEfvd/aDGkNfb/ZztkyhSUmGLRI3MldAb+HkBERERERIFBS82DZzp+4HA4YLFY4HA4/N0UCgDMS3BQdAqKYtV5n87uUud9yvr6VwCAuWO/Ois8MS+kBfNCWjAvpAXzQlowL6QF8xKYWHzyg6KiIvz2228oKiryd1MoADAvwcPWTL30ruigOu+TYYs631PEVXVzyR3AvJA2zAtpwbyQFswLacG8kBbMS2Bi8YmIyEeUFurIJ2t6BnLTziI2+yAAoO0dnGyciIiIiIiCF4tPREQ+YmqjFp+UExlIXfw7ACC3yWWIbRPnz2YRERERERF5FYtPREQ+EtNZvezOlHMcRavVS+5sfQb4s0lERERERERex3sTEhH5SJOeScgEEGk+hZB96jXqTW+su/meiIiIiIiI6iNFRMTfjQhWVd12UERgt9uh1+uhKIofW0iBgHkJHuIQ7Gk0CAZ7KQDAaghHx1M/ISQ8pO5eg3khDZgX0oJ5IS2YF9KCeSEtmJf6o6qaR2V42Z0fKIoCg8HAPxTyCPMSPBSdgsJGzV3/ndvu8jotPAHMC2nDvJAWzAtpwbyQFswLacG8BCYWn/yguLgYu3fvRnFxsb+bQgGAeQkulkuSXP8OvbLuL7ljXkgL5oW0YF5IC+aFtGBeSAvmJTCx+OQHdrsdubm5sNvt/m4KBQDmJbgoSedHPiWPq/viE/NCWjAvpAXzQlowL6QF80JaMC+BicUnIiIfCm2rjnwqiGmBS3sn+rk1RERERERE3se73RER+VDHv1+F7Ws2otEdN/i7KURERERERD7B4hMRkQ9FN4/GkK2v+bsZREREREREPsPL7vwgNDQUbdu2RWhoqL+bQgGAeSEtmBfSgnkhLZgX0oJ5IS2YF9KCeQlMioiIvxsRrAoKChATE4P8/HxER0f7uzlERERERERERHVCS82DI5/8wGq1IjMzE1ar1d9NoQDAvJAWzAtpwbyQFswLacG8kBbMC2nBvAQmFp/8oLS0FAcOHEBpaam/m0IBgHkhLZgX0oJ5IS2YF9KCeSEtmBfSgnkJTCw+ERERERERERGR17D4REREREREREREXsPiExEREREREREReQ2LT36g1+sRFRUFvV7v76ZQAGBeSAvmhbRgXkgL5oW0YF5IC+aFtGBeApMiIuLvRgQrLbcdJCIiIiIiIiIKFFpqHhz5REREREREREREXsPikx+YzWasX78eZrPZ302hAMC8kBbMC2nBvJAWzAtpwbyQFswLacG8BCYWn4iIiIiIiIiIyGtYfCIiIiIiIiIiIq9h8YmIiIiIiIiIiLyGxSciIiIiIiIiIvIaRUTE340IVlXddtDhcKCsrAyhoaHQ6Vj/o+oxL6QF80JaMC+kBfNCWjAvpAXzQlowL/VHVTWPyhh81CYqR6fTISwszN/NoADBvJAWzAtpwbyQFswLacG8kBbMC2nBvAQmlgn9oKSkBPv370dJSYm/m0IBgHkhLZgX0oJ5IS2YF9KCeSEtmBfSgnkJTCw++YHNZkNWVhZsNpu/m0IBgHkhLZgX0oJ5IS2YF9KCeSEtmBfSgnkJTCw+ERERERERERGR17D4REREREREREREXsMJx73IeSPBgoICt8fNZjOKiopQUFAA3myQLoZ5IS2YF9KCeSEtmBfSgnkhLZgX0oJ5qT+ctQ5PPgcWn7zIbDYDAJKSkvzcEiIiIiIiIiKiumc2mxETE1PtOoqwVOg1DocDJ0+eRFRUFBRFcT1eUFCApKQkZGRkIDo62o8tpEDAvJAWzAtpwbyQFswLacG8kBbMC2nBvNQfIgKz2YyEhATodNXP6sSRT16k0+nQvHnzKpdHR0fzj4U8xryQFswLacG8kBbMC2nBvJAWzAtpwbzUDxcb8eTECceJiIiIiIiIiMhrWHwiIiIiIiIiIiKvYfHJD0JDQ/HMM88gNDTU302hAMC8kBbMC2nBvJAWzAtpwbyQFswLacG8BCZOOE5ERERERERERF7DkU9EREREREREROQ1LD4REREREREREZHXsPhERERERERERERew+ITERERERERERF5DYtPRERERA2I814zvOcMERER+QqLT0RE9ZTD4fB3E6ieExHY7XYAwObNm/3cGqrvRAQOhwOKogCA6/+JqsICJRER1RUWn2rAeaBPdDEsHpBWZrMZo0aNwubNm6HT6djfUJXsdjsURYFer8eePXuwatUqWK1WnixSpZx50el0OHToEPr3749XXnkFAAsM5K78sUv5AiVzQpXhsS5pxWPbhovFJ42ysrLw9ddfIy8vz99NoXrM+UWs0+lgsViwc+dOZGVl+blVFAjS0tKwatUqPP300wAAvV7v5xZRfePsX/R6PUpLS/Hkk0+iW7dueOmllxASEsLRLOTmwrw8+uij6NChAzZt2oSDBw/CarUyMwTA/dilpKQEH330Eb777jts2rQJAEfKkTtnMVKn06G0tBQrV67Evn37kJ2d7eeWUX3Gc+mGjcUnjZYuXYq7774b69ev5y9AVCWdTv3T+uijj9C7d29cd911aN68OaZOnYrffvsNAH8pospFR0fDYDBg1apV+N///gcAsNlsfm4V1SfO/uXDDz9EYmIiXn75ZQDAlClTYLPZ2LcQAPXEUERcefnggw+QkJCAOXPmwGQyoUWLFjh48CAUReHxDAE437d8/PHHGDBgAJYtW4YHHngAV155Je677z6cOXPGzy2k+sRZjFy4cCEGDx6M119/HYMGDUKfPn0wY8YMpKWlAeCIOXLHc+mGjcUnDQ4ePIgFCxbAbDZj4cKFOHnypL+bRPWQiKC4uBgPPfQQ7r77buzduxchISGw2Wz4+OOP8cILL6CwsNB1kEdU3t69e9G4cWMAwPTp0wEABoOBX9DkIiIYPXo07rnnHuTm5mL48OH49ddfMWfOHBgMBvYtBEA9MVQUBT///DN69eqFKVOmIC8vD2PHjsX+/fvx3nvvYdOmTThz5gwLUAQRwZkzZ3DHHXdg1apV+Oyzz/DVV1/h+++/x8SJE/Hee+/h888/Z07IRUTw2GOPYdmyZa6sfPXVV2jbti1mz57tmkKAI+bIiefSxCNUD1ksFqxYsQL9+vWDyWTC8uXLsXz5clitVn83jeoZRVGwa9cuzJs3D3369MHKlStd/33ZZZdh48aN2Llzp7+bSfWM84A+OjoaTz/9NHr37o0jR47g1VdfBcCRcuTOYDCgefPm+PTTT7Fq1Sr069cPIsJRcuRis9kwc+ZMDBkyBDt27MDll1+OH374AZ999hlatmyJ4uJixMbGYuXKlQB4SVVDpygKNm3aBIvFgsWLF6NDhw6w2+1ISUnB1KlT0bFjR3z99dcsVJJLWloaVq9ejZkzZ6J58+aw2WwYMmQIFixYgHvvvRfp6em45557sGrVKn83leoBnksTwOKTx44ePYouXbpg/vz5mD17NgDg3XffRWpqqp9bRvXRt99+i2HDhuG3337DiBEjEBMTg3vuuQcPPPAA8vPzERER4e8mUj3jPPHbsmULiouLsXjxYgDAjBkzkJ2dDb1ezwkaCYCalTNnzmDGjBmYMGGCqzCpKAoMBoNrPZ4gNmylpaXYunUr9Ho93n77bWzatAkjR4505WLAgAGwWq04ffo0AOaFgJdeesl1R0SHw+EaRZmSkoL4+Hjk5uairKyMhUoCAPz+++/YtWsXQkNDAZy/bLNVq1aYO3cuOnTogH379mHOnDmuKSeo4eK5NAEsPgE4Py/Chf8ur127drjqqqsAAJMnT0b37t2xe/du/Pe//0VxcbFP20v+VV1enP/Ozc3F9ddfD0VRXCMRQkJC0KlTJwwdOhSJiYm+bzj5hSf9i3MZADRu3BhJSUlo3749xo4dC5vNhn/+858AwMupGoCL5cVZgLzmmmuQmZmJ1NRUbNy4Ee+//z4efPBBvPrqq/jss8+Qn5/PE8QGoKq8OBwOREZGonXr1hg3bhzuv/9+AOfveOdwOHDJJZegR48e+Omnn/zWfvKd6voWh8MBm80Gu92OY8eOoaCgADqdDoqiwG63IywsDGFhYfjLX/7iKjQQ7d+/HwBcBWznMYrdbkdERATmzp2LqKgorF27Fh999BEKCgr81lbyP55LE8DiExwOh2tehBMnTri+fJ0uPPC32WwICwvD//t//w8A8P7772P79u0+bTP5z8Xy4jxQs1qtGDduHAD3+XoSEhKQlZWF1atXY/v27bzWOchp6V+chYK0tDQcPXoUAFyX3H344YfYunUrFEWBxWLx4R6QL3mSF+fdD/Pz87F06VJMnDgR48ePx9SpUzFv3jw8/vjjmDBhAq666iosXbrUX7tCPlBdXpwngf369XN9F5XPj06ng81mQ+fOnZGWloZjx46xWBnELta36HQ6iAhat26NLVu2YMaMGa6RKoqiIDs7G6Wlpa4sOXG0XHByjqZdsWKFqyhQ2aX/paWlAOA6ZnFmytnPjBo1ChMnToTFYsGPP/6IFStWeL3t5Hue5sWJ59INW4MvPul0OmRnZ2PKlCm45ZZb0Lt3bwwcOBCLFi1Cbm6u62DM+QXrvKThlltuwejRo5GVlYUPPvgAZ8+e9ds+kO9cLC+A+qU7efJkt+c5f2VcsmQJ9u3bh/vvvx99+/bFDTfcgO3bt/NyqiDlaf8CnO9jIiIi0KtXLwBAYmIiZs2aBQD4xz/+AQAwGo1u61Pw8CQvzs+9a9eu2LdvH7Zt24aCggIkJSWhX79+SE5ORnR0NLZt24apU6di1apV7F+CVHV5cR6TREZGIiUlBQAq9DcGgwFt27bF2bNncerUKb/sA/mGJ8cuISEhuOOOO9CxY0fMnz8fI0eOxLBhw3Dvvfdi4sSJcDgcWLx4Mb788kvXcQsLlsFJp9Ph8OHDeOmll7BgwQIAFfsPAGjdujUAYN68eQDOF52A84Wov//97+jYsSOOHj2K1atXIycnxyf7QL5zsbxciOfSDZw0UA6HQ0REli1bJj169JCXXnpJ8vPzZd68edK/f39RFEVGjRolW7ZsqfBcm80mIiLbtm0Tk8kker1evvjiC7Hb7T7dB/KdqvLyzjvvuOVl8+bNVW4jOztb+vbtK3q9Xi677DKJi4sTRVHkiiuukDVr1vhqV8gHPM1L+f7F2X/cf//98umnn7ptKzExURRFke+//15ERN588023dSiw1SQvX375pdx+++3y8ssvy48//ihWq1XMZrNYrVb55Zdf5JZbbhFFUWTIkCFy6NAhf+0aeYEneRkxYoTs2LHjottIS0sTRVFk6dKlInL++IaCg6d9y6ZNm1zP+fHHH+WGG26QRo0aiaIolf4vPDxc7rzzTtm4caO/do28qLCwUG677TZRFEW6d+8uaWlpIiIVznN2794tCQkJoiiKLFmypMI6zvzNnj1bFEWRzp07y7Zt23y0F+QrF+YlNTVVRCrmpTyeSzdcDbb45HTbbbfJ/Pnz3R7Lzs6WQYMGiaIo0q1bN/nhhx9EpPKDsmnTpomiKDJs2DA5evSoT9pM/lNZXrKyslx56d69e6V5KSwslCeffFIefPBBycjIkMzMTNmyZYvcfPPNotPp5KGHHpL8/Hyf7gt5n5b+paysTBwOh9xxxx2yb98+EREpKioSEZEVK1aIoigSFxcnLVu2FEVRZMKECZKdne3bHSKv8qR/WbFihYiI5OTkyJEjR6SsrMy1rtVqdXve9OnTRafTsVAZpLT0L+WzUV56erp06NBB7rzzTq+3l/zHk6w4+xYRkdLSUklLS5PPPvtMrrzySunfv7+MHz9eBg8eLK1bt5bQ0FBRFEVSUlJk586dIlL9iSYFlg0bNsiIESMkKSlJFEWRxx57rNL1jh49KjfffLMoiiJDhw6V4uJiETlfdHJmIi8vz7UtZ6GbeQkenualKjyXblgadPFp8+bNoiiKLFu2TETUjtBZMPj111/luuuuE0VRpHXr1lJYWOj2XGenmZmZKS1atBBFUeSNN95wOxGg4FJdXjZu3FhtXmw2m2RmZrr9t4jI4cOH5cYbb5Tk5OQKz6HAVtP+5W9/+5t89913bts6fPiwxMbGitFodBWeqhvVQIGnNv1LVfbu3Ss9evSQoUOHeq3d5B+1OX650MCBA2XYsGFy5swZr7ebfM/TrLRq1cqVFYvF4nr+mDFjZN26da7j24KCAvnf//4nY8aMEUVRZNy4cT7eI/Kmw4cPy/z582Xnzp3y0UcfSUREhCQkJMgvv/wiIhV/iH/jjTckPj5ewsLCZN68eSJyvvhUfv0XX3xRFEWR8ePH+2hPyBe05qU8nks3TA16zqdDhw4BgNvdP5zXK/fv3x8PPPAAUlJScPjwYTz55JNuz9XpdHA4HGjatCkee+wxAMD8+fNx4MABH+4B+VJ1eRkwYAAeeOABdOzYsdK86PV6NG3aFIA6CZ/zecnJybj77rtx6tQp1/YpONSkfyksLMTBgwfRt29fAOqk0n/729/QunVr5OXlwWq1AgBef/11dO/e3XUnRQp8telfqnLZZZdh2LBhyMnJQX5+vncaTn5Rm+MXJ+ecLFdddRV27Njhmk+OgounWTly5IgrKyEhIQDUG2Ds2bMHLVq0gNFohN1uR1RUFG666SYsXrwYSUlJ2LhxI9LT0/2wZ+QNycnJmDp1Krp164bBgwdj9OjROHXqFN555x0A6vGslLtb4nXXXYfevXujtLQU7777Lo4cOeK6+Q5w/uYHV199NaKiogCox8HCeSuDgqd5qQzPpRumBll8cv4ROO/S8O233wI4P1Gec/mgQYMwZcoUAMDbb7+NX3/9FcD5Gfydk6k98MAD6Nu3Lw4cOIBPP/0UZrPZR3tCvuBpXgYPHuyWl40bNwKoeMcH5xexU2xsLJo1a4aYmBgv7QH5kpb+ZerUqQDUvGzYsAGRkZHo2LEjCgoK8OabbyIxMRELFixAUlISFi1ahEmTJgEAHn74YbdtUuCq6/7FyW63w2AwoFGjRnA4HOxfgkRN+5cLj1/KPyclJQWFhYVYt26d2zYosNU2KwDwww8/IDMzEyaTya1oZbfbER4ejqlTp6KsrAyJiYm+2SnyqVatWmHcuHFISEjAN998g88//xyAmh3nOVCbNm0wYcIEtG/fHnv37sW//vUvAOdz5lwvMjISoaGhcDgc0Ol0nKw+CFWXl6rwXLrhaZDFJ2fQExMTYTKZkJ6e7lZlLd9RjhkzBtdddx0A4IUXXgBwvnjgrOwrioKnn34aALBo0SL8/PPPAIAdO3ZwNEsQ8DQvERERuOmmm1x5eemllwBULDY5OX8VUhQFnTp1QkJCgtf2gXxHS/9SPi+vvvoqLBYL1q5di8GDB+ORRx6BzWbD3//+d6xfvx5//etf8cYbb8BkMuGzzz7D2rVroShKtbezpfrPW/2L83GbzYZbb73Va+0n36pp//Liiy8CqDwvSUlJMJlM2L17t9s2KLDVNiuAepziLEw6v2/K3+XuyJEj6NmzJ/R6Pb+LgoyzYNC/f3+MHTsWJSUlePfdd5Gbm+saseJc58Ybb8SkSZMQERGBRYsW4bPPPnNtx2KxAACaNGmCwsJCdO/e3W37FBw8yUtleC7d8ARV8amkpERTZxYVFQWTyYQdO3Zg9+7dlT43MTERd911F0JDQ/H9999X+LXZWdm/9tprccMNNyA3NxcPPfQQkpKS8Mgjj7Bzrce8nZcVK1ZUOzrBmZ3ff/8d9913n+uXRaqfvJ2Xb7/9FidOnMBtt92GEydOYMyYMVi/fj1ef/11JCcno6ysDJGRkZg1axYA4K233gJQdfGB/MuX/YuzkF2eoiiw2WzYu3cvhg8fXvMdIZ/w5/fRgAED0KRJE6SmpgKoPE9Uf/giKxs2bACgXroLAP/85z9x5MgR6HQ66PV66HQ6HD16FJmZmXj44YdhMBj4XVRPac2Lk7PAGB8fj1tuuQXdunXDhg0b8MEHHwCA2+ilqKgoTJ48GU888QQAYPr06Vi8eDEAuC7n3bJlC6644grccccdbtun+sWbeakKz6UblqD4prBarVi4cCG++OILTcP0Bg4ciK5duyIvLw/Lly9HVlZWhXX0ej369Onj+kXof//7HwD3PyLngZzzAD8zMxP3338/1q9f7/ripvrD33nJy8tDWloaTpw4gX/961/IzMzEsGHDAPDLuD7yZV4WLVqEp59+Gl988QW+/PJL19xPDofDdQD3+OOPY9GiRfjqq6/qYO+orvmjf3HOqXDgwAGkpaVh+/btOHXqFJ577jl06dIFgwYNqpudozrn7+8jQC029e3bF19//bXreVT/+CMro0aNwh133IGMjAxMmDABL7/8Mv744w888cQTuOuuuzBq1CiMGjWqbnaQ6lRN81KZbt26YcKECVAUBYsWLXKNoCtfyI6Li8NTTz2FJ554AlarFZMmTcKNN96IH3/8Ec8//zxmzZqFcePG8RLNesrXebkQz6UbjoAvPhUXF+OFF17AmTNncOuttyI6Otqj5zl/2ZsxYwYA4PPPP8evv/5a6S9+zZs3x8CBA2E0GpGVlYWysjK35TqdDv/5z3/w+OOP46677sLJkyc9nhCWfMsfeXEOOS4rK8MDDzyA9u3b4/LLL0dKSgpOnjyJmTNnIjw8vI72kOqSr/OSnp4Ou92OW265xW07zl8YnV/Of/3rX2u7a+QF/uxf9u3bh0mTJqFnz57o3bs3WrdujZMnT2L69Ol1tHdU1+rD8QugFh4aN26M22+/HVarlb8y10O+zkpOTg6KiooAqJfhvf766zh16hQ+/fRTTJo0Cbm5uVi2bBnuv//+OtpDqks1zUtVIiIicO2112LEiBE4ePAg5s2bB6DyH+Kff/55rF69Gg899BCKi4vx9ttvIz8/HytWrHDNW0n1iz/yciGeSzcgdXjnPL/48MMP5c4775SCggIRcb+9p6ect5kdOXKkHDp0yG2Zc3s///yzmEwm6dSpU4XnFxcXyyeffCKbN2+uwR6QL/kzL3a7XUaPHi1hYWFyzTXXyLZt22qxJ+QL/sxLTV6L/Mufefn++++lb9++0rhxYxk9erRs3769FntCvlAfjl+ct8Hmra3rt/qQlaKiIjGbzXLq1Kka7AH5Ul3k5UI2m00++eQTiYmJkaZNm8rq1atFRD22Le/C1zKbzbV+bfIuf+bFiefSDUdAF5/27t0rl156qSxatKhGz3cedG3dulUURRFFUeS5556T7OxsEan4x9etWzdp166dFBQU8MQwAPkrL/n5+a7nFhUVVTjoo/qJ/Qtp4a+85OXluZ6fn58vBw4cqMVekK+wfyFP1aesMDv1X23zUt1nnJGRIX/9619FURS56aabxGq11rSZVE8wL+RrAX3Z3cKFC2Gz2TBmzBhNz3MON3bOk9GrVy889dRTAIAFCxZg6dKlANT5d0QEVqsVNpsNRqMRLVq0QFRUFOfmCUD+ykt0dLRrDo3w8HC0a9euDveKvIX9C2nhr7zExMS4nh8dHc25EQIE+xfyVH3KCrNT/9U2L+U/4wsvz2zevDnGjh2Lli1bYuXKlfj0008BqJfcFRcX17Ll5A/MC/mcf2petVdSUiItWrSQm266yfXYxX6hsdvtbo999913Mm3aNBFRfxm6/fbbJTQ0VBITE2Xx4sUVttG/f3/5/vvv63xfyPuYF9KCeSEtmBfSgnkhTzErpEVd5eXRRx+tsG3nOjk5OfLYY4+JoijStGlTmTZtmiQnJ8vy5cvrclfIB5gX8oeALT5t2bJFFEWR+++/X2w2m1gsFtey8v92cg47FhE5cOCA3H333a7hxz/99JOIiBw5ckSeffZZURRFTCaTvPLKK5Keni67d++Wm2++WcaNGydnz57lsOMAxLyQFswLacG8kBbMC3mKWSEt6jIv69evr7C+c76eDz/80LVez549XdmiwMK8kD8Y/D3y6kIOh6Pa2fCdtm7dCkCdHV+v10Ov1yMnJwfvvvsuTp06BbPZjP79++OGG25AUlIS9Ho9CgoK8Nprr+G9995DVlYWEhIS8Oyzz7puc9+yZUvMnDkTLVq0wOeff47Zs2fj22+/RWlpKaZPn46xY8d6dd9JO+aFtGBeSAvmhbRgXshTzApp4Y+8DB48uML2dTodSktL8cknnyAuLg5z587FnXfeWef7S7XDvFC95u/qV1W+/PJL+eWXX2Tv3r1u1VfnZGULFiwQRVHkuuuuk8LCQlm8eLEMHDhQxo4dK0OGDBFFUUSn00nPnj1lx44dIiLy2muvuSqvTz75pFsF1+FwVJiBv6CgQA4cOFDlzPxUfzAvpAXzQlowL6QF80KeYlZIC3/k5UIzZ86URx99lJNHBwDmheqjeld8+uabb2TYsGEyatQo6dixo0RERMjo0aNl1apVbus5hwwPGTJE3nrrLXn22WflxIkTruVLliyRK664QhRFkd69e0tZWZkcP35cJk+eLOnp6a71qvpj4HDjwMC8kBbMC2nBvJAWzAt5ilkhLepDXpzFybKyMi/tJdUV5oXqs3pVfFq8eLFcccUVsm3bNhFRr0ufMWOGGI1GURRF5s2bJ0VFRSIismbNGlfldezYsZKTkyMi569RtVgssn79ern00ktFURR5/fXX3V7LZrPxV54Ax7yQFswLacG8kBbMC3mKWSEtmBfSgnmh+q7eFJ+Ki4tl5MiR8u9//1tEzge/rKxM3n//fVEURaKiouTll18Ws9kshw4dkm7duomiKHLjjTeKSOW/4LzxxhuiKIokJia6tsmhf4GPeSEtmBfSgnkhLZgX8hSzQlowL6QF80KB4OKzkfnIyZMnsWrVKsTGxgKAa6I0o9GIe++9F/feey8KCwvxzjvvYOnSpWjVqhXat28PRVGQk5ODI0eOQFEUiIjbdseMGYPu3bvj5MmT2LhxIwDAYKh386yTRswLacG8kBbMC2nBvJCnmBXSgnkhLZgXCgQ+Kz45HA4AqBBop9TUVADAsWPHYLPZoNfrAQB2ux0AMGPGDAwaNAgZGRl4/fXXcfr0adx1110IDw9HamoqVq5cCQBQFMVtu/Hx8Rg6dCgAIDo6uu53jLyCeSEtmBfSgnkhLZgX8hSzQlowL6QF80LBwOvFJ+cfik6nQ2ZmJrKyslBUVFRhPavVCkVRcOzYMTgcDtcfll6vh4ggOTkZkydPRosWLbB79268/fbbuO6663DttdciKysLixcvdlVjnX9kABAWFgaTyYTIyEiEh4d7e3eplpgX0oJ5IS2YF9KCeSFPMSukBfNCWjAvFFS8f2Wfes3p008/Ld26dZPevXtLQkKCTJ8+Xfbu3eta5/fffxdFUSQsLEwyMjJE5PxM+c7rT4uLi+Xuu+8Wg8EgHTt2lNTUVNm1a5cMHjxYFEWRUaNGSWFhoWubzue/9tprMmHCBF/sKtUB5oW0YF5IC+aFtGBeyFPMCmnBvJAWzAsFC68Xn/bu3Sv9+vWT6dOni9lslnXr1sk999wjiqJIq1atZOHCha7JywYNGiSKosgjjzwiIuI2g77z3z/++KMkJydLRESEzJ8/X0RENmzYIAMGDHBNmLZ582bX85y3ifzhhx9EhLeVre+YF9KCeSEtmBfSgnkhTzErpAXzQlowLxRMvF58eu655+Tuu++u8Phjjz0m0dHRYjKZZPbs2SIiMnv2bFEURUwmkxw4cEBE1Ns4XmjChAmiKIo88MADrseOHTsm48aNk+joaFEURW677TYZOHCgjB07Vnbt2uWlvaO6xryQFswLacG8kBbMC3mKWSEtmBfSgnmhYOLV4lNBQYEkJSXJfffdJyJqxdVZdT1x4oQ8/fTToiiKKIoiv/zyi2zcuFH69esniqLIHXfcUWF7zueuXbtWFEWRli1bVrjV49atW+Wjjz6SN954Q7766itv7h7VMeaFtGBeSAvmhbRgXshTzAppwbyQFswLBZtaFZ/KD+WrzJ9//ikREREybdo0EalYeT127JjcfPPNoiiKDB8+XPbu3SszZ86UsLAwURRFVqxYUenzRER69eolCQkJcuTIkdrsAvkQ80JaMC+kBfNCWjAv5ClmhbRgXkgL5oUamhrf7c7hcECnU5++adMmbNy4EX/88QfMZrNrneLiYhQXF2P58uUwm82u2fadkpKS8MQTTyA8PBxr1qzB2rVrcf311+Pqq68GAEybNg1Wq9V1q0gni8WC5ORkmEwmxMfH13QXyIeYF9KCeSEtmBfSgnkhTzErpAXzQlowL9Qg1aZytWfPHrn66qvFaDRKRESEREZGysiRIyU9PV3sdrvk5+fLZZddJvHx8bJ06dIqtzNz5kxRFEXatWsnGRkZsmbNGmnXrp0oiiIPP/ywZGdni4hatXVWbvv37y/XXHON22NUvzEvpAXzQlowL6QF80KeYlZIC+aFtGBeqKHRXHxyDg9csmSJhIeHi6IoEh0dLUajUUwmkyiKIqNHj5atW7dKfn6+XHXVVaLT6WTatGmSl5cnIhVnyT969Ki0adNGFEWRN998U0REli9fLoqiSEhIiDzyyCOSk5PjWv/YsWMycuRIWbVqVY13nHyDeSEtmBfSgnkhLZgX8hSzQlowL6QF80INWY1GPpWVlUmvXr1EURSZMWOG7N+/X3766Sd58803RafTSUhIiDz//PMiIjJr1ixRFEV69Ogha9asqXR7drtdXnnlFVEURXr27ClFRUUiIrJ48WIZOHCgq5I7b948mTt3rlx55ZUya9asi14nS/UD80JaMC+kBfNCWjAv5ClmhbRgXkgL5oUaqhoVn7755huJj4+XDRs2VFg2e/ZsCQ8Pl8GDB4uIyPHjx123bHz88cclMzNTRCpWbH/55Rdp3bq1tGvXTnbv3u16PC8vTz744AO57bbbZOLEiTJlyhQ5fPhwTZpNfsK8kBbMC2nBvJAWzAt5ilkhLZgX0oJ5oYaqRsWnpUuXylVXXSUlJSWuWz46rxXNzs6W4cOHi8lkktTUVBE5X7Ft3bq1fPHFF5Vu8+TJkzJs2DAxGo2u5114/WlZWVlNmkt+xryQFswLacG8kBbMC3mKWSEtmBfSgnmhhqpGd7s7evQounfvDpPJBEVRoNPpXLPvx8fHY8SIETCZTDAYDACAmTNnon379jh8+DAWL16M7du3Oyc7d23z0ksvRUpKCqxWKwoKCgCgwsz8RqOxRpOqk38xL6QF80JaMC+kBfNCnmJWSAvmhbRgXqihqlHx6ZprroHFYkFpaSkURXE97vwDGDNmDETE9QejKArmzJmDRo0a4YcffsC7776L3NxcKIoCh8OBsrIyAEB0dDRiY2ORnJxcy92i+oR5IS2YF9KCeSEtmBfyFLNCWjAvpAXzQg1WTYZLlZSUyOnTp6tcvm7dOrniiivEZrO5TWQ2Z84cSU5Odt328ULjx4+XF154oSZNonqMeSEtmBfSgnkhLZgX8hSzQlowL6QF80INVY1GPplMJlxyySWVFbIAAM2aNUOrVq3gcDig0+ngcDgAABMnTsSCBQsQExODN998E3fddRd++OEHHDlyBPfddx9OnjyJm2++uRalNKqPmBfSgnkhLZgX0oJ5IU8xK6QF80JaMC/UUBnqcmPOYYObNm1C+/btERISAhGBTqfWuLZu3Yru3btjzZo1WLx4MZYsWYLU1FRYLBZMnDgR7777bl02h+o55oW0YF5IC+aFtGBeyFPMCmnBvJAWzAsFuzotPokIFEVBVlYWunbtCgCwWq3Q6/XQ6/XYsmUL4uLi0Lt3b/To0QMvvvgi8vLyEBERgcjIyLpsCgUA5oW0YF5IC+aFtGBeyFPMCmnBvJAWzAsFuxpddlcV51DBrKws11BCo9EIvV6PzZs345VXXsHRo0cBAHa7HaGhoWjatCn/WBoo5oW0YF5IC+aFtGBeyFPMCmnBvJAWzAsFuzotPul0OmRnZ+P06dPo27cvACA7Oxv33nsv+vXrB7PZjMOHDwM4f+vH8jP8U8PCvJAWzAtpwbyQFswLeYpZIS2YF9KCeaFgV6fFJwA4fvw4+vXrBwB44YUX0Lx5cyxatAgAMHPmTDz66KN1/ZIUwJgX0oJ5IS2YF9KCeSFPMSukBfNCWjAvFMwUcY7vqyXnNarffvst5syZg9OnT+PgwYMAgPHjx+OVV15BQkJCXbwUBQHmhbRgXkgL5oW0YF7IU8wKacG8kBbMCzUEdTbhuHPI38qVK7F+/XoAwOWXX465c+diwIABdfUyFCSYF9KCeSEtmBfSgnkhTzErpAXzQlowL9QQ1NnIJwAoLCxESkoKSktL8corr2DSpEl1tWkKQswLacG8kBbMC2nBvJCnmBXSgnkhLZgXCnZ1NvIJUIcL/v3vf8dDDz0Ek8lUl5umIMS8kBbMC2nBvJAWzAt5ilkhLZgX0oJ5oWBXpyOfiIiIiIiIiIiIyqvzu90RERERERERERE5sfhERERERERERERew+ITERERERERERF5DYtPRERERERERETkNSw+ERERERERERGR17D4REREREREREREXsPiExEREREREREReQ2LT0RERERERERE5DUsPhERERERERERkdew+ERERERUD02ePBmXXHIJdu3a5e+mEBEREdUKi09ERERE9dB///tfZGVl4ccff/R3U4iIiIhqhcUnIiIiIj87ffp0hceefPJJDBo0CLfddpsfWkRERERUdxQREX83goiIiKihKigowJgxY/DTTz/5uylEREREXsGRT0RERER+NHnyZKSlpfm7GURERERew+ITERERkR+ICB599FH83//9X7XrORwOH7WIiIiIyDtYfCIiIiLyg08++QSrV68GoM75NGTIEAwZMgTLli1DYWEhPv30U1x99dV48cUXXc8pLi7Gt99+i/vuuw8tW7bEoUOHsHbtWgwfPhyRkZGIj4/HU089BQCw2+1455130LNnT4SHh6NNmzZYtmxZpW3ZsmULbr/9dowYMQIJCQno06cPli5d6v03gYiIiBoEzvlERERE5Cfr1q3D0KFD0bJlSxw5cgSAWghasGABvvjiC+Tn5+OZZ57BrFmzXMs2btyIadOmAQCmTp0KABg7dixEBBMnTsTx48cxd+5cbN68Gddffz1SUlJczzEYDDh8+DCaNWvmasPSpUvxzDPPYOXKlWjevDny8vIwfPhwbN++He+88w7uv/9+n74nREREFHw48omIiIioHrn88svx/vvvY+LEiZUue+SRR9C0aVMAQEpKCubPn4+hQ4di2LBheOSRRwAATz31FF544QWMHz8ePXr0wIMPPoirr74apaWl+Prrr13by8jIwKRJk/Diiy+iefPmAIBGjRph+vTpAIAZM2agqKjIuztMREREQY/FJyIiIqJ6KDY2tsplYWFhAIBu3bq5Pd6hQwcAQHx8PFq1alXpsgMHDrgee+utt1BWVoaRI0e6rdu/f38AQH5+PtavX1/DPSAiIiJSGfzdACIiIiKqGxERERddVlBQ4Hps5cqV0Ol0uOaaa9zWFRG0bNkSAGA2m73QUiIiImpIWHwiIiIiakDK3z0vLS0NjRs3xrp16/zXICIiIgp6vOyOiIiIqIGyWCzIzc0F7z9DRERE3sTiExEREVED1aRJE5SUlGD79u1VrrN7924ftoiIiIiCEYtPRERERH6i06mHYuUvhfOlvn37AgCefvrpSkc/7dmzB//+97993SwiIiIKMiw+EREREfmJ8452Z86cgd1uB3C+EGW1Wt3+vzybzVbp9pzPtVgsVT6nfJFp8uTJAIDvv/8ekyZNQk5OjmvZ8uXLcfXVV+OJJ57QtlNEREREF2DxiYiIiMhP2rVrh9jYWBQXF+PVV1/F6tWr8Y9//AMAsGvXLgDAzp073QpGp0+fRmZmJgDg6NGjbts7fPgwACArKwvHjx93PS4i2LlzJwAgNTXV9fg111yDe+65BwDw8ccf49JLL0WrVq0QExODG2+8Ef/617/QuXPnOt5rIiIiamgU4QyTRERERH7z+eefY9q0abBYLLj99tvRvn17zJ07162w1KpVK3z88cdYt24d5s6di9zcXACA0WjE8OHDsWLFClx77bVYs2YNysrKAADR0dGYOnUqHn74YQwYMADHjh1zba9NmzZ47733MHz4cDgcDsybNw/vvfce/vzzT5hMJlxxxRV48sknMXDgQN++GURERBSUWHwiIiIiIiIiIiKv4WV3RERERERERETkNSw+ERERERERERGR17D4REREREREREREXsPiExEREREREREReQ2LT0RERERERERE5DUsPhERERERERERkdew+ERERERERERERF7D4hMREREREREREXkNi09EREREREREROQ1LD4REREREREREZHXsPhERERERERERERew+ITERERERERERF5DYtPRERERERERETkNSw+ERERERERERGR17D4REREREREREREXvP/Aa2Rb79vU0BDAAAAAElFTkSuQmCC", "text/plain": [ "<Figure size 1400x700 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Dataset pixel, Tr, E, SWCe, SWCr, Irr, DP : scale factor: 1000\n", "\n", "plot_time_series(ds1 = val_outputs, ds2 = outputs, var = 'Dr', label1 = 'Excel values', label2 = 'Pixel values', scale_factor1 = 100, scale_factor2 = 100, unit = 'mm')\n", "plot_time_series(ds1 = val_outputs, ds2 = outputs, var = 'Ks', label1 = 'Excel values', label2 = 'Pixel values', scale_factor1 = 100, scale_factor2 = 100, unit = '/')\n", "plot_time_series(ds1 = val_outputs, ds2 = outputs, var = 'diff_rei', label1 = 'Excel values', label2 = 'Pixel values', scale_factor1 = 100, scale_factor2 = 100, unit = 'mm')" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n", "<defs>\n", "<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n", "<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n", "<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n", "<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n", "</symbol>\n", "<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n", "<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n", "<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", "<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", "<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", "</symbol>\n", "</defs>\n", "</svg>\n", "<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n", " *\n", " */\n", "\n", ":root {\n", " --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n", " --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n", " --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n", " --xr-border-color: var(--jp-border-color2, #e0e0e0);\n", " --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n", " --xr-background-color: var(--jp-layout-color0, white);\n", " --xr-background-color-row-even: var(--jp-layout-color1, white);\n", " --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n", "}\n", "\n", "html[theme=dark],\n", "body[data-theme=dark],\n", "body.vscode-dark {\n", " --xr-font-color0: rgba(255, 255, 255, 1);\n", " --xr-font-color2: rgba(255, 255, 255, 0.54);\n", " --xr-font-color3: rgba(255, 255, 255, 0.38);\n", " --xr-border-color: #1F1F1F;\n", " --xr-disabled-color: #515151;\n", " --xr-background-color: #111111;\n", " --xr-background-color-row-even: #111111;\n", " --xr-background-color-row-odd: #313131;\n", "}\n", "\n", ".xr-wrap {\n", " display: block !important;\n", " min-width: 300px;\n", " max-width: 700px;\n", "}\n", "\n", ".xr-text-repr-fallback {\n", " /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n", " display: none;\n", "}\n", "\n", ".xr-header {\n", " padding-top: 6px;\n", " padding-bottom: 6px;\n", " margin-bottom: 4px;\n", " border-bottom: solid 1px var(--xr-border-color);\n", "}\n", "\n", ".xr-header > div,\n", ".xr-header > ul {\n", " display: inline;\n", " margin-top: 0;\n", " margin-bottom: 0;\n", "}\n", "\n", ".xr-obj-type,\n", ".xr-array-name {\n", " margin-left: 2px;\n", " margin-right: 10px;\n", "}\n", "\n", ".xr-obj-type {\n", " color: var(--xr-font-color2);\n", "}\n", "\n", ".xr-sections {\n", " padding-left: 0 !important;\n", " display: grid;\n", " grid-template-columns: 150px auto auto 1fr 20px 20px;\n", "}\n", "\n", ".xr-section-item {\n", " display: contents;\n", "}\n", "\n", ".xr-section-item input {\n", " display: none;\n", "}\n", "\n", ".xr-section-item input + label {\n", " color: var(--xr-disabled-color);\n", "}\n", "\n", ".xr-section-item input:enabled + label {\n", " cursor: pointer;\n", " color: var(--xr-font-color2);\n", "}\n", "\n", ".xr-section-item input:enabled + label:hover {\n", " color: var(--xr-font-color0);\n", "}\n", "\n", ".xr-section-summary {\n", " grid-column: 1;\n", " color: var(--xr-font-color2);\n", " font-weight: 500;\n", "}\n", "\n", ".xr-section-summary > span {\n", " display: inline-block;\n", " padding-left: 0.5em;\n", "}\n", "\n", ".xr-section-summary-in:disabled + label {\n", " color: var(--xr-font-color2);\n", "}\n", "\n", ".xr-section-summary-in + label:before {\n", " display: inline-block;\n", " content: '►';\n", " font-size: 11px;\n", " width: 15px;\n", " text-align: center;\n", "}\n", "\n", ".xr-section-summary-in:disabled + label:before {\n", " color: var(--xr-disabled-color);\n", "}\n", "\n", ".xr-section-summary-in:checked + label:before {\n", " content: '▼';\n", "}\n", "\n", ".xr-section-summary-in:checked + label > span {\n", " display: none;\n", "}\n", "\n", ".xr-section-summary,\n", ".xr-section-inline-details {\n", " padding-top: 4px;\n", " padding-bottom: 4px;\n", "}\n", "\n", ".xr-section-inline-details {\n", " grid-column: 2 / -1;\n", "}\n", "\n", ".xr-section-details {\n", " display: none;\n", " grid-column: 1 / -1;\n", " margin-bottom: 5px;\n", "}\n", "\n", ".xr-section-summary-in:checked ~ .xr-section-details {\n", " display: contents;\n", "}\n", "\n", ".xr-array-wrap {\n", " grid-column: 1 / -1;\n", " display: grid;\n", " grid-template-columns: 20px auto;\n", "}\n", "\n", ".xr-array-wrap > label {\n", " grid-column: 1;\n", " vertical-align: top;\n", "}\n", "\n", ".xr-preview {\n", " color: var(--xr-font-color3);\n", "}\n", "\n", ".xr-array-preview,\n", ".xr-array-data {\n", " padding: 0 5px !important;\n", " grid-column: 2;\n", "}\n", "\n", ".xr-array-data,\n", ".xr-array-in:checked ~ .xr-array-preview {\n", " display: none;\n", "}\n", "\n", ".xr-array-in:checked ~ .xr-array-data,\n", ".xr-array-preview {\n", " display: inline-block;\n", "}\n", "\n", ".xr-dim-list {\n", " display: inline-block !important;\n", " list-style: none;\n", " padding: 0 !important;\n", " margin: 0;\n", "}\n", "\n", ".xr-dim-list li {\n", " display: inline-block;\n", " padding: 0;\n", " margin: 0;\n", "}\n", "\n", ".xr-dim-list:before {\n", " content: '(';\n", "}\n", "\n", ".xr-dim-list:after {\n", " content: ')';\n", "}\n", "\n", ".xr-dim-list li:not(:last-child):after {\n", " content: ',';\n", " padding-right: 5px;\n", "}\n", "\n", ".xr-has-index {\n", " font-weight: bold;\n", "}\n", "\n", ".xr-var-list,\n", ".xr-var-item {\n", " display: contents;\n", "}\n", "\n", ".xr-var-item > div,\n", ".xr-var-item label,\n", ".xr-var-item > .xr-var-name span {\n", " background-color: var(--xr-background-color-row-even);\n", " margin-bottom: 0;\n", "}\n", "\n", ".xr-var-item > .xr-var-name:hover span {\n", " padding-right: 5px;\n", "}\n", "\n", ".xr-var-list > li:nth-child(odd) > div,\n", ".xr-var-list > li:nth-child(odd) > label,\n", ".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n", " background-color: var(--xr-background-color-row-odd);\n", "}\n", "\n", ".xr-var-name {\n", " grid-column: 1;\n", "}\n", "\n", ".xr-var-dims {\n", " grid-column: 2;\n", "}\n", "\n", ".xr-var-dtype {\n", " grid-column: 3;\n", " text-align: right;\n", " color: var(--xr-font-color2);\n", "}\n", "\n", ".xr-var-preview {\n", " grid-column: 4;\n", "}\n", "\n", ".xr-index-preview {\n", " grid-column: 2 / 5;\n", " color: var(--xr-font-color2);\n", "}\n", "\n", ".xr-var-name,\n", ".xr-var-dims,\n", ".xr-var-dtype,\n", ".xr-preview,\n", ".xr-attrs dt {\n", " white-space: nowrap;\n", " overflow: hidden;\n", " text-overflow: ellipsis;\n", " padding-right: 10px;\n", "}\n", "\n", ".xr-var-name:hover,\n", ".xr-var-dims:hover,\n", ".xr-var-dtype:hover,\n", ".xr-attrs dt:hover {\n", " overflow: visible;\n", " width: auto;\n", " z-index: 1;\n", "}\n", "\n", ".xr-var-attrs,\n", ".xr-var-data,\n", ".xr-index-data {\n", " display: none;\n", " background-color: var(--xr-background-color) !important;\n", " padding-bottom: 5px !important;\n", "}\n", "\n", ".xr-var-attrs-in:checked ~ .xr-var-attrs,\n", ".xr-var-data-in:checked ~ .xr-var-data,\n", ".xr-index-data-in:checked ~ .xr-index-data {\n", " display: block;\n", "}\n", "\n", ".xr-var-data > table {\n", " float: right;\n", "}\n", "\n", ".xr-var-name span,\n", ".xr-var-data,\n", ".xr-index-name div,\n", ".xr-index-data,\n", ".xr-attrs {\n", " padding-left: 25px !important;\n", "}\n", "\n", ".xr-attrs,\n", ".xr-var-attrs,\n", ".xr-var-data,\n", ".xr-index-data {\n", " grid-column: 1 / -1;\n", "}\n", "\n", "dl.xr-attrs {\n", " padding: 0;\n", " margin: 0;\n", " display: grid;\n", " grid-template-columns: 125px auto;\n", "}\n", "\n", ".xr-attrs dt,\n", ".xr-attrs dd {\n", " padding: 0;\n", " margin: 0;\n", " float: left;\n", " padding-right: 10px;\n", " width: auto;\n", "}\n", "\n", ".xr-attrs dt {\n", " font-weight: normal;\n", " grid-column: 1;\n", "}\n", "\n", ".xr-attrs dt:hover span {\n", " display: inline-block;\n", " background: var(--xr-background-color);\n", " padding-right: 10px;\n", "}\n", "\n", ".xr-attrs dd {\n", " grid-column: 2;\n", " white-space: pre-wrap;\n", " word-break: break-all;\n", "}\n", "\n", ".xr-icon-database,\n", ".xr-icon-file-text2,\n", ".xr-no-icon {\n", " display: inline-block;\n", " vertical-align: middle;\n", " width: 1em;\n", " height: 1.5em !important;\n", " stroke-width: 0;\n", " stroke: currentColor;\n", " fill: currentColor;\n", "}\n", "</style><pre class='xr-text-repr-fallback'><xarray.Dataset>\n", "Dimensions: (x: 10, y: 10, time: 297)\n", "Coordinates:\n", " * x (x) float64 7e+05 7e+05 7e+05 ... 7.001e+05 7.001e+05 7.002e+05\n", " * y (y) float64 4.7e+06 4.7e+06 4.7e+06 ... 4.7e+06 4.7e+06 4.7e+06\n", " * time (time) datetime64[ns] 2006-02-06 2006-02-07 ... 2006-11-29\n", " spatial_ref int64 ...\n", "Data variables: (12/19)\n", " Kcb (x, y, time) int16 ...\n", " Zr (x, y, time) int16 ...\n", " TAW (x, y, time) int16 ...\n", " TDW (x, y, time) int16 ...\n", " Irr (x, y, time) int16 ...\n", " DP (x, y, time) int16 ...\n", " ... ...\n", " W (x, y, time) int16 ...\n", " Kei (x, y, time) int16 ...\n", " Kep (x, y, time) int16 ...\n", " E (x, y, time) int16 ...\n", " Ks (x, y, time) int16 ...\n", " Tr (x, y, time) int16 ...</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-62d5c5d4-da1a-4dd4-87a2-5378024466d4' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-62d5c5d4-da1a-4dd4-87a2-5378024466d4' class='xr-section-summary' title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'><ul class='xr-dim-list'><li><span class='xr-has-index'>x</span>: 10</li><li><span class='xr-has-index'>y</span>: 10</li><li><span class='xr-has-index'>time</span>: 297</li></ul></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-8b854b60-5227-4b0c-965e-3e5698e6faa8' class='xr-section-summary-in' type='checkbox' checked><label for='section-8b854b60-5227-4b0c-965e-3e5698e6faa8' class='xr-section-summary' >Coordinates: <span>(4)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>x</span></div><div class='xr-var-dims'>(x)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>7e+05 7e+05 ... 7.001e+05 7.002e+05</div><input id='attrs-97ee40a6-8663-4962-97fe-7601359c9d82' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-97ee40a6-8663-4962-97fe-7601359c9d82' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-6c9a44e2-5b03-4876-8c69-c15ab33e661f' class='xr-var-data-in' type='checkbox'><label for='data-6c9a44e2-5b03-4876-8c69-c15ab33e661f' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([699970., 699990., 700010., 700030., 700050., 700070., 700090., 700110.,\n", " 700130., 700150.])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>y</span></div><div class='xr-var-dims'>(y)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>4.7e+06 4.7e+06 ... 4.7e+06 4.7e+06</div><input id='attrs-164eb2e6-0a4d-40b4-b363-b3e7a2861a90' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-164eb2e6-0a4d-40b4-b363-b3e7a2861a90' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-841b70d0-e159-4612-ae1c-0413650ebeed' class='xr-var-data-in' type='checkbox'><label for='data-841b70d0-e159-4612-ae1c-0413650ebeed' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([4700030., 4700010., 4699990., 4699970., 4699950., 4699930., 4699910.,\n", " 4699890., 4699870., 4699850.])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>time</span></div><div class='xr-var-dims'>(time)</div><div class='xr-var-dtype'>datetime64[ns]</div><div class='xr-var-preview xr-preview'>2006-02-06 ... 2006-11-29</div><input id='attrs-d8c5b195-587a-4176-bcc5-bde2216f2edb' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-d8c5b195-587a-4176-bcc5-bde2216f2edb' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-9eea170a-cb5e-4391-b6d3-4bcb43274696' class='xr-var-data-in' type='checkbox'><label for='data-9eea170a-cb5e-4391-b6d3-4bcb43274696' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array(['2006-02-06T00:00:00.000000000', '2006-02-07T00:00:00.000000000',\n", " '2006-02-08T00:00:00.000000000', ..., '2006-11-27T00:00:00.000000000',\n", " '2006-11-28T00:00:00.000000000', '2006-11-29T00:00:00.000000000'],\n", " dtype='datetime64[ns]')</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>spatial_ref</span></div><div class='xr-var-dims'>()</div><div class='xr-var-dtype'>int64</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-c0c85149-6d58-4238-a915-8503bc4268ea' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-c0c85149-6d58-4238-a915-8503bc4268ea' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-8ef2b121-f10c-4b64-8d00-62e19db51693' class='xr-var-data-in' type='checkbox'><label for='data-8ef2b121-f10c-4b64-8d00-62e19db51693' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>[1 values with dtype=int64]</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-9d1c6182-ad3e-42be-8513-b145b8fcd38b' class='xr-section-summary-in' type='checkbox' ><label for='section-9d1c6182-ad3e-42be-8513-b145b8fcd38b' class='xr-section-summary' >Data variables: <span>(19)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>Kcb</span></div><div class='xr-var-dims'>(x, y, time)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-4d8b9c82-ddc0-46b9-9a08-0b679847deb4' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-4d8b9c82-ddc0-46b9-9a08-0b679847deb4' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-4fafded8-d540-4df7-883d-b89950337e10' class='xr-var-data-in' type='checkbox'><label for='data-4fafded8-d540-4df7-883d-b89950337e10' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>[29700 values with dtype=int16]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>Zr</span></div><div class='xr-var-dims'>(x, y, time)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-2b7eb7c0-accf-4961-bdc8-cde2842d8e79' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-2b7eb7c0-accf-4961-bdc8-cde2842d8e79' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-24b0362d-036b-46b6-9310-bda23c4942a7' class='xr-var-data-in' type='checkbox'><label for='data-24b0362d-036b-46b6-9310-bda23c4942a7' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>[29700 values with dtype=int16]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>TAW</span></div><div class='xr-var-dims'>(x, y, time)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-3ff0f6ba-2683-4577-aa7c-97240ac1d88c' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-3ff0f6ba-2683-4577-aa7c-97240ac1d88c' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-020b79c6-989e-412a-9f10-68fa81152779' class='xr-var-data-in' type='checkbox'><label for='data-020b79c6-989e-412a-9f10-68fa81152779' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>[29700 values with dtype=int16]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>TDW</span></div><div class='xr-var-dims'>(x, y, time)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-3cf72ebd-f867-4f4d-98b9-330900250d1a' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-3cf72ebd-f867-4f4d-98b9-330900250d1a' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-f9f04bb1-cb76-47df-a021-e39748c5a820' class='xr-var-data-in' type='checkbox'><label for='data-f9f04bb1-cb76-47df-a021-e39748c5a820' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>[29700 values with dtype=int16]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>Irr</span></div><div class='xr-var-dims'>(x, y, time)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-bd4bbbf5-a5d7-48dd-b662-ee6132696e3f' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-bd4bbbf5-a5d7-48dd-b662-ee6132696e3f' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-37e159b1-1e43-48ff-8c4f-e70c9af658a3' class='xr-var-data-in' type='checkbox'><label for='data-37e159b1-1e43-48ff-8c4f-e70c9af658a3' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>[29700 values with dtype=int16]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>DP</span></div><div class='xr-var-dims'>(x, y, time)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-31d80c43-e3a9-4515-a812-95b818f057b6' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-31d80c43-e3a9-4515-a812-95b818f057b6' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-654e1fe7-57c0-4c29-87ba-b7bd1ae4a3cf' class='xr-var-data-in' type='checkbox'><label for='data-654e1fe7-57c0-4c29-87ba-b7bd1ae4a3cf' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>[29700 values with dtype=int16]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>Dei</span></div><div class='xr-var-dims'>(x, y, time)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-635aa2a3-496e-4495-be5c-0b71725b1680' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-635aa2a3-496e-4495-be5c-0b71725b1680' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-d635fdd7-e848-4a9c-afcd-727af70b6e75' class='xr-var-data-in' type='checkbox'><label for='data-d635fdd7-e848-4a9c-afcd-727af70b6e75' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>[29700 values with dtype=int16]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>Dep</span></div><div class='xr-var-dims'>(x, y, time)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-45bdc4e1-d98a-450e-96c2-02384cfdb043' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-45bdc4e1-d98a-450e-96c2-02384cfdb043' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-d379099b-7f7f-446e-8d6c-d7b6588f127f' class='xr-var-data-in' type='checkbox'><label for='data-d379099b-7f7f-446e-8d6c-d7b6588f127f' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>[29700 values with dtype=int16]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>Dr</span></div><div class='xr-var-dims'>(x, y, time)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-5cc25feb-5a44-4e85-be17-8c6a357b6728' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-5cc25feb-5a44-4e85-be17-8c6a357b6728' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-5b338142-5c87-4832-a362-0d6a44971fbd' class='xr-var-data-in' type='checkbox'><label for='data-5b338142-5c87-4832-a362-0d6a44971fbd' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>[29700 values with dtype=int16]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>SWCe</span></div><div class='xr-var-dims'>(x, y, time)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-aa527b65-6aef-4581-8442-669bd02b32ab' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-aa527b65-6aef-4581-8442-669bd02b32ab' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-a6c936aa-9a1b-42fc-8eaa-540af2a29d7c' class='xr-var-data-in' type='checkbox'><label for='data-a6c936aa-9a1b-42fc-8eaa-540af2a29d7c' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>[29700 values with dtype=int16]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>SWCr</span></div><div class='xr-var-dims'>(x, y, time)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-2b30a21e-0d80-4872-a88e-58aed308b9a3' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-2b30a21e-0d80-4872-a88e-58aed308b9a3' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-06116abd-c499-4264-87a3-61c38269fedb' class='xr-var-data-in' type='checkbox'><label for='data-06116abd-c499-4264-87a3-61c38269fedb' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>[29700 values with dtype=int16]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>fewi</span></div><div class='xr-var-dims'>(x, y, time)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-6526bd20-792c-4850-9666-7e047af9a8f2' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-6526bd20-792c-4850-9666-7e047af9a8f2' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-e8d27047-eaa5-4a67-98a7-4f13743cdc5b' class='xr-var-data-in' type='checkbox'><label for='data-e8d27047-eaa5-4a67-98a7-4f13743cdc5b' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>[29700 values with dtype=int16]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>fewp</span></div><div class='xr-var-dims'>(x, y, time)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-6fa84755-c66b-45f7-a165-b13dd0ef8dbe' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-6fa84755-c66b-45f7-a165-b13dd0ef8dbe' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-20e4a3f7-b1d0-43c6-b8fb-d3f3ef96f6ed' class='xr-var-data-in' type='checkbox'><label for='data-20e4a3f7-b1d0-43c6-b8fb-d3f3ef96f6ed' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>[29700 values with dtype=int16]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>W</span></div><div class='xr-var-dims'>(x, y, time)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-77e7de54-80f0-4e3b-aa08-1b2dd39b0ace' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-77e7de54-80f0-4e3b-aa08-1b2dd39b0ace' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-072fa7a9-9f07-429d-96a5-9ebddff9ebc5' class='xr-var-data-in' type='checkbox'><label for='data-072fa7a9-9f07-429d-96a5-9ebddff9ebc5' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>[29700 values with dtype=int16]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>Kei</span></div><div class='xr-var-dims'>(x, y, time)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-609dc19a-5e4d-4192-94a3-0b704e158c40' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-609dc19a-5e4d-4192-94a3-0b704e158c40' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-8755ce53-7bef-4de5-a035-268d1dd669ae' class='xr-var-data-in' type='checkbox'><label for='data-8755ce53-7bef-4de5-a035-268d1dd669ae' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>[29700 values with dtype=int16]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>Kep</span></div><div class='xr-var-dims'>(x, y, time)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-93455cf6-e58c-4e5b-88ee-11f8c2a8817b' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-93455cf6-e58c-4e5b-88ee-11f8c2a8817b' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-eb3023f9-5930-4f87-a58e-ae725d8d8a38' class='xr-var-data-in' type='checkbox'><label for='data-eb3023f9-5930-4f87-a58e-ae725d8d8a38' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>[29700 values with dtype=int16]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>E</span></div><div class='xr-var-dims'>(x, y, time)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-e23c9f10-c06f-4d4f-a060-ab67a9c8beaa' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-e23c9f10-c06f-4d4f-a060-ab67a9c8beaa' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-dd7823cd-feb3-465c-9ec9-3c3da388e84e' class='xr-var-data-in' type='checkbox'><label for='data-dd7823cd-feb3-465c-9ec9-3c3da388e84e' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>[29700 values with dtype=int16]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>Ks</span></div><div class='xr-var-dims'>(x, y, time)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-733702e0-9854-4e0f-b9a1-f876dfd960eb' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-733702e0-9854-4e0f-b9a1-f876dfd960eb' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-874d23e3-05b2-4f29-9797-5a34ae3bb127' class='xr-var-data-in' type='checkbox'><label for='data-874d23e3-05b2-4f29-9797-5a34ae3bb127' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>[29700 values with dtype=int16]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>Tr</span></div><div class='xr-var-dims'>(x, y, time)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-c6148adb-89e9-4f36-b036-dfbba5a2e2ea' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-c6148adb-89e9-4f36-b036-dfbba5a2e2ea' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-3329a3be-3bf3-47f5-b775-93539af9f87c' class='xr-var-data-in' type='checkbox'><label for='data-3329a3be-3bf3-47f5-b775-93539af9f87c' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>[29700 values with dtype=int16]</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-ea073ca6-c6e1-4586-823f-8e4d5006938f' class='xr-section-summary-in' type='checkbox' ><label for='section-ea073ca6-c6e1-4586-823f-8e4d5006938f' class='xr-section-summary' >Indexes: <span>(3)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-index-name'><div>x</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-8b241b31-ba51-4562-a993-88198428ae6a' class='xr-index-data-in' type='checkbox'/><label for='index-8b241b31-ba51-4562-a993-88198428ae6a' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([699970.0, 699990.0, 700010.0, 700030.0, 700050.0, 700070.0, 700090.0,\n", " 700110.0, 700130.0, 700150.0],\n", " dtype='float64', name='x'))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>y</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-43cbbbeb-4c36-4c01-9f25-9b4d74c2f453' class='xr-index-data-in' type='checkbox'/><label for='index-43cbbbeb-4c36-4c01-9f25-9b4d74c2f453' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([4700030.0, 4700010.0, 4699990.0, 4699970.0, 4699950.0, 4699930.0,\n", " 4699910.0, 4699890.0, 4699870.0, 4699850.0],\n", " dtype='float64', name='y'))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>time</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-c5ac228e-625f-4f92-ba75-5dfe6ee6f5c8' class='xr-index-data-in' type='checkbox'/><label for='index-c5ac228e-625f-4f92-ba75-5dfe6ee6f5c8' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(DatetimeIndex(['2006-02-06', '2006-02-07', '2006-02-08', '2006-02-09',\n", " '2006-02-10', '2006-02-11', '2006-02-12', '2006-02-13',\n", " '2006-02-14', '2006-02-15',\n", " ...\n", " '2006-11-20', '2006-11-21', '2006-11-22', '2006-11-23',\n", " '2006-11-24', '2006-11-25', '2006-11-26', '2006-11-27',\n", " '2006-11-28', '2006-11-29'],\n", " dtype='datetime64[ns]', name='time', length=297, freq=None))</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-99ab75ab-16ac-4b4e-8ac3-8f374c6804d4' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-99ab75ab-16ac-4b4e-8ac3-8f374c6804d4' class='xr-section-summary' title='Expand/collapse section'>Attributes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'></dl></div></li></ul></div></div>" ], "text/plain": [ "<xarray.Dataset>\n", "Dimensions: (x: 10, y: 10, time: 297)\n", "Coordinates:\n", " * x (x) float64 7e+05 7e+05 7e+05 ... 7.001e+05 7.001e+05 7.002e+05\n", " * y (y) float64 4.7e+06 4.7e+06 4.7e+06 ... 4.7e+06 4.7e+06 4.7e+06\n", " * time (time) datetime64[ns] 2006-02-06 2006-02-07 ... 2006-11-29\n", " spatial_ref int64 ...\n", "Data variables: (12/19)\n", " Kcb (x, y, time) int16 ...\n", " Zr (x, y, time) int16 ...\n", " TAW (x, y, time) int16 ...\n", " TDW (x, y, time) int16 ...\n", " Irr (x, y, time) int16 ...\n", " DP (x, y, time) int16 ...\n", " ... ...\n", " W (x, y, time) int16 ...\n", " Kei (x, y, time) int16 ...\n", " Kep (x, y, time) int16 ...\n", " E (x, y, time) int16 ...\n", " Ks (x, y, time) int16 ...\n", " Tr (x, y, time) int16 ..." ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "val_outputs" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n", "<defs>\n", "<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n", "<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n", "<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n", "<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n", "</symbol>\n", "<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n", "<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n", "<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", "<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", "<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n", "</symbol>\n", "</defs>\n", "</svg>\n", "<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n", " *\n", " */\n", "\n", ":root {\n", " --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n", " --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n", " --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n", " --xr-border-color: var(--jp-border-color2, #e0e0e0);\n", " --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n", " --xr-background-color: var(--jp-layout-color0, white);\n", " --xr-background-color-row-even: var(--jp-layout-color1, white);\n", " --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n", "}\n", "\n", "html[theme=dark],\n", "body[data-theme=dark],\n", "body.vscode-dark {\n", " --xr-font-color0: rgba(255, 255, 255, 1);\n", " --xr-font-color2: rgba(255, 255, 255, 0.54);\n", " --xr-font-color3: rgba(255, 255, 255, 0.38);\n", " --xr-border-color: #1F1F1F;\n", " --xr-disabled-color: #515151;\n", " --xr-background-color: #111111;\n", " --xr-background-color-row-even: #111111;\n", " --xr-background-color-row-odd: #313131;\n", "}\n", "\n", ".xr-wrap {\n", " display: block !important;\n", " min-width: 300px;\n", " max-width: 700px;\n", "}\n", "\n", ".xr-text-repr-fallback {\n", " /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n", " display: none;\n", "}\n", "\n", ".xr-header {\n", " padding-top: 6px;\n", " padding-bottom: 6px;\n", " margin-bottom: 4px;\n", " border-bottom: solid 1px var(--xr-border-color);\n", "}\n", "\n", ".xr-header > div,\n", ".xr-header > ul {\n", " display: inline;\n", " margin-top: 0;\n", " margin-bottom: 0;\n", "}\n", "\n", ".xr-obj-type,\n", ".xr-array-name {\n", " margin-left: 2px;\n", " margin-right: 10px;\n", "}\n", "\n", ".xr-obj-type {\n", " color: var(--xr-font-color2);\n", "}\n", "\n", ".xr-sections {\n", " padding-left: 0 !important;\n", " display: grid;\n", " grid-template-columns: 150px auto auto 1fr 20px 20px;\n", "}\n", "\n", ".xr-section-item {\n", " display: contents;\n", "}\n", "\n", ".xr-section-item input {\n", " display: none;\n", "}\n", "\n", ".xr-section-item input + label {\n", " color: var(--xr-disabled-color);\n", "}\n", "\n", ".xr-section-item input:enabled + label {\n", " cursor: pointer;\n", " color: var(--xr-font-color2);\n", "}\n", "\n", ".xr-section-item input:enabled + label:hover {\n", " color: var(--xr-font-color0);\n", "}\n", "\n", ".xr-section-summary {\n", " grid-column: 1;\n", " color: var(--xr-font-color2);\n", " font-weight: 500;\n", "}\n", "\n", ".xr-section-summary > span {\n", " display: inline-block;\n", " padding-left: 0.5em;\n", "}\n", "\n", ".xr-section-summary-in:disabled + label {\n", " color: var(--xr-font-color2);\n", "}\n", "\n", ".xr-section-summary-in + label:before {\n", " display: inline-block;\n", " content: '►';\n", " font-size: 11px;\n", " width: 15px;\n", " text-align: center;\n", "}\n", "\n", ".xr-section-summary-in:disabled + label:before {\n", " color: var(--xr-disabled-color);\n", "}\n", "\n", ".xr-section-summary-in:checked + label:before {\n", " content: '▼';\n", "}\n", "\n", ".xr-section-summary-in:checked + label > span {\n", " display: none;\n", "}\n", "\n", ".xr-section-summary,\n", ".xr-section-inline-details {\n", " padding-top: 4px;\n", " padding-bottom: 4px;\n", "}\n", "\n", ".xr-section-inline-details {\n", " grid-column: 2 / -1;\n", "}\n", "\n", ".xr-section-details {\n", " display: none;\n", " grid-column: 1 / -1;\n", " margin-bottom: 5px;\n", "}\n", "\n", ".xr-section-summary-in:checked ~ .xr-section-details {\n", " display: contents;\n", "}\n", "\n", ".xr-array-wrap {\n", " grid-column: 1 / -1;\n", " display: grid;\n", " grid-template-columns: 20px auto;\n", "}\n", "\n", ".xr-array-wrap > label {\n", " grid-column: 1;\n", " vertical-align: top;\n", "}\n", "\n", ".xr-preview {\n", " color: var(--xr-font-color3);\n", "}\n", "\n", ".xr-array-preview,\n", ".xr-array-data {\n", " padding: 0 5px !important;\n", " grid-column: 2;\n", "}\n", "\n", ".xr-array-data,\n", ".xr-array-in:checked ~ .xr-array-preview {\n", " display: none;\n", "}\n", "\n", ".xr-array-in:checked ~ .xr-array-data,\n", ".xr-array-preview {\n", " display: inline-block;\n", "}\n", "\n", ".xr-dim-list {\n", " display: inline-block !important;\n", " list-style: none;\n", " padding: 0 !important;\n", " margin: 0;\n", "}\n", "\n", ".xr-dim-list li {\n", " display: inline-block;\n", " padding: 0;\n", " margin: 0;\n", "}\n", "\n", ".xr-dim-list:before {\n", " content: '(';\n", "}\n", "\n", ".xr-dim-list:after {\n", " content: ')';\n", "}\n", "\n", ".xr-dim-list li:not(:last-child):after {\n", " content: ',';\n", " padding-right: 5px;\n", "}\n", "\n", ".xr-has-index {\n", " font-weight: bold;\n", "}\n", "\n", ".xr-var-list,\n", ".xr-var-item {\n", " display: contents;\n", "}\n", "\n", ".xr-var-item > div,\n", ".xr-var-item label,\n", ".xr-var-item > .xr-var-name span {\n", " background-color: var(--xr-background-color-row-even);\n", " margin-bottom: 0;\n", "}\n", "\n", ".xr-var-item > .xr-var-name:hover span {\n", " padding-right: 5px;\n", "}\n", "\n", ".xr-var-list > li:nth-child(odd) > div,\n", ".xr-var-list > li:nth-child(odd) > label,\n", ".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n", " background-color: var(--xr-background-color-row-odd);\n", "}\n", "\n", ".xr-var-name {\n", " grid-column: 1;\n", "}\n", "\n", ".xr-var-dims {\n", " grid-column: 2;\n", "}\n", "\n", ".xr-var-dtype {\n", " grid-column: 3;\n", " text-align: right;\n", " color: var(--xr-font-color2);\n", "}\n", "\n", ".xr-var-preview {\n", " grid-column: 4;\n", "}\n", "\n", ".xr-index-preview {\n", " grid-column: 2 / 5;\n", " color: var(--xr-font-color2);\n", "}\n", "\n", ".xr-var-name,\n", ".xr-var-dims,\n", ".xr-var-dtype,\n", ".xr-preview,\n", ".xr-attrs dt {\n", " white-space: nowrap;\n", " overflow: hidden;\n", " text-overflow: ellipsis;\n", " padding-right: 10px;\n", "}\n", "\n", ".xr-var-name:hover,\n", ".xr-var-dims:hover,\n", ".xr-var-dtype:hover,\n", ".xr-attrs dt:hover {\n", " overflow: visible;\n", " width: auto;\n", " z-index: 1;\n", "}\n", "\n", ".xr-var-attrs,\n", ".xr-var-data,\n", ".xr-index-data {\n", " display: none;\n", " background-color: var(--xr-background-color) !important;\n", " padding-bottom: 5px !important;\n", "}\n", "\n", ".xr-var-attrs-in:checked ~ .xr-var-attrs,\n", ".xr-var-data-in:checked ~ .xr-var-data,\n", ".xr-index-data-in:checked ~ .xr-index-data {\n", " display: block;\n", "}\n", "\n", ".xr-var-data > table {\n", " float: right;\n", "}\n", "\n", ".xr-var-name span,\n", ".xr-var-data,\n", ".xr-index-name div,\n", ".xr-index-data,\n", ".xr-attrs {\n", " padding-left: 25px !important;\n", "}\n", "\n", ".xr-attrs,\n", ".xr-var-attrs,\n", ".xr-var-data,\n", ".xr-index-data {\n", " grid-column: 1 / -1;\n", "}\n", "\n", "dl.xr-attrs {\n", " padding: 0;\n", " margin: 0;\n", " display: grid;\n", " grid-template-columns: 125px auto;\n", "}\n", "\n", ".xr-attrs dt,\n", ".xr-attrs dd {\n", " padding: 0;\n", " margin: 0;\n", " float: left;\n", " padding-right: 10px;\n", " width: auto;\n", "}\n", "\n", ".xr-attrs dt {\n", " font-weight: normal;\n", " grid-column: 1;\n", "}\n", "\n", ".xr-attrs dt:hover span {\n", " display: inline-block;\n", " background: var(--xr-background-color);\n", " padding-right: 10px;\n", "}\n", "\n", ".xr-attrs dd {\n", " grid-column: 2;\n", " white-space: pre-wrap;\n", " word-break: break-all;\n", "}\n", "\n", ".xr-icon-database,\n", ".xr-icon-file-text2,\n", ".xr-no-icon {\n", " display: inline-block;\n", " vertical-align: middle;\n", " width: 1em;\n", " height: 1.5em !important;\n", " stroke-width: 0;\n", " stroke: currentColor;\n", " fill: currentColor;\n", "}\n", "</style><pre class='xr-text-repr-fallback'><xarray.Dataset>\n", "Dimensions: (x: 10, y: 10, time: 297)\n", "Coordinates:\n", " * x (x) float64 7e+05 7e+05 7e+05 ... 7.001e+05 7.001e+05 7.002e+05\n", " * y (y) float64 4.7e+06 4.7e+06 4.7e+06 ... 4.7e+06 4.7e+06 4.7e+06\n", " * time (time) datetime64[ns] 2006-02-06 2006-02-07 ... 2006-11-29\n", " spatial_ref int64 ...\n", "Data variables: (12/19)\n", " E (x, y, time) int16 ...\n", " Tr (x, y, time) int16 ...\n", " SWCe (x, y, time) int16 ...\n", " SWCr (x, y, time) int16 ...\n", " Irr (x, y, time) int16 ...\n", " DP (x, y, time) int16 ...\n", " ... ...\n", " W (x, y, time) int16 ...\n", " Kcb (x, y, time) int16 ...\n", " fewi (x, y, time) int16 ...\n", " fewp (x, y, time) int16 ...\n", " TDW (x, y, time) int16 ...\n", " TAW (x, y, time) int16 ...</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-9d26800f-53f8-4456-a321-31c9d6eb5b5e' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-9d26800f-53f8-4456-a321-31c9d6eb5b5e' class='xr-section-summary' title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'><ul class='xr-dim-list'><li><span class='xr-has-index'>x</span>: 10</li><li><span class='xr-has-index'>y</span>: 10</li><li><span class='xr-has-index'>time</span>: 297</li></ul></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-e99bb7e4-e758-4c3c-b59a-ca229e575e48' class='xr-section-summary-in' type='checkbox' checked><label for='section-e99bb7e4-e758-4c3c-b59a-ca229e575e48' class='xr-section-summary' >Coordinates: <span>(4)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>x</span></div><div class='xr-var-dims'>(x)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>7e+05 7e+05 ... 7.001e+05 7.002e+05</div><input id='attrs-08ed0ba8-3b96-4360-ac75-f8e8937ede77' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-08ed0ba8-3b96-4360-ac75-f8e8937ede77' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-6a497a69-9dab-493f-a381-1fe645dd9436' class='xr-var-data-in' type='checkbox'><label for='data-6a497a69-9dab-493f-a381-1fe645dd9436' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([699970., 699990., 700010., 700030., 700050., 700070., 700090., 700110.,\n", " 700130., 700150.])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>y</span></div><div class='xr-var-dims'>(y)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>4.7e+06 4.7e+06 ... 4.7e+06 4.7e+06</div><input id='attrs-606478ff-d78c-43e4-86d7-e40b72aa4315' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-606478ff-d78c-43e4-86d7-e40b72aa4315' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-a16cc52a-af7a-45c0-98d3-ac4a7061c6e6' class='xr-var-data-in' type='checkbox'><label for='data-a16cc52a-af7a-45c0-98d3-ac4a7061c6e6' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([4700030., 4700010., 4699990., 4699970., 4699950., 4699930., 4699910.,\n", " 4699890., 4699870., 4699850.])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>time</span></div><div class='xr-var-dims'>(time)</div><div class='xr-var-dtype'>datetime64[ns]</div><div class='xr-var-preview xr-preview'>2006-02-06 ... 2006-11-29</div><input id='attrs-788a9286-c40d-4ac4-a8d1-630fdf1a520d' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-788a9286-c40d-4ac4-a8d1-630fdf1a520d' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-5792e191-6a70-46ea-90c1-2d884fe61451' class='xr-var-data-in' type='checkbox'><label for='data-5792e191-6a70-46ea-90c1-2d884fe61451' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array(['2006-02-06T00:00:00.000000000', '2006-02-07T00:00:00.000000000',\n", " '2006-02-08T00:00:00.000000000', ..., '2006-11-27T00:00:00.000000000',\n", " '2006-11-28T00:00:00.000000000', '2006-11-29T00:00:00.000000000'],\n", " dtype='datetime64[ns]')</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>spatial_ref</span></div><div class='xr-var-dims'>()</div><div class='xr-var-dtype'>int64</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-429ff474-5cf5-48a7-af33-91fbb7eb62bb' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-429ff474-5cf5-48a7-af33-91fbb7eb62bb' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-85dfee1d-10f7-4669-b093-bfa42cd31729' class='xr-var-data-in' type='checkbox'><label for='data-85dfee1d-10f7-4669-b093-bfa42cd31729' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>[1 values with dtype=int64]</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-d2861e1b-8f87-4102-a228-4f5e88f1b7b2' class='xr-section-summary-in' type='checkbox' ><label for='section-d2861e1b-8f87-4102-a228-4f5e88f1b7b2' class='xr-section-summary' >Data variables: <span>(19)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>E</span></div><div class='xr-var-dims'>(x, y, time)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-bcacaa25-44af-425c-9216-c232cc58c9b8' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-bcacaa25-44af-425c-9216-c232cc58c9b8' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-330d4eed-f58f-4c61-b3bd-c6214809a687' class='xr-var-data-in' type='checkbox'><label for='data-330d4eed-f58f-4c61-b3bd-c6214809a687' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>mm</dd><dt><span>standard_name :</span></dt><dd>Evaporation</dd><dt><span>description :</span></dt><dd>Accumulated daily evaporation in milimeters</dd><dt><span>scale factor :</span></dt><dd>1000</dd></dl></div><div class='xr-var-data'><pre>[29700 values with dtype=int16]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>Tr</span></div><div class='xr-var-dims'>(x, y, time)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-62fefb75-5253-4d26-92e0-7ab22b6ab1e4' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-62fefb75-5253-4d26-92e0-7ab22b6ab1e4' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-05afdf02-0bae-46fe-adb1-ea88f148195e' class='xr-var-data-in' type='checkbox'><label for='data-05afdf02-0bae-46fe-adb1-ea88f148195e' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>mm</dd><dt><span>standard_name :</span></dt><dd>Transpiration</dd><dt><span>description :</span></dt><dd>Accumulated daily plant transpiration in milimeters</dd><dt><span>scale factor :</span></dt><dd>1000</dd></dl></div><div class='xr-var-data'><pre>[29700 values with dtype=int16]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>SWCe</span></div><div class='xr-var-dims'>(x, y, time)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-d7325cc1-5b8f-4939-a5ff-e5db6db18190' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-d7325cc1-5b8f-4939-a5ff-e5db6db18190' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-d100c17b-c199-4be9-bcc9-39198a557f64' class='xr-var-data-in' type='checkbox'><label for='data-d100c17b-c199-4be9-bcc9-39198a557f64' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>mm</dd><dt><span>standard_name :</span></dt><dd>Soil Water Content of the evaporative zone</dd><dt><span>description :</span></dt><dd>Soil water content of the evaporative zone in milimeters</dd><dt><span>scale factor :</span></dt><dd>1000</dd></dl></div><div class='xr-var-data'><pre>[29700 values with dtype=int16]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>SWCr</span></div><div class='xr-var-dims'>(x, y, time)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-ae560a78-ffa2-4604-8304-0c0ce8dcbf1c' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-ae560a78-ffa2-4604-8304-0c0ce8dcbf1c' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-ed86e8d8-b882-436a-a489-8e3d407361d7' class='xr-var-data-in' type='checkbox'><label for='data-ed86e8d8-b882-436a-a489-8e3d407361d7' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>mm</dd><dt><span>standard_name :</span></dt><dd>Soil Water Content of the root zone</dd><dt><span>description :</span></dt><dd>Soil water content of the root zone in milimeters</dd><dt><span>scale factor :</span></dt><dd>1000</dd></dl></div><div class='xr-var-data'><pre>[29700 values with dtype=int16]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>Irr</span></div><div class='xr-var-dims'>(x, y, time)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-08f35d6f-9f36-4998-a067-0bcea9e93bb3' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-08f35d6f-9f36-4998-a067-0bcea9e93bb3' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-2e913d4b-61cd-48ad-9870-bd7289308ee0' class='xr-var-data-in' type='checkbox'><label for='data-2e913d4b-61cd-48ad-9870-bd7289308ee0' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>mm</dd><dt><span>standard_name :</span></dt><dd>Irrigation</dd><dt><span>description :</span></dt><dd>Simulated daily irrigation in milimeters</dd><dt><span>scale factor :</span></dt><dd>1000</dd></dl></div><div class='xr-var-data'><pre>[29700 values with dtype=int16]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>DP</span></div><div class='xr-var-dims'>(x, y, time)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-7cebccb2-52cc-4507-ac6e-c49ce1f7601b' class='xr-var-attrs-in' type='checkbox' ><label for='attrs-7cebccb2-52cc-4507-ac6e-c49ce1f7601b' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-ed1ff364-0766-48cb-843e-b89a3908f218' class='xr-var-data-in' type='checkbox'><label for='data-ed1ff364-0766-48cb-843e-b89a3908f218' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'><dt><span>units :</span></dt><dd>mm</dd><dt><span>standard_name :</span></dt><dd>Deep Percolation</dd><dt><span>description :</span></dt><dd>Simulated daily Deep Percolation in milimeters</dd><dt><span>scale factor :</span></dt><dd>1000</dd></dl></div><div class='xr-var-data'><pre>[29700 values with dtype=int16]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>Zr</span></div><div class='xr-var-dims'>(x, y, time)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-5bbd7f63-9b1e-4799-91fb-9c612ce5e0db' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-5bbd7f63-9b1e-4799-91fb-9c612ce5e0db' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-5739452d-879c-44ca-8662-a884bad304fd' class='xr-var-data-in' type='checkbox'><label for='data-5739452d-879c-44ca-8662-a884bad304fd' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>[29700 values with dtype=int16]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>Dei</span></div><div class='xr-var-dims'>(x, y, time)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-fded7664-6287-4619-86e0-b558f219f908' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-fded7664-6287-4619-86e0-b558f219f908' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-07c3a10f-d559-4c6e-a872-b1c63d55b9d7' class='xr-var-data-in' type='checkbox'><label for='data-07c3a10f-d559-4c6e-a872-b1c63d55b9d7' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>[29700 values with dtype=int16]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>Dep</span></div><div class='xr-var-dims'>(x, y, time)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-90073955-eec3-4de0-b3ae-da4e373d5b5a' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-90073955-eec3-4de0-b3ae-da4e373d5b5a' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-c52a296d-33e2-41ac-97c1-f463a94dced4' class='xr-var-data-in' type='checkbox'><label for='data-c52a296d-33e2-41ac-97c1-f463a94dced4' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>[29700 values with dtype=int16]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>Dr</span></div><div class='xr-var-dims'>(x, y, time)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-0245d679-c038-46da-85f0-9952bf6b46f3' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-0245d679-c038-46da-85f0-9952bf6b46f3' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-d2257590-7407-48ad-8a6f-e4cbc046c520' class='xr-var-data-in' type='checkbox'><label for='data-d2257590-7407-48ad-8a6f-e4cbc046c520' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>[29700 values with dtype=int16]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>Kei</span></div><div class='xr-var-dims'>(x, y, time)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-0263e530-cc00-4ddc-a063-0607571a8df8' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-0263e530-cc00-4ddc-a063-0607571a8df8' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-5d1b7177-55a9-46ea-bc49-e9404e6c17a7' class='xr-var-data-in' type='checkbox'><label for='data-5d1b7177-55a9-46ea-bc49-e9404e6c17a7' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>[29700 values with dtype=int16]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>Kep</span></div><div class='xr-var-dims'>(x, y, time)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-5334872a-9e75-4759-a4b0-a9f5b7b73b48' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-5334872a-9e75-4759-a4b0-a9f5b7b73b48' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-a4414b97-5f52-4c6f-a875-4fedb4f32af2' class='xr-var-data-in' type='checkbox'><label for='data-a4414b97-5f52-4c6f-a875-4fedb4f32af2' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>[29700 values with dtype=int16]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>Ks</span></div><div class='xr-var-dims'>(x, y, time)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-010cdb77-4158-4167-9493-7a51f2ee2e94' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-010cdb77-4158-4167-9493-7a51f2ee2e94' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-0288f6bf-aed0-446a-bdce-c606c6700731' class='xr-var-data-in' type='checkbox'><label for='data-0288f6bf-aed0-446a-bdce-c606c6700731' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>[29700 values with dtype=int16]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>W</span></div><div class='xr-var-dims'>(x, y, time)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-e90e925d-cf43-4434-a72c-f620852f4af3' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-e90e925d-cf43-4434-a72c-f620852f4af3' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-9fc36d2b-5f66-46d3-8fbd-03b2f17e69c9' class='xr-var-data-in' type='checkbox'><label for='data-9fc36d2b-5f66-46d3-8fbd-03b2f17e69c9' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>[29700 values with dtype=int16]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>Kcb</span></div><div class='xr-var-dims'>(x, y, time)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-9a80d3e2-c1a2-4f29-b462-bdd265614142' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-9a80d3e2-c1a2-4f29-b462-bdd265614142' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-e1be248f-4eef-4f1b-a1c7-1c5a0731326b' class='xr-var-data-in' type='checkbox'><label for='data-e1be248f-4eef-4f1b-a1c7-1c5a0731326b' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>[29700 values with dtype=int16]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>fewi</span></div><div class='xr-var-dims'>(x, y, time)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-0772a3ee-b916-4e0d-a603-290b18d92427' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-0772a3ee-b916-4e0d-a603-290b18d92427' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-b848ca96-101f-4e82-b377-fdcdc119d098' class='xr-var-data-in' type='checkbox'><label for='data-b848ca96-101f-4e82-b377-fdcdc119d098' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>[29700 values with dtype=int16]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>fewp</span></div><div class='xr-var-dims'>(x, y, time)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-c03f64b8-46b6-4757-8e84-de2c2275cf36' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-c03f64b8-46b6-4757-8e84-de2c2275cf36' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-c0e294a4-24c1-4f2e-acec-5cc298962a04' class='xr-var-data-in' type='checkbox'><label for='data-c0e294a4-24c1-4f2e-acec-5cc298962a04' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>[29700 values with dtype=int16]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>TDW</span></div><div class='xr-var-dims'>(x, y, time)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-9d2ca67c-d021-4936-9577-5f991260e11a' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-9d2ca67c-d021-4936-9577-5f991260e11a' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-4dcacfcc-8a90-4ce3-b9ab-7f270d99d786' class='xr-var-data-in' type='checkbox'><label for='data-4dcacfcc-8a90-4ce3-b9ab-7f270d99d786' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>[29700 values with dtype=int16]</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>TAW</span></div><div class='xr-var-dims'>(x, y, time)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>...</div><input id='attrs-be94c399-43ac-45bb-bf1d-007730108422' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-be94c399-43ac-45bb-bf1d-007730108422' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-168e22ea-ca3a-4784-8cd2-8a61b435b109' class='xr-var-data-in' type='checkbox'><label for='data-168e22ea-ca3a-4784-8cd2-8a61b435b109' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>[29700 values with dtype=int16]</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-014b0fb1-5046-4bce-8f02-e8d0a8d08ea5' class='xr-section-summary-in' type='checkbox' ><label for='section-014b0fb1-5046-4bce-8f02-e8d0a8d08ea5' class='xr-section-summary' >Indexes: <span>(3)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-index-name'><div>x</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-54e558d5-6e69-47dc-a75b-9aa98858614d' class='xr-index-data-in' type='checkbox'/><label for='index-54e558d5-6e69-47dc-a75b-9aa98858614d' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([699970.0, 699990.0, 700010.0, 700030.0, 700050.0, 700070.0, 700090.0,\n", " 700110.0, 700130.0, 700150.0],\n", " dtype='float64', name='x'))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>y</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-a8071114-cba1-4362-b78e-9a10d13312f6' class='xr-index-data-in' type='checkbox'/><label for='index-a8071114-cba1-4362-b78e-9a10d13312f6' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([4700030.0, 4700010.0, 4699990.0, 4699970.0, 4699950.0, 4699930.0,\n", " 4699910.0, 4699890.0, 4699870.0, 4699850.0],\n", " dtype='float64', name='y'))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>time</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-2a2adf37-1148-4544-be13-971cdef881a3' class='xr-index-data-in' type='checkbox'/><label for='index-2a2adf37-1148-4544-be13-971cdef881a3' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(DatetimeIndex(['2006-02-06', '2006-02-07', '2006-02-08', '2006-02-09',\n", " '2006-02-10', '2006-02-11', '2006-02-12', '2006-02-13',\n", " '2006-02-14', '2006-02-15',\n", " ...\n", " '2006-11-20', '2006-11-21', '2006-11-22', '2006-11-23',\n", " '2006-11-24', '2006-11-25', '2006-11-26', '2006-11-27',\n", " '2006-11-28', '2006-11-29'],\n", " dtype='datetime64[ns]', name='time', length=297, freq=None))</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-095f2fa6-4e0a-4653-9f93-11eb28ffd465' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-095f2fa6-4e0a-4653-9f93-11eb28ffd465' class='xr-section-summary' title='Expand/collapse section'>Attributes: <span>(0)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'></dl></div></li></ul></div></div>" ], "text/plain": [ "<xarray.Dataset>\n", "Dimensions: (x: 10, y: 10, time: 297)\n", "Coordinates:\n", " * x (x) float64 7e+05 7e+05 7e+05 ... 7.001e+05 7.001e+05 7.002e+05\n", " * y (y) float64 4.7e+06 4.7e+06 4.7e+06 ... 4.7e+06 4.7e+06 4.7e+06\n", " * time (time) datetime64[ns] 2006-02-06 2006-02-07 ... 2006-11-29\n", " spatial_ref int64 ...\n", "Data variables: (12/19)\n", " E (x, y, time) int16 ...\n", " Tr (x, y, time) int16 ...\n", " SWCe (x, y, time) int16 ...\n", " SWCr (x, y, time) int16 ...\n", " Irr (x, y, time) int16 ...\n", " DP (x, y, time) int16 ...\n", " ... ...\n", " W (x, y, time) int16 ...\n", " Kcb (x, y, time) int16 ...\n", " fewi (x, y, time) int16 ...\n", " fewp (x, y, time) int16 ...\n", " TDW (x, y, time) int16 ...\n", " TAW (x, y, time) int16 ..." ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "outputs" ] } ], "metadata": { "kernelspec": { "display_name": "modspa_pixel", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.9" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }